1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 static cl::opt<bool> ThreadAcrossLoopHeaders( 107 "jump-threading-across-loop-headers", 108 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 109 cl::init(false), cl::Hidden); 110 111 112 namespace { 113 114 /// This pass performs 'jump threading', which looks at blocks that have 115 /// multiple predecessors and multiple successors. If one or more of the 116 /// predecessors of the block can be proven to always jump to one of the 117 /// successors, we forward the edge from the predecessor to the successor by 118 /// duplicating the contents of this block. 119 /// 120 /// An example of when this can occur is code like this: 121 /// 122 /// if () { ... 123 /// X = 4; 124 /// } 125 /// if (X < 3) { 126 /// 127 /// In this case, the unconditional branch at the end of the first if can be 128 /// revectored to the false side of the second if. 129 class JumpThreading : public FunctionPass { 130 JumpThreadingPass Impl; 131 132 public: 133 static char ID; // Pass identification 134 135 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 136 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 137 } 138 139 bool runOnFunction(Function &F) override; 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<AAResultsWrapperPass>(); 145 AU.addRequired<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<GlobalsAAWrapperPass>(); 148 AU.addRequired<TargetLibraryInfoWrapperPass>(); 149 } 150 151 void releaseMemory() override { Impl.releaseMemory(); } 152 }; 153 154 } // end anonymous namespace 155 156 char JumpThreading::ID = 0; 157 158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 164 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 165 "Jump Threading", false, false) 166 167 // Public interface to the Jump Threading pass 168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 169 return new JumpThreading(Threshold); 170 } 171 172 JumpThreadingPass::JumpThreadingPass(int T) { 173 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 174 } 175 176 // Update branch probability information according to conditional 177 // branch probability. This is usually made possible for cloned branches 178 // in inline instances by the context specific profile in the caller. 179 // For instance, 180 // 181 // [Block PredBB] 182 // [Branch PredBr] 183 // if (t) { 184 // Block A; 185 // } else { 186 // Block B; 187 // } 188 // 189 // [Block BB] 190 // cond = PN([true, %A], [..., %B]); // PHI node 191 // [Branch CondBr] 192 // if (cond) { 193 // ... // P(cond == true) = 1% 194 // } 195 // 196 // Here we know that when block A is taken, cond must be true, which means 197 // P(cond == true | A) = 1 198 // 199 // Given that P(cond == true) = P(cond == true | A) * P(A) + 200 // P(cond == true | B) * P(B) 201 // we get: 202 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 203 // 204 // which gives us: 205 // P(A) is less than P(cond == true), i.e. 206 // P(t == true) <= P(cond == true) 207 // 208 // In other words, if we know P(cond == true) is unlikely, we know 209 // that P(t == true) is also unlikely. 210 // 211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 212 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!CondBr) 214 return; 215 216 BranchProbability BP; 217 uint64_t TrueWeight, FalseWeight; 218 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 219 return; 220 221 // Returns the outgoing edge of the dominating predecessor block 222 // that leads to the PhiNode's incoming block: 223 auto GetPredOutEdge = 224 [](BasicBlock *IncomingBB, 225 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 226 auto *PredBB = IncomingBB; 227 auto *SuccBB = PhiBB; 228 SmallPtrSet<BasicBlock *, 16> Visited; 229 while (true) { 230 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 231 if (PredBr && PredBr->isConditional()) 232 return {PredBB, SuccBB}; 233 Visited.insert(PredBB); 234 auto *SinglePredBB = PredBB->getSinglePredecessor(); 235 if (!SinglePredBB) 236 return {nullptr, nullptr}; 237 238 // Stop searching when SinglePredBB has been visited. It means we see 239 // an unreachable loop. 240 if (Visited.count(SinglePredBB)) 241 return {nullptr, nullptr}; 242 243 SuccBB = PredBB; 244 PredBB = SinglePredBB; 245 } 246 }; 247 248 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 249 Value *PhiOpnd = PN->getIncomingValue(i); 250 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 251 252 if (!CI || !CI->getType()->isIntegerTy(1)) 253 continue; 254 255 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 256 TrueWeight, TrueWeight + FalseWeight) 257 : BranchProbability::getBranchProbability( 258 FalseWeight, TrueWeight + FalseWeight)); 259 260 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 261 if (!PredOutEdge.first) 262 return; 263 264 BasicBlock *PredBB = PredOutEdge.first; 265 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 266 if (!PredBr) 267 return; 268 269 uint64_t PredTrueWeight, PredFalseWeight; 270 // FIXME: We currently only set the profile data when it is missing. 271 // With PGO, this can be used to refine even existing profile data with 272 // context information. This needs to be done after more performance 273 // testing. 274 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 275 continue; 276 277 // We can not infer anything useful when BP >= 50%, because BP is the 278 // upper bound probability value. 279 if (BP >= BranchProbability(50, 100)) 280 continue; 281 282 SmallVector<uint32_t, 2> Weights; 283 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 284 Weights.push_back(BP.getNumerator()); 285 Weights.push_back(BP.getCompl().getNumerator()); 286 } else { 287 Weights.push_back(BP.getCompl().getNumerator()); 288 Weights.push_back(BP.getNumerator()); 289 } 290 PredBr->setMetadata(LLVMContext::MD_prof, 291 MDBuilder(PredBr->getParent()->getContext()) 292 .createBranchWeights(Weights)); 293 } 294 } 295 296 /// runOnFunction - Toplevel algorithm. 297 bool JumpThreading::runOnFunction(Function &F) { 298 if (skipFunction(F)) 299 return false; 300 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 301 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 302 // DT if it's available. 303 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 304 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 305 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 306 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 307 std::unique_ptr<BlockFrequencyInfo> BFI; 308 std::unique_ptr<BranchProbabilityInfo> BPI; 309 if (F.hasProfileData()) { 310 LoopInfo LI{DominatorTree(F)}; 311 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 312 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 313 } 314 315 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 316 std::move(BFI), std::move(BPI)); 317 if (PrintLVIAfterJumpThreading) { 318 dbgs() << "LVI for function '" << F.getName() << "':\n"; 319 LVI->printLVI(F, *DT, dbgs()); 320 } 321 return Changed; 322 } 323 324 PreservedAnalyses JumpThreadingPass::run(Function &F, 325 FunctionAnalysisManager &AM) { 326 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 327 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 328 // DT if it's available. 329 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 330 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 331 auto &AA = AM.getResult<AAManager>(F); 332 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 333 334 std::unique_ptr<BlockFrequencyInfo> BFI; 335 std::unique_ptr<BranchProbabilityInfo> BPI; 336 if (F.hasProfileData()) { 337 LoopInfo LI{DominatorTree(F)}; 338 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 339 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 340 } 341 342 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 343 std::move(BFI), std::move(BPI)); 344 345 if (!Changed) 346 return PreservedAnalyses::all(); 347 PreservedAnalyses PA; 348 PA.preserve<GlobalsAA>(); 349 PA.preserve<DominatorTreeAnalysis>(); 350 PA.preserve<LazyValueAnalysis>(); 351 return PA; 352 } 353 354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 355 LazyValueInfo *LVI_, AliasAnalysis *AA_, 356 DomTreeUpdater *DTU_, bool HasProfileData_, 357 std::unique_ptr<BlockFrequencyInfo> BFI_, 358 std::unique_ptr<BranchProbabilityInfo> BPI_) { 359 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 360 TLI = TLI_; 361 LVI = LVI_; 362 AA = AA_; 363 DTU = DTU_; 364 BFI.reset(); 365 BPI.reset(); 366 // When profile data is available, we need to update edge weights after 367 // successful jump threading, which requires both BPI and BFI being available. 368 HasProfileData = HasProfileData_; 369 auto *GuardDecl = F.getParent()->getFunction( 370 Intrinsic::getName(Intrinsic::experimental_guard)); 371 HasGuards = GuardDecl && !GuardDecl->use_empty(); 372 if (HasProfileData) { 373 BPI = std::move(BPI_); 374 BFI = std::move(BFI_); 375 } 376 377 // Reduce the number of instructions duplicated when optimizing strictly for 378 // size. 379 if (BBDuplicateThreshold.getNumOccurrences()) 380 BBDupThreshold = BBDuplicateThreshold; 381 else if (F.hasFnAttribute(Attribute::MinSize)) 382 BBDupThreshold = 3; 383 else 384 BBDupThreshold = DefaultBBDupThreshold; 385 386 // JumpThreading must not processes blocks unreachable from entry. It's a 387 // waste of compute time and can potentially lead to hangs. 388 SmallPtrSet<BasicBlock *, 16> Unreachable; 389 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 390 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 391 DominatorTree &DT = DTU->getDomTree(); 392 for (auto &BB : F) 393 if (!DT.isReachableFromEntry(&BB)) 394 Unreachable.insert(&BB); 395 396 if (!ThreadAcrossLoopHeaders) 397 FindLoopHeaders(F); 398 399 bool EverChanged = false; 400 bool Changed; 401 do { 402 Changed = false; 403 for (auto &BB : F) { 404 if (Unreachable.count(&BB)) 405 continue; 406 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 407 Changed = true; 408 // Stop processing BB if it's the entry or is now deleted. The following 409 // routines attempt to eliminate BB and locating a suitable replacement 410 // for the entry is non-trivial. 411 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 412 continue; 413 414 if (pred_empty(&BB)) { 415 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 416 // the instructions in it. We must remove BB to prevent invalid IR. 417 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 418 << "' with terminator: " << *BB.getTerminator() 419 << '\n'); 420 LoopHeaders.erase(&BB); 421 LVI->eraseBlock(&BB); 422 DeleteDeadBlock(&BB, DTU); 423 Changed = true; 424 continue; 425 } 426 427 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 428 // is "almost empty", we attempt to merge BB with its sole successor. 429 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 430 if (BI && BI->isUnconditional() && 431 // The terminator must be the only non-phi instruction in BB. 432 BB.getFirstNonPHIOrDbg()->isTerminator() && 433 // Don't alter Loop headers and latches to ensure another pass can 434 // detect and transform nested loops later. 435 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 436 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 437 // BB is valid for cleanup here because we passed in DTU. F remains 438 // BB's parent until a DTU->getDomTree() event. 439 LVI->eraseBlock(&BB); 440 Changed = true; 441 } 442 } 443 EverChanged |= Changed; 444 } while (Changed); 445 446 LoopHeaders.clear(); 447 // Flush only the Dominator Tree. 448 DTU->getDomTree(); 449 LVI->enableDT(); 450 return EverChanged; 451 } 452 453 // Replace uses of Cond with ToVal when safe to do so. If all uses are 454 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 455 // because we may incorrectly replace uses when guards/assumes are uses of 456 // of `Cond` and we used the guards/assume to reason about the `Cond` value 457 // at the end of block. RAUW unconditionally replaces all uses 458 // including the guards/assumes themselves and the uses before the 459 // guard/assume. 460 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 461 assert(Cond->getType() == ToVal->getType()); 462 auto *BB = Cond->getParent(); 463 // We can unconditionally replace all uses in non-local blocks (i.e. uses 464 // strictly dominated by BB), since LVI information is true from the 465 // terminator of BB. 466 replaceNonLocalUsesWith(Cond, ToVal); 467 for (Instruction &I : reverse(*BB)) { 468 // Reached the Cond whose uses we are trying to replace, so there are no 469 // more uses. 470 if (&I == Cond) 471 break; 472 // We only replace uses in instructions that are guaranteed to reach the end 473 // of BB, where we know Cond is ToVal. 474 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 475 break; 476 I.replaceUsesOfWith(Cond, ToVal); 477 } 478 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 479 Cond->eraseFromParent(); 480 } 481 482 /// Return the cost of duplicating a piece of this block from first non-phi 483 /// and before StopAt instruction to thread across it. Stop scanning the block 484 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 485 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 486 Instruction *StopAt, 487 unsigned Threshold) { 488 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 489 /// Ignore PHI nodes, these will be flattened when duplication happens. 490 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 491 492 // FIXME: THREADING will delete values that are just used to compute the 493 // branch, so they shouldn't count against the duplication cost. 494 495 unsigned Bonus = 0; 496 if (BB->getTerminator() == StopAt) { 497 // Threading through a switch statement is particularly profitable. If this 498 // block ends in a switch, decrease its cost to make it more likely to 499 // happen. 500 if (isa<SwitchInst>(StopAt)) 501 Bonus = 6; 502 503 // The same holds for indirect branches, but slightly more so. 504 if (isa<IndirectBrInst>(StopAt)) 505 Bonus = 8; 506 } 507 508 // Bump the threshold up so the early exit from the loop doesn't skip the 509 // terminator-based Size adjustment at the end. 510 Threshold += Bonus; 511 512 // Sum up the cost of each instruction until we get to the terminator. Don't 513 // include the terminator because the copy won't include it. 514 unsigned Size = 0; 515 for (; &*I != StopAt; ++I) { 516 517 // Stop scanning the block if we've reached the threshold. 518 if (Size > Threshold) 519 return Size; 520 521 // Debugger intrinsics don't incur code size. 522 if (isa<DbgInfoIntrinsic>(I)) continue; 523 524 // If this is a pointer->pointer bitcast, it is free. 525 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 526 continue; 527 528 // Bail out if this instruction gives back a token type, it is not possible 529 // to duplicate it if it is used outside this BB. 530 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 531 return ~0U; 532 533 // All other instructions count for at least one unit. 534 ++Size; 535 536 // Calls are more expensive. If they are non-intrinsic calls, we model them 537 // as having cost of 4. If they are a non-vector intrinsic, we model them 538 // as having cost of 2 total, and if they are a vector intrinsic, we model 539 // them as having cost 1. 540 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 541 if (CI->cannotDuplicate() || CI->isConvergent()) 542 // Blocks with NoDuplicate are modelled as having infinite cost, so they 543 // are never duplicated. 544 return ~0U; 545 else if (!isa<IntrinsicInst>(CI)) 546 Size += 3; 547 else if (!CI->getType()->isVectorTy()) 548 Size += 1; 549 } 550 } 551 552 return Size > Bonus ? Size - Bonus : 0; 553 } 554 555 /// FindLoopHeaders - We do not want jump threading to turn proper loop 556 /// structures into irreducible loops. Doing this breaks up the loop nesting 557 /// hierarchy and pessimizes later transformations. To prevent this from 558 /// happening, we first have to find the loop headers. Here we approximate this 559 /// by finding targets of backedges in the CFG. 560 /// 561 /// Note that there definitely are cases when we want to allow threading of 562 /// edges across a loop header. For example, threading a jump from outside the 563 /// loop (the preheader) to an exit block of the loop is definitely profitable. 564 /// It is also almost always profitable to thread backedges from within the loop 565 /// to exit blocks, and is often profitable to thread backedges to other blocks 566 /// within the loop (forming a nested loop). This simple analysis is not rich 567 /// enough to track all of these properties and keep it up-to-date as the CFG 568 /// mutates, so we don't allow any of these transformations. 569 void JumpThreadingPass::FindLoopHeaders(Function &F) { 570 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 571 FindFunctionBackedges(F, Edges); 572 573 for (const auto &Edge : Edges) 574 LoopHeaders.insert(Edge.second); 575 } 576 577 /// getKnownConstant - Helper method to determine if we can thread over a 578 /// terminator with the given value as its condition, and if so what value to 579 /// use for that. What kind of value this is depends on whether we want an 580 /// integer or a block address, but an undef is always accepted. 581 /// Returns null if Val is null or not an appropriate constant. 582 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 583 if (!Val) 584 return nullptr; 585 586 // Undef is "known" enough. 587 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 588 return U; 589 590 if (Preference == WantBlockAddress) 591 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 592 593 return dyn_cast<ConstantInt>(Val); 594 } 595 596 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 597 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 598 /// in any of our predecessors. If so, return the known list of value and pred 599 /// BB in the result vector. 600 /// 601 /// This returns true if there were any known values. 602 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 603 Value *V, BasicBlock *BB, PredValueInfo &Result, 604 ConstantPreference Preference, 605 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 606 Instruction *CxtI) { 607 // This method walks up use-def chains recursively. Because of this, we could 608 // get into an infinite loop going around loops in the use-def chain. To 609 // prevent this, keep track of what (value, block) pairs we've already visited 610 // and terminate the search if we loop back to them 611 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 612 return false; 613 614 // If V is a constant, then it is known in all predecessors. 615 if (Constant *KC = getKnownConstant(V, Preference)) { 616 for (BasicBlock *Pred : predecessors(BB)) 617 Result.push_back(std::make_pair(KC, Pred)); 618 619 return !Result.empty(); 620 } 621 622 // If V is a non-instruction value, or an instruction in a different block, 623 // then it can't be derived from a PHI. 624 Instruction *I = dyn_cast<Instruction>(V); 625 if (!I || I->getParent() != BB) { 626 627 // Okay, if this is a live-in value, see if it has a known value at the end 628 // of any of our predecessors. 629 // 630 // FIXME: This should be an edge property, not a block end property. 631 /// TODO: Per PR2563, we could infer value range information about a 632 /// predecessor based on its terminator. 633 // 634 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 635 // "I" is a non-local compare-with-a-constant instruction. This would be 636 // able to handle value inequalities better, for example if the compare is 637 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 638 // Perhaps getConstantOnEdge should be smart enough to do this? 639 640 if (DTU->hasPendingDomTreeUpdates()) 641 LVI->disableDT(); 642 else 643 LVI->enableDT(); 644 for (BasicBlock *P : predecessors(BB)) { 645 // If the value is known by LazyValueInfo to be a constant in a 646 // predecessor, use that information to try to thread this block. 647 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 648 if (Constant *KC = getKnownConstant(PredCst, Preference)) 649 Result.push_back(std::make_pair(KC, P)); 650 } 651 652 return !Result.empty(); 653 } 654 655 /// If I is a PHI node, then we know the incoming values for any constants. 656 if (PHINode *PN = dyn_cast<PHINode>(I)) { 657 if (DTU->hasPendingDomTreeUpdates()) 658 LVI->disableDT(); 659 else 660 LVI->enableDT(); 661 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 662 Value *InVal = PN->getIncomingValue(i); 663 if (Constant *KC = getKnownConstant(InVal, Preference)) { 664 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 665 } else { 666 Constant *CI = LVI->getConstantOnEdge(InVal, 667 PN->getIncomingBlock(i), 668 BB, CxtI); 669 if (Constant *KC = getKnownConstant(CI, Preference)) 670 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 671 } 672 } 673 674 return !Result.empty(); 675 } 676 677 // Handle Cast instructions. Only see through Cast when the source operand is 678 // PHI or Cmp to save the compilation time. 679 if (CastInst *CI = dyn_cast<CastInst>(I)) { 680 Value *Source = CI->getOperand(0); 681 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 682 return false; 683 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 684 RecursionSet, CxtI); 685 if (Result.empty()) 686 return false; 687 688 // Convert the known values. 689 for (auto &R : Result) 690 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 691 692 return true; 693 } 694 695 // Handle some boolean conditions. 696 if (I->getType()->getPrimitiveSizeInBits() == 1) { 697 assert(Preference == WantInteger && "One-bit non-integer type?"); 698 // X | true -> true 699 // X & false -> false 700 if (I->getOpcode() == Instruction::Or || 701 I->getOpcode() == Instruction::And) { 702 PredValueInfoTy LHSVals, RHSVals; 703 704 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 705 WantInteger, RecursionSet, CxtI); 706 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 707 WantInteger, RecursionSet, CxtI); 708 709 if (LHSVals.empty() && RHSVals.empty()) 710 return false; 711 712 ConstantInt *InterestingVal; 713 if (I->getOpcode() == Instruction::Or) 714 InterestingVal = ConstantInt::getTrue(I->getContext()); 715 else 716 InterestingVal = ConstantInt::getFalse(I->getContext()); 717 718 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 719 720 // Scan for the sentinel. If we find an undef, force it to the 721 // interesting value: x|undef -> true and x&undef -> false. 722 for (const auto &LHSVal : LHSVals) 723 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 724 Result.emplace_back(InterestingVal, LHSVal.second); 725 LHSKnownBBs.insert(LHSVal.second); 726 } 727 for (const auto &RHSVal : RHSVals) 728 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 729 // If we already inferred a value for this block on the LHS, don't 730 // re-add it. 731 if (!LHSKnownBBs.count(RHSVal.second)) 732 Result.emplace_back(InterestingVal, RHSVal.second); 733 } 734 735 return !Result.empty(); 736 } 737 738 // Handle the NOT form of XOR. 739 if (I->getOpcode() == Instruction::Xor && 740 isa<ConstantInt>(I->getOperand(1)) && 741 cast<ConstantInt>(I->getOperand(1))->isOne()) { 742 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 743 WantInteger, RecursionSet, CxtI); 744 if (Result.empty()) 745 return false; 746 747 // Invert the known values. 748 for (auto &R : Result) 749 R.first = ConstantExpr::getNot(R.first); 750 751 return true; 752 } 753 754 // Try to simplify some other binary operator values. 755 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 756 assert(Preference != WantBlockAddress 757 && "A binary operator creating a block address?"); 758 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 759 PredValueInfoTy LHSVals; 760 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 761 WantInteger, RecursionSet, CxtI); 762 763 // Try to use constant folding to simplify the binary operator. 764 for (const auto &LHSVal : LHSVals) { 765 Constant *V = LHSVal.first; 766 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 767 768 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 769 Result.push_back(std::make_pair(KC, LHSVal.second)); 770 } 771 } 772 773 return !Result.empty(); 774 } 775 776 // Handle compare with phi operand, where the PHI is defined in this block. 777 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 778 assert(Preference == WantInteger && "Compares only produce integers"); 779 Type *CmpType = Cmp->getType(); 780 Value *CmpLHS = Cmp->getOperand(0); 781 Value *CmpRHS = Cmp->getOperand(1); 782 CmpInst::Predicate Pred = Cmp->getPredicate(); 783 784 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 785 if (!PN) 786 PN = dyn_cast<PHINode>(CmpRHS); 787 if (PN && PN->getParent() == BB) { 788 const DataLayout &DL = PN->getModule()->getDataLayout(); 789 // We can do this simplification if any comparisons fold to true or false. 790 // See if any do. 791 if (DTU->hasPendingDomTreeUpdates()) 792 LVI->disableDT(); 793 else 794 LVI->enableDT(); 795 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 796 BasicBlock *PredBB = PN->getIncomingBlock(i); 797 Value *LHS, *RHS; 798 if (PN == CmpLHS) { 799 LHS = PN->getIncomingValue(i); 800 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 801 } else { 802 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 803 RHS = PN->getIncomingValue(i); 804 } 805 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 806 if (!Res) { 807 if (!isa<Constant>(RHS)) 808 continue; 809 810 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 811 auto LHSInst = dyn_cast<Instruction>(LHS); 812 if (LHSInst && LHSInst->getParent() == BB) 813 continue; 814 815 LazyValueInfo::Tristate 816 ResT = LVI->getPredicateOnEdge(Pred, LHS, 817 cast<Constant>(RHS), PredBB, BB, 818 CxtI ? CxtI : Cmp); 819 if (ResT == LazyValueInfo::Unknown) 820 continue; 821 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 822 } 823 824 if (Constant *KC = getKnownConstant(Res, WantInteger)) 825 Result.push_back(std::make_pair(KC, PredBB)); 826 } 827 828 return !Result.empty(); 829 } 830 831 // If comparing a live-in value against a constant, see if we know the 832 // live-in value on any predecessors. 833 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 834 Constant *CmpConst = cast<Constant>(CmpRHS); 835 836 if (!isa<Instruction>(CmpLHS) || 837 cast<Instruction>(CmpLHS)->getParent() != BB) { 838 if (DTU->hasPendingDomTreeUpdates()) 839 LVI->disableDT(); 840 else 841 LVI->enableDT(); 842 for (BasicBlock *P : predecessors(BB)) { 843 // If the value is known by LazyValueInfo to be a constant in a 844 // predecessor, use that information to try to thread this block. 845 LazyValueInfo::Tristate Res = 846 LVI->getPredicateOnEdge(Pred, CmpLHS, 847 CmpConst, P, BB, CxtI ? CxtI : Cmp); 848 if (Res == LazyValueInfo::Unknown) 849 continue; 850 851 Constant *ResC = ConstantInt::get(CmpType, Res); 852 Result.push_back(std::make_pair(ResC, P)); 853 } 854 855 return !Result.empty(); 856 } 857 858 // InstCombine can fold some forms of constant range checks into 859 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 860 // x as a live-in. 861 { 862 using namespace PatternMatch; 863 864 Value *AddLHS; 865 ConstantInt *AddConst; 866 if (isa<ConstantInt>(CmpConst) && 867 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 868 if (!isa<Instruction>(AddLHS) || 869 cast<Instruction>(AddLHS)->getParent() != BB) { 870 if (DTU->hasPendingDomTreeUpdates()) 871 LVI->disableDT(); 872 else 873 LVI->enableDT(); 874 for (BasicBlock *P : predecessors(BB)) { 875 // If the value is known by LazyValueInfo to be a ConstantRange in 876 // a predecessor, use that information to try to thread this 877 // block. 878 ConstantRange CR = LVI->getConstantRangeOnEdge( 879 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 880 // Propagate the range through the addition. 881 CR = CR.add(AddConst->getValue()); 882 883 // Get the range where the compare returns true. 884 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 885 Pred, cast<ConstantInt>(CmpConst)->getValue()); 886 887 Constant *ResC; 888 if (CmpRange.contains(CR)) 889 ResC = ConstantInt::getTrue(CmpType); 890 else if (CmpRange.inverse().contains(CR)) 891 ResC = ConstantInt::getFalse(CmpType); 892 else 893 continue; 894 895 Result.push_back(std::make_pair(ResC, P)); 896 } 897 898 return !Result.empty(); 899 } 900 } 901 } 902 903 // Try to find a constant value for the LHS of a comparison, 904 // and evaluate it statically if we can. 905 PredValueInfoTy LHSVals; 906 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 907 WantInteger, RecursionSet, CxtI); 908 909 for (const auto &LHSVal : LHSVals) { 910 Constant *V = LHSVal.first; 911 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 912 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 913 Result.push_back(std::make_pair(KC, LHSVal.second)); 914 } 915 916 return !Result.empty(); 917 } 918 } 919 920 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 921 // Handle select instructions where at least one operand is a known constant 922 // and we can figure out the condition value for any predecessor block. 923 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 924 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 925 PredValueInfoTy Conds; 926 if ((TrueVal || FalseVal) && 927 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 928 WantInteger, RecursionSet, CxtI)) { 929 for (auto &C : Conds) { 930 Constant *Cond = C.first; 931 932 // Figure out what value to use for the condition. 933 bool KnownCond; 934 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 935 // A known boolean. 936 KnownCond = CI->isOne(); 937 } else { 938 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 939 // Either operand will do, so be sure to pick the one that's a known 940 // constant. 941 // FIXME: Do this more cleverly if both values are known constants? 942 KnownCond = (TrueVal != nullptr); 943 } 944 945 // See if the select has a known constant value for this predecessor. 946 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 947 Result.push_back(std::make_pair(Val, C.second)); 948 } 949 950 return !Result.empty(); 951 } 952 } 953 954 // If all else fails, see if LVI can figure out a constant value for us. 955 if (DTU->hasPendingDomTreeUpdates()) 956 LVI->disableDT(); 957 else 958 LVI->enableDT(); 959 Constant *CI = LVI->getConstant(V, BB, CxtI); 960 if (Constant *KC = getKnownConstant(CI, Preference)) { 961 for (BasicBlock *Pred : predecessors(BB)) 962 Result.push_back(std::make_pair(KC, Pred)); 963 } 964 965 return !Result.empty(); 966 } 967 968 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 969 /// in an undefined jump, decide which block is best to revector to. 970 /// 971 /// Since we can pick an arbitrary destination, we pick the successor with the 972 /// fewest predecessors. This should reduce the in-degree of the others. 973 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 974 Instruction *BBTerm = BB->getTerminator(); 975 unsigned MinSucc = 0; 976 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 977 // Compute the successor with the minimum number of predecessors. 978 unsigned MinNumPreds = pred_size(TestBB); 979 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 980 TestBB = BBTerm->getSuccessor(i); 981 unsigned NumPreds = pred_size(TestBB); 982 if (NumPreds < MinNumPreds) { 983 MinSucc = i; 984 MinNumPreds = NumPreds; 985 } 986 } 987 988 return MinSucc; 989 } 990 991 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 992 if (!BB->hasAddressTaken()) return false; 993 994 // If the block has its address taken, it may be a tree of dead constants 995 // hanging off of it. These shouldn't keep the block alive. 996 BlockAddress *BA = BlockAddress::get(BB); 997 BA->removeDeadConstantUsers(); 998 return !BA->use_empty(); 999 } 1000 1001 /// ProcessBlock - If there are any predecessors whose control can be threaded 1002 /// through to a successor, transform them now. 1003 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 1004 // If the block is trivially dead, just return and let the caller nuke it. 1005 // This simplifies other transformations. 1006 if (DTU->isBBPendingDeletion(BB) || 1007 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1008 return false; 1009 1010 // If this block has a single predecessor, and if that pred has a single 1011 // successor, merge the blocks. This encourages recursive jump threading 1012 // because now the condition in this block can be threaded through 1013 // predecessors of our predecessor block. 1014 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 1015 return true; 1016 1017 if (TryToUnfoldSelectInCurrBB(BB)) 1018 return true; 1019 1020 // Look if we can propagate guards to predecessors. 1021 if (HasGuards && ProcessGuards(BB)) 1022 return true; 1023 1024 // What kind of constant we're looking for. 1025 ConstantPreference Preference = WantInteger; 1026 1027 // Look to see if the terminator is a conditional branch, switch or indirect 1028 // branch, if not we can't thread it. 1029 Value *Condition; 1030 Instruction *Terminator = BB->getTerminator(); 1031 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1032 // Can't thread an unconditional jump. 1033 if (BI->isUnconditional()) return false; 1034 Condition = BI->getCondition(); 1035 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1036 Condition = SI->getCondition(); 1037 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1038 // Can't thread indirect branch with no successors. 1039 if (IB->getNumSuccessors() == 0) return false; 1040 Condition = IB->getAddress()->stripPointerCasts(); 1041 Preference = WantBlockAddress; 1042 } else { 1043 return false; // Must be an invoke or callbr. 1044 } 1045 1046 // Run constant folding to see if we can reduce the condition to a simple 1047 // constant. 1048 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1049 Value *SimpleVal = 1050 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1051 if (SimpleVal) { 1052 I->replaceAllUsesWith(SimpleVal); 1053 if (isInstructionTriviallyDead(I, TLI)) 1054 I->eraseFromParent(); 1055 Condition = SimpleVal; 1056 } 1057 } 1058 1059 // If the terminator is branching on an undef, we can pick any of the 1060 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1061 if (isa<UndefValue>(Condition)) { 1062 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1063 std::vector<DominatorTree::UpdateType> Updates; 1064 1065 // Fold the branch/switch. 1066 Instruction *BBTerm = BB->getTerminator(); 1067 Updates.reserve(BBTerm->getNumSuccessors()); 1068 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1069 if (i == BestSucc) continue; 1070 BasicBlock *Succ = BBTerm->getSuccessor(i); 1071 Succ->removePredecessor(BB, true); 1072 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1073 } 1074 1075 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1076 << "' folding undef terminator: " << *BBTerm << '\n'); 1077 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1078 BBTerm->eraseFromParent(); 1079 DTU->applyUpdatesPermissive(Updates); 1080 return true; 1081 } 1082 1083 // If the terminator of this block is branching on a constant, simplify the 1084 // terminator to an unconditional branch. This can occur due to threading in 1085 // other blocks. 1086 if (getKnownConstant(Condition, Preference)) { 1087 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1088 << "' folding terminator: " << *BB->getTerminator() 1089 << '\n'); 1090 ++NumFolds; 1091 ConstantFoldTerminator(BB, true, nullptr, DTU); 1092 return true; 1093 } 1094 1095 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1096 1097 // All the rest of our checks depend on the condition being an instruction. 1098 if (!CondInst) { 1099 // FIXME: Unify this with code below. 1100 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1101 return true; 1102 return false; 1103 } 1104 1105 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1106 // If we're branching on a conditional, LVI might be able to determine 1107 // it's value at the branch instruction. We only handle comparisons 1108 // against a constant at this time. 1109 // TODO: This should be extended to handle switches as well. 1110 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1111 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1112 if (CondBr && CondConst) { 1113 // We should have returned as soon as we turn a conditional branch to 1114 // unconditional. Because its no longer interesting as far as jump 1115 // threading is concerned. 1116 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1117 1118 if (DTU->hasPendingDomTreeUpdates()) 1119 LVI->disableDT(); 1120 else 1121 LVI->enableDT(); 1122 LazyValueInfo::Tristate Ret = 1123 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1124 CondConst, CondBr); 1125 if (Ret != LazyValueInfo::Unknown) { 1126 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1127 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1128 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1129 ToRemoveSucc->removePredecessor(BB, true); 1130 BranchInst *UncondBr = 1131 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1132 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1133 CondBr->eraseFromParent(); 1134 if (CondCmp->use_empty()) 1135 CondCmp->eraseFromParent(); 1136 // We can safely replace *some* uses of the CondInst if it has 1137 // exactly one value as returned by LVI. RAUW is incorrect in the 1138 // presence of guards and assumes, that have the `Cond` as the use. This 1139 // is because we use the guards/assume to reason about the `Cond` value 1140 // at the end of block, but RAUW unconditionally replaces all uses 1141 // including the guards/assumes themselves and the uses before the 1142 // guard/assume. 1143 else if (CondCmp->getParent() == BB) { 1144 auto *CI = Ret == LazyValueInfo::True ? 1145 ConstantInt::getTrue(CondCmp->getType()) : 1146 ConstantInt::getFalse(CondCmp->getType()); 1147 ReplaceFoldableUses(CondCmp, CI); 1148 } 1149 DTU->applyUpdatesPermissive( 1150 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1151 return true; 1152 } 1153 1154 // We did not manage to simplify this branch, try to see whether 1155 // CondCmp depends on a known phi-select pattern. 1156 if (TryToUnfoldSelect(CondCmp, BB)) 1157 return true; 1158 } 1159 } 1160 1161 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1162 if (TryToUnfoldSelect(SI, BB)) 1163 return true; 1164 1165 // Check for some cases that are worth simplifying. Right now we want to look 1166 // for loads that are used by a switch or by the condition for the branch. If 1167 // we see one, check to see if it's partially redundant. If so, insert a PHI 1168 // which can then be used to thread the values. 1169 Value *SimplifyValue = CondInst; 1170 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1171 if (isa<Constant>(CondCmp->getOperand(1))) 1172 SimplifyValue = CondCmp->getOperand(0); 1173 1174 // TODO: There are other places where load PRE would be profitable, such as 1175 // more complex comparisons. 1176 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1177 if (SimplifyPartiallyRedundantLoad(LoadI)) 1178 return true; 1179 1180 // Before threading, try to propagate profile data backwards: 1181 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1182 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1183 updatePredecessorProfileMetadata(PN, BB); 1184 1185 // Handle a variety of cases where we are branching on something derived from 1186 // a PHI node in the current block. If we can prove that any predecessors 1187 // compute a predictable value based on a PHI node, thread those predecessors. 1188 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1189 return true; 1190 1191 // If this is an otherwise-unfoldable branch on a phi node in the current 1192 // block, see if we can simplify. 1193 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1194 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1195 return ProcessBranchOnPHI(PN); 1196 1197 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1198 if (CondInst->getOpcode() == Instruction::Xor && 1199 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1200 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1201 1202 // Search for a stronger dominating condition that can be used to simplify a 1203 // conditional branch leaving BB. 1204 if (ProcessImpliedCondition(BB)) 1205 return true; 1206 1207 return false; 1208 } 1209 1210 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1211 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1212 if (!BI || !BI->isConditional()) 1213 return false; 1214 1215 Value *Cond = BI->getCondition(); 1216 BasicBlock *CurrentBB = BB; 1217 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1218 unsigned Iter = 0; 1219 1220 auto &DL = BB->getModule()->getDataLayout(); 1221 1222 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1223 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1224 if (!PBI || !PBI->isConditional()) 1225 return false; 1226 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1227 return false; 1228 1229 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1230 Optional<bool> Implication = 1231 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1232 if (Implication) { 1233 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1234 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1235 RemoveSucc->removePredecessor(BB); 1236 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1237 UncondBI->setDebugLoc(BI->getDebugLoc()); 1238 BI->eraseFromParent(); 1239 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1240 return true; 1241 } 1242 CurrentBB = CurrentPred; 1243 CurrentPred = CurrentBB->getSinglePredecessor(); 1244 } 1245 1246 return false; 1247 } 1248 1249 /// Return true if Op is an instruction defined in the given block. 1250 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1251 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1252 if (OpInst->getParent() == BB) 1253 return true; 1254 return false; 1255 } 1256 1257 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1258 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1259 /// This is an important optimization that encourages jump threading, and needs 1260 /// to be run interlaced with other jump threading tasks. 1261 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1262 // Don't hack volatile and ordered loads. 1263 if (!LoadI->isUnordered()) return false; 1264 1265 // If the load is defined in a block with exactly one predecessor, it can't be 1266 // partially redundant. 1267 BasicBlock *LoadBB = LoadI->getParent(); 1268 if (LoadBB->getSinglePredecessor()) 1269 return false; 1270 1271 // If the load is defined in an EH pad, it can't be partially redundant, 1272 // because the edges between the invoke and the EH pad cannot have other 1273 // instructions between them. 1274 if (LoadBB->isEHPad()) 1275 return false; 1276 1277 Value *LoadedPtr = LoadI->getOperand(0); 1278 1279 // If the loaded operand is defined in the LoadBB and its not a phi, 1280 // it can't be available in predecessors. 1281 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1282 return false; 1283 1284 // Scan a few instructions up from the load, to see if it is obviously live at 1285 // the entry to its block. 1286 BasicBlock::iterator BBIt(LoadI); 1287 bool IsLoadCSE; 1288 if (Value *AvailableVal = FindAvailableLoadedValue( 1289 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1290 // If the value of the load is locally available within the block, just use 1291 // it. This frequently occurs for reg2mem'd allocas. 1292 1293 if (IsLoadCSE) { 1294 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1295 combineMetadataForCSE(NLoadI, LoadI, false); 1296 }; 1297 1298 // If the returned value is the load itself, replace with an undef. This can 1299 // only happen in dead loops. 1300 if (AvailableVal == LoadI) 1301 AvailableVal = UndefValue::get(LoadI->getType()); 1302 if (AvailableVal->getType() != LoadI->getType()) 1303 AvailableVal = CastInst::CreateBitOrPointerCast( 1304 AvailableVal, LoadI->getType(), "", LoadI); 1305 LoadI->replaceAllUsesWith(AvailableVal); 1306 LoadI->eraseFromParent(); 1307 return true; 1308 } 1309 1310 // Otherwise, if we scanned the whole block and got to the top of the block, 1311 // we know the block is locally transparent to the load. If not, something 1312 // might clobber its value. 1313 if (BBIt != LoadBB->begin()) 1314 return false; 1315 1316 // If all of the loads and stores that feed the value have the same AA tags, 1317 // then we can propagate them onto any newly inserted loads. 1318 AAMDNodes AATags; 1319 LoadI->getAAMetadata(AATags); 1320 1321 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1322 1323 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1324 1325 AvailablePredsTy AvailablePreds; 1326 BasicBlock *OneUnavailablePred = nullptr; 1327 SmallVector<LoadInst*, 8> CSELoads; 1328 1329 // If we got here, the loaded value is transparent through to the start of the 1330 // block. Check to see if it is available in any of the predecessor blocks. 1331 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1332 // If we already scanned this predecessor, skip it. 1333 if (!PredsScanned.insert(PredBB).second) 1334 continue; 1335 1336 BBIt = PredBB->end(); 1337 unsigned NumScanedInst = 0; 1338 Value *PredAvailable = nullptr; 1339 // NOTE: We don't CSE load that is volatile or anything stronger than 1340 // unordered, that should have been checked when we entered the function. 1341 assert(LoadI->isUnordered() && 1342 "Attempting to CSE volatile or atomic loads"); 1343 // If this is a load on a phi pointer, phi-translate it and search 1344 // for available load/store to the pointer in predecessors. 1345 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1346 PredAvailable = FindAvailablePtrLoadStore( 1347 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1348 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1349 1350 // If PredBB has a single predecessor, continue scanning through the 1351 // single predecessor. 1352 BasicBlock *SinglePredBB = PredBB; 1353 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1354 NumScanedInst < DefMaxInstsToScan) { 1355 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1356 if (SinglePredBB) { 1357 BBIt = SinglePredBB->end(); 1358 PredAvailable = FindAvailablePtrLoadStore( 1359 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1360 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1361 &NumScanedInst); 1362 } 1363 } 1364 1365 if (!PredAvailable) { 1366 OneUnavailablePred = PredBB; 1367 continue; 1368 } 1369 1370 if (IsLoadCSE) 1371 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1372 1373 // If so, this load is partially redundant. Remember this info so that we 1374 // can create a PHI node. 1375 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1376 } 1377 1378 // If the loaded value isn't available in any predecessor, it isn't partially 1379 // redundant. 1380 if (AvailablePreds.empty()) return false; 1381 1382 // Okay, the loaded value is available in at least one (and maybe all!) 1383 // predecessors. If the value is unavailable in more than one unique 1384 // predecessor, we want to insert a merge block for those common predecessors. 1385 // This ensures that we only have to insert one reload, thus not increasing 1386 // code size. 1387 BasicBlock *UnavailablePred = nullptr; 1388 1389 // If the value is unavailable in one of predecessors, we will end up 1390 // inserting a new instruction into them. It is only valid if all the 1391 // instructions before LoadI are guaranteed to pass execution to its 1392 // successor, or if LoadI is safe to speculate. 1393 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1394 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1395 // It requires domination tree analysis, so for this simple case it is an 1396 // overkill. 1397 if (PredsScanned.size() != AvailablePreds.size() && 1398 !isSafeToSpeculativelyExecute(LoadI)) 1399 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1400 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1401 return false; 1402 1403 // If there is exactly one predecessor where the value is unavailable, the 1404 // already computed 'OneUnavailablePred' block is it. If it ends in an 1405 // unconditional branch, we know that it isn't a critical edge. 1406 if (PredsScanned.size() == AvailablePreds.size()+1 && 1407 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1408 UnavailablePred = OneUnavailablePred; 1409 } else if (PredsScanned.size() != AvailablePreds.size()) { 1410 // Otherwise, we had multiple unavailable predecessors or we had a critical 1411 // edge from the one. 1412 SmallVector<BasicBlock*, 8> PredsToSplit; 1413 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1414 1415 for (const auto &AvailablePred : AvailablePreds) 1416 AvailablePredSet.insert(AvailablePred.first); 1417 1418 // Add all the unavailable predecessors to the PredsToSplit list. 1419 for (BasicBlock *P : predecessors(LoadBB)) { 1420 // If the predecessor is an indirect goto, we can't split the edge. 1421 // Same for CallBr. 1422 if (isa<IndirectBrInst>(P->getTerminator()) || 1423 isa<CallBrInst>(P->getTerminator())) 1424 return false; 1425 1426 if (!AvailablePredSet.count(P)) 1427 PredsToSplit.push_back(P); 1428 } 1429 1430 // Split them out to their own block. 1431 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1432 } 1433 1434 // If the value isn't available in all predecessors, then there will be 1435 // exactly one where it isn't available. Insert a load on that edge and add 1436 // it to the AvailablePreds list. 1437 if (UnavailablePred) { 1438 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1439 "Can't handle critical edge here!"); 1440 LoadInst *NewVal = new LoadInst( 1441 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1442 LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()), 1443 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1444 UnavailablePred->getTerminator()); 1445 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1446 if (AATags) 1447 NewVal->setAAMetadata(AATags); 1448 1449 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1450 } 1451 1452 // Now we know that each predecessor of this block has a value in 1453 // AvailablePreds, sort them for efficient access as we're walking the preds. 1454 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1455 1456 // Create a PHI node at the start of the block for the PRE'd load value. 1457 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1458 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1459 &LoadBB->front()); 1460 PN->takeName(LoadI); 1461 PN->setDebugLoc(LoadI->getDebugLoc()); 1462 1463 // Insert new entries into the PHI for each predecessor. A single block may 1464 // have multiple entries here. 1465 for (pred_iterator PI = PB; PI != PE; ++PI) { 1466 BasicBlock *P = *PI; 1467 AvailablePredsTy::iterator I = 1468 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1469 1470 assert(I != AvailablePreds.end() && I->first == P && 1471 "Didn't find entry for predecessor!"); 1472 1473 // If we have an available predecessor but it requires casting, insert the 1474 // cast in the predecessor and use the cast. Note that we have to update the 1475 // AvailablePreds vector as we go so that all of the PHI entries for this 1476 // predecessor use the same bitcast. 1477 Value *&PredV = I->second; 1478 if (PredV->getType() != LoadI->getType()) 1479 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1480 P->getTerminator()); 1481 1482 PN->addIncoming(PredV, I->first); 1483 } 1484 1485 for (LoadInst *PredLoadI : CSELoads) { 1486 combineMetadataForCSE(PredLoadI, LoadI, true); 1487 } 1488 1489 LoadI->replaceAllUsesWith(PN); 1490 LoadI->eraseFromParent(); 1491 1492 return true; 1493 } 1494 1495 /// FindMostPopularDest - The specified list contains multiple possible 1496 /// threadable destinations. Pick the one that occurs the most frequently in 1497 /// the list. 1498 static BasicBlock * 1499 FindMostPopularDest(BasicBlock *BB, 1500 const SmallVectorImpl<std::pair<BasicBlock *, 1501 BasicBlock *>> &PredToDestList) { 1502 assert(!PredToDestList.empty()); 1503 1504 // Determine popularity. If there are multiple possible destinations, we 1505 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1506 // blocks with known and real destinations to threading undef. We'll handle 1507 // them later if interesting. 1508 DenseMap<BasicBlock*, unsigned> DestPopularity; 1509 for (const auto &PredToDest : PredToDestList) 1510 if (PredToDest.second) 1511 DestPopularity[PredToDest.second]++; 1512 1513 if (DestPopularity.empty()) 1514 return nullptr; 1515 1516 // Find the most popular dest. 1517 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1518 BasicBlock *MostPopularDest = DPI->first; 1519 unsigned Popularity = DPI->second; 1520 SmallVector<BasicBlock*, 4> SamePopularity; 1521 1522 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1523 // If the popularity of this entry isn't higher than the popularity we've 1524 // seen so far, ignore it. 1525 if (DPI->second < Popularity) 1526 ; // ignore. 1527 else if (DPI->second == Popularity) { 1528 // If it is the same as what we've seen so far, keep track of it. 1529 SamePopularity.push_back(DPI->first); 1530 } else { 1531 // If it is more popular, remember it. 1532 SamePopularity.clear(); 1533 MostPopularDest = DPI->first; 1534 Popularity = DPI->second; 1535 } 1536 } 1537 1538 // Okay, now we know the most popular destination. If there is more than one 1539 // destination, we need to determine one. This is arbitrary, but we need 1540 // to make a deterministic decision. Pick the first one that appears in the 1541 // successor list. 1542 if (!SamePopularity.empty()) { 1543 SamePopularity.push_back(MostPopularDest); 1544 Instruction *TI = BB->getTerminator(); 1545 for (unsigned i = 0; ; ++i) { 1546 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1547 1548 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1549 continue; 1550 1551 MostPopularDest = TI->getSuccessor(i); 1552 break; 1553 } 1554 } 1555 1556 // Okay, we have finally picked the most popular destination. 1557 return MostPopularDest; 1558 } 1559 1560 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1561 ConstantPreference Preference, 1562 Instruction *CxtI) { 1563 // If threading this would thread across a loop header, don't even try to 1564 // thread the edge. 1565 if (LoopHeaders.count(BB)) 1566 return false; 1567 1568 PredValueInfoTy PredValues; 1569 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1570 return false; 1571 1572 assert(!PredValues.empty() && 1573 "ComputeValueKnownInPredecessors returned true with no values"); 1574 1575 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1576 for (const auto &PredValue : PredValues) { 1577 dbgs() << " BB '" << BB->getName() 1578 << "': FOUND condition = " << *PredValue.first 1579 << " for pred '" << PredValue.second->getName() << "'.\n"; 1580 }); 1581 1582 // Decide what we want to thread through. Convert our list of known values to 1583 // a list of known destinations for each pred. This also discards duplicate 1584 // predecessors and keeps track of the undefined inputs (which are represented 1585 // as a null dest in the PredToDestList). 1586 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1587 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1588 1589 BasicBlock *OnlyDest = nullptr; 1590 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1591 Constant *OnlyVal = nullptr; 1592 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1593 1594 for (const auto &PredValue : PredValues) { 1595 BasicBlock *Pred = PredValue.second; 1596 if (!SeenPreds.insert(Pred).second) 1597 continue; // Duplicate predecessor entry. 1598 1599 Constant *Val = PredValue.first; 1600 1601 BasicBlock *DestBB; 1602 if (isa<UndefValue>(Val)) 1603 DestBB = nullptr; 1604 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1605 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1606 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1607 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1608 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1609 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1610 } else { 1611 assert(isa<IndirectBrInst>(BB->getTerminator()) 1612 && "Unexpected terminator"); 1613 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1614 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1615 } 1616 1617 // If we have exactly one destination, remember it for efficiency below. 1618 if (PredToDestList.empty()) { 1619 OnlyDest = DestBB; 1620 OnlyVal = Val; 1621 } else { 1622 if (OnlyDest != DestBB) 1623 OnlyDest = MultipleDestSentinel; 1624 // It possible we have same destination, but different value, e.g. default 1625 // case in switchinst. 1626 if (Val != OnlyVal) 1627 OnlyVal = MultipleVal; 1628 } 1629 1630 // If the predecessor ends with an indirect goto, we can't change its 1631 // destination. Same for CallBr. 1632 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1633 isa<CallBrInst>(Pred->getTerminator())) 1634 continue; 1635 1636 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1637 } 1638 1639 // If all edges were unthreadable, we fail. 1640 if (PredToDestList.empty()) 1641 return false; 1642 1643 // If all the predecessors go to a single known successor, we want to fold, 1644 // not thread. By doing so, we do not need to duplicate the current block and 1645 // also miss potential opportunities in case we dont/cant duplicate. 1646 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1647 if (BB->hasNPredecessors(PredToDestList.size())) { 1648 bool SeenFirstBranchToOnlyDest = false; 1649 std::vector <DominatorTree::UpdateType> Updates; 1650 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1651 for (BasicBlock *SuccBB : successors(BB)) { 1652 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1653 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1654 } else { 1655 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1656 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1657 } 1658 } 1659 1660 // Finally update the terminator. 1661 Instruction *Term = BB->getTerminator(); 1662 BranchInst::Create(OnlyDest, Term); 1663 Term->eraseFromParent(); 1664 DTU->applyUpdatesPermissive(Updates); 1665 1666 // If the condition is now dead due to the removal of the old terminator, 1667 // erase it. 1668 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1669 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1670 CondInst->eraseFromParent(); 1671 // We can safely replace *some* uses of the CondInst if it has 1672 // exactly one value as returned by LVI. RAUW is incorrect in the 1673 // presence of guards and assumes, that have the `Cond` as the use. This 1674 // is because we use the guards/assume to reason about the `Cond` value 1675 // at the end of block, but RAUW unconditionally replaces all uses 1676 // including the guards/assumes themselves and the uses before the 1677 // guard/assume. 1678 else if (OnlyVal && OnlyVal != MultipleVal && 1679 CondInst->getParent() == BB) 1680 ReplaceFoldableUses(CondInst, OnlyVal); 1681 } 1682 return true; 1683 } 1684 } 1685 1686 // Determine which is the most common successor. If we have many inputs and 1687 // this block is a switch, we want to start by threading the batch that goes 1688 // to the most popular destination first. If we only know about one 1689 // threadable destination (the common case) we can avoid this. 1690 BasicBlock *MostPopularDest = OnlyDest; 1691 1692 if (MostPopularDest == MultipleDestSentinel) { 1693 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1694 // won't process them, but we might have other destination that are eligible 1695 // and we still want to process. 1696 erase_if(PredToDestList, 1697 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1698 return LoopHeaders.count(PredToDest.second) != 0; 1699 }); 1700 1701 if (PredToDestList.empty()) 1702 return false; 1703 1704 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1705 } 1706 1707 // Now that we know what the most popular destination is, factor all 1708 // predecessors that will jump to it into a single predecessor. 1709 SmallVector<BasicBlock*, 16> PredsToFactor; 1710 for (const auto &PredToDest : PredToDestList) 1711 if (PredToDest.second == MostPopularDest) { 1712 BasicBlock *Pred = PredToDest.first; 1713 1714 // This predecessor may be a switch or something else that has multiple 1715 // edges to the block. Factor each of these edges by listing them 1716 // according to # occurrences in PredsToFactor. 1717 for (BasicBlock *Succ : successors(Pred)) 1718 if (Succ == BB) 1719 PredsToFactor.push_back(Pred); 1720 } 1721 1722 // If the threadable edges are branching on an undefined value, we get to pick 1723 // the destination that these predecessors should get to. 1724 if (!MostPopularDest) 1725 MostPopularDest = BB->getTerminator()-> 1726 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1727 1728 // Ok, try to thread it! 1729 return TryThreadEdge(BB, PredsToFactor, MostPopularDest); 1730 } 1731 1732 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1733 /// a PHI node in the current block. See if there are any simplifications we 1734 /// can do based on inputs to the phi node. 1735 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1736 BasicBlock *BB = PN->getParent(); 1737 1738 // TODO: We could make use of this to do it once for blocks with common PHI 1739 // values. 1740 SmallVector<BasicBlock*, 1> PredBBs; 1741 PredBBs.resize(1); 1742 1743 // If any of the predecessor blocks end in an unconditional branch, we can 1744 // *duplicate* the conditional branch into that block in order to further 1745 // encourage jump threading and to eliminate cases where we have branch on a 1746 // phi of an icmp (branch on icmp is much better). 1747 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1748 BasicBlock *PredBB = PN->getIncomingBlock(i); 1749 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1750 if (PredBr->isUnconditional()) { 1751 PredBBs[0] = PredBB; 1752 // Try to duplicate BB into PredBB. 1753 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1754 return true; 1755 } 1756 } 1757 1758 return false; 1759 } 1760 1761 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1762 /// a xor instruction in the current block. See if there are any 1763 /// simplifications we can do based on inputs to the xor. 1764 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1765 BasicBlock *BB = BO->getParent(); 1766 1767 // If either the LHS or RHS of the xor is a constant, don't do this 1768 // optimization. 1769 if (isa<ConstantInt>(BO->getOperand(0)) || 1770 isa<ConstantInt>(BO->getOperand(1))) 1771 return false; 1772 1773 // If the first instruction in BB isn't a phi, we won't be able to infer 1774 // anything special about any particular predecessor. 1775 if (!isa<PHINode>(BB->front())) 1776 return false; 1777 1778 // If this BB is a landing pad, we won't be able to split the edge into it. 1779 if (BB->isEHPad()) 1780 return false; 1781 1782 // If we have a xor as the branch input to this block, and we know that the 1783 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1784 // the condition into the predecessor and fix that value to true, saving some 1785 // logical ops on that path and encouraging other paths to simplify. 1786 // 1787 // This copies something like this: 1788 // 1789 // BB: 1790 // %X = phi i1 [1], [%X'] 1791 // %Y = icmp eq i32 %A, %B 1792 // %Z = xor i1 %X, %Y 1793 // br i1 %Z, ... 1794 // 1795 // Into: 1796 // BB': 1797 // %Y = icmp ne i32 %A, %B 1798 // br i1 %Y, ... 1799 1800 PredValueInfoTy XorOpValues; 1801 bool isLHS = true; 1802 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1803 WantInteger, BO)) { 1804 assert(XorOpValues.empty()); 1805 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1806 WantInteger, BO)) 1807 return false; 1808 isLHS = false; 1809 } 1810 1811 assert(!XorOpValues.empty() && 1812 "ComputeValueKnownInPredecessors returned true with no values"); 1813 1814 // Scan the information to see which is most popular: true or false. The 1815 // predecessors can be of the set true, false, or undef. 1816 unsigned NumTrue = 0, NumFalse = 0; 1817 for (const auto &XorOpValue : XorOpValues) { 1818 if (isa<UndefValue>(XorOpValue.first)) 1819 // Ignore undefs for the count. 1820 continue; 1821 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1822 ++NumFalse; 1823 else 1824 ++NumTrue; 1825 } 1826 1827 // Determine which value to split on, true, false, or undef if neither. 1828 ConstantInt *SplitVal = nullptr; 1829 if (NumTrue > NumFalse) 1830 SplitVal = ConstantInt::getTrue(BB->getContext()); 1831 else if (NumTrue != 0 || NumFalse != 0) 1832 SplitVal = ConstantInt::getFalse(BB->getContext()); 1833 1834 // Collect all of the blocks that this can be folded into so that we can 1835 // factor this once and clone it once. 1836 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1837 for (const auto &XorOpValue : XorOpValues) { 1838 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1839 continue; 1840 1841 BlocksToFoldInto.push_back(XorOpValue.second); 1842 } 1843 1844 // If we inferred a value for all of the predecessors, then duplication won't 1845 // help us. However, we can just replace the LHS or RHS with the constant. 1846 if (BlocksToFoldInto.size() == 1847 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1848 if (!SplitVal) { 1849 // If all preds provide undef, just nuke the xor, because it is undef too. 1850 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1851 BO->eraseFromParent(); 1852 } else if (SplitVal->isZero()) { 1853 // If all preds provide 0, replace the xor with the other input. 1854 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1855 BO->eraseFromParent(); 1856 } else { 1857 // If all preds provide 1, set the computed value to 1. 1858 BO->setOperand(!isLHS, SplitVal); 1859 } 1860 1861 return true; 1862 } 1863 1864 // Try to duplicate BB into PredBB. 1865 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1866 } 1867 1868 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1869 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1870 /// NewPred using the entries from OldPred (suitably mapped). 1871 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1872 BasicBlock *OldPred, 1873 BasicBlock *NewPred, 1874 DenseMap<Instruction*, Value*> &ValueMap) { 1875 for (PHINode &PN : PHIBB->phis()) { 1876 // Ok, we have a PHI node. Figure out what the incoming value was for the 1877 // DestBlock. 1878 Value *IV = PN.getIncomingValueForBlock(OldPred); 1879 1880 // Remap the value if necessary. 1881 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1882 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1883 if (I != ValueMap.end()) 1884 IV = I->second; 1885 } 1886 1887 PN.addIncoming(IV, NewPred); 1888 } 1889 } 1890 1891 /// Merge basic block BB into its sole predecessor if possible. 1892 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1893 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1894 if (!SinglePred) 1895 return false; 1896 1897 const Instruction *TI = SinglePred->getTerminator(); 1898 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1899 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1900 return false; 1901 1902 // If SinglePred was a loop header, BB becomes one. 1903 if (LoopHeaders.erase(SinglePred)) 1904 LoopHeaders.insert(BB); 1905 1906 LVI->eraseBlock(SinglePred); 1907 MergeBasicBlockIntoOnlyPred(BB, DTU); 1908 1909 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1910 // BB code within one basic block `BB`), we need to invalidate the LVI 1911 // information associated with BB, because the LVI information need not be 1912 // true for all of BB after the merge. For example, 1913 // Before the merge, LVI info and code is as follows: 1914 // SinglePred: <LVI info1 for %p val> 1915 // %y = use of %p 1916 // call @exit() // need not transfer execution to successor. 1917 // assume(%p) // from this point on %p is true 1918 // br label %BB 1919 // BB: <LVI info2 for %p val, i.e. %p is true> 1920 // %x = use of %p 1921 // br label exit 1922 // 1923 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1924 // (info2 and info1 respectively). After the merge and the deletion of the 1925 // LVI info1 for SinglePred. We have the following code: 1926 // BB: <LVI info2 for %p val> 1927 // %y = use of %p 1928 // call @exit() 1929 // assume(%p) 1930 // %x = use of %p <-- LVI info2 is correct from here onwards. 1931 // br label exit 1932 // LVI info2 for BB is incorrect at the beginning of BB. 1933 1934 // Invalidate LVI information for BB if the LVI is not provably true for 1935 // all of BB. 1936 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1937 LVI->eraseBlock(BB); 1938 return true; 1939 } 1940 1941 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1942 /// ValueMapping maps old values in BB to new ones in NewBB. 1943 void JumpThreadingPass::UpdateSSA( 1944 BasicBlock *BB, BasicBlock *NewBB, 1945 DenseMap<Instruction *, Value *> &ValueMapping) { 1946 // If there were values defined in BB that are used outside the block, then we 1947 // now have to update all uses of the value to use either the original value, 1948 // the cloned value, or some PHI derived value. This can require arbitrary 1949 // PHI insertion, of which we are prepared to do, clean these up now. 1950 SSAUpdater SSAUpdate; 1951 SmallVector<Use *, 16> UsesToRename; 1952 1953 for (Instruction &I : *BB) { 1954 // Scan all uses of this instruction to see if it is used outside of its 1955 // block, and if so, record them in UsesToRename. 1956 for (Use &U : I.uses()) { 1957 Instruction *User = cast<Instruction>(U.getUser()); 1958 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1959 if (UserPN->getIncomingBlock(U) == BB) 1960 continue; 1961 } else if (User->getParent() == BB) 1962 continue; 1963 1964 UsesToRename.push_back(&U); 1965 } 1966 1967 // If there are no uses outside the block, we're done with this instruction. 1968 if (UsesToRename.empty()) 1969 continue; 1970 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1971 1972 // We found a use of I outside of BB. Rename all uses of I that are outside 1973 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1974 // with the two values we know. 1975 SSAUpdate.Initialize(I.getType(), I.getName()); 1976 SSAUpdate.AddAvailableValue(BB, &I); 1977 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1978 1979 while (!UsesToRename.empty()) 1980 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1981 LLVM_DEBUG(dbgs() << "\n"); 1982 } 1983 } 1984 1985 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 1986 /// arguments that come from PredBB. Return the map from the variables in the 1987 /// source basic block to the variables in the newly created basic block. 1988 DenseMap<Instruction *, Value *> 1989 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 1990 BasicBlock::iterator BE, BasicBlock *NewBB, 1991 BasicBlock *PredBB) { 1992 // We are going to have to map operands from the source basic block to the new 1993 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 1994 // block, evaluate them to account for entry from PredBB. 1995 DenseMap<Instruction *, Value *> ValueMapping; 1996 1997 // Clone the phi nodes of the source basic block into NewBB. The resulting 1998 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 1999 // might need to rewrite the operand of the cloned phi. 2000 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2001 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2002 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2003 ValueMapping[PN] = NewPN; 2004 } 2005 2006 // Clone the non-phi instructions of the source basic block into NewBB, 2007 // keeping track of the mapping and using it to remap operands in the cloned 2008 // instructions. 2009 for (; BI != BE; ++BI) { 2010 Instruction *New = BI->clone(); 2011 New->setName(BI->getName()); 2012 NewBB->getInstList().push_back(New); 2013 ValueMapping[&*BI] = New; 2014 2015 // Remap operands to patch up intra-block references. 2016 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2017 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2018 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2019 if (I != ValueMapping.end()) 2020 New->setOperand(i, I->second); 2021 } 2022 } 2023 2024 return ValueMapping; 2025 } 2026 2027 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so. 2028 bool JumpThreadingPass::TryThreadEdge( 2029 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2030 BasicBlock *SuccBB) { 2031 // If threading to the same block as we come from, we would infinite loop. 2032 if (SuccBB == BB) { 2033 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2034 << "' - would thread to self!\n"); 2035 return false; 2036 } 2037 2038 // If threading this would thread across a loop header, don't thread the edge. 2039 // See the comments above FindLoopHeaders for justifications and caveats. 2040 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2041 LLVM_DEBUG({ 2042 bool BBIsHeader = LoopHeaders.count(BB); 2043 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2044 dbgs() << " Not threading across " 2045 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2046 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2047 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2048 }); 2049 return false; 2050 } 2051 2052 unsigned JumpThreadCost = 2053 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2054 if (JumpThreadCost > BBDupThreshold) { 2055 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2056 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2057 return false; 2058 } 2059 2060 ThreadEdge(BB, PredBBs, SuccBB); 2061 return true; 2062 } 2063 2064 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2065 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2066 /// across BB. Transform the IR to reflect this change. 2067 void JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2068 const SmallVectorImpl<BasicBlock *> &PredBBs, 2069 BasicBlock *SuccBB) { 2070 assert(SuccBB != BB && "Don't create an infinite loop"); 2071 2072 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2073 "Don't thread across loop headers"); 2074 2075 // And finally, do it! Start by factoring the predecessors if needed. 2076 BasicBlock *PredBB; 2077 if (PredBBs.size() == 1) 2078 PredBB = PredBBs[0]; 2079 else { 2080 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2081 << " common predecessors.\n"); 2082 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2083 } 2084 2085 // And finally, do it! 2086 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2087 << "' to '" << SuccBB->getName() 2088 << ", across block:\n " << *BB << "\n"); 2089 2090 if (DTU->hasPendingDomTreeUpdates()) 2091 LVI->disableDT(); 2092 else 2093 LVI->enableDT(); 2094 LVI->threadEdge(PredBB, BB, SuccBB); 2095 2096 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2097 BB->getName()+".thread", 2098 BB->getParent(), BB); 2099 NewBB->moveAfter(PredBB); 2100 2101 // Set the block frequency of NewBB. 2102 if (HasProfileData) { 2103 auto NewBBFreq = 2104 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2105 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2106 } 2107 2108 // Copy all the instructions from BB to NewBB except the terminator. 2109 DenseMap<Instruction *, Value *> ValueMapping = 2110 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2111 2112 // We didn't copy the terminator from BB over to NewBB, because there is now 2113 // an unconditional jump to SuccBB. Insert the unconditional jump. 2114 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2115 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2116 2117 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2118 // PHI nodes for NewBB now. 2119 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2120 2121 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2122 // eliminates predecessors from BB, which requires us to simplify any PHI 2123 // nodes in BB. 2124 Instruction *PredTerm = PredBB->getTerminator(); 2125 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2126 if (PredTerm->getSuccessor(i) == BB) { 2127 BB->removePredecessor(PredBB, true); 2128 PredTerm->setSuccessor(i, NewBB); 2129 } 2130 2131 // Enqueue required DT updates. 2132 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2133 {DominatorTree::Insert, PredBB, NewBB}, 2134 {DominatorTree::Delete, PredBB, BB}}); 2135 2136 UpdateSSA(BB, NewBB, ValueMapping); 2137 2138 // At this point, the IR is fully up to date and consistent. Do a quick scan 2139 // over the new instructions and zap any that are constants or dead. This 2140 // frequently happens because of phi translation. 2141 SimplifyInstructionsInBlock(NewBB, TLI); 2142 2143 // Update the edge weight from BB to SuccBB, which should be less than before. 2144 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2145 2146 // Threaded an edge! 2147 ++NumThreads; 2148 } 2149 2150 /// Create a new basic block that will be the predecessor of BB and successor of 2151 /// all blocks in Preds. When profile data is available, update the frequency of 2152 /// this new block. 2153 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2154 ArrayRef<BasicBlock *> Preds, 2155 const char *Suffix) { 2156 SmallVector<BasicBlock *, 2> NewBBs; 2157 2158 // Collect the frequencies of all predecessors of BB, which will be used to 2159 // update the edge weight of the result of splitting predecessors. 2160 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2161 if (HasProfileData) 2162 for (auto Pred : Preds) 2163 FreqMap.insert(std::make_pair( 2164 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2165 2166 // In the case when BB is a LandingPad block we create 2 new predecessors 2167 // instead of just one. 2168 if (BB->isLandingPad()) { 2169 std::string NewName = std::string(Suffix) + ".split-lp"; 2170 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2171 } else { 2172 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2173 } 2174 2175 std::vector<DominatorTree::UpdateType> Updates; 2176 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2177 for (auto NewBB : NewBBs) { 2178 BlockFrequency NewBBFreq(0); 2179 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2180 for (auto Pred : predecessors(NewBB)) { 2181 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2182 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2183 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2184 NewBBFreq += FreqMap.lookup(Pred); 2185 } 2186 if (HasProfileData) // Apply the summed frequency to NewBB. 2187 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2188 } 2189 2190 DTU->applyUpdatesPermissive(Updates); 2191 return NewBBs[0]; 2192 } 2193 2194 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2195 const Instruction *TI = BB->getTerminator(); 2196 assert(TI->getNumSuccessors() > 1 && "not a split"); 2197 2198 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2199 if (!WeightsNode) 2200 return false; 2201 2202 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2203 if (MDName->getString() != "branch_weights") 2204 return false; 2205 2206 // Ensure there are weights for all of the successors. Note that the first 2207 // operand to the metadata node is a name, not a weight. 2208 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2209 } 2210 2211 /// Update the block frequency of BB and branch weight and the metadata on the 2212 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2213 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2214 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2215 BasicBlock *BB, 2216 BasicBlock *NewBB, 2217 BasicBlock *SuccBB) { 2218 if (!HasProfileData) 2219 return; 2220 2221 assert(BFI && BPI && "BFI & BPI should have been created here"); 2222 2223 // As the edge from PredBB to BB is deleted, we have to update the block 2224 // frequency of BB. 2225 auto BBOrigFreq = BFI->getBlockFreq(BB); 2226 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2227 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2228 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2229 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2230 2231 // Collect updated outgoing edges' frequencies from BB and use them to update 2232 // edge probabilities. 2233 SmallVector<uint64_t, 4> BBSuccFreq; 2234 for (BasicBlock *Succ : successors(BB)) { 2235 auto SuccFreq = (Succ == SuccBB) 2236 ? BB2SuccBBFreq - NewBBFreq 2237 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2238 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2239 } 2240 2241 uint64_t MaxBBSuccFreq = 2242 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2243 2244 SmallVector<BranchProbability, 4> BBSuccProbs; 2245 if (MaxBBSuccFreq == 0) 2246 BBSuccProbs.assign(BBSuccFreq.size(), 2247 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2248 else { 2249 for (uint64_t Freq : BBSuccFreq) 2250 BBSuccProbs.push_back( 2251 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2252 // Normalize edge probabilities so that they sum up to one. 2253 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2254 BBSuccProbs.end()); 2255 } 2256 2257 // Update edge probabilities in BPI. 2258 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2259 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2260 2261 // Update the profile metadata as well. 2262 // 2263 // Don't do this if the profile of the transformed blocks was statically 2264 // estimated. (This could occur despite the function having an entry 2265 // frequency in completely cold parts of the CFG.) 2266 // 2267 // In this case we don't want to suggest to subsequent passes that the 2268 // calculated weights are fully consistent. Consider this graph: 2269 // 2270 // check_1 2271 // 50% / | 2272 // eq_1 | 50% 2273 // \ | 2274 // check_2 2275 // 50% / | 2276 // eq_2 | 50% 2277 // \ | 2278 // check_3 2279 // 50% / | 2280 // eq_3 | 50% 2281 // \ | 2282 // 2283 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2284 // the overall probabilities are inconsistent; the total probability that the 2285 // value is either 1, 2 or 3 is 150%. 2286 // 2287 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2288 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2289 // the loop exit edge. Then based solely on static estimation we would assume 2290 // the loop was extremely hot. 2291 // 2292 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2293 // shouldn't make edges extremely likely or unlikely based solely on static 2294 // estimation. 2295 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2296 SmallVector<uint32_t, 4> Weights; 2297 for (auto Prob : BBSuccProbs) 2298 Weights.push_back(Prob.getNumerator()); 2299 2300 auto TI = BB->getTerminator(); 2301 TI->setMetadata( 2302 LLVMContext::MD_prof, 2303 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2304 } 2305 } 2306 2307 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2308 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2309 /// If we can duplicate the contents of BB up into PredBB do so now, this 2310 /// improves the odds that the branch will be on an analyzable instruction like 2311 /// a compare. 2312 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2313 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2314 assert(!PredBBs.empty() && "Can't handle an empty set"); 2315 2316 // If BB is a loop header, then duplicating this block outside the loop would 2317 // cause us to transform this into an irreducible loop, don't do this. 2318 // See the comments above FindLoopHeaders for justifications and caveats. 2319 if (LoopHeaders.count(BB)) { 2320 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2321 << "' into predecessor block '" << PredBBs[0]->getName() 2322 << "' - it might create an irreducible loop!\n"); 2323 return false; 2324 } 2325 2326 unsigned DuplicationCost = 2327 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2328 if (DuplicationCost > BBDupThreshold) { 2329 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2330 << "' - Cost is too high: " << DuplicationCost << "\n"); 2331 return false; 2332 } 2333 2334 // And finally, do it! Start by factoring the predecessors if needed. 2335 std::vector<DominatorTree::UpdateType> Updates; 2336 BasicBlock *PredBB; 2337 if (PredBBs.size() == 1) 2338 PredBB = PredBBs[0]; 2339 else { 2340 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2341 << " common predecessors.\n"); 2342 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2343 } 2344 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2345 2346 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2347 // of PredBB. 2348 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2349 << "' into end of '" << PredBB->getName() 2350 << "' to eliminate branch on phi. Cost: " 2351 << DuplicationCost << " block is:" << *BB << "\n"); 2352 2353 // Unless PredBB ends with an unconditional branch, split the edge so that we 2354 // can just clone the bits from BB into the end of the new PredBB. 2355 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2356 2357 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2358 BasicBlock *OldPredBB = PredBB; 2359 PredBB = SplitEdge(OldPredBB, BB); 2360 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2361 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2362 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2363 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2364 } 2365 2366 // We are going to have to map operands from the original BB block into the 2367 // PredBB block. Evaluate PHI nodes in BB. 2368 DenseMap<Instruction*, Value*> ValueMapping; 2369 2370 BasicBlock::iterator BI = BB->begin(); 2371 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2372 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2373 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2374 // mapping and using it to remap operands in the cloned instructions. 2375 for (; BI != BB->end(); ++BI) { 2376 Instruction *New = BI->clone(); 2377 2378 // Remap operands to patch up intra-block references. 2379 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2380 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2381 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2382 if (I != ValueMapping.end()) 2383 New->setOperand(i, I->second); 2384 } 2385 2386 // If this instruction can be simplified after the operands are updated, 2387 // just use the simplified value instead. This frequently happens due to 2388 // phi translation. 2389 if (Value *IV = SimplifyInstruction( 2390 New, 2391 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2392 ValueMapping[&*BI] = IV; 2393 if (!New->mayHaveSideEffects()) { 2394 New->deleteValue(); 2395 New = nullptr; 2396 } 2397 } else { 2398 ValueMapping[&*BI] = New; 2399 } 2400 if (New) { 2401 // Otherwise, insert the new instruction into the block. 2402 New->setName(BI->getName()); 2403 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2404 // Update Dominance from simplified New instruction operands. 2405 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2406 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2407 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2408 } 2409 } 2410 2411 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2412 // add entries to the PHI nodes for branch from PredBB now. 2413 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2414 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2415 ValueMapping); 2416 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2417 ValueMapping); 2418 2419 UpdateSSA(BB, PredBB, ValueMapping); 2420 2421 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2422 // that we nuked. 2423 BB->removePredecessor(PredBB, true); 2424 2425 // Remove the unconditional branch at the end of the PredBB block. 2426 OldPredBranch->eraseFromParent(); 2427 DTU->applyUpdatesPermissive(Updates); 2428 2429 ++NumDupes; 2430 return true; 2431 } 2432 2433 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2434 // a Select instruction in Pred. BB has other predecessors and SI is used in 2435 // a PHI node in BB. SI has no other use. 2436 // A new basic block, NewBB, is created and SI is converted to compare and 2437 // conditional branch. SI is erased from parent. 2438 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2439 SelectInst *SI, PHINode *SIUse, 2440 unsigned Idx) { 2441 // Expand the select. 2442 // 2443 // Pred -- 2444 // | v 2445 // | NewBB 2446 // | | 2447 // |----- 2448 // v 2449 // BB 2450 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2451 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2452 BB->getParent(), BB); 2453 // Move the unconditional branch to NewBB. 2454 PredTerm->removeFromParent(); 2455 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2456 // Create a conditional branch and update PHI nodes. 2457 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2458 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2459 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2460 2461 // The select is now dead. 2462 SI->eraseFromParent(); 2463 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2464 {DominatorTree::Insert, Pred, NewBB}}); 2465 2466 // Update any other PHI nodes in BB. 2467 for (BasicBlock::iterator BI = BB->begin(); 2468 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2469 if (Phi != SIUse) 2470 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2471 } 2472 2473 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2474 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2475 2476 if (!CondPHI || CondPHI->getParent() != BB) 2477 return false; 2478 2479 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2480 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2481 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2482 2483 // The second and third condition can be potentially relaxed. Currently 2484 // the conditions help to simplify the code and allow us to reuse existing 2485 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2486 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2487 continue; 2488 2489 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2490 if (!PredTerm || !PredTerm->isUnconditional()) 2491 continue; 2492 2493 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2494 return true; 2495 } 2496 return false; 2497 } 2498 2499 /// TryToUnfoldSelect - Look for blocks of the form 2500 /// bb1: 2501 /// %a = select 2502 /// br bb2 2503 /// 2504 /// bb2: 2505 /// %p = phi [%a, %bb1] ... 2506 /// %c = icmp %p 2507 /// br i1 %c 2508 /// 2509 /// And expand the select into a branch structure if one of its arms allows %c 2510 /// to be folded. This later enables threading from bb1 over bb2. 2511 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2512 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2513 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2514 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2515 2516 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2517 CondLHS->getParent() != BB) 2518 return false; 2519 2520 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2521 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2522 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2523 2524 // Look if one of the incoming values is a select in the corresponding 2525 // predecessor. 2526 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2527 continue; 2528 2529 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2530 if (!PredTerm || !PredTerm->isUnconditional()) 2531 continue; 2532 2533 // Now check if one of the select values would allow us to constant fold the 2534 // terminator in BB. We don't do the transform if both sides fold, those 2535 // cases will be threaded in any case. 2536 if (DTU->hasPendingDomTreeUpdates()) 2537 LVI->disableDT(); 2538 else 2539 LVI->enableDT(); 2540 LazyValueInfo::Tristate LHSFolds = 2541 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2542 CondRHS, Pred, BB, CondCmp); 2543 LazyValueInfo::Tristate RHSFolds = 2544 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2545 CondRHS, Pred, BB, CondCmp); 2546 if ((LHSFolds != LazyValueInfo::Unknown || 2547 RHSFolds != LazyValueInfo::Unknown) && 2548 LHSFolds != RHSFolds) { 2549 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2550 return true; 2551 } 2552 } 2553 return false; 2554 } 2555 2556 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2557 /// same BB in the form 2558 /// bb: 2559 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2560 /// %s = select %p, trueval, falseval 2561 /// 2562 /// or 2563 /// 2564 /// bb: 2565 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2566 /// %c = cmp %p, 0 2567 /// %s = select %c, trueval, falseval 2568 /// 2569 /// And expand the select into a branch structure. This later enables 2570 /// jump-threading over bb in this pass. 2571 /// 2572 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2573 /// select if the associated PHI has at least one constant. If the unfolded 2574 /// select is not jump-threaded, it will be folded again in the later 2575 /// optimizations. 2576 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2577 // If threading this would thread across a loop header, don't thread the edge. 2578 // See the comments above FindLoopHeaders for justifications and caveats. 2579 if (LoopHeaders.count(BB)) 2580 return false; 2581 2582 for (BasicBlock::iterator BI = BB->begin(); 2583 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2584 // Look for a Phi having at least one constant incoming value. 2585 if (llvm::all_of(PN->incoming_values(), 2586 [](Value *V) { return !isa<ConstantInt>(V); })) 2587 continue; 2588 2589 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2590 // Check if SI is in BB and use V as condition. 2591 if (SI->getParent() != BB) 2592 return false; 2593 Value *Cond = SI->getCondition(); 2594 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2595 }; 2596 2597 SelectInst *SI = nullptr; 2598 for (Use &U : PN->uses()) { 2599 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2600 // Look for a ICmp in BB that compares PN with a constant and is the 2601 // condition of a Select. 2602 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2603 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2604 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2605 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2606 SI = SelectI; 2607 break; 2608 } 2609 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2610 // Look for a Select in BB that uses PN as condition. 2611 if (isUnfoldCandidate(SelectI, U.get())) { 2612 SI = SelectI; 2613 break; 2614 } 2615 } 2616 } 2617 2618 if (!SI) 2619 continue; 2620 // Expand the select. 2621 Instruction *Term = 2622 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2623 BasicBlock *SplitBB = SI->getParent(); 2624 BasicBlock *NewBB = Term->getParent(); 2625 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2626 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2627 NewPN->addIncoming(SI->getFalseValue(), BB); 2628 SI->replaceAllUsesWith(NewPN); 2629 SI->eraseFromParent(); 2630 // NewBB and SplitBB are newly created blocks which require insertion. 2631 std::vector<DominatorTree::UpdateType> Updates; 2632 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2633 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2634 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2635 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2636 // BB's successors were moved to SplitBB, update DTU accordingly. 2637 for (auto *Succ : successors(SplitBB)) { 2638 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2639 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2640 } 2641 DTU->applyUpdatesPermissive(Updates); 2642 return true; 2643 } 2644 return false; 2645 } 2646 2647 /// Try to propagate a guard from the current BB into one of its predecessors 2648 /// in case if another branch of execution implies that the condition of this 2649 /// guard is always true. Currently we only process the simplest case that 2650 /// looks like: 2651 /// 2652 /// Start: 2653 /// %cond = ... 2654 /// br i1 %cond, label %T1, label %F1 2655 /// T1: 2656 /// br label %Merge 2657 /// F1: 2658 /// br label %Merge 2659 /// Merge: 2660 /// %condGuard = ... 2661 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2662 /// 2663 /// And cond either implies condGuard or !condGuard. In this case all the 2664 /// instructions before the guard can be duplicated in both branches, and the 2665 /// guard is then threaded to one of them. 2666 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2667 using namespace PatternMatch; 2668 2669 // We only want to deal with two predecessors. 2670 BasicBlock *Pred1, *Pred2; 2671 auto PI = pred_begin(BB), PE = pred_end(BB); 2672 if (PI == PE) 2673 return false; 2674 Pred1 = *PI++; 2675 if (PI == PE) 2676 return false; 2677 Pred2 = *PI++; 2678 if (PI != PE) 2679 return false; 2680 if (Pred1 == Pred2) 2681 return false; 2682 2683 // Try to thread one of the guards of the block. 2684 // TODO: Look up deeper than to immediate predecessor? 2685 auto *Parent = Pred1->getSinglePredecessor(); 2686 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2687 return false; 2688 2689 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2690 for (auto &I : *BB) 2691 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2692 return true; 2693 2694 return false; 2695 } 2696 2697 /// Try to propagate the guard from BB which is the lower block of a diamond 2698 /// to one of its branches, in case if diamond's condition implies guard's 2699 /// condition. 2700 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2701 BranchInst *BI) { 2702 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2703 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2704 Value *GuardCond = Guard->getArgOperand(0); 2705 Value *BranchCond = BI->getCondition(); 2706 BasicBlock *TrueDest = BI->getSuccessor(0); 2707 BasicBlock *FalseDest = BI->getSuccessor(1); 2708 2709 auto &DL = BB->getModule()->getDataLayout(); 2710 bool TrueDestIsSafe = false; 2711 bool FalseDestIsSafe = false; 2712 2713 // True dest is safe if BranchCond => GuardCond. 2714 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2715 if (Impl && *Impl) 2716 TrueDestIsSafe = true; 2717 else { 2718 // False dest is safe if !BranchCond => GuardCond. 2719 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2720 if (Impl && *Impl) 2721 FalseDestIsSafe = true; 2722 } 2723 2724 if (!TrueDestIsSafe && !FalseDestIsSafe) 2725 return false; 2726 2727 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2728 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2729 2730 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2731 Instruction *AfterGuard = Guard->getNextNode(); 2732 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2733 if (Cost > BBDupThreshold) 2734 return false; 2735 // Duplicate all instructions before the guard and the guard itself to the 2736 // branch where implication is not proved. 2737 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2738 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2739 assert(GuardedBlock && "Could not create the guarded block?"); 2740 // Duplicate all instructions before the guard in the unguarded branch. 2741 // Since we have successfully duplicated the guarded block and this block 2742 // has fewer instructions, we expect it to succeed. 2743 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2744 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2745 assert(UnguardedBlock && "Could not create the unguarded block?"); 2746 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2747 << GuardedBlock->getName() << "\n"); 2748 // Some instructions before the guard may still have uses. For them, we need 2749 // to create Phi nodes merging their copies in both guarded and unguarded 2750 // branches. Those instructions that have no uses can be just removed. 2751 SmallVector<Instruction *, 4> ToRemove; 2752 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2753 if (!isa<PHINode>(&*BI)) 2754 ToRemove.push_back(&*BI); 2755 2756 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2757 assert(InsertionPoint && "Empty block?"); 2758 // Substitute with Phis & remove. 2759 for (auto *Inst : reverse(ToRemove)) { 2760 if (!Inst->use_empty()) { 2761 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2762 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2763 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2764 NewPN->insertBefore(InsertionPoint); 2765 Inst->replaceAllUsesWith(NewPN); 2766 } 2767 Inst->eraseFromParent(); 2768 } 2769 return true; 2770 } 2771