xref: /llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 111a02decd4f4ed1cf3995dd0010a6238b542914)
1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/InstrTypes.h"
45 #include "llvm/IR/Instruction.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/IntrinsicInst.h"
48 #include "llvm/IR/Intrinsics.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/BlockFrequency.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Cloning.h"
70 #include "llvm/Transforms/Utils/Local.h"
71 #include "llvm/Transforms/Utils/SSAUpdater.h"
72 #include "llvm/Transforms/Utils/ValueMapper.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> ThreadAcrossLoopHeaders(
108     "jump-threading-across-loop-headers",
109     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
110     cl::init(false), cl::Hidden);
111 
112 
113 namespace {
114 
115   /// This pass performs 'jump threading', which looks at blocks that have
116   /// multiple predecessors and multiple successors.  If one or more of the
117   /// predecessors of the block can be proven to always jump to one of the
118   /// successors, we forward the edge from the predecessor to the successor by
119   /// duplicating the contents of this block.
120   ///
121   /// An example of when this can occur is code like this:
122   ///
123   ///   if () { ...
124   ///     X = 4;
125   ///   }
126   ///   if (X < 3) {
127   ///
128   /// In this case, the unconditional branch at the end of the first if can be
129   /// revectored to the false side of the second if.
130   class JumpThreading : public FunctionPass {
131     JumpThreadingPass Impl;
132 
133   public:
134     static char ID; // Pass identification
135 
136     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
137       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138     }
139 
140     bool runOnFunction(Function &F) override;
141 
142     void getAnalysisUsage(AnalysisUsage &AU) const override {
143       AU.addRequired<DominatorTreeWrapperPass>();
144       AU.addPreserved<DominatorTreeWrapperPass>();
145       AU.addRequired<AAResultsWrapperPass>();
146       AU.addRequired<LazyValueInfoWrapperPass>();
147       AU.addPreserved<LazyValueInfoWrapperPass>();
148       AU.addPreserved<GlobalsAAWrapperPass>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150     }
151 
152     void releaseMemory() override { Impl.releaseMemory(); }
153   };
154 
155 } // end anonymous namespace
156 
157 char JumpThreading::ID = 0;
158 
159 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
160                 "Jump Threading", false, false)
161 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
162 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
165 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
166                 "Jump Threading", false, false)
167 
168 // Public interface to the Jump Threading pass
169 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
170   return new JumpThreading(Threshold);
171 }
172 
173 JumpThreadingPass::JumpThreadingPass(int T) {
174   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
175 }
176 
177 // Update branch probability information according to conditional
178 // branch probability. This is usually made possible for cloned branches
179 // in inline instances by the context specific profile in the caller.
180 // For instance,
181 //
182 //  [Block PredBB]
183 //  [Branch PredBr]
184 //  if (t) {
185 //     Block A;
186 //  } else {
187 //     Block B;
188 //  }
189 //
190 //  [Block BB]
191 //  cond = PN([true, %A], [..., %B]); // PHI node
192 //  [Branch CondBr]
193 //  if (cond) {
194 //    ...  // P(cond == true) = 1%
195 //  }
196 //
197 //  Here we know that when block A is taken, cond must be true, which means
198 //      P(cond == true | A) = 1
199 //
200 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
201 //                               P(cond == true | B) * P(B)
202 //  we get:
203 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
204 //
205 //  which gives us:
206 //     P(A) is less than P(cond == true), i.e.
207 //     P(t == true) <= P(cond == true)
208 //
209 //  In other words, if we know P(cond == true) is unlikely, we know
210 //  that P(t == true) is also unlikely.
211 //
212 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
213   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
214   if (!CondBr)
215     return;
216 
217   uint64_t TrueWeight, FalseWeight;
218   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
219     return;
220 
221   if (TrueWeight + FalseWeight == 0)
222     // Zero branch_weights do not give a hint for getting branch probabilities.
223     // Technically it would result in division by zero denominator, which is
224     // TrueWeight + FalseWeight.
225     return;
226 
227   // Returns the outgoing edge of the dominating predecessor block
228   // that leads to the PhiNode's incoming block:
229   auto GetPredOutEdge =
230       [](BasicBlock *IncomingBB,
231          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
232     auto *PredBB = IncomingBB;
233     auto *SuccBB = PhiBB;
234     SmallPtrSet<BasicBlock *, 16> Visited;
235     while (true) {
236       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
237       if (PredBr && PredBr->isConditional())
238         return {PredBB, SuccBB};
239       Visited.insert(PredBB);
240       auto *SinglePredBB = PredBB->getSinglePredecessor();
241       if (!SinglePredBB)
242         return {nullptr, nullptr};
243 
244       // Stop searching when SinglePredBB has been visited. It means we see
245       // an unreachable loop.
246       if (Visited.count(SinglePredBB))
247         return {nullptr, nullptr};
248 
249       SuccBB = PredBB;
250       PredBB = SinglePredBB;
251     }
252   };
253 
254   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
255     Value *PhiOpnd = PN->getIncomingValue(i);
256     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
257 
258     if (!CI || !CI->getType()->isIntegerTy(1))
259       continue;
260 
261     BranchProbability BP =
262         (CI->isOne() ? BranchProbability::getBranchProbability(
263                            TrueWeight, TrueWeight + FalseWeight)
264                      : BranchProbability::getBranchProbability(
265                            FalseWeight, TrueWeight + FalseWeight));
266 
267     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
268     if (!PredOutEdge.first)
269       return;
270 
271     BasicBlock *PredBB = PredOutEdge.first;
272     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
273     if (!PredBr)
274       return;
275 
276     uint64_t PredTrueWeight, PredFalseWeight;
277     // FIXME: We currently only set the profile data when it is missing.
278     // With PGO, this can be used to refine even existing profile data with
279     // context information. This needs to be done after more performance
280     // testing.
281     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
282       continue;
283 
284     // We can not infer anything useful when BP >= 50%, because BP is the
285     // upper bound probability value.
286     if (BP >= BranchProbability(50, 100))
287       continue;
288 
289     SmallVector<uint32_t, 2> Weights;
290     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
291       Weights.push_back(BP.getNumerator());
292       Weights.push_back(BP.getCompl().getNumerator());
293     } else {
294       Weights.push_back(BP.getCompl().getNumerator());
295       Weights.push_back(BP.getNumerator());
296     }
297     PredBr->setMetadata(LLVMContext::MD_prof,
298                         MDBuilder(PredBr->getParent()->getContext())
299                             .createBranchWeights(Weights));
300   }
301 }
302 
303 /// runOnFunction - Toplevel algorithm.
304 bool JumpThreading::runOnFunction(Function &F) {
305   if (skipFunction(F))
306     return false;
307   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
308   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
309   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
310   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
311   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
312   std::unique_ptr<BlockFrequencyInfo> BFI;
313   std::unique_ptr<BranchProbabilityInfo> BPI;
314   if (F.hasProfileData()) {
315     LoopInfo LI{DominatorTree(F)};
316     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
317     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
318   }
319 
320   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
321                               std::move(BFI), std::move(BPI));
322   if (PrintLVIAfterJumpThreading) {
323     dbgs() << "LVI for function '" << F.getName() << "':\n";
324     LVI->printLVI(F, DTU.getDomTree(), dbgs());
325   }
326   return Changed;
327 }
328 
329 PreservedAnalyses JumpThreadingPass::run(Function &F,
330                                          FunctionAnalysisManager &AM) {
331   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
332   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
333   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
334   auto &AA = AM.getResult<AAManager>(F);
335   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
336 
337   std::unique_ptr<BlockFrequencyInfo> BFI;
338   std::unique_ptr<BranchProbabilityInfo> BPI;
339   if (F.hasProfileData()) {
340     LoopInfo LI{DominatorTree(F)};
341     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
342     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
343   }
344 
345   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
346                          std::move(BFI), std::move(BPI));
347 
348   if (!Changed)
349     return PreservedAnalyses::all();
350   PreservedAnalyses PA;
351   PA.preserve<GlobalsAA>();
352   PA.preserve<DominatorTreeAnalysis>();
353   PA.preserve<LazyValueAnalysis>();
354   return PA;
355 }
356 
357 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
358                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
359                                 DomTreeUpdater *DTU_, bool HasProfileData_,
360                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
361                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
362   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
363   TLI = TLI_;
364   LVI = LVI_;
365   AA = AA_;
366   DTU = DTU_;
367   BFI.reset();
368   BPI.reset();
369   // When profile data is available, we need to update edge weights after
370   // successful jump threading, which requires both BPI and BFI being available.
371   HasProfileData = HasProfileData_;
372   auto *GuardDecl = F.getParent()->getFunction(
373       Intrinsic::getName(Intrinsic::experimental_guard));
374   HasGuards = GuardDecl && !GuardDecl->use_empty();
375   if (HasProfileData) {
376     BPI = std::move(BPI_);
377     BFI = std::move(BFI_);
378   }
379 
380   // Reduce the number of instructions duplicated when optimizing strictly for
381   // size.
382   if (BBDuplicateThreshold.getNumOccurrences())
383     BBDupThreshold = BBDuplicateThreshold;
384   else if (F.hasFnAttribute(Attribute::MinSize))
385     BBDupThreshold = 3;
386   else
387     BBDupThreshold = DefaultBBDupThreshold;
388 
389   // JumpThreading must not processes blocks unreachable from entry. It's a
390   // waste of compute time and can potentially lead to hangs.
391   SmallPtrSet<BasicBlock *, 16> Unreachable;
392   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
393   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
394   DominatorTree &DT = DTU->getDomTree();
395   for (auto &BB : F)
396     if (!DT.isReachableFromEntry(&BB))
397       Unreachable.insert(&BB);
398 
399   if (!ThreadAcrossLoopHeaders)
400     FindLoopHeaders(F);
401 
402   bool EverChanged = false;
403   bool Changed;
404   do {
405     Changed = false;
406     for (auto &BB : F) {
407       if (Unreachable.count(&BB))
408         continue;
409       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
410         Changed = true;
411 
412       // Jump threading may have introduced redundant debug values into BB
413       // which should be removed.
414       if (Changed)
415         RemoveRedundantDbgInstrs(&BB);
416 
417       // Stop processing BB if it's the entry or is now deleted. The following
418       // routines attempt to eliminate BB and locating a suitable replacement
419       // for the entry is non-trivial.
420       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
421         continue;
422 
423       if (pred_empty(&BB)) {
424         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
425         // the instructions in it. We must remove BB to prevent invalid IR.
426         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
427                           << "' with terminator: " << *BB.getTerminator()
428                           << '\n');
429         LoopHeaders.erase(&BB);
430         LVI->eraseBlock(&BB);
431         DeleteDeadBlock(&BB, DTU);
432         Changed = true;
433         continue;
434       }
435 
436       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
437       // is "almost empty", we attempt to merge BB with its sole successor.
438       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
439       if (BI && BI->isUnconditional()) {
440         BasicBlock *Succ = BI->getSuccessor(0);
441         if (
442             // The terminator must be the only non-phi instruction in BB.
443             BB.getFirstNonPHIOrDbg()->isTerminator() &&
444             // Don't alter Loop headers and latches to ensure another pass can
445             // detect and transform nested loops later.
446             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
447             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
448           RemoveRedundantDbgInstrs(Succ);
449           // BB is valid for cleanup here because we passed in DTU. F remains
450           // BB's parent until a DTU->getDomTree() event.
451           LVI->eraseBlock(&BB);
452           Changed = true;
453         }
454       }
455     }
456     EverChanged |= Changed;
457   } while (Changed);
458 
459   LoopHeaders.clear();
460   return EverChanged;
461 }
462 
463 // Replace uses of Cond with ToVal when safe to do so. If all uses are
464 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
465 // because we may incorrectly replace uses when guards/assumes are uses of
466 // of `Cond` and we used the guards/assume to reason about the `Cond` value
467 // at the end of block. RAUW unconditionally replaces all uses
468 // including the guards/assumes themselves and the uses before the
469 // guard/assume.
470 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
471   assert(Cond->getType() == ToVal->getType());
472   auto *BB = Cond->getParent();
473   // We can unconditionally replace all uses in non-local blocks (i.e. uses
474   // strictly dominated by BB), since LVI information is true from the
475   // terminator of BB.
476   replaceNonLocalUsesWith(Cond, ToVal);
477   for (Instruction &I : reverse(*BB)) {
478     // Reached the Cond whose uses we are trying to replace, so there are no
479     // more uses.
480     if (&I == Cond)
481       break;
482     // We only replace uses in instructions that are guaranteed to reach the end
483     // of BB, where we know Cond is ToVal.
484     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
485       break;
486     I.replaceUsesOfWith(Cond, ToVal);
487   }
488   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
489     Cond->eraseFromParent();
490 }
491 
492 /// Return the cost of duplicating a piece of this block from first non-phi
493 /// and before StopAt instruction to thread across it. Stop scanning the block
494 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
495 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
496                                              Instruction *StopAt,
497                                              unsigned Threshold) {
498   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
499   /// Ignore PHI nodes, these will be flattened when duplication happens.
500   BasicBlock::const_iterator I(BB->getFirstNonPHI());
501 
502   // FIXME: THREADING will delete values that are just used to compute the
503   // branch, so they shouldn't count against the duplication cost.
504 
505   unsigned Bonus = 0;
506   if (BB->getTerminator() == StopAt) {
507     // Threading through a switch statement is particularly profitable.  If this
508     // block ends in a switch, decrease its cost to make it more likely to
509     // happen.
510     if (isa<SwitchInst>(StopAt))
511       Bonus = 6;
512 
513     // The same holds for indirect branches, but slightly more so.
514     if (isa<IndirectBrInst>(StopAt))
515       Bonus = 8;
516   }
517 
518   // Bump the threshold up so the early exit from the loop doesn't skip the
519   // terminator-based Size adjustment at the end.
520   Threshold += Bonus;
521 
522   // Sum up the cost of each instruction until we get to the terminator.  Don't
523   // include the terminator because the copy won't include it.
524   unsigned Size = 0;
525   for (; &*I != StopAt; ++I) {
526 
527     // Stop scanning the block if we've reached the threshold.
528     if (Size > Threshold)
529       return Size;
530 
531     // Debugger intrinsics don't incur code size.
532     if (isa<DbgInfoIntrinsic>(I)) continue;
533 
534     // If this is a pointer->pointer bitcast, it is free.
535     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
536       continue;
537 
538     // Bail out if this instruction gives back a token type, it is not possible
539     // to duplicate it if it is used outside this BB.
540     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
541       return ~0U;
542 
543     // All other instructions count for at least one unit.
544     ++Size;
545 
546     // Calls are more expensive.  If they are non-intrinsic calls, we model them
547     // as having cost of 4.  If they are a non-vector intrinsic, we model them
548     // as having cost of 2 total, and if they are a vector intrinsic, we model
549     // them as having cost 1.
550     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
551       if (CI->cannotDuplicate() || CI->isConvergent())
552         // Blocks with NoDuplicate are modelled as having infinite cost, so they
553         // are never duplicated.
554         return ~0U;
555       else if (!isa<IntrinsicInst>(CI))
556         Size += 3;
557       else if (!CI->getType()->isVectorTy())
558         Size += 1;
559     }
560   }
561 
562   return Size > Bonus ? Size - Bonus : 0;
563 }
564 
565 /// FindLoopHeaders - We do not want jump threading to turn proper loop
566 /// structures into irreducible loops.  Doing this breaks up the loop nesting
567 /// hierarchy and pessimizes later transformations.  To prevent this from
568 /// happening, we first have to find the loop headers.  Here we approximate this
569 /// by finding targets of backedges in the CFG.
570 ///
571 /// Note that there definitely are cases when we want to allow threading of
572 /// edges across a loop header.  For example, threading a jump from outside the
573 /// loop (the preheader) to an exit block of the loop is definitely profitable.
574 /// It is also almost always profitable to thread backedges from within the loop
575 /// to exit blocks, and is often profitable to thread backedges to other blocks
576 /// within the loop (forming a nested loop).  This simple analysis is not rich
577 /// enough to track all of these properties and keep it up-to-date as the CFG
578 /// mutates, so we don't allow any of these transformations.
579 void JumpThreadingPass::FindLoopHeaders(Function &F) {
580   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
581   FindFunctionBackedges(F, Edges);
582 
583   for (const auto &Edge : Edges)
584     LoopHeaders.insert(Edge.second);
585 }
586 
587 /// getKnownConstant - Helper method to determine if we can thread over a
588 /// terminator with the given value as its condition, and if so what value to
589 /// use for that. What kind of value this is depends on whether we want an
590 /// integer or a block address, but an undef is always accepted.
591 /// Returns null if Val is null or not an appropriate constant.
592 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
593   if (!Val)
594     return nullptr;
595 
596   // Undef is "known" enough.
597   if (UndefValue *U = dyn_cast<UndefValue>(Val))
598     return U;
599 
600   if (Preference == WantBlockAddress)
601     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
602 
603   return dyn_cast<ConstantInt>(Val);
604 }
605 
606 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
607 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
608 /// in any of our predecessors.  If so, return the known list of value and pred
609 /// BB in the result vector.
610 ///
611 /// This returns true if there were any known values.
612 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl(
613     Value *V, BasicBlock *BB, PredValueInfo &Result,
614     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
615     Instruction *CxtI) {
616   // This method walks up use-def chains recursively.  Because of this, we could
617   // get into an infinite loop going around loops in the use-def chain.  To
618   // prevent this, keep track of what (value, block) pairs we've already visited
619   // and terminate the search if we loop back to them
620   if (!RecursionSet.insert(V).second)
621     return false;
622 
623   // If V is a constant, then it is known in all predecessors.
624   if (Constant *KC = getKnownConstant(V, Preference)) {
625     for (BasicBlock *Pred : predecessors(BB))
626       Result.emplace_back(KC, Pred);
627 
628     return !Result.empty();
629   }
630 
631   // If V is a non-instruction value, or an instruction in a different block,
632   // then it can't be derived from a PHI.
633   Instruction *I = dyn_cast<Instruction>(V);
634   if (!I || I->getParent() != BB) {
635 
636     // Okay, if this is a live-in value, see if it has a known value at the end
637     // of any of our predecessors.
638     //
639     // FIXME: This should be an edge property, not a block end property.
640     /// TODO: Per PR2563, we could infer value range information about a
641     /// predecessor based on its terminator.
642     //
643     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
644     // "I" is a non-local compare-with-a-constant instruction.  This would be
645     // able to handle value inequalities better, for example if the compare is
646     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
647     // Perhaps getConstantOnEdge should be smart enough to do this?
648     for (BasicBlock *P : predecessors(BB)) {
649       // If the value is known by LazyValueInfo to be a constant in a
650       // predecessor, use that information to try to thread this block.
651       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
652       if (Constant *KC = getKnownConstant(PredCst, Preference))
653         Result.emplace_back(KC, P);
654     }
655 
656     return !Result.empty();
657   }
658 
659   /// If I is a PHI node, then we know the incoming values for any constants.
660   if (PHINode *PN = dyn_cast<PHINode>(I)) {
661     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
662       Value *InVal = PN->getIncomingValue(i);
663       if (Constant *KC = getKnownConstant(InVal, Preference)) {
664         Result.emplace_back(KC, PN->getIncomingBlock(i));
665       } else {
666         Constant *CI = LVI->getConstantOnEdge(InVal,
667                                               PN->getIncomingBlock(i),
668                                               BB, CxtI);
669         if (Constant *KC = getKnownConstant(CI, Preference))
670           Result.emplace_back(KC, PN->getIncomingBlock(i));
671       }
672     }
673 
674     return !Result.empty();
675   }
676 
677   // Handle Cast instructions.  Only see through Cast when the source operand is
678   // PHI, Cmp, or Freeze to save the compilation time.
679   if (CastInst *CI = dyn_cast<CastInst>(I)) {
680     Value *Source = CI->getOperand(0);
681     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) &&
682         !isa<FreezeInst>(Source))
683       return false;
684     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
685                                         RecursionSet, CxtI);
686     if (Result.empty())
687       return false;
688 
689     // Convert the known values.
690     for (auto &R : Result)
691       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
692 
693     return true;
694   }
695 
696   // Handle Freeze instructions, in a manner similar to Cast.
697   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
698     Value *Source = FI->getOperand(0);
699     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source) &&
700         !isa<CastInst>(Source))
701       return false;
702     ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703                                         RecursionSet, CxtI);
704 
705     erase_if(Result, [](auto &Pair) {
706       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
707     });
708 
709     return !Result.empty();
710   }
711 
712   // Handle some boolean conditions.
713   if (I->getType()->getPrimitiveSizeInBits() == 1) {
714     assert(Preference == WantInteger && "One-bit non-integer type?");
715     // X | true -> true
716     // X & false -> false
717     if (I->getOpcode() == Instruction::Or ||
718         I->getOpcode() == Instruction::And) {
719       PredValueInfoTy LHSVals, RHSVals;
720 
721       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
722                                       WantInteger, RecursionSet, CxtI);
723       ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
724                                           WantInteger, RecursionSet, CxtI);
725 
726       if (LHSVals.empty() && RHSVals.empty())
727         return false;
728 
729       ConstantInt *InterestingVal;
730       if (I->getOpcode() == Instruction::Or)
731         InterestingVal = ConstantInt::getTrue(I->getContext());
732       else
733         InterestingVal = ConstantInt::getFalse(I->getContext());
734 
735       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
736 
737       // Scan for the sentinel.  If we find an undef, force it to the
738       // interesting value: x|undef -> true and x&undef -> false.
739       for (const auto &LHSVal : LHSVals)
740         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
741           Result.emplace_back(InterestingVal, LHSVal.second);
742           LHSKnownBBs.insert(LHSVal.second);
743         }
744       for (const auto &RHSVal : RHSVals)
745         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
746           // If we already inferred a value for this block on the LHS, don't
747           // re-add it.
748           if (!LHSKnownBBs.count(RHSVal.second))
749             Result.emplace_back(InterestingVal, RHSVal.second);
750         }
751 
752       return !Result.empty();
753     }
754 
755     // Handle the NOT form of XOR.
756     if (I->getOpcode() == Instruction::Xor &&
757         isa<ConstantInt>(I->getOperand(1)) &&
758         cast<ConstantInt>(I->getOperand(1))->isOne()) {
759       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
760                                           WantInteger, RecursionSet, CxtI);
761       if (Result.empty())
762         return false;
763 
764       // Invert the known values.
765       for (auto &R : Result)
766         R.first = ConstantExpr::getNot(R.first);
767 
768       return true;
769     }
770 
771   // Try to simplify some other binary operator values.
772   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
773     assert(Preference != WantBlockAddress
774             && "A binary operator creating a block address?");
775     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
776       PredValueInfoTy LHSVals;
777       ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
778                                           WantInteger, RecursionSet, CxtI);
779 
780       // Try to use constant folding to simplify the binary operator.
781       for (const auto &LHSVal : LHSVals) {
782         Constant *V = LHSVal.first;
783         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
784 
785         if (Constant *KC = getKnownConstant(Folded, WantInteger))
786           Result.emplace_back(KC, LHSVal.second);
787       }
788     }
789 
790     return !Result.empty();
791   }
792 
793   // Handle compare with phi operand, where the PHI is defined in this block.
794   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
795     assert(Preference == WantInteger && "Compares only produce integers");
796     Type *CmpType = Cmp->getType();
797     Value *CmpLHS = Cmp->getOperand(0);
798     Value *CmpRHS = Cmp->getOperand(1);
799     CmpInst::Predicate Pred = Cmp->getPredicate();
800 
801     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
802     if (!PN)
803       PN = dyn_cast<PHINode>(CmpRHS);
804     if (PN && PN->getParent() == BB) {
805       const DataLayout &DL = PN->getModule()->getDataLayout();
806       // We can do this simplification if any comparisons fold to true or false.
807       // See if any do.
808       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
809         BasicBlock *PredBB = PN->getIncomingBlock(i);
810         Value *LHS, *RHS;
811         if (PN == CmpLHS) {
812           LHS = PN->getIncomingValue(i);
813           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
814         } else {
815           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
816           RHS = PN->getIncomingValue(i);
817         }
818         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
819         if (!Res) {
820           if (!isa<Constant>(RHS))
821             continue;
822 
823           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
824           auto LHSInst = dyn_cast<Instruction>(LHS);
825           if (LHSInst && LHSInst->getParent() == BB)
826             continue;
827 
828           LazyValueInfo::Tristate
829             ResT = LVI->getPredicateOnEdge(Pred, LHS,
830                                            cast<Constant>(RHS), PredBB, BB,
831                                            CxtI ? CxtI : Cmp);
832           if (ResT == LazyValueInfo::Unknown)
833             continue;
834           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
835         }
836 
837         if (Constant *KC = getKnownConstant(Res, WantInteger))
838           Result.emplace_back(KC, PredBB);
839       }
840 
841       return !Result.empty();
842     }
843 
844     // If comparing a live-in value against a constant, see if we know the
845     // live-in value on any predecessors.
846     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
847       Constant *CmpConst = cast<Constant>(CmpRHS);
848 
849       if (!isa<Instruction>(CmpLHS) ||
850           cast<Instruction>(CmpLHS)->getParent() != BB) {
851         for (BasicBlock *P : predecessors(BB)) {
852           // If the value is known by LazyValueInfo to be a constant in a
853           // predecessor, use that information to try to thread this block.
854           LazyValueInfo::Tristate Res =
855             LVI->getPredicateOnEdge(Pred, CmpLHS,
856                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
857           if (Res == LazyValueInfo::Unknown)
858             continue;
859 
860           Constant *ResC = ConstantInt::get(CmpType, Res);
861           Result.emplace_back(ResC, P);
862         }
863 
864         return !Result.empty();
865       }
866 
867       // InstCombine can fold some forms of constant range checks into
868       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
869       // x as a live-in.
870       {
871         using namespace PatternMatch;
872 
873         Value *AddLHS;
874         ConstantInt *AddConst;
875         if (isa<ConstantInt>(CmpConst) &&
876             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
877           if (!isa<Instruction>(AddLHS) ||
878               cast<Instruction>(AddLHS)->getParent() != BB) {
879             for (BasicBlock *P : predecessors(BB)) {
880               // If the value is known by LazyValueInfo to be a ConstantRange in
881               // a predecessor, use that information to try to thread this
882               // block.
883               ConstantRange CR = LVI->getConstantRangeOnEdge(
884                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
885               // Propagate the range through the addition.
886               CR = CR.add(AddConst->getValue());
887 
888               // Get the range where the compare returns true.
889               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
890                   Pred, cast<ConstantInt>(CmpConst)->getValue());
891 
892               Constant *ResC;
893               if (CmpRange.contains(CR))
894                 ResC = ConstantInt::getTrue(CmpType);
895               else if (CmpRange.inverse().contains(CR))
896                 ResC = ConstantInt::getFalse(CmpType);
897               else
898                 continue;
899 
900               Result.emplace_back(ResC, P);
901             }
902 
903             return !Result.empty();
904           }
905         }
906       }
907 
908       // Try to find a constant value for the LHS of a comparison,
909       // and evaluate it statically if we can.
910       PredValueInfoTy LHSVals;
911       ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
912                                           WantInteger, RecursionSet, CxtI);
913 
914       for (const auto &LHSVal : LHSVals) {
915         Constant *V = LHSVal.first;
916         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
917         if (Constant *KC = getKnownConstant(Folded, WantInteger))
918           Result.emplace_back(KC, LHSVal.second);
919       }
920 
921       return !Result.empty();
922     }
923   }
924 
925   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
926     // Handle select instructions where at least one operand is a known constant
927     // and we can figure out the condition value for any predecessor block.
928     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
929     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
930     PredValueInfoTy Conds;
931     if ((TrueVal || FalseVal) &&
932         ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
933                                             WantInteger, RecursionSet, CxtI)) {
934       for (auto &C : Conds) {
935         Constant *Cond = C.first;
936 
937         // Figure out what value to use for the condition.
938         bool KnownCond;
939         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
940           // A known boolean.
941           KnownCond = CI->isOne();
942         } else {
943           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
944           // Either operand will do, so be sure to pick the one that's a known
945           // constant.
946           // FIXME: Do this more cleverly if both values are known constants?
947           KnownCond = (TrueVal != nullptr);
948         }
949 
950         // See if the select has a known constant value for this predecessor.
951         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
952           Result.emplace_back(Val, C.second);
953       }
954 
955       return !Result.empty();
956     }
957   }
958 
959   // If all else fails, see if LVI can figure out a constant value for us.
960   Constant *CI = LVI->getConstant(V, BB, CxtI);
961   if (Constant *KC = getKnownConstant(CI, Preference)) {
962     for (BasicBlock *Pred : predecessors(BB))
963       Result.emplace_back(KC, Pred);
964   }
965 
966   return !Result.empty();
967 }
968 
969 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
970 /// in an undefined jump, decide which block is best to revector to.
971 ///
972 /// Since we can pick an arbitrary destination, we pick the successor with the
973 /// fewest predecessors.  This should reduce the in-degree of the others.
974 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
975   Instruction *BBTerm = BB->getTerminator();
976   unsigned MinSucc = 0;
977   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
978   // Compute the successor with the minimum number of predecessors.
979   unsigned MinNumPreds = pred_size(TestBB);
980   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
981     TestBB = BBTerm->getSuccessor(i);
982     unsigned NumPreds = pred_size(TestBB);
983     if (NumPreds < MinNumPreds) {
984       MinSucc = i;
985       MinNumPreds = NumPreds;
986     }
987   }
988 
989   return MinSucc;
990 }
991 
992 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
993   if (!BB->hasAddressTaken()) return false;
994 
995   // If the block has its address taken, it may be a tree of dead constants
996   // hanging off of it.  These shouldn't keep the block alive.
997   BlockAddress *BA = BlockAddress::get(BB);
998   BA->removeDeadConstantUsers();
999   return !BA->use_empty();
1000 }
1001 
1002 /// ProcessBlock - If there are any predecessors whose control can be threaded
1003 /// through to a successor, transform them now.
1004 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
1005   // If the block is trivially dead, just return and let the caller nuke it.
1006   // This simplifies other transformations.
1007   if (DTU->isBBPendingDeletion(BB) ||
1008       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1009     return false;
1010 
1011   // If this block has a single predecessor, and if that pred has a single
1012   // successor, merge the blocks.  This encourages recursive jump threading
1013   // because now the condition in this block can be threaded through
1014   // predecessors of our predecessor block.
1015   if (MaybeMergeBasicBlockIntoOnlyPred(BB))
1016     return true;
1017 
1018   if (TryToUnfoldSelectInCurrBB(BB))
1019     return true;
1020 
1021   // Look if we can propagate guards to predecessors.
1022   if (HasGuards && ProcessGuards(BB))
1023     return true;
1024 
1025   // What kind of constant we're looking for.
1026   ConstantPreference Preference = WantInteger;
1027 
1028   // Look to see if the terminator is a conditional branch, switch or indirect
1029   // branch, if not we can't thread it.
1030   Value *Condition;
1031   Instruction *Terminator = BB->getTerminator();
1032   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1033     // Can't thread an unconditional jump.
1034     if (BI->isUnconditional()) return false;
1035     Condition = BI->getCondition();
1036   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1037     Condition = SI->getCondition();
1038   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1039     // Can't thread indirect branch with no successors.
1040     if (IB->getNumSuccessors() == 0) return false;
1041     Condition = IB->getAddress()->stripPointerCasts();
1042     Preference = WantBlockAddress;
1043   } else {
1044     return false; // Must be an invoke or callbr.
1045   }
1046 
1047   // Run constant folding to see if we can reduce the condition to a simple
1048   // constant.
1049   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1050     Value *SimpleVal =
1051         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1052     if (SimpleVal) {
1053       I->replaceAllUsesWith(SimpleVal);
1054       if (isInstructionTriviallyDead(I, TLI))
1055         I->eraseFromParent();
1056       Condition = SimpleVal;
1057     }
1058   }
1059 
1060   // If the terminator is branching on an undef or freeze undef, we can pick any
1061   // of the successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1062   auto *FI = dyn_cast<FreezeInst>(Condition);
1063   if (isa<UndefValue>(Condition) ||
1064       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1065     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1066     std::vector<DominatorTree::UpdateType> Updates;
1067 
1068     // Fold the branch/switch.
1069     Instruction *BBTerm = BB->getTerminator();
1070     Updates.reserve(BBTerm->getNumSuccessors());
1071     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1072       if (i == BestSucc) continue;
1073       BasicBlock *Succ = BBTerm->getSuccessor(i);
1074       Succ->removePredecessor(BB, true);
1075       Updates.push_back({DominatorTree::Delete, BB, Succ});
1076     }
1077 
1078     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1079                       << "' folding undef terminator: " << *BBTerm << '\n');
1080     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1081     BBTerm->eraseFromParent();
1082     DTU->applyUpdatesPermissive(Updates);
1083     if (FI)
1084       FI->eraseFromParent();
1085     return true;
1086   }
1087 
1088   // If the terminator of this block is branching on a constant, simplify the
1089   // terminator to an unconditional branch.  This can occur due to threading in
1090   // other blocks.
1091   if (getKnownConstant(Condition, Preference)) {
1092     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1093                       << "' folding terminator: " << *BB->getTerminator()
1094                       << '\n');
1095     ++NumFolds;
1096     ConstantFoldTerminator(BB, true, nullptr, DTU);
1097     return true;
1098   }
1099 
1100   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1101 
1102   // All the rest of our checks depend on the condition being an instruction.
1103   if (!CondInst) {
1104     // FIXME: Unify this with code below.
1105     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1106       return true;
1107     return false;
1108   }
1109 
1110   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1111     // If we're branching on a conditional, LVI might be able to determine
1112     // it's value at the branch instruction.  We only handle comparisons
1113     // against a constant at this time.
1114     // TODO: This should be extended to handle switches as well.
1115     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1116     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1117     if (CondBr && CondConst) {
1118       // We should have returned as soon as we turn a conditional branch to
1119       // unconditional. Because its no longer interesting as far as jump
1120       // threading is concerned.
1121       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1122 
1123       LazyValueInfo::Tristate Ret =
1124         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1125                             CondConst, CondBr);
1126       if (Ret != LazyValueInfo::Unknown) {
1127         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1128         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1129         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1130         ToRemoveSucc->removePredecessor(BB, true);
1131         BranchInst *UncondBr =
1132           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1133         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1134         CondBr->eraseFromParent();
1135         if (CondCmp->use_empty())
1136           CondCmp->eraseFromParent();
1137         // We can safely replace *some* uses of the CondInst if it has
1138         // exactly one value as returned by LVI. RAUW is incorrect in the
1139         // presence of guards and assumes, that have the `Cond` as the use. This
1140         // is because we use the guards/assume to reason about the `Cond` value
1141         // at the end of block, but RAUW unconditionally replaces all uses
1142         // including the guards/assumes themselves and the uses before the
1143         // guard/assume.
1144         else if (CondCmp->getParent() == BB) {
1145           auto *CI = Ret == LazyValueInfo::True ?
1146             ConstantInt::getTrue(CondCmp->getType()) :
1147             ConstantInt::getFalse(CondCmp->getType());
1148           ReplaceFoldableUses(CondCmp, CI);
1149         }
1150         DTU->applyUpdatesPermissive(
1151             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1152         return true;
1153       }
1154 
1155       // We did not manage to simplify this branch, try to see whether
1156       // CondCmp depends on a known phi-select pattern.
1157       if (TryToUnfoldSelect(CondCmp, BB))
1158         return true;
1159     }
1160   }
1161 
1162   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1163     if (TryToUnfoldSelect(SI, BB))
1164       return true;
1165 
1166   // Check for some cases that are worth simplifying.  Right now we want to look
1167   // for loads that are used by a switch or by the condition for the branch.  If
1168   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1169   // which can then be used to thread the values.
1170   Value *SimplifyValue = CondInst;
1171   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1172     if (isa<Constant>(CondCmp->getOperand(1)))
1173       SimplifyValue = CondCmp->getOperand(0);
1174 
1175   // TODO: There are other places where load PRE would be profitable, such as
1176   // more complex comparisons.
1177   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1178     if (SimplifyPartiallyRedundantLoad(LoadI))
1179       return true;
1180 
1181   // Before threading, try to propagate profile data backwards:
1182   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1183     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1184       updatePredecessorProfileMetadata(PN, BB);
1185 
1186   // Handle a variety of cases where we are branching on something derived from
1187   // a PHI node in the current block.  If we can prove that any predecessors
1188   // compute a predictable value based on a PHI node, thread those predecessors.
1189   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1190     return true;
1191 
1192   // If this is an otherwise-unfoldable branch on a phi node in the current
1193   // block, see if we can simplify.
1194   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1195     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1196       return ProcessBranchOnPHI(PN);
1197 
1198   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1199   if (CondInst->getOpcode() == Instruction::Xor &&
1200       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1201     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1202 
1203   // Search for a stronger dominating condition that can be used to simplify a
1204   // conditional branch leaving BB.
1205   if (ProcessImpliedCondition(BB))
1206     return true;
1207 
1208   return false;
1209 }
1210 
1211 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1212   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1213   if (!BI || !BI->isConditional())
1214     return false;
1215 
1216   Value *Cond = BI->getCondition();
1217   BasicBlock *CurrentBB = BB;
1218   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1219   unsigned Iter = 0;
1220 
1221   auto &DL = BB->getModule()->getDataLayout();
1222 
1223   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1224     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1225     if (!PBI || !PBI->isConditional())
1226       return false;
1227     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1228       return false;
1229 
1230     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1231     Optional<bool> Implication =
1232         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1233     if (Implication) {
1234       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1235       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1236       RemoveSucc->removePredecessor(BB);
1237       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1238       UncondBI->setDebugLoc(BI->getDebugLoc());
1239       BI->eraseFromParent();
1240       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1241       return true;
1242     }
1243     CurrentBB = CurrentPred;
1244     CurrentPred = CurrentBB->getSinglePredecessor();
1245   }
1246 
1247   return false;
1248 }
1249 
1250 /// Return true if Op is an instruction defined in the given block.
1251 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1252   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1253     if (OpInst->getParent() == BB)
1254       return true;
1255   return false;
1256 }
1257 
1258 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1259 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1260 /// This is an important optimization that encourages jump threading, and needs
1261 /// to be run interlaced with other jump threading tasks.
1262 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1263   // Don't hack volatile and ordered loads.
1264   if (!LoadI->isUnordered()) return false;
1265 
1266   // If the load is defined in a block with exactly one predecessor, it can't be
1267   // partially redundant.
1268   BasicBlock *LoadBB = LoadI->getParent();
1269   if (LoadBB->getSinglePredecessor())
1270     return false;
1271 
1272   // If the load is defined in an EH pad, it can't be partially redundant,
1273   // because the edges between the invoke and the EH pad cannot have other
1274   // instructions between them.
1275   if (LoadBB->isEHPad())
1276     return false;
1277 
1278   Value *LoadedPtr = LoadI->getOperand(0);
1279 
1280   // If the loaded operand is defined in the LoadBB and its not a phi,
1281   // it can't be available in predecessors.
1282   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1283     return false;
1284 
1285   // Scan a few instructions up from the load, to see if it is obviously live at
1286   // the entry to its block.
1287   BasicBlock::iterator BBIt(LoadI);
1288   bool IsLoadCSE;
1289   if (Value *AvailableVal = FindAvailableLoadedValue(
1290           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1291     // If the value of the load is locally available within the block, just use
1292     // it.  This frequently occurs for reg2mem'd allocas.
1293 
1294     if (IsLoadCSE) {
1295       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1296       combineMetadataForCSE(NLoadI, LoadI, false);
1297     };
1298 
1299     // If the returned value is the load itself, replace with an undef. This can
1300     // only happen in dead loops.
1301     if (AvailableVal == LoadI)
1302       AvailableVal = UndefValue::get(LoadI->getType());
1303     if (AvailableVal->getType() != LoadI->getType())
1304       AvailableVal = CastInst::CreateBitOrPointerCast(
1305           AvailableVal, LoadI->getType(), "", LoadI);
1306     LoadI->replaceAllUsesWith(AvailableVal);
1307     LoadI->eraseFromParent();
1308     return true;
1309   }
1310 
1311   // Otherwise, if we scanned the whole block and got to the top of the block,
1312   // we know the block is locally transparent to the load.  If not, something
1313   // might clobber its value.
1314   if (BBIt != LoadBB->begin())
1315     return false;
1316 
1317   // If all of the loads and stores that feed the value have the same AA tags,
1318   // then we can propagate them onto any newly inserted loads.
1319   AAMDNodes AATags;
1320   LoadI->getAAMetadata(AATags);
1321 
1322   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1323 
1324   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1325 
1326   AvailablePredsTy AvailablePreds;
1327   BasicBlock *OneUnavailablePred = nullptr;
1328   SmallVector<LoadInst*, 8> CSELoads;
1329 
1330   // If we got here, the loaded value is transparent through to the start of the
1331   // block.  Check to see if it is available in any of the predecessor blocks.
1332   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1333     // If we already scanned this predecessor, skip it.
1334     if (!PredsScanned.insert(PredBB).second)
1335       continue;
1336 
1337     BBIt = PredBB->end();
1338     unsigned NumScanedInst = 0;
1339     Value *PredAvailable = nullptr;
1340     // NOTE: We don't CSE load that is volatile or anything stronger than
1341     // unordered, that should have been checked when we entered the function.
1342     assert(LoadI->isUnordered() &&
1343            "Attempting to CSE volatile or atomic loads");
1344     // If this is a load on a phi pointer, phi-translate it and search
1345     // for available load/store to the pointer in predecessors.
1346     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1347     PredAvailable = FindAvailablePtrLoadStore(
1348         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1349         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1350 
1351     // If PredBB has a single predecessor, continue scanning through the
1352     // single predecessor.
1353     BasicBlock *SinglePredBB = PredBB;
1354     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1355            NumScanedInst < DefMaxInstsToScan) {
1356       SinglePredBB = SinglePredBB->getSinglePredecessor();
1357       if (SinglePredBB) {
1358         BBIt = SinglePredBB->end();
1359         PredAvailable = FindAvailablePtrLoadStore(
1360             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1361             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1362             &NumScanedInst);
1363       }
1364     }
1365 
1366     if (!PredAvailable) {
1367       OneUnavailablePred = PredBB;
1368       continue;
1369     }
1370 
1371     if (IsLoadCSE)
1372       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1373 
1374     // If so, this load is partially redundant.  Remember this info so that we
1375     // can create a PHI node.
1376     AvailablePreds.emplace_back(PredBB, PredAvailable);
1377   }
1378 
1379   // If the loaded value isn't available in any predecessor, it isn't partially
1380   // redundant.
1381   if (AvailablePreds.empty()) return false;
1382 
1383   // Okay, the loaded value is available in at least one (and maybe all!)
1384   // predecessors.  If the value is unavailable in more than one unique
1385   // predecessor, we want to insert a merge block for those common predecessors.
1386   // This ensures that we only have to insert one reload, thus not increasing
1387   // code size.
1388   BasicBlock *UnavailablePred = nullptr;
1389 
1390   // If the value is unavailable in one of predecessors, we will end up
1391   // inserting a new instruction into them. It is only valid if all the
1392   // instructions before LoadI are guaranteed to pass execution to its
1393   // successor, or if LoadI is safe to speculate.
1394   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1395   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1396   // It requires domination tree analysis, so for this simple case it is an
1397   // overkill.
1398   if (PredsScanned.size() != AvailablePreds.size() &&
1399       !isSafeToSpeculativelyExecute(LoadI))
1400     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1401       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1402         return false;
1403 
1404   // If there is exactly one predecessor where the value is unavailable, the
1405   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1406   // unconditional branch, we know that it isn't a critical edge.
1407   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1408       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1409     UnavailablePred = OneUnavailablePred;
1410   } else if (PredsScanned.size() != AvailablePreds.size()) {
1411     // Otherwise, we had multiple unavailable predecessors or we had a critical
1412     // edge from the one.
1413     SmallVector<BasicBlock*, 8> PredsToSplit;
1414     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1415 
1416     for (const auto &AvailablePred : AvailablePreds)
1417       AvailablePredSet.insert(AvailablePred.first);
1418 
1419     // Add all the unavailable predecessors to the PredsToSplit list.
1420     for (BasicBlock *P : predecessors(LoadBB)) {
1421       // If the predecessor is an indirect goto, we can't split the edge.
1422       // Same for CallBr.
1423       if (isa<IndirectBrInst>(P->getTerminator()) ||
1424           isa<CallBrInst>(P->getTerminator()))
1425         return false;
1426 
1427       if (!AvailablePredSet.count(P))
1428         PredsToSplit.push_back(P);
1429     }
1430 
1431     // Split them out to their own block.
1432     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1433   }
1434 
1435   // If the value isn't available in all predecessors, then there will be
1436   // exactly one where it isn't available.  Insert a load on that edge and add
1437   // it to the AvailablePreds list.
1438   if (UnavailablePred) {
1439     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1440            "Can't handle critical edge here!");
1441     LoadInst *NewVal = new LoadInst(
1442         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1443         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1444         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1445         UnavailablePred->getTerminator());
1446     NewVal->setDebugLoc(LoadI->getDebugLoc());
1447     if (AATags)
1448       NewVal->setAAMetadata(AATags);
1449 
1450     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1451   }
1452 
1453   // Now we know that each predecessor of this block has a value in
1454   // AvailablePreds, sort them for efficient access as we're walking the preds.
1455   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1456 
1457   // Create a PHI node at the start of the block for the PRE'd load value.
1458   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1459   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1460                                 &LoadBB->front());
1461   PN->takeName(LoadI);
1462   PN->setDebugLoc(LoadI->getDebugLoc());
1463 
1464   // Insert new entries into the PHI for each predecessor.  A single block may
1465   // have multiple entries here.
1466   for (pred_iterator PI = PB; PI != PE; ++PI) {
1467     BasicBlock *P = *PI;
1468     AvailablePredsTy::iterator I =
1469         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1470 
1471     assert(I != AvailablePreds.end() && I->first == P &&
1472            "Didn't find entry for predecessor!");
1473 
1474     // If we have an available predecessor but it requires casting, insert the
1475     // cast in the predecessor and use the cast. Note that we have to update the
1476     // AvailablePreds vector as we go so that all of the PHI entries for this
1477     // predecessor use the same bitcast.
1478     Value *&PredV = I->second;
1479     if (PredV->getType() != LoadI->getType())
1480       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1481                                                P->getTerminator());
1482 
1483     PN->addIncoming(PredV, I->first);
1484   }
1485 
1486   for (LoadInst *PredLoadI : CSELoads) {
1487     combineMetadataForCSE(PredLoadI, LoadI, true);
1488   }
1489 
1490   LoadI->replaceAllUsesWith(PN);
1491   LoadI->eraseFromParent();
1492 
1493   return true;
1494 }
1495 
1496 /// FindMostPopularDest - The specified list contains multiple possible
1497 /// threadable destinations.  Pick the one that occurs the most frequently in
1498 /// the list.
1499 static BasicBlock *
1500 FindMostPopularDest(BasicBlock *BB,
1501                     const SmallVectorImpl<std::pair<BasicBlock *,
1502                                           BasicBlock *>> &PredToDestList) {
1503   assert(!PredToDestList.empty());
1504 
1505   // Determine popularity.  If there are multiple possible destinations, we
1506   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1507   // blocks with known and real destinations to threading undef.  We'll handle
1508   // them later if interesting.
1509   MapVector<BasicBlock *, unsigned> DestPopularity;
1510 
1511   // Populate DestPopularity with the successors in the order they appear in the
1512   // successor list.  This way, we ensure determinism by iterating it in the
1513   // same order in std::max_element below.  We map nullptr to 0 so that we can
1514   // return nullptr when PredToDestList contains nullptr only.
1515   DestPopularity[nullptr] = 0;
1516   for (auto *SuccBB : successors(BB))
1517     DestPopularity[SuccBB] = 0;
1518 
1519   for (const auto &PredToDest : PredToDestList)
1520     if (PredToDest.second)
1521       DestPopularity[PredToDest.second]++;
1522 
1523   // Find the most popular dest.
1524   using VT = decltype(DestPopularity)::value_type;
1525   auto MostPopular = std::max_element(
1526       DestPopularity.begin(), DestPopularity.end(),
1527       [](const VT &L, const VT &R) { return L.second < R.second; });
1528 
1529   // Okay, we have finally picked the most popular destination.
1530   return MostPopular->first;
1531 }
1532 
1533 // Try to evaluate the value of V when the control flows from PredPredBB to
1534 // BB->getSinglePredecessor() and then on to BB.
1535 Constant *JumpThreadingPass::EvaluateOnPredecessorEdge(BasicBlock *BB,
1536                                                        BasicBlock *PredPredBB,
1537                                                        Value *V) {
1538   BasicBlock *PredBB = BB->getSinglePredecessor();
1539   assert(PredBB && "Expected a single predecessor");
1540 
1541   if (Constant *Cst = dyn_cast<Constant>(V)) {
1542     return Cst;
1543   }
1544 
1545   // Consult LVI if V is not an instruction in BB or PredBB.
1546   Instruction *I = dyn_cast<Instruction>(V);
1547   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1548     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1549   }
1550 
1551   // Look into a PHI argument.
1552   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1553     if (PHI->getParent() == PredBB)
1554       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1555     return nullptr;
1556   }
1557 
1558   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1559   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1560     if (CondCmp->getParent() == BB) {
1561       Constant *Op0 =
1562           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1563       Constant *Op1 =
1564           EvaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1565       if (Op0 && Op1) {
1566         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1567       }
1568     }
1569     return nullptr;
1570   }
1571 
1572   return nullptr;
1573 }
1574 
1575 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1576                                                ConstantPreference Preference,
1577                                                Instruction *CxtI) {
1578   // If threading this would thread across a loop header, don't even try to
1579   // thread the edge.
1580   if (LoopHeaders.count(BB))
1581     return false;
1582 
1583   PredValueInfoTy PredValues;
1584   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1585                                        CxtI)) {
1586     // We don't have known values in predecessors.  See if we can thread through
1587     // BB and its sole predecessor.
1588     return MaybeThreadThroughTwoBasicBlocks(BB, Cond);
1589   }
1590 
1591   assert(!PredValues.empty() &&
1592          "ComputeValueKnownInPredecessors returned true with no values");
1593 
1594   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1595              for (const auto &PredValue : PredValues) {
1596                dbgs() << "  BB '" << BB->getName()
1597                       << "': FOUND condition = " << *PredValue.first
1598                       << " for pred '" << PredValue.second->getName() << "'.\n";
1599   });
1600 
1601   // Decide what we want to thread through.  Convert our list of known values to
1602   // a list of known destinations for each pred.  This also discards duplicate
1603   // predecessors and keeps track of the undefined inputs (which are represented
1604   // as a null dest in the PredToDestList).
1605   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1606   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1607 
1608   BasicBlock *OnlyDest = nullptr;
1609   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1610   Constant *OnlyVal = nullptr;
1611   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1612 
1613   for (const auto &PredValue : PredValues) {
1614     BasicBlock *Pred = PredValue.second;
1615     if (!SeenPreds.insert(Pred).second)
1616       continue;  // Duplicate predecessor entry.
1617 
1618     Constant *Val = PredValue.first;
1619 
1620     BasicBlock *DestBB;
1621     if (isa<UndefValue>(Val))
1622       DestBB = nullptr;
1623     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1624       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1625       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1626     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1627       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1628       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1629     } else {
1630       assert(isa<IndirectBrInst>(BB->getTerminator())
1631               && "Unexpected terminator");
1632       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1633       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1634     }
1635 
1636     // If we have exactly one destination, remember it for efficiency below.
1637     if (PredToDestList.empty()) {
1638       OnlyDest = DestBB;
1639       OnlyVal = Val;
1640     } else {
1641       if (OnlyDest != DestBB)
1642         OnlyDest = MultipleDestSentinel;
1643       // It possible we have same destination, but different value, e.g. default
1644       // case in switchinst.
1645       if (Val != OnlyVal)
1646         OnlyVal = MultipleVal;
1647     }
1648 
1649     // If the predecessor ends with an indirect goto, we can't change its
1650     // destination. Same for CallBr.
1651     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1652         isa<CallBrInst>(Pred->getTerminator()))
1653       continue;
1654 
1655     PredToDestList.emplace_back(Pred, DestBB);
1656   }
1657 
1658   // If all edges were unthreadable, we fail.
1659   if (PredToDestList.empty())
1660     return false;
1661 
1662   // If all the predecessors go to a single known successor, we want to fold,
1663   // not thread. By doing so, we do not need to duplicate the current block and
1664   // also miss potential opportunities in case we dont/cant duplicate.
1665   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1666     if (BB->hasNPredecessors(PredToDestList.size())) {
1667       bool SeenFirstBranchToOnlyDest = false;
1668       std::vector <DominatorTree::UpdateType> Updates;
1669       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1670       for (BasicBlock *SuccBB : successors(BB)) {
1671         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1672           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1673         } else {
1674           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1675           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1676         }
1677       }
1678 
1679       // Finally update the terminator.
1680       Instruction *Term = BB->getTerminator();
1681       BranchInst::Create(OnlyDest, Term);
1682       Term->eraseFromParent();
1683       DTU->applyUpdatesPermissive(Updates);
1684 
1685       // If the condition is now dead due to the removal of the old terminator,
1686       // erase it.
1687       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1688         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1689           CondInst->eraseFromParent();
1690         // We can safely replace *some* uses of the CondInst if it has
1691         // exactly one value as returned by LVI. RAUW is incorrect in the
1692         // presence of guards and assumes, that have the `Cond` as the use. This
1693         // is because we use the guards/assume to reason about the `Cond` value
1694         // at the end of block, but RAUW unconditionally replaces all uses
1695         // including the guards/assumes themselves and the uses before the
1696         // guard/assume.
1697         else if (OnlyVal && OnlyVal != MultipleVal &&
1698                  CondInst->getParent() == BB)
1699           ReplaceFoldableUses(CondInst, OnlyVal);
1700       }
1701       return true;
1702     }
1703   }
1704 
1705   // Determine which is the most common successor.  If we have many inputs and
1706   // this block is a switch, we want to start by threading the batch that goes
1707   // to the most popular destination first.  If we only know about one
1708   // threadable destination (the common case) we can avoid this.
1709   BasicBlock *MostPopularDest = OnlyDest;
1710 
1711   if (MostPopularDest == MultipleDestSentinel) {
1712     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1713     // won't process them, but we might have other destination that are eligible
1714     // and we still want to process.
1715     erase_if(PredToDestList,
1716              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1717                return LoopHeaders.count(PredToDest.second) != 0;
1718              });
1719 
1720     if (PredToDestList.empty())
1721       return false;
1722 
1723     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1724   }
1725 
1726   // Now that we know what the most popular destination is, factor all
1727   // predecessors that will jump to it into a single predecessor.
1728   SmallVector<BasicBlock*, 16> PredsToFactor;
1729   for (const auto &PredToDest : PredToDestList)
1730     if (PredToDest.second == MostPopularDest) {
1731       BasicBlock *Pred = PredToDest.first;
1732 
1733       // This predecessor may be a switch or something else that has multiple
1734       // edges to the block.  Factor each of these edges by listing them
1735       // according to # occurrences in PredsToFactor.
1736       for (BasicBlock *Succ : successors(Pred))
1737         if (Succ == BB)
1738           PredsToFactor.push_back(Pred);
1739     }
1740 
1741   // If the threadable edges are branching on an undefined value, we get to pick
1742   // the destination that these predecessors should get to.
1743   if (!MostPopularDest)
1744     MostPopularDest = BB->getTerminator()->
1745                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1746 
1747   // Ok, try to thread it!
1748   return TryThreadEdge(BB, PredsToFactor, MostPopularDest);
1749 }
1750 
1751 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1752 /// a PHI node in the current block.  See if there are any simplifications we
1753 /// can do based on inputs to the phi node.
1754 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1755   BasicBlock *BB = PN->getParent();
1756 
1757   // TODO: We could make use of this to do it once for blocks with common PHI
1758   // values.
1759   SmallVector<BasicBlock*, 1> PredBBs;
1760   PredBBs.resize(1);
1761 
1762   // If any of the predecessor blocks end in an unconditional branch, we can
1763   // *duplicate* the conditional branch into that block in order to further
1764   // encourage jump threading and to eliminate cases where we have branch on a
1765   // phi of an icmp (branch on icmp is much better).
1766   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1767     BasicBlock *PredBB = PN->getIncomingBlock(i);
1768     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1769       if (PredBr->isUnconditional()) {
1770         PredBBs[0] = PredBB;
1771         // Try to duplicate BB into PredBB.
1772         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1773           return true;
1774       }
1775   }
1776 
1777   return false;
1778 }
1779 
1780 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1781 /// a xor instruction in the current block.  See if there are any
1782 /// simplifications we can do based on inputs to the xor.
1783 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1784   BasicBlock *BB = BO->getParent();
1785 
1786   // If either the LHS or RHS of the xor is a constant, don't do this
1787   // optimization.
1788   if (isa<ConstantInt>(BO->getOperand(0)) ||
1789       isa<ConstantInt>(BO->getOperand(1)))
1790     return false;
1791 
1792   // If the first instruction in BB isn't a phi, we won't be able to infer
1793   // anything special about any particular predecessor.
1794   if (!isa<PHINode>(BB->front()))
1795     return false;
1796 
1797   // If this BB is a landing pad, we won't be able to split the edge into it.
1798   if (BB->isEHPad())
1799     return false;
1800 
1801   // If we have a xor as the branch input to this block, and we know that the
1802   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1803   // the condition into the predecessor and fix that value to true, saving some
1804   // logical ops on that path and encouraging other paths to simplify.
1805   //
1806   // This copies something like this:
1807   //
1808   //  BB:
1809   //    %X = phi i1 [1],  [%X']
1810   //    %Y = icmp eq i32 %A, %B
1811   //    %Z = xor i1 %X, %Y
1812   //    br i1 %Z, ...
1813   //
1814   // Into:
1815   //  BB':
1816   //    %Y = icmp ne i32 %A, %B
1817   //    br i1 %Y, ...
1818 
1819   PredValueInfoTy XorOpValues;
1820   bool isLHS = true;
1821   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1822                                        WantInteger, BO)) {
1823     assert(XorOpValues.empty());
1824     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1825                                          WantInteger, BO))
1826       return false;
1827     isLHS = false;
1828   }
1829 
1830   assert(!XorOpValues.empty() &&
1831          "ComputeValueKnownInPredecessors returned true with no values");
1832 
1833   // Scan the information to see which is most popular: true or false.  The
1834   // predecessors can be of the set true, false, or undef.
1835   unsigned NumTrue = 0, NumFalse = 0;
1836   for (const auto &XorOpValue : XorOpValues) {
1837     if (isa<UndefValue>(XorOpValue.first))
1838       // Ignore undefs for the count.
1839       continue;
1840     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1841       ++NumFalse;
1842     else
1843       ++NumTrue;
1844   }
1845 
1846   // Determine which value to split on, true, false, or undef if neither.
1847   ConstantInt *SplitVal = nullptr;
1848   if (NumTrue > NumFalse)
1849     SplitVal = ConstantInt::getTrue(BB->getContext());
1850   else if (NumTrue != 0 || NumFalse != 0)
1851     SplitVal = ConstantInt::getFalse(BB->getContext());
1852 
1853   // Collect all of the blocks that this can be folded into so that we can
1854   // factor this once and clone it once.
1855   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1856   for (const auto &XorOpValue : XorOpValues) {
1857     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1858       continue;
1859 
1860     BlocksToFoldInto.push_back(XorOpValue.second);
1861   }
1862 
1863   // If we inferred a value for all of the predecessors, then duplication won't
1864   // help us.  However, we can just replace the LHS or RHS with the constant.
1865   if (BlocksToFoldInto.size() ==
1866       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1867     if (!SplitVal) {
1868       // If all preds provide undef, just nuke the xor, because it is undef too.
1869       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1870       BO->eraseFromParent();
1871     } else if (SplitVal->isZero()) {
1872       // If all preds provide 0, replace the xor with the other input.
1873       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1874       BO->eraseFromParent();
1875     } else {
1876       // If all preds provide 1, set the computed value to 1.
1877       BO->setOperand(!isLHS, SplitVal);
1878     }
1879 
1880     return true;
1881   }
1882 
1883   // If any of predecessors end with an indirect goto, we can't change its
1884   // destination. Same for CallBr.
1885   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1886         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1887                isa<CallBrInst>(Pred->getTerminator());
1888       }))
1889     return false;
1890 
1891   // Try to duplicate BB into PredBB.
1892   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1893 }
1894 
1895 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1896 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1897 /// NewPred using the entries from OldPred (suitably mapped).
1898 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1899                                             BasicBlock *OldPred,
1900                                             BasicBlock *NewPred,
1901                                      DenseMap<Instruction*, Value*> &ValueMap) {
1902   for (PHINode &PN : PHIBB->phis()) {
1903     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1904     // DestBlock.
1905     Value *IV = PN.getIncomingValueForBlock(OldPred);
1906 
1907     // Remap the value if necessary.
1908     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1909       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1910       if (I != ValueMap.end())
1911         IV = I->second;
1912     }
1913 
1914     PN.addIncoming(IV, NewPred);
1915   }
1916 }
1917 
1918 /// Merge basic block BB into its sole predecessor if possible.
1919 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1920   BasicBlock *SinglePred = BB->getSinglePredecessor();
1921   if (!SinglePred)
1922     return false;
1923 
1924   const Instruction *TI = SinglePred->getTerminator();
1925   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1926       SinglePred == BB || hasAddressTakenAndUsed(BB))
1927     return false;
1928 
1929   // If SinglePred was a loop header, BB becomes one.
1930   if (LoopHeaders.erase(SinglePred))
1931     LoopHeaders.insert(BB);
1932 
1933   LVI->eraseBlock(SinglePred);
1934   MergeBasicBlockIntoOnlyPred(BB, DTU);
1935 
1936   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1937   // BB code within one basic block `BB`), we need to invalidate the LVI
1938   // information associated with BB, because the LVI information need not be
1939   // true for all of BB after the merge. For example,
1940   // Before the merge, LVI info and code is as follows:
1941   // SinglePred: <LVI info1 for %p val>
1942   // %y = use of %p
1943   // call @exit() // need not transfer execution to successor.
1944   // assume(%p) // from this point on %p is true
1945   // br label %BB
1946   // BB: <LVI info2 for %p val, i.e. %p is true>
1947   // %x = use of %p
1948   // br label exit
1949   //
1950   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1951   // (info2 and info1 respectively). After the merge and the deletion of the
1952   // LVI info1 for SinglePred. We have the following code:
1953   // BB: <LVI info2 for %p val>
1954   // %y = use of %p
1955   // call @exit()
1956   // assume(%p)
1957   // %x = use of %p <-- LVI info2 is correct from here onwards.
1958   // br label exit
1959   // LVI info2 for BB is incorrect at the beginning of BB.
1960 
1961   // Invalidate LVI information for BB if the LVI is not provably true for
1962   // all of BB.
1963   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1964     LVI->eraseBlock(BB);
1965   return true;
1966 }
1967 
1968 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1969 /// ValueMapping maps old values in BB to new ones in NewBB.
1970 void JumpThreadingPass::UpdateSSA(
1971     BasicBlock *BB, BasicBlock *NewBB,
1972     DenseMap<Instruction *, Value *> &ValueMapping) {
1973   // If there were values defined in BB that are used outside the block, then we
1974   // now have to update all uses of the value to use either the original value,
1975   // the cloned value, or some PHI derived value.  This can require arbitrary
1976   // PHI insertion, of which we are prepared to do, clean these up now.
1977   SSAUpdater SSAUpdate;
1978   SmallVector<Use *, 16> UsesToRename;
1979 
1980   for (Instruction &I : *BB) {
1981     // Scan all uses of this instruction to see if it is used outside of its
1982     // block, and if so, record them in UsesToRename.
1983     for (Use &U : I.uses()) {
1984       Instruction *User = cast<Instruction>(U.getUser());
1985       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1986         if (UserPN->getIncomingBlock(U) == BB)
1987           continue;
1988       } else if (User->getParent() == BB)
1989         continue;
1990 
1991       UsesToRename.push_back(&U);
1992     }
1993 
1994     // If there are no uses outside the block, we're done with this instruction.
1995     if (UsesToRename.empty())
1996       continue;
1997     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1998 
1999     // We found a use of I outside of BB.  Rename all uses of I that are outside
2000     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2001     // with the two values we know.
2002     SSAUpdate.Initialize(I.getType(), I.getName());
2003     SSAUpdate.AddAvailableValue(BB, &I);
2004     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2005 
2006     while (!UsesToRename.empty())
2007       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2008     LLVM_DEBUG(dbgs() << "\n");
2009   }
2010 }
2011 
2012 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2013 /// arguments that come from PredBB.  Return the map from the variables in the
2014 /// source basic block to the variables in the newly created basic block.
2015 DenseMap<Instruction *, Value *>
2016 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI,
2017                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2018                                      BasicBlock *PredBB) {
2019   // We are going to have to map operands from the source basic block to the new
2020   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2021   // block, evaluate them to account for entry from PredBB.
2022   DenseMap<Instruction *, Value *> ValueMapping;
2023 
2024   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2025   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2026   // might need to rewrite the operand of the cloned phi.
2027   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2028     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2029     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2030     ValueMapping[PN] = NewPN;
2031   }
2032 
2033   // Clone the non-phi instructions of the source basic block into NewBB,
2034   // keeping track of the mapping and using it to remap operands in the cloned
2035   // instructions.
2036   for (; BI != BE; ++BI) {
2037     Instruction *New = BI->clone();
2038     New->setName(BI->getName());
2039     NewBB->getInstList().push_back(New);
2040     ValueMapping[&*BI] = New;
2041 
2042     // Remap operands to patch up intra-block references.
2043     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2044       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2045         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2046         if (I != ValueMapping.end())
2047           New->setOperand(i, I->second);
2048       }
2049   }
2050 
2051   return ValueMapping;
2052 }
2053 
2054 /// Attempt to thread through two successive basic blocks.
2055 bool JumpThreadingPass::MaybeThreadThroughTwoBasicBlocks(BasicBlock *BB,
2056                                                          Value *Cond) {
2057   // Consider:
2058   //
2059   // PredBB:
2060   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2061   //   %tobool = icmp eq i32 %cond, 0
2062   //   br i1 %tobool, label %BB, label ...
2063   //
2064   // BB:
2065   //   %cmp = icmp eq i32* %var, null
2066   //   br i1 %cmp, label ..., label ...
2067   //
2068   // We don't know the value of %var at BB even if we know which incoming edge
2069   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2070   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2071   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2072 
2073   // Require that BB end with a Branch for simplicity.
2074   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2075   if (!CondBr)
2076     return false;
2077 
2078   // BB must have exactly one predecessor.
2079   BasicBlock *PredBB = BB->getSinglePredecessor();
2080   if (!PredBB)
2081     return false;
2082 
2083   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2084   // unconditional branch, we should be merging PredBB and BB instead. For
2085   // simplicity, we don't deal with a switch.
2086   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2087   if (!PredBBBranch || PredBBBranch->isUnconditional())
2088     return false;
2089 
2090   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2091   // PredBB.
2092   if (PredBB->getSinglePredecessor())
2093     return false;
2094 
2095   // Don't thread through PredBB if it contains a successor edge to itself, in
2096   // which case we would infinite loop.  Suppose we are threading an edge from
2097   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2098   // successor edge to itself.  If we allowed jump threading in this case, we
2099   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2100   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2101   // with another jump threading opportunity from PredBB.thread through PredBB
2102   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2103   // would keep peeling one iteration from PredBB.
2104   if (llvm::is_contained(successors(PredBB), PredBB))
2105     return false;
2106 
2107   // Don't thread across a loop header.
2108   if (LoopHeaders.count(PredBB))
2109     return false;
2110 
2111   // Avoid complication with duplicating EH pads.
2112   if (PredBB->isEHPad())
2113     return false;
2114 
2115   // Find a predecessor that we can thread.  For simplicity, we only consider a
2116   // successor edge out of BB to which we thread exactly one incoming edge into
2117   // PredBB.
2118   unsigned ZeroCount = 0;
2119   unsigned OneCount = 0;
2120   BasicBlock *ZeroPred = nullptr;
2121   BasicBlock *OnePred = nullptr;
2122   for (BasicBlock *P : predecessors(PredBB)) {
2123     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2124             EvaluateOnPredecessorEdge(BB, P, Cond))) {
2125       if (CI->isZero()) {
2126         ZeroCount++;
2127         ZeroPred = P;
2128       } else if (CI->isOne()) {
2129         OneCount++;
2130         OnePred = P;
2131       }
2132     }
2133   }
2134 
2135   // Disregard complicated cases where we have to thread multiple edges.
2136   BasicBlock *PredPredBB;
2137   if (ZeroCount == 1) {
2138     PredPredBB = ZeroPred;
2139   } else if (OneCount == 1) {
2140     PredPredBB = OnePred;
2141   } else {
2142     return false;
2143   }
2144 
2145   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2146 
2147   // If threading to the same block as we come from, we would infinite loop.
2148   if (SuccBB == BB) {
2149     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2150                       << "' - would thread to self!\n");
2151     return false;
2152   }
2153 
2154   // If threading this would thread across a loop header, don't thread the edge.
2155   // See the comments above FindLoopHeaders for justifications and caveats.
2156   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2157     LLVM_DEBUG({
2158       bool BBIsHeader = LoopHeaders.count(BB);
2159       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2160       dbgs() << "  Not threading across "
2161              << (BBIsHeader ? "loop header BB '" : "block BB '")
2162              << BB->getName() << "' to dest "
2163              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2164              << SuccBB->getName()
2165              << "' - it might create an irreducible loop!\n";
2166     });
2167     return false;
2168   }
2169 
2170   // Compute the cost of duplicating BB and PredBB.
2171   unsigned BBCost =
2172       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2173   unsigned PredBBCost = getJumpThreadDuplicationCost(
2174       PredBB, PredBB->getTerminator(), BBDupThreshold);
2175 
2176   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2177   // individually before checking their sum because getJumpThreadDuplicationCost
2178   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2179   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2180       BBCost + PredBBCost > BBDupThreshold) {
2181     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2182                       << "' - Cost is too high: " << PredBBCost
2183                       << " for PredBB, " << BBCost << "for BB\n");
2184     return false;
2185   }
2186 
2187   // Now we are ready to duplicate PredBB.
2188   ThreadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2189   return true;
2190 }
2191 
2192 void JumpThreadingPass::ThreadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2193                                                     BasicBlock *PredBB,
2194                                                     BasicBlock *BB,
2195                                                     BasicBlock *SuccBB) {
2196   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2197                     << BB->getName() << "'\n");
2198 
2199   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2200   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2201 
2202   BasicBlock *NewBB =
2203       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2204                          PredBB->getParent(), PredBB);
2205   NewBB->moveAfter(PredBB);
2206 
2207   // Set the block frequency of NewBB.
2208   if (HasProfileData) {
2209     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2210                      BPI->getEdgeProbability(PredPredBB, PredBB);
2211     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2212   }
2213 
2214   // We are going to have to map operands from the original BB block to the new
2215   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2216   // to account for entry from PredPredBB.
2217   DenseMap<Instruction *, Value *> ValueMapping =
2218       CloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2219 
2220   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2221   // This eliminates predecessors from PredPredBB, which requires us to simplify
2222   // any PHI nodes in PredBB.
2223   Instruction *PredPredTerm = PredPredBB->getTerminator();
2224   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2225     if (PredPredTerm->getSuccessor(i) == PredBB) {
2226       PredBB->removePredecessor(PredPredBB, true);
2227       PredPredTerm->setSuccessor(i, NewBB);
2228     }
2229 
2230   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2231                                   ValueMapping);
2232   AddPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2233                                   ValueMapping);
2234 
2235   DTU->applyUpdatesPermissive(
2236       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2237        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2238        {DominatorTree::Insert, PredPredBB, NewBB},
2239        {DominatorTree::Delete, PredPredBB, PredBB}});
2240 
2241   UpdateSSA(PredBB, NewBB, ValueMapping);
2242 
2243   // Clean up things like PHI nodes with single operands, dead instructions,
2244   // etc.
2245   SimplifyInstructionsInBlock(NewBB, TLI);
2246   SimplifyInstructionsInBlock(PredBB, TLI);
2247 
2248   SmallVector<BasicBlock *, 1> PredsToFactor;
2249   PredsToFactor.push_back(NewBB);
2250   ThreadEdge(BB, PredsToFactor, SuccBB);
2251 }
2252 
2253 /// TryThreadEdge - Thread an edge if it's safe and profitable to do so.
2254 bool JumpThreadingPass::TryThreadEdge(
2255     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2256     BasicBlock *SuccBB) {
2257   // If threading to the same block as we come from, we would infinite loop.
2258   if (SuccBB == BB) {
2259     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2260                       << "' - would thread to self!\n");
2261     return false;
2262   }
2263 
2264   // If threading this would thread across a loop header, don't thread the edge.
2265   // See the comments above FindLoopHeaders for justifications and caveats.
2266   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2267     LLVM_DEBUG({
2268       bool BBIsHeader = LoopHeaders.count(BB);
2269       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2270       dbgs() << "  Not threading across "
2271           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2272           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2273           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2274     });
2275     return false;
2276   }
2277 
2278   unsigned JumpThreadCost =
2279       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2280   if (JumpThreadCost > BBDupThreshold) {
2281     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2282                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2283     return false;
2284   }
2285 
2286   ThreadEdge(BB, PredBBs, SuccBB);
2287   return true;
2288 }
2289 
2290 /// ThreadEdge - We have decided that it is safe and profitable to factor the
2291 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2292 /// across BB.  Transform the IR to reflect this change.
2293 void JumpThreadingPass::ThreadEdge(BasicBlock *BB,
2294                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2295                                    BasicBlock *SuccBB) {
2296   assert(SuccBB != BB && "Don't create an infinite loop");
2297 
2298   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2299          "Don't thread across loop headers");
2300 
2301   // And finally, do it!  Start by factoring the predecessors if needed.
2302   BasicBlock *PredBB;
2303   if (PredBBs.size() == 1)
2304     PredBB = PredBBs[0];
2305   else {
2306     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2307                       << " common predecessors.\n");
2308     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2309   }
2310 
2311   // And finally, do it!
2312   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2313                     << "' to '" << SuccBB->getName()
2314                     << ", across block:\n    " << *BB << "\n");
2315 
2316   LVI->threadEdge(PredBB, BB, SuccBB);
2317 
2318   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2319                                          BB->getName()+".thread",
2320                                          BB->getParent(), BB);
2321   NewBB->moveAfter(PredBB);
2322 
2323   // Set the block frequency of NewBB.
2324   if (HasProfileData) {
2325     auto NewBBFreq =
2326         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2327     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2328   }
2329 
2330   // Copy all the instructions from BB to NewBB except the terminator.
2331   DenseMap<Instruction *, Value *> ValueMapping =
2332       CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2333 
2334   // We didn't copy the terminator from BB over to NewBB, because there is now
2335   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2336   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2337   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2338 
2339   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2340   // PHI nodes for NewBB now.
2341   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2342 
2343   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2344   // eliminates predecessors from BB, which requires us to simplify any PHI
2345   // nodes in BB.
2346   Instruction *PredTerm = PredBB->getTerminator();
2347   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2348     if (PredTerm->getSuccessor(i) == BB) {
2349       BB->removePredecessor(PredBB, true);
2350       PredTerm->setSuccessor(i, NewBB);
2351     }
2352 
2353   // Enqueue required DT updates.
2354   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2355                                {DominatorTree::Insert, PredBB, NewBB},
2356                                {DominatorTree::Delete, PredBB, BB}});
2357 
2358   UpdateSSA(BB, NewBB, ValueMapping);
2359 
2360   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2361   // over the new instructions and zap any that are constants or dead.  This
2362   // frequently happens because of phi translation.
2363   SimplifyInstructionsInBlock(NewBB, TLI);
2364 
2365   // Update the edge weight from BB to SuccBB, which should be less than before.
2366   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2367 
2368   // Threaded an edge!
2369   ++NumThreads;
2370 }
2371 
2372 /// Create a new basic block that will be the predecessor of BB and successor of
2373 /// all blocks in Preds. When profile data is available, update the frequency of
2374 /// this new block.
2375 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2376                                                ArrayRef<BasicBlock *> Preds,
2377                                                const char *Suffix) {
2378   SmallVector<BasicBlock *, 2> NewBBs;
2379 
2380   // Collect the frequencies of all predecessors of BB, which will be used to
2381   // update the edge weight of the result of splitting predecessors.
2382   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2383   if (HasProfileData)
2384     for (auto Pred : Preds)
2385       FreqMap.insert(std::make_pair(
2386           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2387 
2388   // In the case when BB is a LandingPad block we create 2 new predecessors
2389   // instead of just one.
2390   if (BB->isLandingPad()) {
2391     std::string NewName = std::string(Suffix) + ".split-lp";
2392     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2393   } else {
2394     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2395   }
2396 
2397   std::vector<DominatorTree::UpdateType> Updates;
2398   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2399   for (auto NewBB : NewBBs) {
2400     BlockFrequency NewBBFreq(0);
2401     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2402     for (auto Pred : predecessors(NewBB)) {
2403       Updates.push_back({DominatorTree::Delete, Pred, BB});
2404       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2405       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2406         NewBBFreq += FreqMap.lookup(Pred);
2407     }
2408     if (HasProfileData) // Apply the summed frequency to NewBB.
2409       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2410   }
2411 
2412   DTU->applyUpdatesPermissive(Updates);
2413   return NewBBs[0];
2414 }
2415 
2416 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2417   const Instruction *TI = BB->getTerminator();
2418   assert(TI->getNumSuccessors() > 1 && "not a split");
2419 
2420   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2421   if (!WeightsNode)
2422     return false;
2423 
2424   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2425   if (MDName->getString() != "branch_weights")
2426     return false;
2427 
2428   // Ensure there are weights for all of the successors. Note that the first
2429   // operand to the metadata node is a name, not a weight.
2430   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2431 }
2432 
2433 /// Update the block frequency of BB and branch weight and the metadata on the
2434 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2435 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2436 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2437                                                      BasicBlock *BB,
2438                                                      BasicBlock *NewBB,
2439                                                      BasicBlock *SuccBB) {
2440   if (!HasProfileData)
2441     return;
2442 
2443   assert(BFI && BPI && "BFI & BPI should have been created here");
2444 
2445   // As the edge from PredBB to BB is deleted, we have to update the block
2446   // frequency of BB.
2447   auto BBOrigFreq = BFI->getBlockFreq(BB);
2448   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2449   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2450   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2451   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2452 
2453   // Collect updated outgoing edges' frequencies from BB and use them to update
2454   // edge probabilities.
2455   SmallVector<uint64_t, 4> BBSuccFreq;
2456   for (BasicBlock *Succ : successors(BB)) {
2457     auto SuccFreq = (Succ == SuccBB)
2458                         ? BB2SuccBBFreq - NewBBFreq
2459                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2460     BBSuccFreq.push_back(SuccFreq.getFrequency());
2461   }
2462 
2463   uint64_t MaxBBSuccFreq =
2464       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2465 
2466   SmallVector<BranchProbability, 4> BBSuccProbs;
2467   if (MaxBBSuccFreq == 0)
2468     BBSuccProbs.assign(BBSuccFreq.size(),
2469                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2470   else {
2471     for (uint64_t Freq : BBSuccFreq)
2472       BBSuccProbs.push_back(
2473           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2474     // Normalize edge probabilities so that they sum up to one.
2475     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2476                                               BBSuccProbs.end());
2477   }
2478 
2479   // Update edge probabilities in BPI.
2480   BPI->setEdgeProbability(BB, BBSuccProbs);
2481 
2482   // Update the profile metadata as well.
2483   //
2484   // Don't do this if the profile of the transformed blocks was statically
2485   // estimated.  (This could occur despite the function having an entry
2486   // frequency in completely cold parts of the CFG.)
2487   //
2488   // In this case we don't want to suggest to subsequent passes that the
2489   // calculated weights are fully consistent.  Consider this graph:
2490   //
2491   //                 check_1
2492   //             50% /  |
2493   //             eq_1   | 50%
2494   //                 \  |
2495   //                 check_2
2496   //             50% /  |
2497   //             eq_2   | 50%
2498   //                 \  |
2499   //                 check_3
2500   //             50% /  |
2501   //             eq_3   | 50%
2502   //                 \  |
2503   //
2504   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2505   // the overall probabilities are inconsistent; the total probability that the
2506   // value is either 1, 2 or 3 is 150%.
2507   //
2508   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2509   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2510   // the loop exit edge.  Then based solely on static estimation we would assume
2511   // the loop was extremely hot.
2512   //
2513   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2514   // shouldn't make edges extremely likely or unlikely based solely on static
2515   // estimation.
2516   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2517     SmallVector<uint32_t, 4> Weights;
2518     for (auto Prob : BBSuccProbs)
2519       Weights.push_back(Prob.getNumerator());
2520 
2521     auto TI = BB->getTerminator();
2522     TI->setMetadata(
2523         LLVMContext::MD_prof,
2524         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2525   }
2526 }
2527 
2528 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2529 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2530 /// If we can duplicate the contents of BB up into PredBB do so now, this
2531 /// improves the odds that the branch will be on an analyzable instruction like
2532 /// a compare.
2533 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2534     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2535   assert(!PredBBs.empty() && "Can't handle an empty set");
2536 
2537   // If BB is a loop header, then duplicating this block outside the loop would
2538   // cause us to transform this into an irreducible loop, don't do this.
2539   // See the comments above FindLoopHeaders for justifications and caveats.
2540   if (LoopHeaders.count(BB)) {
2541     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2542                       << "' into predecessor block '" << PredBBs[0]->getName()
2543                       << "' - it might create an irreducible loop!\n");
2544     return false;
2545   }
2546 
2547   unsigned DuplicationCost =
2548       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2549   if (DuplicationCost > BBDupThreshold) {
2550     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2551                       << "' - Cost is too high: " << DuplicationCost << "\n");
2552     return false;
2553   }
2554 
2555   // And finally, do it!  Start by factoring the predecessors if needed.
2556   std::vector<DominatorTree::UpdateType> Updates;
2557   BasicBlock *PredBB;
2558   if (PredBBs.size() == 1)
2559     PredBB = PredBBs[0];
2560   else {
2561     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2562                       << " common predecessors.\n");
2563     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2564   }
2565   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2566 
2567   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2568   // of PredBB.
2569   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2570                     << "' into end of '" << PredBB->getName()
2571                     << "' to eliminate branch on phi.  Cost: "
2572                     << DuplicationCost << " block is:" << *BB << "\n");
2573 
2574   // Unless PredBB ends with an unconditional branch, split the edge so that we
2575   // can just clone the bits from BB into the end of the new PredBB.
2576   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2577 
2578   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2579     BasicBlock *OldPredBB = PredBB;
2580     PredBB = SplitEdge(OldPredBB, BB);
2581     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2582     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2583     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2584     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2585   }
2586 
2587   // We are going to have to map operands from the original BB block into the
2588   // PredBB block.  Evaluate PHI nodes in BB.
2589   DenseMap<Instruction*, Value*> ValueMapping;
2590 
2591   BasicBlock::iterator BI = BB->begin();
2592   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2593     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2594   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2595   // mapping and using it to remap operands in the cloned instructions.
2596   for (; BI != BB->end(); ++BI) {
2597     Instruction *New = BI->clone();
2598 
2599     // Remap operands to patch up intra-block references.
2600     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2601       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2602         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2603         if (I != ValueMapping.end())
2604           New->setOperand(i, I->second);
2605       }
2606 
2607     // If this instruction can be simplified after the operands are updated,
2608     // just use the simplified value instead.  This frequently happens due to
2609     // phi translation.
2610     if (Value *IV = SimplifyInstruction(
2611             New,
2612             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2613       ValueMapping[&*BI] = IV;
2614       if (!New->mayHaveSideEffects()) {
2615         New->deleteValue();
2616         New = nullptr;
2617       }
2618     } else {
2619       ValueMapping[&*BI] = New;
2620     }
2621     if (New) {
2622       // Otherwise, insert the new instruction into the block.
2623       New->setName(BI->getName());
2624       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2625       // Update Dominance from simplified New instruction operands.
2626       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2627         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2628           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2629     }
2630   }
2631 
2632   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2633   // add entries to the PHI nodes for branch from PredBB now.
2634   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2635   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2636                                   ValueMapping);
2637   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2638                                   ValueMapping);
2639 
2640   UpdateSSA(BB, PredBB, ValueMapping);
2641 
2642   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2643   // that we nuked.
2644   BB->removePredecessor(PredBB, true);
2645 
2646   // Remove the unconditional branch at the end of the PredBB block.
2647   OldPredBranch->eraseFromParent();
2648   DTU->applyUpdatesPermissive(Updates);
2649 
2650   ++NumDupes;
2651   return true;
2652 }
2653 
2654 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2655 // a Select instruction in Pred. BB has other predecessors and SI is used in
2656 // a PHI node in BB. SI has no other use.
2657 // A new basic block, NewBB, is created and SI is converted to compare and
2658 // conditional branch. SI is erased from parent.
2659 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2660                                           SelectInst *SI, PHINode *SIUse,
2661                                           unsigned Idx) {
2662   // Expand the select.
2663   //
2664   // Pred --
2665   //  |    v
2666   //  |  NewBB
2667   //  |    |
2668   //  |-----
2669   //  v
2670   // BB
2671   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2672   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2673                                          BB->getParent(), BB);
2674   // Move the unconditional branch to NewBB.
2675   PredTerm->removeFromParent();
2676   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2677   // Create a conditional branch and update PHI nodes.
2678   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2679   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2680   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2681 
2682   // The select is now dead.
2683   SI->eraseFromParent();
2684   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2685                                {DominatorTree::Insert, Pred, NewBB}});
2686 
2687   // Update any other PHI nodes in BB.
2688   for (BasicBlock::iterator BI = BB->begin();
2689        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2690     if (Phi != SIUse)
2691       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2692 }
2693 
2694 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2695   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2696 
2697   if (!CondPHI || CondPHI->getParent() != BB)
2698     return false;
2699 
2700   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2701     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2702     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2703 
2704     // The second and third condition can be potentially relaxed. Currently
2705     // the conditions help to simplify the code and allow us to reuse existing
2706     // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *)
2707     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2708       continue;
2709 
2710     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2711     if (!PredTerm || !PredTerm->isUnconditional())
2712       continue;
2713 
2714     UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2715     return true;
2716   }
2717   return false;
2718 }
2719 
2720 /// TryToUnfoldSelect - Look for blocks of the form
2721 /// bb1:
2722 ///   %a = select
2723 ///   br bb2
2724 ///
2725 /// bb2:
2726 ///   %p = phi [%a, %bb1] ...
2727 ///   %c = icmp %p
2728 ///   br i1 %c
2729 ///
2730 /// And expand the select into a branch structure if one of its arms allows %c
2731 /// to be folded. This later enables threading from bb1 over bb2.
2732 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2733   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2734   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2735   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2736 
2737   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2738       CondLHS->getParent() != BB)
2739     return false;
2740 
2741   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2742     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2743     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2744 
2745     // Look if one of the incoming values is a select in the corresponding
2746     // predecessor.
2747     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2748       continue;
2749 
2750     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2751     if (!PredTerm || !PredTerm->isUnconditional())
2752       continue;
2753 
2754     // Now check if one of the select values would allow us to constant fold the
2755     // terminator in BB. We don't do the transform if both sides fold, those
2756     // cases will be threaded in any case.
2757     LazyValueInfo::Tristate LHSFolds =
2758         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2759                                 CondRHS, Pred, BB, CondCmp);
2760     LazyValueInfo::Tristate RHSFolds =
2761         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2762                                 CondRHS, Pred, BB, CondCmp);
2763     if ((LHSFolds != LazyValueInfo::Unknown ||
2764          RHSFolds != LazyValueInfo::Unknown) &&
2765         LHSFolds != RHSFolds) {
2766       UnfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2767       return true;
2768     }
2769   }
2770   return false;
2771 }
2772 
2773 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2774 /// same BB in the form
2775 /// bb:
2776 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2777 ///   %s = select %p, trueval, falseval
2778 ///
2779 /// or
2780 ///
2781 /// bb:
2782 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2783 ///   %c = cmp %p, 0
2784 ///   %s = select %c, trueval, falseval
2785 ///
2786 /// And expand the select into a branch structure. This later enables
2787 /// jump-threading over bb in this pass.
2788 ///
2789 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2790 /// select if the associated PHI has at least one constant.  If the unfolded
2791 /// select is not jump-threaded, it will be folded again in the later
2792 /// optimizations.
2793 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2794   // This transform can introduce a UB (a conditional branch that depends on a
2795   // poison value) that was not present in the original program. See
2796   // @TryToUnfoldSelectInCurrBB test in test/Transforms/JumpThreading/select.ll.
2797   // Disable this transform under MemorySanitizer.
2798   // FIXME: either delete it or replace with a valid transform. This issue is
2799   // not limited to MemorySanitizer (but has only been observed as an MSan false
2800   // positive in practice so far).
2801   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2802     return false;
2803 
2804   // If threading this would thread across a loop header, don't thread the edge.
2805   // See the comments above FindLoopHeaders for justifications and caveats.
2806   if (LoopHeaders.count(BB))
2807     return false;
2808 
2809   for (BasicBlock::iterator BI = BB->begin();
2810        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2811     // Look for a Phi having at least one constant incoming value.
2812     if (llvm::all_of(PN->incoming_values(),
2813                      [](Value *V) { return !isa<ConstantInt>(V); }))
2814       continue;
2815 
2816     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2817       // Check if SI is in BB and use V as condition.
2818       if (SI->getParent() != BB)
2819         return false;
2820       Value *Cond = SI->getCondition();
2821       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2822     };
2823 
2824     SelectInst *SI = nullptr;
2825     for (Use &U : PN->uses()) {
2826       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2827         // Look for a ICmp in BB that compares PN with a constant and is the
2828         // condition of a Select.
2829         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2830             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2831           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2832             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2833               SI = SelectI;
2834               break;
2835             }
2836       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2837         // Look for a Select in BB that uses PN as condition.
2838         if (isUnfoldCandidate(SelectI, U.get())) {
2839           SI = SelectI;
2840           break;
2841         }
2842       }
2843     }
2844 
2845     if (!SI)
2846       continue;
2847     // Expand the select.
2848     Instruction *Term =
2849         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2850     BasicBlock *SplitBB = SI->getParent();
2851     BasicBlock *NewBB = Term->getParent();
2852     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2853     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2854     NewPN->addIncoming(SI->getFalseValue(), BB);
2855     SI->replaceAllUsesWith(NewPN);
2856     SI->eraseFromParent();
2857     // NewBB and SplitBB are newly created blocks which require insertion.
2858     std::vector<DominatorTree::UpdateType> Updates;
2859     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2860     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2861     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2862     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2863     // BB's successors were moved to SplitBB, update DTU accordingly.
2864     for (auto *Succ : successors(SplitBB)) {
2865       Updates.push_back({DominatorTree::Delete, BB, Succ});
2866       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2867     }
2868     DTU->applyUpdatesPermissive(Updates);
2869     return true;
2870   }
2871   return false;
2872 }
2873 
2874 /// Try to propagate a guard from the current BB into one of its predecessors
2875 /// in case if another branch of execution implies that the condition of this
2876 /// guard is always true. Currently we only process the simplest case that
2877 /// looks like:
2878 ///
2879 /// Start:
2880 ///   %cond = ...
2881 ///   br i1 %cond, label %T1, label %F1
2882 /// T1:
2883 ///   br label %Merge
2884 /// F1:
2885 ///   br label %Merge
2886 /// Merge:
2887 ///   %condGuard = ...
2888 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2889 ///
2890 /// And cond either implies condGuard or !condGuard. In this case all the
2891 /// instructions before the guard can be duplicated in both branches, and the
2892 /// guard is then threaded to one of them.
2893 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2894   using namespace PatternMatch;
2895 
2896   // We only want to deal with two predecessors.
2897   BasicBlock *Pred1, *Pred2;
2898   auto PI = pred_begin(BB), PE = pred_end(BB);
2899   if (PI == PE)
2900     return false;
2901   Pred1 = *PI++;
2902   if (PI == PE)
2903     return false;
2904   Pred2 = *PI++;
2905   if (PI != PE)
2906     return false;
2907   if (Pred1 == Pred2)
2908     return false;
2909 
2910   // Try to thread one of the guards of the block.
2911   // TODO: Look up deeper than to immediate predecessor?
2912   auto *Parent = Pred1->getSinglePredecessor();
2913   if (!Parent || Parent != Pred2->getSinglePredecessor())
2914     return false;
2915 
2916   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2917     for (auto &I : *BB)
2918       if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2919         return true;
2920 
2921   return false;
2922 }
2923 
2924 /// Try to propagate the guard from BB which is the lower block of a diamond
2925 /// to one of its branches, in case if diamond's condition implies guard's
2926 /// condition.
2927 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2928                                     BranchInst *BI) {
2929   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2930   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2931   Value *GuardCond = Guard->getArgOperand(0);
2932   Value *BranchCond = BI->getCondition();
2933   BasicBlock *TrueDest = BI->getSuccessor(0);
2934   BasicBlock *FalseDest = BI->getSuccessor(1);
2935 
2936   auto &DL = BB->getModule()->getDataLayout();
2937   bool TrueDestIsSafe = false;
2938   bool FalseDestIsSafe = false;
2939 
2940   // True dest is safe if BranchCond => GuardCond.
2941   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2942   if (Impl && *Impl)
2943     TrueDestIsSafe = true;
2944   else {
2945     // False dest is safe if !BranchCond => GuardCond.
2946     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2947     if (Impl && *Impl)
2948       FalseDestIsSafe = true;
2949   }
2950 
2951   if (!TrueDestIsSafe && !FalseDestIsSafe)
2952     return false;
2953 
2954   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2955   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2956 
2957   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2958   Instruction *AfterGuard = Guard->getNextNode();
2959   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2960   if (Cost > BBDupThreshold)
2961     return false;
2962   // Duplicate all instructions before the guard and the guard itself to the
2963   // branch where implication is not proved.
2964   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2965       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
2966   assert(GuardedBlock && "Could not create the guarded block?");
2967   // Duplicate all instructions before the guard in the unguarded branch.
2968   // Since we have successfully duplicated the guarded block and this block
2969   // has fewer instructions, we expect it to succeed.
2970   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2971       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
2972   assert(UnguardedBlock && "Could not create the unguarded block?");
2973   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2974                     << GuardedBlock->getName() << "\n");
2975   // Some instructions before the guard may still have uses. For them, we need
2976   // to create Phi nodes merging their copies in both guarded and unguarded
2977   // branches. Those instructions that have no uses can be just removed.
2978   SmallVector<Instruction *, 4> ToRemove;
2979   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2980     if (!isa<PHINode>(&*BI))
2981       ToRemove.push_back(&*BI);
2982 
2983   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2984   assert(InsertionPoint && "Empty block?");
2985   // Substitute with Phis & remove.
2986   for (auto *Inst : reverse(ToRemove)) {
2987     if (!Inst->use_empty()) {
2988       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2989       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2990       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2991       NewPN->insertBefore(InsertionPoint);
2992       Inst->replaceAllUsesWith(NewPN);
2993     }
2994     Inst->eraseFromParent();
2995   }
2996   return true;
2997 }
2998