xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision fdf651ee8d0b233bdeaf35b07033c1338b54fb39)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/ADT/ArrayRef.h"
92 #include "llvm/ADT/DenseMap.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/None.h"
95 #include "llvm/ADT/Optional.h"
96 #include "llvm/ADT/SetVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/IR/IRBuilder.h"
105 #include "llvm/IR/InstIterator.h"
106 #include "llvm/IR/Instruction.h"
107 #include "llvm/IR/Instructions.h"
108 #include "llvm/IR/IntrinsicInst.h"
109 #include "llvm/IR/Intrinsics.h"
110 #include "llvm/IR/LLVMContext.h"
111 #include "llvm/IR/Operator.h"
112 #include "llvm/IR/Type.h"
113 #include "llvm/IR/Use.h"
114 #include "llvm/IR/User.h"
115 #include "llvm/IR/Value.h"
116 #include "llvm/IR/ValueHandle.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include "llvm/Transforms/Scalar.h"
124 #include "llvm/Transforms/Utils/ValueMapper.h"
125 #include <cassert>
126 #include <iterator>
127 #include <limits>
128 #include <utility>
129 #include <vector>
130 
131 #define DEBUG_TYPE "infer-address-spaces"
132 
133 using namespace llvm;
134 
135 static const unsigned UninitializedAddressSpace =
136     std::numeric_limits<unsigned>::max();
137 
138 namespace {
139 
140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
141 
142 /// InferAddressSpaces
143 class InferAddressSpaces : public FunctionPass {
144   /// Target specific address space which uses of should be replaced if
145   /// possible.
146   unsigned FlatAddrSpace;
147 
148 public:
149   static char ID;
150 
151   InferAddressSpaces() : FunctionPass(ID) {}
152 
153   void getAnalysisUsage(AnalysisUsage &AU) const override {
154     AU.setPreservesCFG();
155     AU.addRequired<TargetTransformInfoWrapperPass>();
156   }
157 
158   bool runOnFunction(Function &F) override;
159 
160 private:
161   // Returns the new address space of V if updated; otherwise, returns None.
162   Optional<unsigned>
163   updateAddressSpace(const Value &V,
164                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
165 
166   // Tries to infer the specific address space of each address expression in
167   // Postorder.
168   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
169                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
170 
171   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
172 
173   // Changes the flat address expressions in function F to point to specific
174   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
175   // all flat expressions in the use-def graph of function F.
176   bool rewriteWithNewAddressSpaces(
177       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
178       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
179 
180   void appendsFlatAddressExpressionToPostorderStack(
181     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
182     DenseSet<Value *> &Visited) const;
183 
184   bool rewriteIntrinsicOperands(IntrinsicInst *II,
185                                 Value *OldV, Value *NewV) const;
186   void collectRewritableIntrinsicOperands(
187     IntrinsicInst *II,
188     std::vector<std::pair<Value *, bool>> &PostorderStack,
189     DenseSet<Value *> &Visited) const;
190 
191   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
192 
193   Value *cloneValueWithNewAddressSpace(
194     Value *V, unsigned NewAddrSpace,
195     const ValueToValueMapTy &ValueWithNewAddrSpace,
196     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
197   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
198 };
199 
200 } // end anonymous namespace
201 
202 char InferAddressSpaces::ID = 0;
203 
204 namespace llvm {
205 
206 void initializeInferAddressSpacesPass(PassRegistry &);
207 
208 } // end namespace llvm
209 
210 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
211                 false, false)
212 
213 // Returns true if V is an address expression.
214 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
215 // getelementptr operators.
216 static bool isAddressExpression(const Value &V) {
217   if (!isa<Operator>(V))
218     return false;
219 
220   const Operator &Op = cast<Operator>(V);
221   switch (Op.getOpcode()) {
222   case Instruction::PHI:
223     assert(Op.getType()->isPointerTy());
224     return true;
225   case Instruction::BitCast:
226   case Instruction::AddrSpaceCast:
227   case Instruction::GetElementPtr:
228     return true;
229   case Instruction::Select:
230     return Op.getType()->isPointerTy();
231   default:
232     return false;
233   }
234 }
235 
236 // Returns the pointer operands of V.
237 //
238 // Precondition: V is an address expression.
239 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
240   const Operator &Op = cast<Operator>(V);
241   switch (Op.getOpcode()) {
242   case Instruction::PHI: {
243     auto IncomingValues = cast<PHINode>(Op).incoming_values();
244     return SmallVector<Value *, 2>(IncomingValues.begin(),
245                                    IncomingValues.end());
246   }
247   case Instruction::BitCast:
248   case Instruction::AddrSpaceCast:
249   case Instruction::GetElementPtr:
250     return {Op.getOperand(0)};
251   case Instruction::Select:
252     return {Op.getOperand(1), Op.getOperand(2)};
253   default:
254     llvm_unreachable("Unexpected instruction type.");
255   }
256 }
257 
258 // TODO: Move logic to TTI?
259 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
260                                                   Value *OldV,
261                                                   Value *NewV) const {
262   Module *M = II->getParent()->getParent()->getParent();
263 
264   switch (II->getIntrinsicID()) {
265   case Intrinsic::amdgcn_atomic_inc:
266   case Intrinsic::amdgcn_atomic_dec:
267   case Intrinsic::amdgcn_ds_fadd:
268   case Intrinsic::amdgcn_ds_fmin:
269   case Intrinsic::amdgcn_ds_fmax: {
270     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
271     if (!IsVolatile || !IsVolatile->isZero())
272       return false;
273 
274     LLVM_FALLTHROUGH;
275   }
276   case Intrinsic::objectsize: {
277     Type *DestTy = II->getType();
278     Type *SrcTy = NewV->getType();
279     Function *NewDecl =
280         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
281     II->setArgOperand(0, NewV);
282     II->setCalledFunction(NewDecl);
283     return true;
284   }
285   default:
286     return false;
287   }
288 }
289 
290 // TODO: Move logic to TTI?
291 void InferAddressSpaces::collectRewritableIntrinsicOperands(
292     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
293     DenseSet<Value *> &Visited) const {
294   switch (II->getIntrinsicID()) {
295   case Intrinsic::objectsize:
296   case Intrinsic::amdgcn_atomic_inc:
297   case Intrinsic::amdgcn_atomic_dec:
298   case Intrinsic::amdgcn_ds_fadd:
299   case Intrinsic::amdgcn_ds_fmin:
300   case Intrinsic::amdgcn_ds_fmax:
301     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
302                                                  PostorderStack, Visited);
303     break;
304   default:
305     break;
306   }
307 }
308 
309 // Returns all flat address expressions in function F. The elements are
310 // If V is an unvisited flat address expression, appends V to PostorderStack
311 // and marks it as visited.
312 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
313     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
314     DenseSet<Value *> &Visited) const {
315   assert(V->getType()->isPointerTy());
316 
317   // Generic addressing expressions may be hidden in nested constant
318   // expressions.
319   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
320     // TODO: Look in non-address parts, like icmp operands.
321     if (isAddressExpression(*CE) && Visited.insert(CE).second)
322       PostorderStack.push_back(std::make_pair(CE, false));
323 
324     return;
325   }
326 
327   if (isAddressExpression(*V) &&
328       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
329     if (Visited.insert(V).second) {
330       PostorderStack.push_back(std::make_pair(V, false));
331 
332       Operator *Op = cast<Operator>(V);
333       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
334         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
335           if (isAddressExpression(*CE) && Visited.insert(CE).second)
336             PostorderStack.emplace_back(CE, false);
337         }
338       }
339     }
340   }
341 }
342 
343 // Returns all flat address expressions in function F. The elements are ordered
344 // ordered in postorder.
345 std::vector<WeakTrackingVH>
346 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
347   // This function implements a non-recursive postorder traversal of a partial
348   // use-def graph of function F.
349   std::vector<std::pair<Value *, bool>> PostorderStack;
350   // The set of visited expressions.
351   DenseSet<Value *> Visited;
352 
353   auto PushPtrOperand = [&](Value *Ptr) {
354     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
355                                                  Visited);
356   };
357 
358   // Look at operations that may be interesting accelerate by moving to a known
359   // address space. We aim at generating after loads and stores, but pure
360   // addressing calculations may also be faster.
361   for (Instruction &I : instructions(F)) {
362     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
363       if (!GEP->getType()->isVectorTy())
364         PushPtrOperand(GEP->getPointerOperand());
365     } else if (auto *LI = dyn_cast<LoadInst>(&I))
366       PushPtrOperand(LI->getPointerOperand());
367     else if (auto *SI = dyn_cast<StoreInst>(&I))
368       PushPtrOperand(SI->getPointerOperand());
369     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
370       PushPtrOperand(RMW->getPointerOperand());
371     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
372       PushPtrOperand(CmpX->getPointerOperand());
373     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
374       // For memset/memcpy/memmove, any pointer operand can be replaced.
375       PushPtrOperand(MI->getRawDest());
376 
377       // Handle 2nd operand for memcpy/memmove.
378       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
379         PushPtrOperand(MTI->getRawSource());
380     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
381       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
382     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
383       // FIXME: Handle vectors of pointers
384       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
385         PushPtrOperand(Cmp->getOperand(0));
386         PushPtrOperand(Cmp->getOperand(1));
387       }
388     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
389       if (!ASC->getType()->isVectorTy())
390         PushPtrOperand(ASC->getPointerOperand());
391     }
392   }
393 
394   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
395   while (!PostorderStack.empty()) {
396     Value *TopVal = PostorderStack.back().first;
397     // If the operands of the expression on the top are already explored,
398     // adds that expression to the resultant postorder.
399     if (PostorderStack.back().second) {
400       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
401         Postorder.push_back(TopVal);
402       PostorderStack.pop_back();
403       continue;
404     }
405     // Otherwise, adds its operands to the stack and explores them.
406     PostorderStack.back().second = true;
407     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
408       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
409                                                    Visited);
410     }
411   }
412   return Postorder;
413 }
414 
415 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
416 // of OperandUse.get() in the new address space. If the clone is not ready yet,
417 // returns an undef in the new address space as a placeholder.
418 static Value *operandWithNewAddressSpaceOrCreateUndef(
419     const Use &OperandUse, unsigned NewAddrSpace,
420     const ValueToValueMapTy &ValueWithNewAddrSpace,
421     SmallVectorImpl<const Use *> *UndefUsesToFix) {
422   Value *Operand = OperandUse.get();
423 
424   Type *NewPtrTy =
425       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
426 
427   if (Constant *C = dyn_cast<Constant>(Operand))
428     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
429 
430   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
431     return NewOperand;
432 
433   UndefUsesToFix->push_back(&OperandUse);
434   return UndefValue::get(NewPtrTy);
435 }
436 
437 // Returns a clone of `I` with its operands converted to those specified in
438 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
439 // operand whose address space needs to be modified might not exist in
440 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
441 // adds that operand use to UndefUsesToFix so that caller can fix them later.
442 //
443 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
444 // from a pointer whose type already matches. Therefore, this function returns a
445 // Value* instead of an Instruction*.
446 static Value *cloneInstructionWithNewAddressSpace(
447     Instruction *I, unsigned NewAddrSpace,
448     const ValueToValueMapTy &ValueWithNewAddrSpace,
449     SmallVectorImpl<const Use *> *UndefUsesToFix) {
450   Type *NewPtrType =
451       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
452 
453   if (I->getOpcode() == Instruction::AddrSpaceCast) {
454     Value *Src = I->getOperand(0);
455     // Because `I` is flat, the source address space must be specific.
456     // Therefore, the inferred address space must be the source space, according
457     // to our algorithm.
458     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
459     if (Src->getType() != NewPtrType)
460       return new BitCastInst(Src, NewPtrType);
461     return Src;
462   }
463 
464   // Computes the converted pointer operands.
465   SmallVector<Value *, 4> NewPointerOperands;
466   for (const Use &OperandUse : I->operands()) {
467     if (!OperandUse.get()->getType()->isPointerTy())
468       NewPointerOperands.push_back(nullptr);
469     else
470       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
471                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
472   }
473 
474   switch (I->getOpcode()) {
475   case Instruction::BitCast:
476     return new BitCastInst(NewPointerOperands[0], NewPtrType);
477   case Instruction::PHI: {
478     assert(I->getType()->isPointerTy());
479     PHINode *PHI = cast<PHINode>(I);
480     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
481     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
482       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
483       NewPHI->addIncoming(NewPointerOperands[OperandNo],
484                           PHI->getIncomingBlock(Index));
485     }
486     return NewPHI;
487   }
488   case Instruction::GetElementPtr: {
489     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
490     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
491         GEP->getSourceElementType(), NewPointerOperands[0],
492         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
493     NewGEP->setIsInBounds(GEP->isInBounds());
494     return NewGEP;
495   }
496   case Instruction::Select:
497     assert(I->getType()->isPointerTy());
498     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
499                               NewPointerOperands[2], "", nullptr, I);
500   default:
501     llvm_unreachable("Unexpected opcode");
502   }
503 }
504 
505 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
506 // constant expression `CE` with its operands replaced as specified in
507 // ValueWithNewAddrSpace.
508 static Value *cloneConstantExprWithNewAddressSpace(
509   ConstantExpr *CE, unsigned NewAddrSpace,
510   const ValueToValueMapTy &ValueWithNewAddrSpace) {
511   Type *TargetType =
512     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
513 
514   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
515     // Because CE is flat, the source address space must be specific.
516     // Therefore, the inferred address space must be the source space according
517     // to our algorithm.
518     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
519            NewAddrSpace);
520     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
521   }
522 
523   if (CE->getOpcode() == Instruction::BitCast) {
524     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
525       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
526     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
527   }
528 
529   if (CE->getOpcode() == Instruction::Select) {
530     Constant *Src0 = CE->getOperand(1);
531     Constant *Src1 = CE->getOperand(2);
532     if (Src0->getType()->getPointerAddressSpace() ==
533         Src1->getType()->getPointerAddressSpace()) {
534 
535       return ConstantExpr::getSelect(
536           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
537           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
538     }
539   }
540 
541   // Computes the operands of the new constant expression.
542   bool IsNew = false;
543   SmallVector<Constant *, 4> NewOperands;
544   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
545     Constant *Operand = CE->getOperand(Index);
546     // If the address space of `Operand` needs to be modified, the new operand
547     // with the new address space should already be in ValueWithNewAddrSpace
548     // because (1) the constant expressions we consider (i.e. addrspacecast,
549     // bitcast, and getelementptr) do not incur cycles in the data flow graph
550     // and (2) this function is called on constant expressions in postorder.
551     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
552       IsNew = true;
553       NewOperands.push_back(cast<Constant>(NewOperand));
554     } else {
555       // Otherwise, reuses the old operand.
556       NewOperands.push_back(Operand);
557     }
558   }
559 
560   // If !IsNew, we will replace the Value with itself. However, replaced values
561   // are assumed to wrapped in a addrspace cast later so drop it now.
562   if (!IsNew)
563     return nullptr;
564 
565   if (CE->getOpcode() == Instruction::GetElementPtr) {
566     // Needs to specify the source type while constructing a getelementptr
567     // constant expression.
568     return CE->getWithOperands(
569       NewOperands, TargetType, /*OnlyIfReduced=*/false,
570       NewOperands[0]->getType()->getPointerElementType());
571   }
572 
573   return CE->getWithOperands(NewOperands, TargetType);
574 }
575 
576 // Returns a clone of the value `V`, with its operands replaced as specified in
577 // ValueWithNewAddrSpace. This function is called on every flat address
578 // expression whose address space needs to be modified, in postorder.
579 //
580 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
581 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
582   Value *V, unsigned NewAddrSpace,
583   const ValueToValueMapTy &ValueWithNewAddrSpace,
584   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
585   // All values in Postorder are flat address expressions.
586   assert(isAddressExpression(*V) &&
587          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
588 
589   if (Instruction *I = dyn_cast<Instruction>(V)) {
590     Value *NewV = cloneInstructionWithNewAddressSpace(
591       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
592     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
593       if (NewI->getParent() == nullptr) {
594         NewI->insertBefore(I);
595         NewI->takeName(I);
596       }
597     }
598     return NewV;
599   }
600 
601   return cloneConstantExprWithNewAddressSpace(
602     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
603 }
604 
605 // Defines the join operation on the address space lattice (see the file header
606 // comments).
607 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
608                                                unsigned AS2) const {
609   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
610     return FlatAddrSpace;
611 
612   if (AS1 == UninitializedAddressSpace)
613     return AS2;
614   if (AS2 == UninitializedAddressSpace)
615     return AS1;
616 
617   // The join of two different specific address spaces is flat.
618   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
619 }
620 
621 bool InferAddressSpaces::runOnFunction(Function &F) {
622   if (skipFunction(F))
623     return false;
624 
625   const TargetTransformInfo &TTI =
626       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
627   FlatAddrSpace = TTI.getFlatAddressSpace();
628   if (FlatAddrSpace == UninitializedAddressSpace)
629     return false;
630 
631   // Collects all flat address expressions in postorder.
632   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
633 
634   // Runs a data-flow analysis to refine the address spaces of every expression
635   // in Postorder.
636   ValueToAddrSpaceMapTy InferredAddrSpace;
637   inferAddressSpaces(Postorder, &InferredAddrSpace);
638 
639   // Changes the address spaces of the flat address expressions who are inferred
640   // to point to a specific address space.
641   return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
642 }
643 
644 // Constants need to be tracked through RAUW to handle cases with nested
645 // constant expressions, so wrap values in WeakTrackingVH.
646 void InferAddressSpaces::inferAddressSpaces(
647     ArrayRef<WeakTrackingVH> Postorder,
648     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
649   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
650   // Initially, all expressions are in the uninitialized address space.
651   for (Value *V : Postorder)
652     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
653 
654   while (!Worklist.empty()) {
655     Value *V = Worklist.pop_back_val();
656 
657     // Tries to update the address space of the stack top according to the
658     // address spaces of its operands.
659     LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
660     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
661     if (!NewAS.hasValue())
662       continue;
663     // If any updates are made, grabs its users to the worklist because
664     // their address spaces can also be possibly updated.
665     LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
666     (*InferredAddrSpace)[V] = NewAS.getValue();
667 
668     for (Value *User : V->users()) {
669       // Skip if User is already in the worklist.
670       if (Worklist.count(User))
671         continue;
672 
673       auto Pos = InferredAddrSpace->find(User);
674       // Our algorithm only updates the address spaces of flat address
675       // expressions, which are those in InferredAddrSpace.
676       if (Pos == InferredAddrSpace->end())
677         continue;
678 
679       // Function updateAddressSpace moves the address space down a lattice
680       // path. Therefore, nothing to do if User is already inferred as flat (the
681       // bottom element in the lattice).
682       if (Pos->second == FlatAddrSpace)
683         continue;
684 
685       Worklist.insert(User);
686     }
687   }
688 }
689 
690 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
691     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
692   assert(InferredAddrSpace.count(&V));
693 
694   // The new inferred address space equals the join of the address spaces
695   // of all its pointer operands.
696   unsigned NewAS = UninitializedAddressSpace;
697 
698   const Operator &Op = cast<Operator>(V);
699   if (Op.getOpcode() == Instruction::Select) {
700     Value *Src0 = Op.getOperand(1);
701     Value *Src1 = Op.getOperand(2);
702 
703     auto I = InferredAddrSpace.find(Src0);
704     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
705       I->second : Src0->getType()->getPointerAddressSpace();
706 
707     auto J = InferredAddrSpace.find(Src1);
708     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
709       J->second : Src1->getType()->getPointerAddressSpace();
710 
711     auto *C0 = dyn_cast<Constant>(Src0);
712     auto *C1 = dyn_cast<Constant>(Src1);
713 
714     // If one of the inputs is a constant, we may be able to do a constant
715     // addrspacecast of it. Defer inferring the address space until the input
716     // address space is known.
717     if ((C1 && Src0AS == UninitializedAddressSpace) ||
718         (C0 && Src1AS == UninitializedAddressSpace))
719       return None;
720 
721     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
722       NewAS = Src1AS;
723     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
724       NewAS = Src0AS;
725     else
726       NewAS = joinAddressSpaces(Src0AS, Src1AS);
727   } else {
728     for (Value *PtrOperand : getPointerOperands(V)) {
729       auto I = InferredAddrSpace.find(PtrOperand);
730       unsigned OperandAS = I != InferredAddrSpace.end() ?
731         I->second : PtrOperand->getType()->getPointerAddressSpace();
732 
733       // join(flat, *) = flat. So we can break if NewAS is already flat.
734       NewAS = joinAddressSpaces(NewAS, OperandAS);
735       if (NewAS == FlatAddrSpace)
736         break;
737     }
738   }
739 
740   unsigned OldAS = InferredAddrSpace.lookup(&V);
741   assert(OldAS != FlatAddrSpace);
742   if (OldAS == NewAS)
743     return None;
744   return NewAS;
745 }
746 
747 /// \p returns true if \p U is the pointer operand of a memory instruction with
748 /// a single pointer operand that can have its address space changed by simply
749 /// mutating the use to a new value. If the memory instruction is volatile,
750 /// return true only if the target allows the memory instruction to be volatile
751 /// in the new address space.
752 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
753                                              Use &U, unsigned AddrSpace) {
754   User *Inst = U.getUser();
755   unsigned OpNo = U.getOperandNo();
756   bool VolatileIsAllowed = false;
757   if (auto *I = dyn_cast<Instruction>(Inst))
758     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
759 
760   if (auto *LI = dyn_cast<LoadInst>(Inst))
761     return OpNo == LoadInst::getPointerOperandIndex() &&
762            (VolatileIsAllowed || !LI->isVolatile());
763 
764   if (auto *SI = dyn_cast<StoreInst>(Inst))
765     return OpNo == StoreInst::getPointerOperandIndex() &&
766            (VolatileIsAllowed || !SI->isVolatile());
767 
768   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
769     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
770            (VolatileIsAllowed || !RMW->isVolatile());
771 
772   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
773     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
774            (VolatileIsAllowed || !CmpX->isVolatile());
775 
776   return false;
777 }
778 
779 /// Update memory intrinsic uses that require more complex processing than
780 /// simple memory instructions. Thse require re-mangling and may have multiple
781 /// pointer operands.
782 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
783                                      Value *NewV) {
784   IRBuilder<> B(MI);
785   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
786   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
787   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
788 
789   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
790     B.CreateMemSet(NewV, MSI->getValue(),
791                    MSI->getLength(), MSI->getDestAlignment(),
792                    false, // isVolatile
793                    TBAA, ScopeMD, NoAliasMD);
794   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
795     Value *Src = MTI->getRawSource();
796     Value *Dest = MTI->getRawDest();
797 
798     // Be careful in case this is a self-to-self copy.
799     if (Src == OldV)
800       Src = NewV;
801 
802     if (Dest == OldV)
803       Dest = NewV;
804 
805     if (isa<MemCpyInst>(MTI)) {
806       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
807       B.CreateMemCpy(Dest, MTI->getDestAlignment(),
808                      Src, MTI->getSourceAlignment(),
809                      MTI->getLength(),
810                      false, // isVolatile
811                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
812     } else {
813       assert(isa<MemMoveInst>(MTI));
814       B.CreateMemMove(Dest, MTI->getDestAlignment(),
815                       Src, MTI->getSourceAlignment(),
816                       MTI->getLength(),
817                       false, // isVolatile
818                       TBAA, ScopeMD, NoAliasMD);
819     }
820   } else
821     llvm_unreachable("unhandled MemIntrinsic");
822 
823   MI->eraseFromParent();
824   return true;
825 }
826 
827 // \p returns true if it is OK to change the address space of constant \p C with
828 // a ConstantExpr addrspacecast.
829 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
830   assert(NewAS != UninitializedAddressSpace);
831 
832   unsigned SrcAS = C->getType()->getPointerAddressSpace();
833   if (SrcAS == NewAS || isa<UndefValue>(C))
834     return true;
835 
836   // Prevent illegal casts between different non-flat address spaces.
837   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
838     return false;
839 
840   if (isa<ConstantPointerNull>(C))
841     return true;
842 
843   if (auto *Op = dyn_cast<Operator>(C)) {
844     // If we already have a constant addrspacecast, it should be safe to cast it
845     // off.
846     if (Op->getOpcode() == Instruction::AddrSpaceCast)
847       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
848 
849     if (Op->getOpcode() == Instruction::IntToPtr &&
850         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
851       return true;
852   }
853 
854   return false;
855 }
856 
857 static Value::use_iterator skipToNextUser(Value::use_iterator I,
858                                           Value::use_iterator End) {
859   User *CurUser = I->getUser();
860   ++I;
861 
862   while (I != End && I->getUser() == CurUser)
863     ++I;
864 
865   return I;
866 }
867 
868 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
869     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
870     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
871   // For each address expression to be modified, creates a clone of it with its
872   // pointer operands converted to the new address space. Since the pointer
873   // operands are converted, the clone is naturally in the new address space by
874   // construction.
875   ValueToValueMapTy ValueWithNewAddrSpace;
876   SmallVector<const Use *, 32> UndefUsesToFix;
877   for (Value* V : Postorder) {
878     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
879     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
880       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
881         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
882     }
883   }
884 
885   if (ValueWithNewAddrSpace.empty())
886     return false;
887 
888   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
889   for (const Use *UndefUse : UndefUsesToFix) {
890     User *V = UndefUse->getUser();
891     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
892     unsigned OperandNo = UndefUse->getOperandNo();
893     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
894     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
895   }
896 
897   SmallVector<Instruction *, 16> DeadInstructions;
898 
899   // Replaces the uses of the old address expressions with the new ones.
900   for (const WeakTrackingVH &WVH : Postorder) {
901     assert(WVH && "value was unexpectedly deleted");
902     Value *V = WVH;
903     Value *NewV = ValueWithNewAddrSpace.lookup(V);
904     if (NewV == nullptr)
905       continue;
906 
907     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
908                       << *NewV << '\n');
909 
910     if (Constant *C = dyn_cast<Constant>(V)) {
911       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
912                                                          C->getType());
913       if (C != Replace) {
914         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
915                           << ": " << *Replace << '\n');
916         C->replaceAllUsesWith(Replace);
917         V = Replace;
918       }
919     }
920 
921     Value::use_iterator I, E, Next;
922     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
923       Use &U = *I;
924 
925       // Some users may see the same pointer operand in multiple operands. Skip
926       // to the next instruction.
927       I = skipToNextUser(I, E);
928 
929       if (isSimplePointerUseValidToReplace(
930               TTI, U, V->getType()->getPointerAddressSpace())) {
931         // If V is used as the pointer operand of a compatible memory operation,
932         // sets the pointer operand to NewV. This replacement does not change
933         // the element type, so the resultant load/store is still valid.
934         U.set(NewV);
935         continue;
936       }
937 
938       User *CurUser = U.getUser();
939       // Handle more complex cases like intrinsic that need to be remangled.
940       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
941         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
942           continue;
943       }
944 
945       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
946         if (rewriteIntrinsicOperands(II, V, NewV))
947           continue;
948       }
949 
950       if (isa<Instruction>(CurUser)) {
951         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
952           // If we can infer that both pointers are in the same addrspace,
953           // transform e.g.
954           //   %cmp = icmp eq float* %p, %q
955           // into
956           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
957 
958           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
959           int SrcIdx = U.getOperandNo();
960           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
961           Value *OtherSrc = Cmp->getOperand(OtherIdx);
962 
963           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
964             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
965               Cmp->setOperand(OtherIdx, OtherNewV);
966               Cmp->setOperand(SrcIdx, NewV);
967               continue;
968             }
969           }
970 
971           // Even if the type mismatches, we can cast the constant.
972           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
973             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
974               Cmp->setOperand(SrcIdx, NewV);
975               Cmp->setOperand(OtherIdx,
976                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
977               continue;
978             }
979           }
980         }
981 
982         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
983           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
984           if (ASC->getDestAddressSpace() == NewAS) {
985             if (ASC->getType()->getPointerElementType() !=
986                 NewV->getType()->getPointerElementType()) {
987               NewV = CastInst::Create(Instruction::BitCast, NewV,
988                                       ASC->getType(), "", ASC);
989             }
990             ASC->replaceAllUsesWith(NewV);
991             DeadInstructions.push_back(ASC);
992             continue;
993           }
994         }
995 
996         // Otherwise, replaces the use with flat(NewV).
997         if (Instruction *I = dyn_cast<Instruction>(V)) {
998           BasicBlock::iterator InsertPos = std::next(I->getIterator());
999           while (isa<PHINode>(InsertPos))
1000             ++InsertPos;
1001           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
1002         } else {
1003           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1004                                                V->getType()));
1005         }
1006       }
1007     }
1008 
1009     if (V->use_empty()) {
1010       if (Instruction *I = dyn_cast<Instruction>(V))
1011         DeadInstructions.push_back(I);
1012     }
1013   }
1014 
1015   for (Instruction *I : DeadInstructions)
1016     RecursivelyDeleteTriviallyDeadInstructions(I);
1017 
1018   return true;
1019 }
1020 
1021 FunctionPass *llvm::createInferAddressSpacesPass() {
1022   return new InferAddressSpaces();
1023 }
1024