xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 1a924e770ad01b524d7477473a1ded63c90242aa)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "jump-threading"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/IntrinsicInst.h"
17 #include "llvm/LLVMContext.h"
18 #include "llvm/Pass.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LazyValueInfo.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Transforms/Utils/SSAUpdater.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ValueHandle.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 STATISTIC(NumThreads, "Number of jumps threaded");
39 STATISTIC(NumFolds,   "Number of terminators folded");
40 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
41 
42 static cl::opt<unsigned>
43 Threshold("jump-threading-threshold",
44           cl::desc("Max block size to duplicate for jump threading"),
45           cl::init(6), cl::Hidden);
46 
47 namespace {
48   // These are at global scope so static functions can use them too.
49   typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo;
50   typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy;
51 
52   // This is used to keep track of what kind of constant we're currently hoping
53   // to find.
54   enum ConstantPreference {
55     WantInteger,
56     WantBlockAddress
57   };
58 
59   /// This pass performs 'jump threading', which looks at blocks that have
60   /// multiple predecessors and multiple successors.  If one or more of the
61   /// predecessors of the block can be proven to always jump to one of the
62   /// successors, we forward the edge from the predecessor to the successor by
63   /// duplicating the contents of this block.
64   ///
65   /// An example of when this can occur is code like this:
66   ///
67   ///   if () { ...
68   ///     X = 4;
69   ///   }
70   ///   if (X < 3) {
71   ///
72   /// In this case, the unconditional branch at the end of the first if can be
73   /// revectored to the false side of the second if.
74   ///
75   class JumpThreading : public FunctionPass {
76     TargetData *TD;
77     LazyValueInfo *LVI;
78 #ifdef NDEBUG
79     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
80 #else
81     SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
82 #endif
83     DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet;
84 
85     // RAII helper for updating the recursion stack.
86     struct RecursionSetRemover {
87       DenseSet<std::pair<Value*, BasicBlock*> > &TheSet;
88       std::pair<Value*, BasicBlock*> ThePair;
89 
90       RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S,
91                           std::pair<Value*, BasicBlock*> P)
92         : TheSet(S), ThePair(P) { }
93 
94       ~RecursionSetRemover() {
95         TheSet.erase(ThePair);
96       }
97     };
98   public:
99     static char ID; // Pass identification
100     JumpThreading() : FunctionPass(ID) {
101       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
102     }
103 
104     bool runOnFunction(Function &F);
105 
106     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
107       AU.addRequired<LazyValueInfo>();
108       AU.addPreserved<LazyValueInfo>();
109     }
110 
111     void FindLoopHeaders(Function &F);
112     bool ProcessBlock(BasicBlock *BB);
113     bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
114                     BasicBlock *SuccBB);
115     bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
116                                   const SmallVectorImpl<BasicBlock *> &PredBBs);
117 
118     bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
119                                          PredValueInfo &Result,
120                                          ConstantPreference Preference);
121     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
122                                 ConstantPreference Preference);
123 
124     bool ProcessBranchOnPHI(PHINode *PN);
125     bool ProcessBranchOnXOR(BinaryOperator *BO);
126 
127     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
128   };
129 }
130 
131 char JumpThreading::ID = 0;
132 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
133                 "Jump Threading", false, false)
134 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
135 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
136                 "Jump Threading", false, false)
137 
138 // Public interface to the Jump Threading pass
139 FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
140 
141 /// runOnFunction - Top level algorithm.
142 ///
143 bool JumpThreading::runOnFunction(Function &F) {
144   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
145   TD = getAnalysisIfAvailable<TargetData>();
146   LVI = &getAnalysis<LazyValueInfo>();
147 
148   FindLoopHeaders(F);
149 
150   bool Changed, EverChanged = false;
151   do {
152     Changed = false;
153     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
154       BasicBlock *BB = I;
155       // Thread all of the branches we can over this block.
156       while (ProcessBlock(BB))
157         Changed = true;
158 
159       ++I;
160 
161       // If the block is trivially dead, zap it.  This eliminates the successor
162       // edges which simplifies the CFG.
163       if (pred_begin(BB) == pred_end(BB) &&
164           BB != &BB->getParent()->getEntryBlock()) {
165         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
166               << "' with terminator: " << *BB->getTerminator() << '\n');
167         LoopHeaders.erase(BB);
168         LVI->eraseBlock(BB);
169         DeleteDeadBlock(BB);
170         Changed = true;
171         continue;
172       }
173 
174       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
175 
176       // Can't thread an unconditional jump, but if the block is "almost
177       // empty", we can replace uses of it with uses of the successor and make
178       // this dead.
179       if (BI && BI->isUnconditional() &&
180           BB != &BB->getParent()->getEntryBlock() &&
181           // If the terminator is the only non-phi instruction, try to nuke it.
182           BB->getFirstNonPHIOrDbg()->isTerminator()) {
183         // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
184         // block, we have to make sure it isn't in the LoopHeaders set.  We
185         // reinsert afterward if needed.
186         bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
187         BasicBlock *Succ = BI->getSuccessor(0);
188 
189         // FIXME: It is always conservatively correct to drop the info
190         // for a block even if it doesn't get erased.  This isn't totally
191         // awesome, but it allows us to use AssertingVH to prevent nasty
192         // dangling pointer issues within LazyValueInfo.
193         LVI->eraseBlock(BB);
194         if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
195           Changed = true;
196           // If we deleted BB and BB was the header of a loop, then the
197           // successor is now the header of the loop.
198           BB = Succ;
199         }
200 
201         if (ErasedFromLoopHeaders)
202           LoopHeaders.insert(BB);
203       }
204     }
205     EverChanged |= Changed;
206   } while (Changed);
207 
208   LoopHeaders.clear();
209   return EverChanged;
210 }
211 
212 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
213 /// thread across it.
214 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
215   /// Ignore PHI nodes, these will be flattened when duplication happens.
216   BasicBlock::const_iterator I = BB->getFirstNonPHI();
217 
218   // FIXME: THREADING will delete values that are just used to compute the
219   // branch, so they shouldn't count against the duplication cost.
220 
221 
222   // Sum up the cost of each instruction until we get to the terminator.  Don't
223   // include the terminator because the copy won't include it.
224   unsigned Size = 0;
225   for (; !isa<TerminatorInst>(I); ++I) {
226     // Debugger intrinsics don't incur code size.
227     if (isa<DbgInfoIntrinsic>(I)) continue;
228 
229     // If this is a pointer->pointer bitcast, it is free.
230     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
231       continue;
232 
233     // All other instructions count for at least one unit.
234     ++Size;
235 
236     // Calls are more expensive.  If they are non-intrinsic calls, we model them
237     // as having cost of 4.  If they are a non-vector intrinsic, we model them
238     // as having cost of 2 total, and if they are a vector intrinsic, we model
239     // them as having cost 1.
240     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
241       if (!isa<IntrinsicInst>(CI))
242         Size += 3;
243       else if (!CI->getType()->isVectorTy())
244         Size += 1;
245     }
246   }
247 
248   // Threading through a switch statement is particularly profitable.  If this
249   // block ends in a switch, decrease its cost to make it more likely to happen.
250   if (isa<SwitchInst>(I))
251     Size = Size > 6 ? Size-6 : 0;
252 
253   // The same holds for indirect branches, but slightly more so.
254   if (isa<IndirectBrInst>(I))
255     Size = Size > 8 ? Size-8 : 0;
256 
257   return Size;
258 }
259 
260 /// FindLoopHeaders - We do not want jump threading to turn proper loop
261 /// structures into irreducible loops.  Doing this breaks up the loop nesting
262 /// hierarchy and pessimizes later transformations.  To prevent this from
263 /// happening, we first have to find the loop headers.  Here we approximate this
264 /// by finding targets of backedges in the CFG.
265 ///
266 /// Note that there definitely are cases when we want to allow threading of
267 /// edges across a loop header.  For example, threading a jump from outside the
268 /// loop (the preheader) to an exit block of the loop is definitely profitable.
269 /// It is also almost always profitable to thread backedges from within the loop
270 /// to exit blocks, and is often profitable to thread backedges to other blocks
271 /// within the loop (forming a nested loop).  This simple analysis is not rich
272 /// enough to track all of these properties and keep it up-to-date as the CFG
273 /// mutates, so we don't allow any of these transformations.
274 ///
275 void JumpThreading::FindLoopHeaders(Function &F) {
276   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
277   FindFunctionBackedges(F, Edges);
278 
279   for (unsigned i = 0, e = Edges.size(); i != e; ++i)
280     LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
281 }
282 
283 /// getKnownConstant - Helper method to determine if we can thread over a
284 /// terminator with the given value as its condition, and if so what value to
285 /// use for that. What kind of value this is depends on whether we want an
286 /// integer or a block address, but an undef is always accepted.
287 /// Returns null if Val is null or not an appropriate constant.
288 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
289   if (!Val)
290     return 0;
291 
292   // Undef is "known" enough.
293   if (UndefValue *U = dyn_cast<UndefValue>(Val))
294     return U;
295 
296   if (Preference == WantBlockAddress)
297     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
298 
299   return dyn_cast<ConstantInt>(Val);
300 }
301 
302 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
303 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
304 /// in any of our predecessors.  If so, return the known list of value and pred
305 /// BB in the result vector.
306 ///
307 /// This returns true if there were any known values.
308 ///
309 bool JumpThreading::
310 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
311                                 ConstantPreference Preference) {
312   // This method walks up use-def chains recursively.  Because of this, we could
313   // get into an infinite loop going around loops in the use-def chain.  To
314   // prevent this, keep track of what (value, block) pairs we've already visited
315   // and terminate the search if we loop back to them
316   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
317     return false;
318 
319   // An RAII help to remove this pair from the recursion set once the recursion
320   // stack pops back out again.
321   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
322 
323   // If V is a constant, then it is known in all predecessors.
324   if (Constant *KC = getKnownConstant(V, Preference)) {
325     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
326       Result.push_back(std::make_pair(KC, *PI));
327 
328     return true;
329   }
330 
331   // If V is a non-instruction value, or an instruction in a different block,
332   // then it can't be derived from a PHI.
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (I == 0 || I->getParent() != BB) {
335 
336     // Okay, if this is a live-in value, see if it has a known value at the end
337     // of any of our predecessors.
338     //
339     // FIXME: This should be an edge property, not a block end property.
340     /// TODO: Per PR2563, we could infer value range information about a
341     /// predecessor based on its terminator.
342     //
343     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
344     // "I" is a non-local compare-with-a-constant instruction.  This would be
345     // able to handle value inequalities better, for example if the compare is
346     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
347     // Perhaps getConstantOnEdge should be smart enough to do this?
348 
349     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
350       BasicBlock *P = *PI;
351       // If the value is known by LazyValueInfo to be a constant in a
352       // predecessor, use that information to try to thread this block.
353       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB);
354       if (Constant *KC = getKnownConstant(PredCst, Preference))
355         Result.push_back(std::make_pair(KC, P));
356     }
357 
358     return !Result.empty();
359   }
360 
361   /// If I is a PHI node, then we know the incoming values for any constants.
362   if (PHINode *PN = dyn_cast<PHINode>(I)) {
363     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
364       Value *InVal = PN->getIncomingValue(i);
365       if (Constant *KC = getKnownConstant(InVal, Preference)) {
366         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
367       } else {
368         Constant *CI = LVI->getConstantOnEdge(InVal,
369                                               PN->getIncomingBlock(i), BB);
370         if (Constant *KC = getKnownConstant(CI, Preference))
371           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
372       }
373     }
374 
375     return !Result.empty();
376   }
377 
378   PredValueInfoTy LHSVals, RHSVals;
379 
380   // Handle some boolean conditions.
381   if (I->getType()->getPrimitiveSizeInBits() == 1) {
382     assert(Preference == WantInteger && "One-bit non-integer type?");
383     // X | true -> true
384     // X & false -> false
385     if (I->getOpcode() == Instruction::Or ||
386         I->getOpcode() == Instruction::And) {
387       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
388                                       WantInteger);
389       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
390                                       WantInteger);
391 
392       if (LHSVals.empty() && RHSVals.empty())
393         return false;
394 
395       ConstantInt *InterestingVal;
396       if (I->getOpcode() == Instruction::Or)
397         InterestingVal = ConstantInt::getTrue(I->getContext());
398       else
399         InterestingVal = ConstantInt::getFalse(I->getContext());
400 
401       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
402 
403       // Scan for the sentinel.  If we find an undef, force it to the
404       // interesting value: x|undef -> true and x&undef -> false.
405       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
406         if (LHSVals[i].first == InterestingVal ||
407             isa<UndefValue>(LHSVals[i].first)) {
408           Result.push_back(LHSVals[i]);
409           Result.back().first = InterestingVal;
410           LHSKnownBBs.insert(LHSVals[i].second);
411         }
412       for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
413         if (RHSVals[i].first == InterestingVal ||
414             isa<UndefValue>(RHSVals[i].first)) {
415           // If we already inferred a value for this block on the LHS, don't
416           // re-add it.
417           if (!LHSKnownBBs.count(RHSVals[i].second)) {
418             Result.push_back(RHSVals[i]);
419             Result.back().first = InterestingVal;
420           }
421         }
422 
423       return !Result.empty();
424     }
425 
426     // Handle the NOT form of XOR.
427     if (I->getOpcode() == Instruction::Xor &&
428         isa<ConstantInt>(I->getOperand(1)) &&
429         cast<ConstantInt>(I->getOperand(1))->isOne()) {
430       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
431                                       WantInteger);
432       if (Result.empty())
433         return false;
434 
435       // Invert the known values.
436       for (unsigned i = 0, e = Result.size(); i != e; ++i)
437         Result[i].first = ConstantExpr::getNot(Result[i].first);
438 
439       return true;
440     }
441 
442   // Try to simplify some other binary operator values.
443   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
444     assert(Preference != WantBlockAddress
445             && "A binary operator creating a block address?");
446     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
447       PredValueInfoTy LHSVals;
448       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
449                                       WantInteger);
450 
451       // Try to use constant folding to simplify the binary operator.
452       for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
453         Constant *V = LHSVals[i].first;
454         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
455 
456         if (Constant *KC = getKnownConstant(Folded, WantInteger))
457           Result.push_back(std::make_pair(KC, LHSVals[i].second));
458       }
459     }
460 
461     return !Result.empty();
462   }
463 
464   // Handle compare with phi operand, where the PHI is defined in this block.
465   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
466     assert(Preference == WantInteger && "Compares only produce integers");
467     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
468     if (PN && PN->getParent() == BB) {
469       // We can do this simplification if any comparisons fold to true or false.
470       // See if any do.
471       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
472         BasicBlock *PredBB = PN->getIncomingBlock(i);
473         Value *LHS = PN->getIncomingValue(i);
474         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
475 
476         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
477         if (Res == 0) {
478           if (!isa<Constant>(RHS))
479             continue;
480 
481           LazyValueInfo::Tristate
482             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
483                                            cast<Constant>(RHS), PredBB, BB);
484           if (ResT == LazyValueInfo::Unknown)
485             continue;
486           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
487         }
488 
489         if (Constant *KC = getKnownConstant(Res, WantInteger))
490           Result.push_back(std::make_pair(KC, PredBB));
491       }
492 
493       return !Result.empty();
494     }
495 
496 
497     // If comparing a live-in value against a constant, see if we know the
498     // live-in value on any predecessors.
499     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
500       if (!isa<Instruction>(Cmp->getOperand(0)) ||
501           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
502         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
503 
504         for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){
505           BasicBlock *P = *PI;
506           // If the value is known by LazyValueInfo to be a constant in a
507           // predecessor, use that information to try to thread this block.
508           LazyValueInfo::Tristate Res =
509             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
510                                     RHSCst, P, BB);
511           if (Res == LazyValueInfo::Unknown)
512             continue;
513 
514           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
515           Result.push_back(std::make_pair(ResC, P));
516         }
517 
518         return !Result.empty();
519       }
520 
521       // Try to find a constant value for the LHS of a comparison,
522       // and evaluate it statically if we can.
523       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
524         PredValueInfoTy LHSVals;
525         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
526                                         WantInteger);
527 
528         for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) {
529           Constant *V = LHSVals[i].first;
530           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
531                                                       V, CmpConst);
532           if (Constant *KC = getKnownConstant(Folded, WantInteger))
533             Result.push_back(std::make_pair(KC, LHSVals[i].second));
534         }
535 
536         return !Result.empty();
537       }
538     }
539   }
540 
541   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
542     // Handle select instructions where at least one operand is a known constant
543     // and we can figure out the condition value for any predecessor block.
544     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
545     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
546     PredValueInfoTy Conds;
547     if ((TrueVal || FalseVal) &&
548         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
549                                         WantInteger)) {
550       for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
551         Constant *Cond = Conds[i].first;
552 
553         // Figure out what value to use for the condition.
554         bool KnownCond;
555         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
556           // A known boolean.
557           KnownCond = CI->isOne();
558         } else {
559           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
560           // Either operand will do, so be sure to pick the one that's a known
561           // constant.
562           // FIXME: Do this more cleverly if both values are known constants?
563           KnownCond = (TrueVal != 0);
564         }
565 
566         // See if the select has a known constant value for this predecessor.
567         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
568           Result.push_back(std::make_pair(Val, Conds[i].second));
569       }
570 
571       return !Result.empty();
572     }
573   }
574 
575   // If all else fails, see if LVI can figure out a constant value for us.
576   Constant *CI = LVI->getConstant(V, BB);
577   if (Constant *KC = getKnownConstant(CI, Preference)) {
578     for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
579       Result.push_back(std::make_pair(KC, *PI));
580   }
581 
582   return !Result.empty();
583 }
584 
585 
586 
587 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
588 /// in an undefined jump, decide which block is best to revector to.
589 ///
590 /// Since we can pick an arbitrary destination, we pick the successor with the
591 /// fewest predecessors.  This should reduce the in-degree of the others.
592 ///
593 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
594   TerminatorInst *BBTerm = BB->getTerminator();
595   unsigned MinSucc = 0;
596   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
597   // Compute the successor with the minimum number of predecessors.
598   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
599   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
600     TestBB = BBTerm->getSuccessor(i);
601     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
602     if (NumPreds < MinNumPreds)
603       MinSucc = i;
604   }
605 
606   return MinSucc;
607 }
608 
609 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
610   if (!BB->hasAddressTaken()) return false;
611 
612   // If the block has its address taken, it may be a tree of dead constants
613   // hanging off of it.  These shouldn't keep the block alive.
614   BlockAddress *BA = BlockAddress::get(BB);
615   BA->removeDeadConstantUsers();
616   return !BA->use_empty();
617 }
618 
619 /// ProcessBlock - If there are any predecessors whose control can be threaded
620 /// through to a successor, transform them now.
621 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
622   // If the block is trivially dead, just return and let the caller nuke it.
623   // This simplifies other transformations.
624   if (pred_begin(BB) == pred_end(BB) &&
625       BB != &BB->getParent()->getEntryBlock())
626     return false;
627 
628   // If this block has a single predecessor, and if that pred has a single
629   // successor, merge the blocks.  This encourages recursive jump threading
630   // because now the condition in this block can be threaded through
631   // predecessors of our predecessor block.
632   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
633     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
634         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
635       // If SinglePred was a loop header, BB becomes one.
636       if (LoopHeaders.erase(SinglePred))
637         LoopHeaders.insert(BB);
638 
639       // Remember if SinglePred was the entry block of the function.  If so, we
640       // will need to move BB back to the entry position.
641       bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
642       LVI->eraseBlock(SinglePred);
643       MergeBasicBlockIntoOnlyPred(BB);
644 
645       if (isEntry && BB != &BB->getParent()->getEntryBlock())
646         BB->moveBefore(&BB->getParent()->getEntryBlock());
647       return true;
648     }
649   }
650 
651   // What kind of constant we're looking for.
652   ConstantPreference Preference = WantInteger;
653 
654   // Look to see if the terminator is a conditional branch, switch or indirect
655   // branch, if not we can't thread it.
656   Value *Condition;
657   Instruction *Terminator = BB->getTerminator();
658   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
659     // Can't thread an unconditional jump.
660     if (BI->isUnconditional()) return false;
661     Condition = BI->getCondition();
662   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
663     Condition = SI->getCondition();
664   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
665     Condition = IB->getAddress()->stripPointerCasts();
666     Preference = WantBlockAddress;
667   } else {
668     return false; // Must be an invoke.
669   }
670 
671   // If the terminator is branching on an undef, we can pick any of the
672   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
673   if (isa<UndefValue>(Condition)) {
674     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
675 
676     // Fold the branch/switch.
677     TerminatorInst *BBTerm = BB->getTerminator();
678     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
679       if (i == BestSucc) continue;
680       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
681     }
682 
683     DEBUG(dbgs() << "  In block '" << BB->getName()
684           << "' folding undef terminator: " << *BBTerm << '\n');
685     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
686     BBTerm->eraseFromParent();
687     return true;
688   }
689 
690   // If the terminator of this block is branching on a constant, simplify the
691   // terminator to an unconditional branch.  This can occur due to threading in
692   // other blocks.
693   if (getKnownConstant(Condition, Preference)) {
694     DEBUG(dbgs() << "  In block '" << BB->getName()
695           << "' folding terminator: " << *BB->getTerminator() << '\n');
696     ++NumFolds;
697     ConstantFoldTerminator(BB);
698     return true;
699   }
700 
701   Instruction *CondInst = dyn_cast<Instruction>(Condition);
702 
703   // All the rest of our checks depend on the condition being an instruction.
704   if (CondInst == 0) {
705     // FIXME: Unify this with code below.
706     if (ProcessThreadableEdges(Condition, BB, Preference))
707       return true;
708     return false;
709   }
710 
711 
712   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
713     // For a comparison where the LHS is outside this block, it's possible
714     // that we've branched on it before.  Used LVI to see if we can simplify
715     // the branch based on that.
716     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
717     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
718     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
719     if (CondBr && CondConst && CondBr->isConditional() && PI != PE &&
720         (!isa<Instruction>(CondCmp->getOperand(0)) ||
721          cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) {
722       // For predecessor edge, determine if the comparison is true or false
723       // on that edge.  If they're all true or all false, we can simplify the
724       // branch.
725       // FIXME: We could handle mixed true/false by duplicating code.
726       LazyValueInfo::Tristate Baseline =
727         LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0),
728                                 CondConst, *PI, BB);
729       if (Baseline != LazyValueInfo::Unknown) {
730         // Check that all remaining incoming values match the first one.
731         while (++PI != PE) {
732           LazyValueInfo::Tristate Ret =
733             LVI->getPredicateOnEdge(CondCmp->getPredicate(),
734                                     CondCmp->getOperand(0), CondConst, *PI, BB);
735           if (Ret != Baseline) break;
736         }
737 
738         // If we terminated early, then one of the values didn't match.
739         if (PI == PE) {
740           unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0;
741           unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1;
742           CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
743           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
744           CondBr->eraseFromParent();
745           return true;
746         }
747       }
748     }
749   }
750 
751   // Check for some cases that are worth simplifying.  Right now we want to look
752   // for loads that are used by a switch or by the condition for the branch.  If
753   // we see one, check to see if it's partially redundant.  If so, insert a PHI
754   // which can then be used to thread the values.
755   //
756   Value *SimplifyValue = CondInst;
757   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
758     if (isa<Constant>(CondCmp->getOperand(1)))
759       SimplifyValue = CondCmp->getOperand(0);
760 
761   // TODO: There are other places where load PRE would be profitable, such as
762   // more complex comparisons.
763   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
764     if (SimplifyPartiallyRedundantLoad(LI))
765       return true;
766 
767 
768   // Handle a variety of cases where we are branching on something derived from
769   // a PHI node in the current block.  If we can prove that any predecessors
770   // compute a predictable value based on a PHI node, thread those predecessors.
771   //
772   if (ProcessThreadableEdges(CondInst, BB, Preference))
773     return true;
774 
775   // If this is an otherwise-unfoldable branch on a phi node in the current
776   // block, see if we can simplify.
777   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
778     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
779       return ProcessBranchOnPHI(PN);
780 
781 
782   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
783   if (CondInst->getOpcode() == Instruction::Xor &&
784       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
785     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
786 
787 
788   // TODO: If we have: "br (X > 0)"  and we have a predecessor where we know
789   // "(X == 4)", thread through this block.
790 
791   return false;
792 }
793 
794 
795 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
796 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
797 /// important optimization that encourages jump threading, and needs to be run
798 /// interlaced with other jump threading tasks.
799 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
800   // Don't hack volatile loads.
801   if (LI->isVolatile()) return false;
802 
803   // If the load is defined in a block with exactly one predecessor, it can't be
804   // partially redundant.
805   BasicBlock *LoadBB = LI->getParent();
806   if (LoadBB->getSinglePredecessor())
807     return false;
808 
809   Value *LoadedPtr = LI->getOperand(0);
810 
811   // If the loaded operand is defined in the LoadBB, it can't be available.
812   // TODO: Could do simple PHI translation, that would be fun :)
813   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
814     if (PtrOp->getParent() == LoadBB)
815       return false;
816 
817   // Scan a few instructions up from the load, to see if it is obviously live at
818   // the entry to its block.
819   BasicBlock::iterator BBIt = LI;
820 
821   if (Value *AvailableVal =
822         FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) {
823     // If the value if the load is locally available within the block, just use
824     // it.  This frequently occurs for reg2mem'd allocas.
825     //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
826 
827     // If the returned value is the load itself, replace with an undef. This can
828     // only happen in dead loops.
829     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
830     LI->replaceAllUsesWith(AvailableVal);
831     LI->eraseFromParent();
832     return true;
833   }
834 
835   // Otherwise, if we scanned the whole block and got to the top of the block,
836   // we know the block is locally transparent to the load.  If not, something
837   // might clobber its value.
838   if (BBIt != LoadBB->begin())
839     return false;
840 
841 
842   SmallPtrSet<BasicBlock*, 8> PredsScanned;
843   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
844   AvailablePredsTy AvailablePreds;
845   BasicBlock *OneUnavailablePred = 0;
846 
847   // If we got here, the loaded value is transparent through to the start of the
848   // block.  Check to see if it is available in any of the predecessor blocks.
849   for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
850        PI != PE; ++PI) {
851     BasicBlock *PredBB = *PI;
852 
853     // If we already scanned this predecessor, skip it.
854     if (!PredsScanned.insert(PredBB))
855       continue;
856 
857     // Scan the predecessor to see if the value is available in the pred.
858     BBIt = PredBB->end();
859     Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
860     if (!PredAvailable) {
861       OneUnavailablePred = PredBB;
862       continue;
863     }
864 
865     // If so, this load is partially redundant.  Remember this info so that we
866     // can create a PHI node.
867     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
868   }
869 
870   // If the loaded value isn't available in any predecessor, it isn't partially
871   // redundant.
872   if (AvailablePreds.empty()) return false;
873 
874   // Okay, the loaded value is available in at least one (and maybe all!)
875   // predecessors.  If the value is unavailable in more than one unique
876   // predecessor, we want to insert a merge block for those common predecessors.
877   // This ensures that we only have to insert one reload, thus not increasing
878   // code size.
879   BasicBlock *UnavailablePred = 0;
880 
881   // If there is exactly one predecessor where the value is unavailable, the
882   // already computed 'OneUnavailablePred' block is it.  If it ends in an
883   // unconditional branch, we know that it isn't a critical edge.
884   if (PredsScanned.size() == AvailablePreds.size()+1 &&
885       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
886     UnavailablePred = OneUnavailablePred;
887   } else if (PredsScanned.size() != AvailablePreds.size()) {
888     // Otherwise, we had multiple unavailable predecessors or we had a critical
889     // edge from the one.
890     SmallVector<BasicBlock*, 8> PredsToSplit;
891     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
892 
893     for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
894       AvailablePredSet.insert(AvailablePreds[i].first);
895 
896     // Add all the unavailable predecessors to the PredsToSplit list.
897     for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
898          PI != PE; ++PI) {
899       BasicBlock *P = *PI;
900       // If the predecessor is an indirect goto, we can't split the edge.
901       if (isa<IndirectBrInst>(P->getTerminator()))
902         return false;
903 
904       if (!AvailablePredSet.count(P))
905         PredsToSplit.push_back(P);
906     }
907 
908     // Split them out to their own block.
909     UnavailablePred =
910       SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
911                              "thread-pre-split", this);
912   }
913 
914   // If the value isn't available in all predecessors, then there will be
915   // exactly one where it isn't available.  Insert a load on that edge and add
916   // it to the AvailablePreds list.
917   if (UnavailablePred) {
918     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
919            "Can't handle critical edge here!");
920     Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
921                                  LI->getAlignment(),
922                                  UnavailablePred->getTerminator());
923     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
924   }
925 
926   // Now we know that each predecessor of this block has a value in
927   // AvailablePreds, sort them for efficient access as we're walking the preds.
928   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
929 
930   // Create a PHI node at the start of the block for the PRE'd load value.
931   PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
932   PN->takeName(LI);
933 
934   // Insert new entries into the PHI for each predecessor.  A single block may
935   // have multiple entries here.
936   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
937        ++PI) {
938     BasicBlock *P = *PI;
939     AvailablePredsTy::iterator I =
940       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
941                        std::make_pair(P, (Value*)0));
942 
943     assert(I != AvailablePreds.end() && I->first == P &&
944            "Didn't find entry for predecessor!");
945 
946     PN->addIncoming(I->second, I->first);
947   }
948 
949   //cerr << "PRE: " << *LI << *PN << "\n";
950 
951   LI->replaceAllUsesWith(PN);
952   LI->eraseFromParent();
953 
954   return true;
955 }
956 
957 /// FindMostPopularDest - The specified list contains multiple possible
958 /// threadable destinations.  Pick the one that occurs the most frequently in
959 /// the list.
960 static BasicBlock *
961 FindMostPopularDest(BasicBlock *BB,
962                     const SmallVectorImpl<std::pair<BasicBlock*,
963                                   BasicBlock*> > &PredToDestList) {
964   assert(!PredToDestList.empty());
965 
966   // Determine popularity.  If there are multiple possible destinations, we
967   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
968   // blocks with known and real destinations to threading undef.  We'll handle
969   // them later if interesting.
970   DenseMap<BasicBlock*, unsigned> DestPopularity;
971   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
972     if (PredToDestList[i].second)
973       DestPopularity[PredToDestList[i].second]++;
974 
975   // Find the most popular dest.
976   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
977   BasicBlock *MostPopularDest = DPI->first;
978   unsigned Popularity = DPI->second;
979   SmallVector<BasicBlock*, 4> SamePopularity;
980 
981   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
982     // If the popularity of this entry isn't higher than the popularity we've
983     // seen so far, ignore it.
984     if (DPI->second < Popularity)
985       ; // ignore.
986     else if (DPI->second == Popularity) {
987       // If it is the same as what we've seen so far, keep track of it.
988       SamePopularity.push_back(DPI->first);
989     } else {
990       // If it is more popular, remember it.
991       SamePopularity.clear();
992       MostPopularDest = DPI->first;
993       Popularity = DPI->second;
994     }
995   }
996 
997   // Okay, now we know the most popular destination.  If there is more than one
998   // destination, we need to determine one.  This is arbitrary, but we need
999   // to make a deterministic decision.  Pick the first one that appears in the
1000   // successor list.
1001   if (!SamePopularity.empty()) {
1002     SamePopularity.push_back(MostPopularDest);
1003     TerminatorInst *TI = BB->getTerminator();
1004     for (unsigned i = 0; ; ++i) {
1005       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1006 
1007       if (std::find(SamePopularity.begin(), SamePopularity.end(),
1008                     TI->getSuccessor(i)) == SamePopularity.end())
1009         continue;
1010 
1011       MostPopularDest = TI->getSuccessor(i);
1012       break;
1013     }
1014   }
1015 
1016   // Okay, we have finally picked the most popular destination.
1017   return MostPopularDest;
1018 }
1019 
1020 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1021                                            ConstantPreference Preference) {
1022   // If threading this would thread across a loop header, don't even try to
1023   // thread the edge.
1024   if (LoopHeaders.count(BB))
1025     return false;
1026 
1027   PredValueInfoTy PredValues;
1028   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference))
1029     return false;
1030 
1031   assert(!PredValues.empty() &&
1032          "ComputeValueKnownInPredecessors returned true with no values");
1033 
1034   DEBUG(dbgs() << "IN BB: " << *BB;
1035         for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1036           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1037             << *PredValues[i].first
1038             << " for pred '" << PredValues[i].second->getName() << "'.\n";
1039         });
1040 
1041   // Decide what we want to thread through.  Convert our list of known values to
1042   // a list of known destinations for each pred.  This also discards duplicate
1043   // predecessors and keeps track of the undefined inputs (which are represented
1044   // as a null dest in the PredToDestList).
1045   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1046   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1047 
1048   BasicBlock *OnlyDest = 0;
1049   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1050 
1051   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
1052     BasicBlock *Pred = PredValues[i].second;
1053     if (!SeenPreds.insert(Pred))
1054       continue;  // Duplicate predecessor entry.
1055 
1056     // If the predecessor ends with an indirect goto, we can't change its
1057     // destination.
1058     if (isa<IndirectBrInst>(Pred->getTerminator()))
1059       continue;
1060 
1061     Constant *Val = PredValues[i].first;
1062 
1063     BasicBlock *DestBB;
1064     if (isa<UndefValue>(Val))
1065       DestBB = 0;
1066     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1067       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1068     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1069       DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
1070     else {
1071       assert(isa<IndirectBrInst>(BB->getTerminator())
1072               && "Unexpected terminator");
1073       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1074     }
1075 
1076     // If we have exactly one destination, remember it for efficiency below.
1077     if (PredToDestList.empty())
1078       OnlyDest = DestBB;
1079     else if (OnlyDest != DestBB)
1080       OnlyDest = MultipleDestSentinel;
1081 
1082     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1083   }
1084 
1085   // If all edges were unthreadable, we fail.
1086   if (PredToDestList.empty())
1087     return false;
1088 
1089   // Determine which is the most common successor.  If we have many inputs and
1090   // this block is a switch, we want to start by threading the batch that goes
1091   // to the most popular destination first.  If we only know about one
1092   // threadable destination (the common case) we can avoid this.
1093   BasicBlock *MostPopularDest = OnlyDest;
1094 
1095   if (MostPopularDest == MultipleDestSentinel)
1096     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1097 
1098   // Now that we know what the most popular destination is, factor all
1099   // predecessors that will jump to it into a single predecessor.
1100   SmallVector<BasicBlock*, 16> PredsToFactor;
1101   for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
1102     if (PredToDestList[i].second == MostPopularDest) {
1103       BasicBlock *Pred = PredToDestList[i].first;
1104 
1105       // This predecessor may be a switch or something else that has multiple
1106       // edges to the block.  Factor each of these edges by listing them
1107       // according to # occurrences in PredsToFactor.
1108       TerminatorInst *PredTI = Pred->getTerminator();
1109       for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
1110         if (PredTI->getSuccessor(i) == BB)
1111           PredsToFactor.push_back(Pred);
1112     }
1113 
1114   // If the threadable edges are branching on an undefined value, we get to pick
1115   // the destination that these predecessors should get to.
1116   if (MostPopularDest == 0)
1117     MostPopularDest = BB->getTerminator()->
1118                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1119 
1120   // Ok, try to thread it!
1121   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1122 }
1123 
1124 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1125 /// a PHI node in the current block.  See if there are any simplifications we
1126 /// can do based on inputs to the phi node.
1127 ///
1128 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) {
1129   BasicBlock *BB = PN->getParent();
1130 
1131   // TODO: We could make use of this to do it once for blocks with common PHI
1132   // values.
1133   SmallVector<BasicBlock*, 1> PredBBs;
1134   PredBBs.resize(1);
1135 
1136   // If any of the predecessor blocks end in an unconditional branch, we can
1137   // *duplicate* the conditional branch into that block in order to further
1138   // encourage jump threading and to eliminate cases where we have branch on a
1139   // phi of an icmp (branch on icmp is much better).
1140   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1141     BasicBlock *PredBB = PN->getIncomingBlock(i);
1142     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1143       if (PredBr->isUnconditional()) {
1144         PredBBs[0] = PredBB;
1145         // Try to duplicate BB into PredBB.
1146         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1147           return true;
1148       }
1149   }
1150 
1151   return false;
1152 }
1153 
1154 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1155 /// a xor instruction in the current block.  See if there are any
1156 /// simplifications we can do based on inputs to the xor.
1157 ///
1158 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
1159   BasicBlock *BB = BO->getParent();
1160 
1161   // If either the LHS or RHS of the xor is a constant, don't do this
1162   // optimization.
1163   if (isa<ConstantInt>(BO->getOperand(0)) ||
1164       isa<ConstantInt>(BO->getOperand(1)))
1165     return false;
1166 
1167   // If the first instruction in BB isn't a phi, we won't be able to infer
1168   // anything special about any particular predecessor.
1169   if (!isa<PHINode>(BB->front()))
1170     return false;
1171 
1172   // If we have a xor as the branch input to this block, and we know that the
1173   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1174   // the condition into the predecessor and fix that value to true, saving some
1175   // logical ops on that path and encouraging other paths to simplify.
1176   //
1177   // This copies something like this:
1178   //
1179   //  BB:
1180   //    %X = phi i1 [1],  [%X']
1181   //    %Y = icmp eq i32 %A, %B
1182   //    %Z = xor i1 %X, %Y
1183   //    br i1 %Z, ...
1184   //
1185   // Into:
1186   //  BB':
1187   //    %Y = icmp ne i32 %A, %B
1188   //    br i1 %Z, ...
1189 
1190   PredValueInfoTy XorOpValues;
1191   bool isLHS = true;
1192   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1193                                        WantInteger)) {
1194     assert(XorOpValues.empty());
1195     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1196                                          WantInteger))
1197       return false;
1198     isLHS = false;
1199   }
1200 
1201   assert(!XorOpValues.empty() &&
1202          "ComputeValueKnownInPredecessors returned true with no values");
1203 
1204   // Scan the information to see which is most popular: true or false.  The
1205   // predecessors can be of the set true, false, or undef.
1206   unsigned NumTrue = 0, NumFalse = 0;
1207   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1208     if (isa<UndefValue>(XorOpValues[i].first))
1209       // Ignore undefs for the count.
1210       continue;
1211     if (cast<ConstantInt>(XorOpValues[i].first)->isZero())
1212       ++NumFalse;
1213     else
1214       ++NumTrue;
1215   }
1216 
1217   // Determine which value to split on, true, false, or undef if neither.
1218   ConstantInt *SplitVal = 0;
1219   if (NumTrue > NumFalse)
1220     SplitVal = ConstantInt::getTrue(BB->getContext());
1221   else if (NumTrue != 0 || NumFalse != 0)
1222     SplitVal = ConstantInt::getFalse(BB->getContext());
1223 
1224   // Collect all of the blocks that this can be folded into so that we can
1225   // factor this once and clone it once.
1226   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1227   for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) {
1228     if (XorOpValues[i].first != SplitVal &&
1229         !isa<UndefValue>(XorOpValues[i].first))
1230       continue;
1231 
1232     BlocksToFoldInto.push_back(XorOpValues[i].second);
1233   }
1234 
1235   // If we inferred a value for all of the predecessors, then duplication won't
1236   // help us.  However, we can just replace the LHS or RHS with the constant.
1237   if (BlocksToFoldInto.size() ==
1238       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1239     if (SplitVal == 0) {
1240       // If all preds provide undef, just nuke the xor, because it is undef too.
1241       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1242       BO->eraseFromParent();
1243     } else if (SplitVal->isZero()) {
1244       // If all preds provide 0, replace the xor with the other input.
1245       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1246       BO->eraseFromParent();
1247     } else {
1248       // If all preds provide 1, set the computed value to 1.
1249       BO->setOperand(!isLHS, SplitVal);
1250     }
1251 
1252     return true;
1253   }
1254 
1255   // Try to duplicate BB into PredBB.
1256   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1257 }
1258 
1259 
1260 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1261 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1262 /// NewPred using the entries from OldPred (suitably mapped).
1263 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1264                                             BasicBlock *OldPred,
1265                                             BasicBlock *NewPred,
1266                                      DenseMap<Instruction*, Value*> &ValueMap) {
1267   for (BasicBlock::iterator PNI = PHIBB->begin();
1268        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1269     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1270     // DestBlock.
1271     Value *IV = PN->getIncomingValueForBlock(OldPred);
1272 
1273     // Remap the value if necessary.
1274     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1275       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1276       if (I != ValueMap.end())
1277         IV = I->second;
1278     }
1279 
1280     PN->addIncoming(IV, NewPred);
1281   }
1282 }
1283 
1284 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1285 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1286 /// across BB.  Transform the IR to reflect this change.
1287 bool JumpThreading::ThreadEdge(BasicBlock *BB,
1288                                const SmallVectorImpl<BasicBlock*> &PredBBs,
1289                                BasicBlock *SuccBB) {
1290   // If threading to the same block as we come from, we would infinite loop.
1291   if (SuccBB == BB) {
1292     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1293           << "' - would thread to self!\n");
1294     return false;
1295   }
1296 
1297   // If threading this would thread across a loop header, don't thread the edge.
1298   // See the comments above FindLoopHeaders for justifications and caveats.
1299   if (LoopHeaders.count(BB)) {
1300     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1301           << "' to dest BB '" << SuccBB->getName()
1302           << "' - it might create an irreducible loop!\n");
1303     return false;
1304   }
1305 
1306   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1307   if (JumpThreadCost > Threshold) {
1308     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1309           << "' - Cost is too high: " << JumpThreadCost << "\n");
1310     return false;
1311   }
1312 
1313   // And finally, do it!  Start by factoring the predecessors is needed.
1314   BasicBlock *PredBB;
1315   if (PredBBs.size() == 1)
1316     PredBB = PredBBs[0];
1317   else {
1318     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1319           << " common predecessors.\n");
1320     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1321                                     ".thr_comm", this);
1322   }
1323 
1324   // And finally, do it!
1325   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1326         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1327         << ", across block:\n    "
1328         << *BB << "\n");
1329 
1330   LVI->threadEdge(PredBB, BB, SuccBB);
1331 
1332   // We are going to have to map operands from the original BB block to the new
1333   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1334   // account for entry from PredBB.
1335   DenseMap<Instruction*, Value*> ValueMapping;
1336 
1337   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1338                                          BB->getName()+".thread",
1339                                          BB->getParent(), BB);
1340   NewBB->moveAfter(PredBB);
1341 
1342   BasicBlock::iterator BI = BB->begin();
1343   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1344     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1345 
1346   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1347   // mapping and using it to remap operands in the cloned instructions.
1348   for (; !isa<TerminatorInst>(BI); ++BI) {
1349     Instruction *New = BI->clone();
1350     New->setName(BI->getName());
1351     NewBB->getInstList().push_back(New);
1352     ValueMapping[BI] = New;
1353 
1354     // Remap operands to patch up intra-block references.
1355     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1356       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1357         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1358         if (I != ValueMapping.end())
1359           New->setOperand(i, I->second);
1360       }
1361   }
1362 
1363   // We didn't copy the terminator from BB over to NewBB, because there is now
1364   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1365   BranchInst::Create(SuccBB, NewBB);
1366 
1367   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1368   // PHI nodes for NewBB now.
1369   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1370 
1371   // If there were values defined in BB that are used outside the block, then we
1372   // now have to update all uses of the value to use either the original value,
1373   // the cloned value, or some PHI derived value.  This can require arbitrary
1374   // PHI insertion, of which we are prepared to do, clean these up now.
1375   SSAUpdater SSAUpdate;
1376   SmallVector<Use*, 16> UsesToRename;
1377   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1378     // Scan all uses of this instruction to see if it is used outside of its
1379     // block, and if so, record them in UsesToRename.
1380     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1381          ++UI) {
1382       Instruction *User = cast<Instruction>(*UI);
1383       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1384         if (UserPN->getIncomingBlock(UI) == BB)
1385           continue;
1386       } else if (User->getParent() == BB)
1387         continue;
1388 
1389       UsesToRename.push_back(&UI.getUse());
1390     }
1391 
1392     // If there are no uses outside the block, we're done with this instruction.
1393     if (UsesToRename.empty())
1394       continue;
1395 
1396     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1397 
1398     // We found a use of I outside of BB.  Rename all uses of I that are outside
1399     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1400     // with the two values we know.
1401     SSAUpdate.Initialize(I->getType(), I->getName());
1402     SSAUpdate.AddAvailableValue(BB, I);
1403     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1404 
1405     while (!UsesToRename.empty())
1406       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1407     DEBUG(dbgs() << "\n");
1408   }
1409 
1410 
1411   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1412   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1413   // us to simplify any PHI nodes in BB.
1414   TerminatorInst *PredTerm = PredBB->getTerminator();
1415   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1416     if (PredTerm->getSuccessor(i) == BB) {
1417       BB->removePredecessor(PredBB, true);
1418       PredTerm->setSuccessor(i, NewBB);
1419     }
1420 
1421   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1422   // over the new instructions and zap any that are constants or dead.  This
1423   // frequently happens because of phi translation.
1424   SimplifyInstructionsInBlock(NewBB, TD);
1425 
1426   // Threaded an edge!
1427   ++NumThreads;
1428   return true;
1429 }
1430 
1431 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1432 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1433 /// If we can duplicate the contents of BB up into PredBB do so now, this
1434 /// improves the odds that the branch will be on an analyzable instruction like
1435 /// a compare.
1436 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1437                                  const SmallVectorImpl<BasicBlock *> &PredBBs) {
1438   assert(!PredBBs.empty() && "Can't handle an empty set");
1439 
1440   // If BB is a loop header, then duplicating this block outside the loop would
1441   // cause us to transform this into an irreducible loop, don't do this.
1442   // See the comments above FindLoopHeaders for justifications and caveats.
1443   if (LoopHeaders.count(BB)) {
1444     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1445           << "' into predecessor block '" << PredBBs[0]->getName()
1446           << "' - it might create an irreducible loop!\n");
1447     return false;
1448   }
1449 
1450   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1451   if (DuplicationCost > Threshold) {
1452     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1453           << "' - Cost is too high: " << DuplicationCost << "\n");
1454     return false;
1455   }
1456 
1457   // And finally, do it!  Start by factoring the predecessors is needed.
1458   BasicBlock *PredBB;
1459   if (PredBBs.size() == 1)
1460     PredBB = PredBBs[0];
1461   else {
1462     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1463           << " common predecessors.\n");
1464     PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1465                                     ".thr_comm", this);
1466   }
1467 
1468   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1469   // of PredBB.
1470   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1471         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1472         << DuplicationCost << " block is:" << *BB << "\n");
1473 
1474   // Unless PredBB ends with an unconditional branch, split the edge so that we
1475   // can just clone the bits from BB into the end of the new PredBB.
1476   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1477 
1478   if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
1479     PredBB = SplitEdge(PredBB, BB, this);
1480     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1481   }
1482 
1483   // We are going to have to map operands from the original BB block into the
1484   // PredBB block.  Evaluate PHI nodes in BB.
1485   DenseMap<Instruction*, Value*> ValueMapping;
1486 
1487   BasicBlock::iterator BI = BB->begin();
1488   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1489     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1490 
1491   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1492   // mapping and using it to remap operands in the cloned instructions.
1493   for (; BI != BB->end(); ++BI) {
1494     Instruction *New = BI->clone();
1495 
1496     // Remap operands to patch up intra-block references.
1497     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1498       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1499         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1500         if (I != ValueMapping.end())
1501           New->setOperand(i, I->second);
1502       }
1503 
1504     // If this instruction can be simplified after the operands are updated,
1505     // just use the simplified value instead.  This frequently happens due to
1506     // phi translation.
1507     if (Value *IV = SimplifyInstruction(New, TD)) {
1508       delete New;
1509       ValueMapping[BI] = IV;
1510     } else {
1511       // Otherwise, insert the new instruction into the block.
1512       New->setName(BI->getName());
1513       PredBB->getInstList().insert(OldPredBranch, New);
1514       ValueMapping[BI] = New;
1515     }
1516   }
1517 
1518   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1519   // add entries to the PHI nodes for branch from PredBB now.
1520   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1521   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1522                                   ValueMapping);
1523   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1524                                   ValueMapping);
1525 
1526   // If there were values defined in BB that are used outside the block, then we
1527   // now have to update all uses of the value to use either the original value,
1528   // the cloned value, or some PHI derived value.  This can require arbitrary
1529   // PHI insertion, of which we are prepared to do, clean these up now.
1530   SSAUpdater SSAUpdate;
1531   SmallVector<Use*, 16> UsesToRename;
1532   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1533     // Scan all uses of this instruction to see if it is used outside of its
1534     // block, and if so, record them in UsesToRename.
1535     for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1536          ++UI) {
1537       Instruction *User = cast<Instruction>(*UI);
1538       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1539         if (UserPN->getIncomingBlock(UI) == BB)
1540           continue;
1541       } else if (User->getParent() == BB)
1542         continue;
1543 
1544       UsesToRename.push_back(&UI.getUse());
1545     }
1546 
1547     // If there are no uses outside the block, we're done with this instruction.
1548     if (UsesToRename.empty())
1549       continue;
1550 
1551     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n");
1552 
1553     // We found a use of I outside of BB.  Rename all uses of I that are outside
1554     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1555     // with the two values we know.
1556     SSAUpdate.Initialize(I->getType(), I->getName());
1557     SSAUpdate.AddAvailableValue(BB, I);
1558     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1559 
1560     while (!UsesToRename.empty())
1561       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1562     DEBUG(dbgs() << "\n");
1563   }
1564 
1565   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1566   // that we nuked.
1567   BB->removePredecessor(PredBB, true);
1568 
1569   // Remove the unconditional branch at the end of the PredBB block.
1570   OldPredBranch->eraseFromParent();
1571 
1572   ++NumDupes;
1573   return true;
1574 }
1575 
1576 
1577