1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/ADT/ArrayRef.h" 92 #include "llvm/ADT/DenseMap.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/None.h" 95 #include "llvm/ADT/Optional.h" 96 #include "llvm/ADT/SetVector.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Function.h" 104 #include "llvm/IR/IRBuilder.h" 105 #include "llvm/IR/InstIterator.h" 106 #include "llvm/IR/Instruction.h" 107 #include "llvm/IR/Instructions.h" 108 #include "llvm/IR/IntrinsicInst.h" 109 #include "llvm/IR/Intrinsics.h" 110 #include "llvm/IR/LLVMContext.h" 111 #include "llvm/IR/Operator.h" 112 #include "llvm/IR/Type.h" 113 #include "llvm/IR/Use.h" 114 #include "llvm/IR/User.h" 115 #include "llvm/IR/Value.h" 116 #include "llvm/IR/ValueHandle.h" 117 #include "llvm/Pass.h" 118 #include "llvm/Support/Casting.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Scalar.h" 124 #include "llvm/Transforms/Utils/ValueMapper.h" 125 #include <cassert> 126 #include <iterator> 127 #include <limits> 128 #include <utility> 129 #include <vector> 130 131 #define DEBUG_TYPE "infer-address-spaces" 132 133 using namespace llvm; 134 135 static const unsigned UninitializedAddressSpace = 136 std::numeric_limits<unsigned>::max(); 137 138 namespace { 139 140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 141 142 /// InferAddressSpaces 143 class InferAddressSpaces : public FunctionPass { 144 /// Target specific address space which uses of should be replaced if 145 /// possible. 146 unsigned FlatAddrSpace; 147 148 public: 149 static char ID; 150 151 InferAddressSpaces() : FunctionPass(ID) {} 152 153 void getAnalysisUsage(AnalysisUsage &AU) const override { 154 AU.setPreservesCFG(); 155 AU.addRequired<TargetTransformInfoWrapperPass>(); 156 } 157 158 bool runOnFunction(Function &F) override; 159 160 private: 161 // Returns the new address space of V if updated; otherwise, returns None. 162 Optional<unsigned> 163 updateAddressSpace(const Value &V, 164 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 165 166 // Tries to infer the specific address space of each address expression in 167 // Postorder. 168 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 169 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 170 171 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 172 173 // Changes the flat address expressions in function F to point to specific 174 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 175 // all flat expressions in the use-def graph of function F. 176 bool rewriteWithNewAddressSpaces( 177 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 178 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 179 180 void appendsFlatAddressExpressionToPostorderStack( 181 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 182 DenseSet<Value *> &Visited) const; 183 184 bool rewriteIntrinsicOperands(IntrinsicInst *II, 185 Value *OldV, Value *NewV) const; 186 void collectRewritableIntrinsicOperands( 187 IntrinsicInst *II, 188 std::vector<std::pair<Value *, bool>> &PostorderStack, 189 DenseSet<Value *> &Visited) const; 190 191 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 192 193 Value *cloneValueWithNewAddressSpace( 194 Value *V, unsigned NewAddrSpace, 195 const ValueToValueMapTy &ValueWithNewAddrSpace, 196 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 197 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 198 }; 199 200 } // end anonymous namespace 201 202 char InferAddressSpaces::ID = 0; 203 204 namespace llvm { 205 206 void initializeInferAddressSpacesPass(PassRegistry &); 207 208 } // end namespace llvm 209 210 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 211 false, false) 212 213 // Returns true if V is an address expression. 214 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 215 // getelementptr operators. 216 static bool isAddressExpression(const Value &V) { 217 if (!isa<Operator>(V)) 218 return false; 219 220 const Operator &Op = cast<Operator>(V); 221 switch (Op.getOpcode()) { 222 case Instruction::PHI: 223 assert(Op.getType()->isPointerTy()); 224 return true; 225 case Instruction::BitCast: 226 case Instruction::AddrSpaceCast: 227 case Instruction::GetElementPtr: 228 return true; 229 case Instruction::Select: 230 return Op.getType()->isPointerTy(); 231 default: 232 return false; 233 } 234 } 235 236 // Returns the pointer operands of V. 237 // 238 // Precondition: V is an address expression. 239 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 240 const Operator &Op = cast<Operator>(V); 241 switch (Op.getOpcode()) { 242 case Instruction::PHI: { 243 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 244 return SmallVector<Value *, 2>(IncomingValues.begin(), 245 IncomingValues.end()); 246 } 247 case Instruction::BitCast: 248 case Instruction::AddrSpaceCast: 249 case Instruction::GetElementPtr: 250 return {Op.getOperand(0)}; 251 case Instruction::Select: 252 return {Op.getOperand(1), Op.getOperand(2)}; 253 default: 254 llvm_unreachable("Unexpected instruction type."); 255 } 256 } 257 258 // TODO: Move logic to TTI? 259 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 260 Value *OldV, 261 Value *NewV) const { 262 Module *M = II->getParent()->getParent()->getParent(); 263 264 switch (II->getIntrinsicID()) { 265 case Intrinsic::amdgcn_atomic_inc: 266 case Intrinsic::amdgcn_atomic_dec: 267 case Intrinsic::amdgcn_ds_fadd: 268 case Intrinsic::amdgcn_ds_fmin: 269 case Intrinsic::amdgcn_ds_fmax: { 270 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 271 if (!IsVolatile || !IsVolatile->isZero()) 272 return false; 273 274 LLVM_FALLTHROUGH; 275 } 276 case Intrinsic::objectsize: { 277 Type *DestTy = II->getType(); 278 Type *SrcTy = NewV->getType(); 279 Function *NewDecl = 280 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 281 II->setArgOperand(0, NewV); 282 II->setCalledFunction(NewDecl); 283 return true; 284 } 285 default: 286 return false; 287 } 288 } 289 290 // TODO: Move logic to TTI? 291 void InferAddressSpaces::collectRewritableIntrinsicOperands( 292 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 293 DenseSet<Value *> &Visited) const { 294 switch (II->getIntrinsicID()) { 295 case Intrinsic::objectsize: 296 case Intrinsic::amdgcn_atomic_inc: 297 case Intrinsic::amdgcn_atomic_dec: 298 case Intrinsic::amdgcn_ds_fadd: 299 case Intrinsic::amdgcn_ds_fmin: 300 case Intrinsic::amdgcn_ds_fmax: 301 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 302 PostorderStack, Visited); 303 break; 304 default: 305 break; 306 } 307 } 308 309 // Returns all flat address expressions in function F. The elements are 310 // If V is an unvisited flat address expression, appends V to PostorderStack 311 // and marks it as visited. 312 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 313 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 314 DenseSet<Value *> &Visited) const { 315 assert(V->getType()->isPointerTy()); 316 317 // Generic addressing expressions may be hidden in nested constant 318 // expressions. 319 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 320 // TODO: Look in non-address parts, like icmp operands. 321 if (isAddressExpression(*CE) && Visited.insert(CE).second) 322 PostorderStack.push_back(std::make_pair(CE, false)); 323 324 return; 325 } 326 327 if (isAddressExpression(*V) && 328 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 329 if (Visited.insert(V).second) { 330 PostorderStack.push_back(std::make_pair(V, false)); 331 332 Operator *Op = cast<Operator>(V); 333 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 335 if (isAddressExpression(*CE) && Visited.insert(CE).second) 336 PostorderStack.emplace_back(CE, false); 337 } 338 } 339 } 340 } 341 } 342 343 // Returns all flat address expressions in function F. The elements are ordered 344 // ordered in postorder. 345 std::vector<WeakTrackingVH> 346 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 347 // This function implements a non-recursive postorder traversal of a partial 348 // use-def graph of function F. 349 std::vector<std::pair<Value *, bool>> PostorderStack; 350 // The set of visited expressions. 351 DenseSet<Value *> Visited; 352 353 auto PushPtrOperand = [&](Value *Ptr) { 354 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 355 Visited); 356 }; 357 358 // Look at operations that may be interesting accelerate by moving to a known 359 // address space. We aim at generating after loads and stores, but pure 360 // addressing calculations may also be faster. 361 for (Instruction &I : instructions(F)) { 362 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 363 if (!GEP->getType()->isVectorTy()) 364 PushPtrOperand(GEP->getPointerOperand()); 365 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 366 PushPtrOperand(LI->getPointerOperand()); 367 else if (auto *SI = dyn_cast<StoreInst>(&I)) 368 PushPtrOperand(SI->getPointerOperand()); 369 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 370 PushPtrOperand(RMW->getPointerOperand()); 371 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 372 PushPtrOperand(CmpX->getPointerOperand()); 373 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 374 // For memset/memcpy/memmove, any pointer operand can be replaced. 375 PushPtrOperand(MI->getRawDest()); 376 377 // Handle 2nd operand for memcpy/memmove. 378 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 379 PushPtrOperand(MTI->getRawSource()); 380 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 381 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 382 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 383 // FIXME: Handle vectors of pointers 384 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 385 PushPtrOperand(Cmp->getOperand(0)); 386 PushPtrOperand(Cmp->getOperand(1)); 387 } 388 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 389 if (!ASC->getType()->isVectorTy()) 390 PushPtrOperand(ASC->getPointerOperand()); 391 } 392 } 393 394 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 395 while (!PostorderStack.empty()) { 396 Value *TopVal = PostorderStack.back().first; 397 // If the operands of the expression on the top are already explored, 398 // adds that expression to the resultant postorder. 399 if (PostorderStack.back().second) { 400 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 401 Postorder.push_back(TopVal); 402 PostorderStack.pop_back(); 403 continue; 404 } 405 // Otherwise, adds its operands to the stack and explores them. 406 PostorderStack.back().second = true; 407 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 408 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 409 Visited); 410 } 411 } 412 return Postorder; 413 } 414 415 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 416 // of OperandUse.get() in the new address space. If the clone is not ready yet, 417 // returns an undef in the new address space as a placeholder. 418 static Value *operandWithNewAddressSpaceOrCreateUndef( 419 const Use &OperandUse, unsigned NewAddrSpace, 420 const ValueToValueMapTy &ValueWithNewAddrSpace, 421 SmallVectorImpl<const Use *> *UndefUsesToFix) { 422 Value *Operand = OperandUse.get(); 423 424 Type *NewPtrTy = 425 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 426 427 if (Constant *C = dyn_cast<Constant>(Operand)) 428 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 429 430 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 431 return NewOperand; 432 433 UndefUsesToFix->push_back(&OperandUse); 434 return UndefValue::get(NewPtrTy); 435 } 436 437 // Returns a clone of `I` with its operands converted to those specified in 438 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 439 // operand whose address space needs to be modified might not exist in 440 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 441 // adds that operand use to UndefUsesToFix so that caller can fix them later. 442 // 443 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 444 // from a pointer whose type already matches. Therefore, this function returns a 445 // Value* instead of an Instruction*. 446 static Value *cloneInstructionWithNewAddressSpace( 447 Instruction *I, unsigned NewAddrSpace, 448 const ValueToValueMapTy &ValueWithNewAddrSpace, 449 SmallVectorImpl<const Use *> *UndefUsesToFix) { 450 Type *NewPtrType = 451 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 452 453 if (I->getOpcode() == Instruction::AddrSpaceCast) { 454 Value *Src = I->getOperand(0); 455 // Because `I` is flat, the source address space must be specific. 456 // Therefore, the inferred address space must be the source space, according 457 // to our algorithm. 458 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 459 if (Src->getType() != NewPtrType) 460 return new BitCastInst(Src, NewPtrType); 461 return Src; 462 } 463 464 // Computes the converted pointer operands. 465 SmallVector<Value *, 4> NewPointerOperands; 466 for (const Use &OperandUse : I->operands()) { 467 if (!OperandUse.get()->getType()->isPointerTy()) 468 NewPointerOperands.push_back(nullptr); 469 else 470 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 471 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 472 } 473 474 switch (I->getOpcode()) { 475 case Instruction::BitCast: 476 return new BitCastInst(NewPointerOperands[0], NewPtrType); 477 case Instruction::PHI: { 478 assert(I->getType()->isPointerTy()); 479 PHINode *PHI = cast<PHINode>(I); 480 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 481 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 482 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 483 NewPHI->addIncoming(NewPointerOperands[OperandNo], 484 PHI->getIncomingBlock(Index)); 485 } 486 return NewPHI; 487 } 488 case Instruction::GetElementPtr: { 489 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 490 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 491 GEP->getSourceElementType(), NewPointerOperands[0], 492 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 493 NewGEP->setIsInBounds(GEP->isInBounds()); 494 return NewGEP; 495 } 496 case Instruction::Select: 497 assert(I->getType()->isPointerTy()); 498 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 499 NewPointerOperands[2], "", nullptr, I); 500 default: 501 llvm_unreachable("Unexpected opcode"); 502 } 503 } 504 505 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 506 // constant expression `CE` with its operands replaced as specified in 507 // ValueWithNewAddrSpace. 508 static Value *cloneConstantExprWithNewAddressSpace( 509 ConstantExpr *CE, unsigned NewAddrSpace, 510 const ValueToValueMapTy &ValueWithNewAddrSpace) { 511 Type *TargetType = 512 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 513 514 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 515 // Because CE is flat, the source address space must be specific. 516 // Therefore, the inferred address space must be the source space according 517 // to our algorithm. 518 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 519 NewAddrSpace); 520 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 521 } 522 523 if (CE->getOpcode() == Instruction::BitCast) { 524 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 525 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 526 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 527 } 528 529 if (CE->getOpcode() == Instruction::Select) { 530 Constant *Src0 = CE->getOperand(1); 531 Constant *Src1 = CE->getOperand(2); 532 if (Src0->getType()->getPointerAddressSpace() == 533 Src1->getType()->getPointerAddressSpace()) { 534 535 return ConstantExpr::getSelect( 536 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 537 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 538 } 539 } 540 541 // Computes the operands of the new constant expression. 542 bool IsNew = false; 543 SmallVector<Constant *, 4> NewOperands; 544 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 545 Constant *Operand = CE->getOperand(Index); 546 // If the address space of `Operand` needs to be modified, the new operand 547 // with the new address space should already be in ValueWithNewAddrSpace 548 // because (1) the constant expressions we consider (i.e. addrspacecast, 549 // bitcast, and getelementptr) do not incur cycles in the data flow graph 550 // and (2) this function is called on constant expressions in postorder. 551 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 552 IsNew = true; 553 NewOperands.push_back(cast<Constant>(NewOperand)); 554 } else { 555 // Otherwise, reuses the old operand. 556 NewOperands.push_back(Operand); 557 } 558 } 559 560 // If !IsNew, we will replace the Value with itself. However, replaced values 561 // are assumed to wrapped in a addrspace cast later so drop it now. 562 if (!IsNew) 563 return nullptr; 564 565 if (CE->getOpcode() == Instruction::GetElementPtr) { 566 // Needs to specify the source type while constructing a getelementptr 567 // constant expression. 568 return CE->getWithOperands( 569 NewOperands, TargetType, /*OnlyIfReduced=*/false, 570 NewOperands[0]->getType()->getPointerElementType()); 571 } 572 573 return CE->getWithOperands(NewOperands, TargetType); 574 } 575 576 // Returns a clone of the value `V`, with its operands replaced as specified in 577 // ValueWithNewAddrSpace. This function is called on every flat address 578 // expression whose address space needs to be modified, in postorder. 579 // 580 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 581 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 582 Value *V, unsigned NewAddrSpace, 583 const ValueToValueMapTy &ValueWithNewAddrSpace, 584 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 585 // All values in Postorder are flat address expressions. 586 assert(isAddressExpression(*V) && 587 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 588 589 if (Instruction *I = dyn_cast<Instruction>(V)) { 590 Value *NewV = cloneInstructionWithNewAddressSpace( 591 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 592 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 593 if (NewI->getParent() == nullptr) { 594 NewI->insertBefore(I); 595 NewI->takeName(I); 596 } 597 } 598 return NewV; 599 } 600 601 return cloneConstantExprWithNewAddressSpace( 602 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 603 } 604 605 // Defines the join operation on the address space lattice (see the file header 606 // comments). 607 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 608 unsigned AS2) const { 609 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 610 return FlatAddrSpace; 611 612 if (AS1 == UninitializedAddressSpace) 613 return AS2; 614 if (AS2 == UninitializedAddressSpace) 615 return AS1; 616 617 // The join of two different specific address spaces is flat. 618 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 619 } 620 621 bool InferAddressSpaces::runOnFunction(Function &F) { 622 if (skipFunction(F)) 623 return false; 624 625 const TargetTransformInfo &TTI = 626 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 627 FlatAddrSpace = TTI.getFlatAddressSpace(); 628 if (FlatAddrSpace == UninitializedAddressSpace) 629 return false; 630 631 // Collects all flat address expressions in postorder. 632 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 633 634 // Runs a data-flow analysis to refine the address spaces of every expression 635 // in Postorder. 636 ValueToAddrSpaceMapTy InferredAddrSpace; 637 inferAddressSpaces(Postorder, &InferredAddrSpace); 638 639 // Changes the address spaces of the flat address expressions who are inferred 640 // to point to a specific address space. 641 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F); 642 } 643 644 // Constants need to be tracked through RAUW to handle cases with nested 645 // constant expressions, so wrap values in WeakTrackingVH. 646 void InferAddressSpaces::inferAddressSpaces( 647 ArrayRef<WeakTrackingVH> Postorder, 648 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 649 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 650 // Initially, all expressions are in the uninitialized address space. 651 for (Value *V : Postorder) 652 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 653 654 while (!Worklist.empty()) { 655 Value *V = Worklist.pop_back_val(); 656 657 // Tries to update the address space of the stack top according to the 658 // address spaces of its operands. 659 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 660 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 661 if (!NewAS.hasValue()) 662 continue; 663 // If any updates are made, grabs its users to the worklist because 664 // their address spaces can also be possibly updated. 665 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 666 (*InferredAddrSpace)[V] = NewAS.getValue(); 667 668 for (Value *User : V->users()) { 669 // Skip if User is already in the worklist. 670 if (Worklist.count(User)) 671 continue; 672 673 auto Pos = InferredAddrSpace->find(User); 674 // Our algorithm only updates the address spaces of flat address 675 // expressions, which are those in InferredAddrSpace. 676 if (Pos == InferredAddrSpace->end()) 677 continue; 678 679 // Function updateAddressSpace moves the address space down a lattice 680 // path. Therefore, nothing to do if User is already inferred as flat (the 681 // bottom element in the lattice). 682 if (Pos->second == FlatAddrSpace) 683 continue; 684 685 Worklist.insert(User); 686 } 687 } 688 } 689 690 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 691 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 692 assert(InferredAddrSpace.count(&V)); 693 694 // The new inferred address space equals the join of the address spaces 695 // of all its pointer operands. 696 unsigned NewAS = UninitializedAddressSpace; 697 698 const Operator &Op = cast<Operator>(V); 699 if (Op.getOpcode() == Instruction::Select) { 700 Value *Src0 = Op.getOperand(1); 701 Value *Src1 = Op.getOperand(2); 702 703 auto I = InferredAddrSpace.find(Src0); 704 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 705 I->second : Src0->getType()->getPointerAddressSpace(); 706 707 auto J = InferredAddrSpace.find(Src1); 708 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 709 J->second : Src1->getType()->getPointerAddressSpace(); 710 711 auto *C0 = dyn_cast<Constant>(Src0); 712 auto *C1 = dyn_cast<Constant>(Src1); 713 714 // If one of the inputs is a constant, we may be able to do a constant 715 // addrspacecast of it. Defer inferring the address space until the input 716 // address space is known. 717 if ((C1 && Src0AS == UninitializedAddressSpace) || 718 (C0 && Src1AS == UninitializedAddressSpace)) 719 return None; 720 721 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 722 NewAS = Src1AS; 723 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 724 NewAS = Src0AS; 725 else 726 NewAS = joinAddressSpaces(Src0AS, Src1AS); 727 } else { 728 for (Value *PtrOperand : getPointerOperands(V)) { 729 auto I = InferredAddrSpace.find(PtrOperand); 730 unsigned OperandAS = I != InferredAddrSpace.end() ? 731 I->second : PtrOperand->getType()->getPointerAddressSpace(); 732 733 // join(flat, *) = flat. So we can break if NewAS is already flat. 734 NewAS = joinAddressSpaces(NewAS, OperandAS); 735 if (NewAS == FlatAddrSpace) 736 break; 737 } 738 } 739 740 unsigned OldAS = InferredAddrSpace.lookup(&V); 741 assert(OldAS != FlatAddrSpace); 742 if (OldAS == NewAS) 743 return None; 744 return NewAS; 745 } 746 747 /// \p returns true if \p U is the pointer operand of a memory instruction with 748 /// a single pointer operand that can have its address space changed by simply 749 /// mutating the use to a new value. If the memory instruction is volatile, 750 /// return true only if the target allows the memory instruction to be volatile 751 /// in the new address space. 752 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 753 Use &U, unsigned AddrSpace) { 754 User *Inst = U.getUser(); 755 unsigned OpNo = U.getOperandNo(); 756 bool VolatileIsAllowed = false; 757 if (auto *I = dyn_cast<Instruction>(Inst)) 758 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 759 760 if (auto *LI = dyn_cast<LoadInst>(Inst)) 761 return OpNo == LoadInst::getPointerOperandIndex() && 762 (VolatileIsAllowed || !LI->isVolatile()); 763 764 if (auto *SI = dyn_cast<StoreInst>(Inst)) 765 return OpNo == StoreInst::getPointerOperandIndex() && 766 (VolatileIsAllowed || !SI->isVolatile()); 767 768 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 769 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 770 (VolatileIsAllowed || !RMW->isVolatile()); 771 772 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 773 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 774 (VolatileIsAllowed || !CmpX->isVolatile()); 775 776 return false; 777 } 778 779 /// Update memory intrinsic uses that require more complex processing than 780 /// simple memory instructions. Thse require re-mangling and may have multiple 781 /// pointer operands. 782 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 783 Value *NewV) { 784 IRBuilder<> B(MI); 785 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 786 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 787 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 788 789 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 790 B.CreateMemSet(NewV, MSI->getValue(), 791 MSI->getLength(), MSI->getDestAlignment(), 792 false, // isVolatile 793 TBAA, ScopeMD, NoAliasMD); 794 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 795 Value *Src = MTI->getRawSource(); 796 Value *Dest = MTI->getRawDest(); 797 798 // Be careful in case this is a self-to-self copy. 799 if (Src == OldV) 800 Src = NewV; 801 802 if (Dest == OldV) 803 Dest = NewV; 804 805 if (isa<MemCpyInst>(MTI)) { 806 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 807 B.CreateMemCpy(Dest, MTI->getDestAlignment(), 808 Src, MTI->getSourceAlignment(), 809 MTI->getLength(), 810 false, // isVolatile 811 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 812 } else { 813 assert(isa<MemMoveInst>(MTI)); 814 B.CreateMemMove(Dest, MTI->getDestAlignment(), 815 Src, MTI->getSourceAlignment(), 816 MTI->getLength(), 817 false, // isVolatile 818 TBAA, ScopeMD, NoAliasMD); 819 } 820 } else 821 llvm_unreachable("unhandled MemIntrinsic"); 822 823 MI->eraseFromParent(); 824 return true; 825 } 826 827 // \p returns true if it is OK to change the address space of constant \p C with 828 // a ConstantExpr addrspacecast. 829 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 830 assert(NewAS != UninitializedAddressSpace); 831 832 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 833 if (SrcAS == NewAS || isa<UndefValue>(C)) 834 return true; 835 836 // Prevent illegal casts between different non-flat address spaces. 837 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 838 return false; 839 840 if (isa<ConstantPointerNull>(C)) 841 return true; 842 843 if (auto *Op = dyn_cast<Operator>(C)) { 844 // If we already have a constant addrspacecast, it should be safe to cast it 845 // off. 846 if (Op->getOpcode() == Instruction::AddrSpaceCast) 847 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 848 849 if (Op->getOpcode() == Instruction::IntToPtr && 850 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 851 return true; 852 } 853 854 return false; 855 } 856 857 static Value::use_iterator skipToNextUser(Value::use_iterator I, 858 Value::use_iterator End) { 859 User *CurUser = I->getUser(); 860 ++I; 861 862 while (I != End && I->getUser() == CurUser) 863 ++I; 864 865 return I; 866 } 867 868 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 869 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 870 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 871 // For each address expression to be modified, creates a clone of it with its 872 // pointer operands converted to the new address space. Since the pointer 873 // operands are converted, the clone is naturally in the new address space by 874 // construction. 875 ValueToValueMapTy ValueWithNewAddrSpace; 876 SmallVector<const Use *, 32> UndefUsesToFix; 877 for (Value* V : Postorder) { 878 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 879 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 880 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 881 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 882 } 883 } 884 885 if (ValueWithNewAddrSpace.empty()) 886 return false; 887 888 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 889 for (const Use *UndefUse : UndefUsesToFix) { 890 User *V = UndefUse->getUser(); 891 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 892 unsigned OperandNo = UndefUse->getOperandNo(); 893 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 894 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 895 } 896 897 SmallVector<Instruction *, 16> DeadInstructions; 898 899 // Replaces the uses of the old address expressions with the new ones. 900 for (const WeakTrackingVH &WVH : Postorder) { 901 assert(WVH && "value was unexpectedly deleted"); 902 Value *V = WVH; 903 Value *NewV = ValueWithNewAddrSpace.lookup(V); 904 if (NewV == nullptr) 905 continue; 906 907 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 908 << *NewV << '\n'); 909 910 if (Constant *C = dyn_cast<Constant>(V)) { 911 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 912 C->getType()); 913 if (C != Replace) { 914 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 915 << ": " << *Replace << '\n'); 916 C->replaceAllUsesWith(Replace); 917 V = Replace; 918 } 919 } 920 921 Value::use_iterator I, E, Next; 922 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 923 Use &U = *I; 924 925 // Some users may see the same pointer operand in multiple operands. Skip 926 // to the next instruction. 927 I = skipToNextUser(I, E); 928 929 if (isSimplePointerUseValidToReplace( 930 TTI, U, V->getType()->getPointerAddressSpace())) { 931 // If V is used as the pointer operand of a compatible memory operation, 932 // sets the pointer operand to NewV. This replacement does not change 933 // the element type, so the resultant load/store is still valid. 934 U.set(NewV); 935 continue; 936 } 937 938 User *CurUser = U.getUser(); 939 // Handle more complex cases like intrinsic that need to be remangled. 940 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 941 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 942 continue; 943 } 944 945 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 946 if (rewriteIntrinsicOperands(II, V, NewV)) 947 continue; 948 } 949 950 if (isa<Instruction>(CurUser)) { 951 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 952 // If we can infer that both pointers are in the same addrspace, 953 // transform e.g. 954 // %cmp = icmp eq float* %p, %q 955 // into 956 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 957 958 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 959 int SrcIdx = U.getOperandNo(); 960 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 961 Value *OtherSrc = Cmp->getOperand(OtherIdx); 962 963 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 964 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 965 Cmp->setOperand(OtherIdx, OtherNewV); 966 Cmp->setOperand(SrcIdx, NewV); 967 continue; 968 } 969 } 970 971 // Even if the type mismatches, we can cast the constant. 972 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 973 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 974 Cmp->setOperand(SrcIdx, NewV); 975 Cmp->setOperand(OtherIdx, 976 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 977 continue; 978 } 979 } 980 } 981 982 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 983 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 984 if (ASC->getDestAddressSpace() == NewAS) { 985 if (ASC->getType()->getPointerElementType() != 986 NewV->getType()->getPointerElementType()) { 987 NewV = CastInst::Create(Instruction::BitCast, NewV, 988 ASC->getType(), "", ASC); 989 } 990 ASC->replaceAllUsesWith(NewV); 991 DeadInstructions.push_back(ASC); 992 continue; 993 } 994 } 995 996 // Otherwise, replaces the use with flat(NewV). 997 if (Instruction *I = dyn_cast<Instruction>(V)) { 998 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 999 while (isa<PHINode>(InsertPos)) 1000 ++InsertPos; 1001 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1002 } else { 1003 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1004 V->getType())); 1005 } 1006 } 1007 } 1008 1009 if (V->use_empty()) { 1010 if (Instruction *I = dyn_cast<Instruction>(V)) 1011 DeadInstructions.push_back(I); 1012 } 1013 } 1014 1015 for (Instruction *I : DeadInstructions) 1016 RecursivelyDeleteTriviallyDeadInstructions(I); 1017 1018 return true; 1019 } 1020 1021 FunctionPass *llvm::createInferAddressSpacesPass() { 1022 return new InferAddressSpaces(); 1023 } 1024