xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision fbd2a918652894b31199dffe1ce5335b019332d7)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135 
136 #define DEBUG_TYPE "infer-address-spaces"
137 
138 using namespace llvm;
139 
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142     cl::desc("The default address space is assumed as the flat address space. "
143              "This is mainly for test purpose."));
144 
145 static const unsigned UninitializedAddressSpace =
146     std::numeric_limits<unsigned>::max();
147 
148 namespace {
149 
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160 
161 class InferAddressSpaces : public FunctionPass {
162   unsigned FlatAddrSpace = 0;
163 
164 public:
165   static char ID;
166 
167   InferAddressSpaces()
168       : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170   }
171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173   }
174 
175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.setPreservesCFG();
177     AU.addPreserved<DominatorTreeWrapperPass>();
178     AU.addRequired<AssumptionCacheTracker>();
179     AU.addRequired<TargetTransformInfoWrapperPass>();
180   }
181 
182   bool runOnFunction(Function &F) override;
183 };
184 
185 class InferAddressSpacesImpl {
186   AssumptionCache &AC;
187   Function *F = nullptr;
188   const DominatorTree *DT = nullptr;
189   const TargetTransformInfo *TTI = nullptr;
190   const DataLayout *DL = nullptr;
191 
192   /// Target specific address space which uses of should be replaced if
193   /// possible.
194   unsigned FlatAddrSpace = 0;
195 
196   // Try to update the address space of V. If V is updated, returns true and
197   // false otherwise.
198   bool updateAddressSpace(const Value &V,
199                           ValueToAddrSpaceMapTy &InferredAddrSpace,
200                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
201 
202   // Tries to infer the specific address space of each address expression in
203   // Postorder.
204   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
205                           ValueToAddrSpaceMapTy &InferredAddrSpace,
206                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
207 
208   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
209 
210   Value *cloneInstructionWithNewAddressSpace(
211       Instruction *I, unsigned NewAddrSpace,
212       const ValueToValueMapTy &ValueWithNewAddrSpace,
213       const PredicatedAddrSpaceMapTy &PredicatedAS,
214       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
215 
216   void performPointerReplacement(
217       Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
218       SmallVectorImpl<Instruction *> &DeadInstructions) const;
219 
220   // Changes the flat address expressions in function F to point to specific
221   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
222   // all flat expressions in the use-def graph of function F.
223   bool rewriteWithNewAddressSpaces(
224       ArrayRef<WeakTrackingVH> Postorder,
225       const ValueToAddrSpaceMapTy &InferredAddrSpace,
226       const PredicatedAddrSpaceMapTy &PredicatedAS) const;
227 
228   void appendsFlatAddressExpressionToPostorderStack(
229       Value *V, PostorderStackTy &PostorderStack,
230       DenseSet<Value *> &Visited) const;
231 
232   bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
233                                 Value *NewV) const;
234   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
235                                           PostorderStackTy &PostorderStack,
236                                           DenseSet<Value *> &Visited) const;
237 
238   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
239 
240   Value *cloneValueWithNewAddressSpace(
241       Value *V, unsigned NewAddrSpace,
242       const ValueToValueMapTy &ValueWithNewAddrSpace,
243       const PredicatedAddrSpaceMapTy &PredicatedAS,
244       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
245   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
246 
247   unsigned getPredicatedAddrSpace(const Value &PtrV,
248                                   const Value *UserCtx) const;
249 
250 public:
251   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
252                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
253       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
254   bool run(Function &F);
255 };
256 
257 } // end anonymous namespace
258 
259 char InferAddressSpaces::ID = 0;
260 
261 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
262                       false, false)
263 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
264 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
265 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
266                     false, false)
267 
268 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
269   assert(Ty->isPtrOrPtrVectorTy());
270   PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
271   return Ty->getWithNewType(NPT);
272 }
273 
274 // Check whether that's no-op pointer bicast using a pair of
275 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
276 // different address spaces.
277 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
278                                  const TargetTransformInfo *TTI) {
279   assert(I2P->getOpcode() == Instruction::IntToPtr);
280   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
281   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
282     return false;
283   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
284   // no-op cast. Besides checking both of them are no-op casts, as the
285   // reinterpreted pointer may be used in other pointer arithmetic, we also
286   // need to double-check that through the target-specific hook. That ensures
287   // the underlying target also agrees that's a no-op address space cast and
288   // pointer bits are preserved.
289   // The current IR spec doesn't have clear rules on address space casts,
290   // especially a clear definition for pointer bits in non-default address
291   // spaces. It would be undefined if that pointer is dereferenced after an
292   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
293   // bits in non-default address spaces in the current spec, the pointer
294   // arithmetic may also be undefined after invalid pointer reinterpret cast.
295   // However, as we confirm through the target hooks that it's a no-op
296   // addrspacecast, it doesn't matter since the bits should be the same.
297   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
298   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
299   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
300                               I2P->getOperand(0)->getType(), I2P->getType(),
301                               DL) &&
302          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
303                               P2I->getOperand(0)->getType(), P2I->getType(),
304                               DL) &&
305          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
306 }
307 
308 // Returns true if V is an address expression.
309 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
310 // getelementptr operators.
311 static bool isAddressExpression(const Value &V, const DataLayout &DL,
312                                 const TargetTransformInfo *TTI) {
313   const Operator *Op = dyn_cast<Operator>(&V);
314   if (!Op)
315     return false;
316 
317   switch (Op->getOpcode()) {
318   case Instruction::PHI:
319     assert(Op->getType()->isPtrOrPtrVectorTy());
320     return true;
321   case Instruction::BitCast:
322   case Instruction::AddrSpaceCast:
323   case Instruction::GetElementPtr:
324     return true;
325   case Instruction::Select:
326     return Op->getType()->isPtrOrPtrVectorTy();
327   case Instruction::Call: {
328     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
329     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
330   }
331   case Instruction::IntToPtr:
332     return isNoopPtrIntCastPair(Op, DL, TTI);
333   default:
334     // That value is an address expression if it has an assumed address space.
335     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
336   }
337 }
338 
339 // Returns the pointer operands of V.
340 //
341 // Precondition: V is an address expression.
342 static SmallVector<Value *, 2>
343 getPointerOperands(const Value &V, const DataLayout &DL,
344                    const TargetTransformInfo *TTI) {
345   const Operator &Op = cast<Operator>(V);
346   switch (Op.getOpcode()) {
347   case Instruction::PHI: {
348     auto IncomingValues = cast<PHINode>(Op).incoming_values();
349     return {IncomingValues.begin(), IncomingValues.end()};
350   }
351   case Instruction::BitCast:
352   case Instruction::AddrSpaceCast:
353   case Instruction::GetElementPtr:
354     return {Op.getOperand(0)};
355   case Instruction::Select:
356     return {Op.getOperand(1), Op.getOperand(2)};
357   case Instruction::Call: {
358     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
359     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
360            "unexpected intrinsic call");
361     return {II.getArgOperand(0)};
362   }
363   case Instruction::IntToPtr: {
364     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
365     auto *P2I = cast<Operator>(Op.getOperand(0));
366     return {P2I->getOperand(0)};
367   }
368   default:
369     llvm_unreachable("Unexpected instruction type.");
370   }
371 }
372 
373 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
374                                                       Value *OldV,
375                                                       Value *NewV) const {
376   Module *M = II->getParent()->getParent()->getParent();
377   Intrinsic::ID IID = II->getIntrinsicID();
378   switch (IID) {
379   case Intrinsic::objectsize:
380   case Intrinsic::masked_load: {
381     Type *DestTy = II->getType();
382     Type *SrcTy = NewV->getType();
383     Function *NewDecl = Intrinsic::getDeclaration(M, IID, {DestTy, SrcTy});
384     II->setArgOperand(0, NewV);
385     II->setCalledFunction(NewDecl);
386     return true;
387   }
388   case Intrinsic::ptrmask:
389     // This is handled as an address expression, not as a use memory operation.
390     return false;
391   case Intrinsic::masked_gather: {
392     Type *RetTy = II->getType();
393     Type *NewPtrTy = NewV->getType();
394     Function *NewDecl = Intrinsic::getDeclaration(M, IID, {RetTy, NewPtrTy});
395     II->setArgOperand(0, NewV);
396     II->setCalledFunction(NewDecl);
397     return true;
398   }
399   case Intrinsic::masked_store:
400   case Intrinsic::masked_scatter: {
401     Type *ValueTy = II->getOperand(0)->getType();
402     Type *NewPtrTy = NewV->getType();
403     Function *NewDecl =
404         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
405     II->setArgOperand(1, NewV);
406     II->setCalledFunction(NewDecl);
407     return true;
408   }
409   case Intrinsic::prefetch:
410   case Intrinsic::is_constant: {
411     Function *NewDecl =
412         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {NewV->getType()});
413     II->setArgOperand(0, NewV);
414     II->setCalledFunction(NewDecl);
415     return true;
416   }
417   case Intrinsic::fake_use: {
418     II->replaceUsesOfWith(OldV, NewV);
419     return true;
420   }
421   default: {
422     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
423     if (!Rewrite)
424       return false;
425     if (Rewrite != II)
426       II->replaceAllUsesWith(Rewrite);
427     return true;
428   }
429   }
430 }
431 
432 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
433     IntrinsicInst *II, PostorderStackTy &PostorderStack,
434     DenseSet<Value *> &Visited) const {
435   auto IID = II->getIntrinsicID();
436   switch (IID) {
437   case Intrinsic::ptrmask:
438   case Intrinsic::objectsize:
439     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
440                                                  PostorderStack, Visited);
441     break;
442   case Intrinsic::is_constant: {
443     Value *Ptr = II->getArgOperand(0);
444     if (Ptr->getType()->isPtrOrPtrVectorTy()) {
445       appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
446                                                    Visited);
447     }
448 
449     break;
450   }
451   case Intrinsic::masked_load:
452   case Intrinsic::masked_gather:
453   case Intrinsic::prefetch:
454     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
455                                                  PostorderStack, Visited);
456     break;
457   case Intrinsic::masked_store:
458   case Intrinsic::masked_scatter:
459     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
460                                                  PostorderStack, Visited);
461     break;
462   case Intrinsic::fake_use: {
463     for (Value *Op : II->operands()) {
464       if (Op->getType()->isPtrOrPtrVectorTy()) {
465         appendsFlatAddressExpressionToPostorderStack(Op, PostorderStack,
466                                                      Visited);
467       }
468     }
469 
470     break;
471   }
472   default:
473     SmallVector<int, 2> OpIndexes;
474     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
475       for (int Idx : OpIndexes) {
476         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
477                                                      PostorderStack, Visited);
478       }
479     }
480     break;
481   }
482 }
483 
484 // Returns all flat address expressions in function F. The elements are
485 // If V is an unvisited flat address expression, appends V to PostorderStack
486 // and marks it as visited.
487 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
488     Value *V, PostorderStackTy &PostorderStack,
489     DenseSet<Value *> &Visited) const {
490   assert(V->getType()->isPtrOrPtrVectorTy());
491 
492   // Generic addressing expressions may be hidden in nested constant
493   // expressions.
494   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
495     // TODO: Look in non-address parts, like icmp operands.
496     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
497       PostorderStack.emplace_back(CE, false);
498 
499     return;
500   }
501 
502   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
503       isAddressExpression(*V, *DL, TTI)) {
504     if (Visited.insert(V).second) {
505       PostorderStack.emplace_back(V, false);
506 
507       Operator *Op = cast<Operator>(V);
508       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
509         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
510           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
511             PostorderStack.emplace_back(CE, false);
512         }
513       }
514     }
515   }
516 }
517 
518 // Returns all flat address expressions in function F. The elements are ordered
519 // in postorder.
520 std::vector<WeakTrackingVH>
521 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
522   // This function implements a non-recursive postorder traversal of a partial
523   // use-def graph of function F.
524   PostorderStackTy PostorderStack;
525   // The set of visited expressions.
526   DenseSet<Value *> Visited;
527 
528   auto PushPtrOperand = [&](Value *Ptr) {
529     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
530   };
531 
532   // Look at operations that may be interesting accelerate by moving to a known
533   // address space. We aim at generating after loads and stores, but pure
534   // addressing calculations may also be faster.
535   for (Instruction &I : instructions(F)) {
536     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
537       PushPtrOperand(GEP->getPointerOperand());
538     } else if (auto *LI = dyn_cast<LoadInst>(&I))
539       PushPtrOperand(LI->getPointerOperand());
540     else if (auto *SI = dyn_cast<StoreInst>(&I))
541       PushPtrOperand(SI->getPointerOperand());
542     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
543       PushPtrOperand(RMW->getPointerOperand());
544     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
545       PushPtrOperand(CmpX->getPointerOperand());
546     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
547       // For memset/memcpy/memmove, any pointer operand can be replaced.
548       PushPtrOperand(MI->getRawDest());
549 
550       // Handle 2nd operand for memcpy/memmove.
551       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
552         PushPtrOperand(MTI->getRawSource());
553     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
554       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
555     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
556       if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
557         PushPtrOperand(Cmp->getOperand(0));
558         PushPtrOperand(Cmp->getOperand(1));
559       }
560     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
561       PushPtrOperand(ASC->getPointerOperand());
562     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
563       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
564         PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
565     } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
566       if (auto *RV = RI->getReturnValue();
567           RV && RV->getType()->isPtrOrPtrVectorTy())
568         PushPtrOperand(RV);
569     }
570   }
571 
572   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
573   while (!PostorderStack.empty()) {
574     Value *TopVal = PostorderStack.back().getPointer();
575     // If the operands of the expression on the top are already explored,
576     // adds that expression to the resultant postorder.
577     if (PostorderStack.back().getInt()) {
578       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
579         Postorder.push_back(TopVal);
580       PostorderStack.pop_back();
581       continue;
582     }
583     // Otherwise, adds its operands to the stack and explores them.
584     PostorderStack.back().setInt(true);
585     // Skip values with an assumed address space.
586     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
587       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
588         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
589                                                      Visited);
590       }
591     }
592   }
593   return Postorder;
594 }
595 
596 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
597 // of OperandUse.get() in the new address space. If the clone is not ready yet,
598 // returns poison in the new address space as a placeholder.
599 static Value *operandWithNewAddressSpaceOrCreatePoison(
600     const Use &OperandUse, unsigned NewAddrSpace,
601     const ValueToValueMapTy &ValueWithNewAddrSpace,
602     const PredicatedAddrSpaceMapTy &PredicatedAS,
603     SmallVectorImpl<const Use *> *PoisonUsesToFix) {
604   Value *Operand = OperandUse.get();
605 
606   Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
607 
608   if (Constant *C = dyn_cast<Constant>(Operand))
609     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
610 
611   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
612     return NewOperand;
613 
614   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
615   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
616   if (I != PredicatedAS.end()) {
617     // Insert an addrspacecast on that operand before the user.
618     unsigned NewAS = I->second;
619     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
620     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
621     NewI->insertBefore(Inst);
622     NewI->setDebugLoc(Inst->getDebugLoc());
623     return NewI;
624   }
625 
626   PoisonUsesToFix->push_back(&OperandUse);
627   return PoisonValue::get(NewPtrTy);
628 }
629 
630 // Returns a clone of `I` with its operands converted to those specified in
631 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
632 // operand whose address space needs to be modified might not exist in
633 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
634 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
635 //
636 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
637 // from a pointer whose type already matches. Therefore, this function returns a
638 // Value* instead of an Instruction*.
639 //
640 // This may also return nullptr in the case the instruction could not be
641 // rewritten.
642 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
643     Instruction *I, unsigned NewAddrSpace,
644     const ValueToValueMapTy &ValueWithNewAddrSpace,
645     const PredicatedAddrSpaceMapTy &PredicatedAS,
646     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
647   Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
648 
649   if (I->getOpcode() == Instruction::AddrSpaceCast) {
650     Value *Src = I->getOperand(0);
651     // Because `I` is flat, the source address space must be specific.
652     // Therefore, the inferred address space must be the source space, according
653     // to our algorithm.
654     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
655     if (Src->getType() != NewPtrType)
656       return new BitCastInst(Src, NewPtrType);
657     return Src;
658   }
659 
660   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
661     // Technically the intrinsic ID is a pointer typed argument, so specially
662     // handle calls early.
663     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
664     Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
665         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
666         PredicatedAS, PoisonUsesToFix);
667     Value *Rewrite =
668         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
669     if (Rewrite) {
670       assert(Rewrite != II && "cannot modify this pointer operation in place");
671       return Rewrite;
672     }
673 
674     return nullptr;
675   }
676 
677   unsigned AS = TTI->getAssumedAddrSpace(I);
678   if (AS != UninitializedAddressSpace) {
679     // For the assumed address space, insert an `addrspacecast` to make that
680     // explicit.
681     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
682     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
683     NewI->insertAfter(I);
684     NewI->setDebugLoc(I->getDebugLoc());
685     return NewI;
686   }
687 
688   // Computes the converted pointer operands.
689   SmallVector<Value *, 4> NewPointerOperands;
690   for (const Use &OperandUse : I->operands()) {
691     if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
692       NewPointerOperands.push_back(nullptr);
693     else
694       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
695           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
696           PoisonUsesToFix));
697   }
698 
699   switch (I->getOpcode()) {
700   case Instruction::BitCast:
701     return new BitCastInst(NewPointerOperands[0], NewPtrType);
702   case Instruction::PHI: {
703     assert(I->getType()->isPtrOrPtrVectorTy());
704     PHINode *PHI = cast<PHINode>(I);
705     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
706     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
707       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
708       NewPHI->addIncoming(NewPointerOperands[OperandNo],
709                           PHI->getIncomingBlock(Index));
710     }
711     return NewPHI;
712   }
713   case Instruction::GetElementPtr: {
714     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
715     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
716         GEP->getSourceElementType(), NewPointerOperands[0],
717         SmallVector<Value *, 4>(GEP->indices()));
718     NewGEP->setIsInBounds(GEP->isInBounds());
719     return NewGEP;
720   }
721   case Instruction::Select:
722     assert(I->getType()->isPtrOrPtrVectorTy());
723     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
724                               NewPointerOperands[2], "", nullptr, I);
725   case Instruction::IntToPtr: {
726     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
727     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
728     if (Src->getType() == NewPtrType)
729       return Src;
730 
731     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
732     // source address space from a generic pointer source need to insert a cast
733     // back.
734     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
735   }
736   default:
737     llvm_unreachable("Unexpected opcode");
738   }
739 }
740 
741 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
742 // constant expression `CE` with its operands replaced as specified in
743 // ValueWithNewAddrSpace.
744 static Value *cloneConstantExprWithNewAddressSpace(
745     ConstantExpr *CE, unsigned NewAddrSpace,
746     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
747     const TargetTransformInfo *TTI) {
748   Type *TargetType =
749       CE->getType()->isPtrOrPtrVectorTy()
750           ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
751           : CE->getType();
752 
753   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
754     // Because CE is flat, the source address space must be specific.
755     // Therefore, the inferred address space must be the source space according
756     // to our algorithm.
757     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
758            NewAddrSpace);
759     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
760   }
761 
762   if (CE->getOpcode() == Instruction::BitCast) {
763     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
764       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
765     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
766   }
767 
768   if (CE->getOpcode() == Instruction::IntToPtr) {
769     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
770     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
771     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
772     return ConstantExpr::getBitCast(Src, TargetType);
773   }
774 
775   // Computes the operands of the new constant expression.
776   bool IsNew = false;
777   SmallVector<Constant *, 4> NewOperands;
778   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
779     Constant *Operand = CE->getOperand(Index);
780     // If the address space of `Operand` needs to be modified, the new operand
781     // with the new address space should already be in ValueWithNewAddrSpace
782     // because (1) the constant expressions we consider (i.e. addrspacecast,
783     // bitcast, and getelementptr) do not incur cycles in the data flow graph
784     // and (2) this function is called on constant expressions in postorder.
785     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
786       IsNew = true;
787       NewOperands.push_back(cast<Constant>(NewOperand));
788       continue;
789     }
790     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
791       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
792               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
793         IsNew = true;
794         NewOperands.push_back(cast<Constant>(NewOperand));
795         continue;
796       }
797     // Otherwise, reuses the old operand.
798     NewOperands.push_back(Operand);
799   }
800 
801   // If !IsNew, we will replace the Value with itself. However, replaced values
802   // are assumed to wrapped in an addrspacecast cast later so drop it now.
803   if (!IsNew)
804     return nullptr;
805 
806   if (CE->getOpcode() == Instruction::GetElementPtr) {
807     // Needs to specify the source type while constructing a getelementptr
808     // constant expression.
809     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
810                                cast<GEPOperator>(CE)->getSourceElementType());
811   }
812 
813   return CE->getWithOperands(NewOperands, TargetType);
814 }
815 
816 // Returns a clone of the value `V`, with its operands replaced as specified in
817 // ValueWithNewAddrSpace. This function is called on every flat address
818 // expression whose address space needs to be modified, in postorder.
819 //
820 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
821 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
822     Value *V, unsigned NewAddrSpace,
823     const ValueToValueMapTy &ValueWithNewAddrSpace,
824     const PredicatedAddrSpaceMapTy &PredicatedAS,
825     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
826   // All values in Postorder are flat address expressions.
827   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
828          isAddressExpression(*V, *DL, TTI));
829 
830   if (Instruction *I = dyn_cast<Instruction>(V)) {
831     Value *NewV = cloneInstructionWithNewAddressSpace(
832         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
833     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
834       if (NewI->getParent() == nullptr) {
835         NewI->insertBefore(I);
836         NewI->takeName(I);
837         NewI->setDebugLoc(I->getDebugLoc());
838       }
839     }
840     return NewV;
841   }
842 
843   return cloneConstantExprWithNewAddressSpace(
844       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
845 }
846 
847 // Defines the join operation on the address space lattice (see the file header
848 // comments).
849 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
850                                                    unsigned AS2) const {
851   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
852     return FlatAddrSpace;
853 
854   if (AS1 == UninitializedAddressSpace)
855     return AS2;
856   if (AS2 == UninitializedAddressSpace)
857     return AS1;
858 
859   // The join of two different specific address spaces is flat.
860   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
861 }
862 
863 bool InferAddressSpacesImpl::run(Function &CurFn) {
864   F = &CurFn;
865   DL = &F->getDataLayout();
866 
867   if (AssumeDefaultIsFlatAddressSpace)
868     FlatAddrSpace = 0;
869 
870   if (FlatAddrSpace == UninitializedAddressSpace) {
871     FlatAddrSpace = TTI->getFlatAddressSpace();
872     if (FlatAddrSpace == UninitializedAddressSpace)
873       return false;
874   }
875 
876   // Collects all flat address expressions in postorder.
877   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F);
878 
879   // Runs a data-flow analysis to refine the address spaces of every expression
880   // in Postorder.
881   ValueToAddrSpaceMapTy InferredAddrSpace;
882   PredicatedAddrSpaceMapTy PredicatedAS;
883   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
884 
885   // Changes the address spaces of the flat address expressions who are inferred
886   // to point to a specific address space.
887   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace,
888                                      PredicatedAS);
889 }
890 
891 // Constants need to be tracked through RAUW to handle cases with nested
892 // constant expressions, so wrap values in WeakTrackingVH.
893 void InferAddressSpacesImpl::inferAddressSpaces(
894     ArrayRef<WeakTrackingVH> Postorder,
895     ValueToAddrSpaceMapTy &InferredAddrSpace,
896     PredicatedAddrSpaceMapTy &PredicatedAS) const {
897   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
898   // Initially, all expressions are in the uninitialized address space.
899   for (Value *V : Postorder)
900     InferredAddrSpace[V] = UninitializedAddressSpace;
901 
902   while (!Worklist.empty()) {
903     Value *V = Worklist.pop_back_val();
904 
905     // Try to update the address space of the stack top according to the
906     // address spaces of its operands.
907     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
908       continue;
909 
910     for (Value *User : V->users()) {
911       // Skip if User is already in the worklist.
912       if (Worklist.count(User))
913         continue;
914 
915       auto Pos = InferredAddrSpace.find(User);
916       // Our algorithm only updates the address spaces of flat address
917       // expressions, which are those in InferredAddrSpace.
918       if (Pos == InferredAddrSpace.end())
919         continue;
920 
921       // Function updateAddressSpace moves the address space down a lattice
922       // path. Therefore, nothing to do if User is already inferred as flat (the
923       // bottom element in the lattice).
924       if (Pos->second == FlatAddrSpace)
925         continue;
926 
927       Worklist.insert(User);
928     }
929   }
930 }
931 
932 unsigned
933 InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr,
934                                                const Value *UserCtx) const {
935   const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx);
936   if (!UserCtxI)
937     return UninitializedAddressSpace;
938 
939   const Value *StrippedPtr = Ptr.stripInBoundsOffsets();
940   for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) {
941     if (!AssumeVH)
942       continue;
943     CallInst *CI = cast<CallInst>(AssumeVH);
944     if (!isValidAssumeForContext(CI, UserCtxI, DT))
945       continue;
946 
947     const Value *Ptr;
948     unsigned AS;
949     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
950     if (Ptr)
951       return AS;
952   }
953 
954   return UninitializedAddressSpace;
955 }
956 
957 bool InferAddressSpacesImpl::updateAddressSpace(
958     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
959     PredicatedAddrSpaceMapTy &PredicatedAS) const {
960   assert(InferredAddrSpace.count(&V));
961 
962   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
963 
964   // The new inferred address space equals the join of the address spaces
965   // of all its pointer operands.
966   unsigned NewAS = UninitializedAddressSpace;
967 
968   const Operator &Op = cast<Operator>(V);
969   if (Op.getOpcode() == Instruction::Select) {
970     Value *Src0 = Op.getOperand(1);
971     Value *Src1 = Op.getOperand(2);
972 
973     auto I = InferredAddrSpace.find(Src0);
974     unsigned Src0AS = (I != InferredAddrSpace.end())
975                           ? I->second
976                           : Src0->getType()->getPointerAddressSpace();
977 
978     auto J = InferredAddrSpace.find(Src1);
979     unsigned Src1AS = (J != InferredAddrSpace.end())
980                           ? J->second
981                           : Src1->getType()->getPointerAddressSpace();
982 
983     auto *C0 = dyn_cast<Constant>(Src0);
984     auto *C1 = dyn_cast<Constant>(Src1);
985 
986     // If one of the inputs is a constant, we may be able to do a constant
987     // addrspacecast of it. Defer inferring the address space until the input
988     // address space is known.
989     if ((C1 && Src0AS == UninitializedAddressSpace) ||
990         (C0 && Src1AS == UninitializedAddressSpace))
991       return false;
992 
993     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
994       NewAS = Src1AS;
995     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
996       NewAS = Src0AS;
997     else
998       NewAS = joinAddressSpaces(Src0AS, Src1AS);
999   } else {
1000     unsigned AS = TTI->getAssumedAddrSpace(&V);
1001     if (AS != UninitializedAddressSpace) {
1002       // Use the assumed address space directly.
1003       NewAS = AS;
1004     } else {
1005       // Otherwise, infer the address space from its pointer operands.
1006       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
1007         auto I = InferredAddrSpace.find(PtrOperand);
1008         unsigned OperandAS;
1009         if (I == InferredAddrSpace.end()) {
1010           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
1011           if (OperandAS == FlatAddrSpace) {
1012             // Check AC for assumption dominating V.
1013             unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V);
1014             if (AS != UninitializedAddressSpace) {
1015               LLVM_DEBUG(dbgs()
1016                          << "  deduce operand AS from the predicate addrspace "
1017                          << AS << '\n');
1018               OperandAS = AS;
1019               // Record this use with the predicated AS.
1020               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
1021             }
1022           }
1023         } else
1024           OperandAS = I->second;
1025 
1026         // join(flat, *) = flat. So we can break if NewAS is already flat.
1027         NewAS = joinAddressSpaces(NewAS, OperandAS);
1028         if (NewAS == FlatAddrSpace)
1029           break;
1030       }
1031     }
1032   }
1033 
1034   unsigned OldAS = InferredAddrSpace.lookup(&V);
1035   assert(OldAS != FlatAddrSpace);
1036   if (OldAS == NewAS)
1037     return false;
1038 
1039   // If any updates are made, grabs its users to the worklist because
1040   // their address spaces can also be possibly updated.
1041   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
1042   InferredAddrSpace[&V] = NewAS;
1043   return true;
1044 }
1045 
1046 /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal
1047 /// with \p NewVal.
1048 static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx,
1049                                  Value *OldVal, Value *NewVal) {
1050   Use &U = Inst->getOperandUse(OpIdx);
1051   if (U.get() == OldVal) {
1052     U.set(NewVal);
1053     return true;
1054   }
1055 
1056   return false;
1057 }
1058 
1059 template <typename InstrType>
1060 static bool replaceSimplePointerUse(const TargetTransformInfo &TTI,
1061                                     InstrType *MemInstr, unsigned AddrSpace,
1062                                     Value *OldV, Value *NewV) {
1063   if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) {
1064     return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(),
1065                                 OldV, NewV);
1066   }
1067 
1068   return false;
1069 }
1070 
1071 /// If \p OldV is used as the pointer operand of a compatible memory operation
1072 /// \p Inst, replaces the pointer operand with NewV.
1073 ///
1074 /// This covers memory instructions with a single pointer operand that can have
1075 /// its address space changed by simply mutating the use to a new value.
1076 ///
1077 /// \p returns true the user replacement was made.
1078 static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI,
1079                                       User *Inst, unsigned AddrSpace,
1080                                       Value *OldV, Value *NewV) {
1081   if (auto *LI = dyn_cast<LoadInst>(Inst))
1082     return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV);
1083 
1084   if (auto *SI = dyn_cast<StoreInst>(Inst))
1085     return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV);
1086 
1087   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1088     return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV);
1089 
1090   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1091     return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV);
1092 
1093   return false;
1094 }
1095 
1096 /// Update memory intrinsic uses that require more complex processing than
1097 /// simple memory instructions. These require re-mangling and may have multiple
1098 /// pointer operands.
1099 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1100                                      Value *NewV) {
1101   IRBuilder<> B(MI);
1102   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1103   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1104   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1105 
1106   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1107     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1108                    false, // isVolatile
1109                    TBAA, ScopeMD, NoAliasMD);
1110   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1111     Value *Src = MTI->getRawSource();
1112     Value *Dest = MTI->getRawDest();
1113 
1114     // Be careful in case this is a self-to-self copy.
1115     if (Src == OldV)
1116       Src = NewV;
1117 
1118     if (Dest == OldV)
1119       Dest = NewV;
1120 
1121     if (isa<MemCpyInlineInst>(MTI)) {
1122       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1123       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1124                            MTI->getSourceAlign(), MTI->getLength(),
1125                            false, // isVolatile
1126                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1127     } else if (isa<MemCpyInst>(MTI)) {
1128       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1129       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1130                      MTI->getLength(),
1131                      false, // isVolatile
1132                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1133     } else {
1134       assert(isa<MemMoveInst>(MTI));
1135       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1136                       MTI->getLength(),
1137                       false, // isVolatile
1138                       TBAA, ScopeMD, NoAliasMD);
1139     }
1140   } else
1141     llvm_unreachable("unhandled MemIntrinsic");
1142 
1143   MI->eraseFromParent();
1144   return true;
1145 }
1146 
1147 // \p returns true if it is OK to change the address space of constant \p C with
1148 // a ConstantExpr addrspacecast.
1149 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1150                                                         unsigned NewAS) const {
1151   assert(NewAS != UninitializedAddressSpace);
1152 
1153   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1154   if (SrcAS == NewAS || isa<UndefValue>(C))
1155     return true;
1156 
1157   // Prevent illegal casts between different non-flat address spaces.
1158   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1159     return false;
1160 
1161   if (isa<ConstantPointerNull>(C))
1162     return true;
1163 
1164   if (auto *Op = dyn_cast<Operator>(C)) {
1165     // If we already have a constant addrspacecast, it should be safe to cast it
1166     // off.
1167     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1168       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1169                                         NewAS);
1170 
1171     if (Op->getOpcode() == Instruction::IntToPtr &&
1172         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1173       return true;
1174   }
1175 
1176   return false;
1177 }
1178 
1179 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1180                                           Value::use_iterator End) {
1181   User *CurUser = I->getUser();
1182   ++I;
1183 
1184   while (I != End && I->getUser() == CurUser)
1185     ++I;
1186 
1187   return I;
1188 }
1189 
1190 void InferAddressSpacesImpl::performPointerReplacement(
1191     Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
1192     SmallVectorImpl<Instruction *> &DeadInstructions) const {
1193 
1194   User *CurUser = U.getUser();
1195 
1196   unsigned AddrSpace = V->getType()->getPointerAddressSpace();
1197   if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV))
1198     return;
1199 
1200   // Skip if the current user is the new value itself.
1201   if (CurUser == NewV)
1202     return;
1203 
1204   auto *CurUserI = dyn_cast<Instruction>(CurUser);
1205   if (!CurUserI || CurUserI->getFunction() != F)
1206     return;
1207 
1208   // Handle more complex cases like intrinsic that need to be remangled.
1209   if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1210     if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1211       return;
1212   }
1213 
1214   if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1215     if (rewriteIntrinsicOperands(II, V, NewV))
1216       return;
1217   }
1218 
1219   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) {
1220     // If we can infer that both pointers are in the same addrspace,
1221     // transform e.g.
1222     //   %cmp = icmp eq float* %p, %q
1223     // into
1224     //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1225 
1226     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1227     int SrcIdx = U.getOperandNo();
1228     int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1229     Value *OtherSrc = Cmp->getOperand(OtherIdx);
1230 
1231     if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1232       if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1233         Cmp->setOperand(OtherIdx, OtherNewV);
1234         Cmp->setOperand(SrcIdx, NewV);
1235         return;
1236       }
1237     }
1238 
1239     // Even if the type mismatches, we can cast the constant.
1240     if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1241       if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1242         Cmp->setOperand(SrcIdx, NewV);
1243         Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1244                                       KOtherSrc, NewV->getType()));
1245         return;
1246       }
1247     }
1248   }
1249 
1250   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) {
1251     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1252     if (ASC->getDestAddressSpace() == NewAS) {
1253       ASC->replaceAllUsesWith(NewV);
1254       DeadInstructions.push_back(ASC);
1255       return;
1256     }
1257   }
1258 
1259   // Otherwise, replaces the use with flat(NewV).
1260   if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1261     // Don't create a copy of the original addrspacecast.
1262     if (U == V && isa<AddrSpaceCastInst>(V))
1263       return;
1264 
1265     // Insert the addrspacecast after NewV.
1266     BasicBlock::iterator InsertPos;
1267     if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1268       InsertPos = std::next(NewVInst->getIterator());
1269     else
1270       InsertPos = std::next(VInst->getIterator());
1271 
1272     while (isa<PHINode>(InsertPos))
1273       ++InsertPos;
1274     // This instruction may contain multiple uses of V, update them all.
1275     CurUser->replaceUsesOfWith(
1276         V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1277   } else {
1278     CurUserI->replaceUsesOfWith(
1279         V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType()));
1280   }
1281 }
1282 
1283 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1284     ArrayRef<WeakTrackingVH> Postorder,
1285     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1286     const PredicatedAddrSpaceMapTy &PredicatedAS) const {
1287   // For each address expression to be modified, creates a clone of it with its
1288   // pointer operands converted to the new address space. Since the pointer
1289   // operands are converted, the clone is naturally in the new address space by
1290   // construction.
1291   ValueToValueMapTy ValueWithNewAddrSpace;
1292   SmallVector<const Use *, 32> PoisonUsesToFix;
1293   for (Value *V : Postorder) {
1294     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1295 
1296     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1297     // not even infer the value to have its original address space.
1298     if (NewAddrSpace == UninitializedAddressSpace)
1299       continue;
1300 
1301     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1302       Value *New =
1303           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1304                                         PredicatedAS, &PoisonUsesToFix);
1305       if (New)
1306         ValueWithNewAddrSpace[V] = New;
1307     }
1308   }
1309 
1310   if (ValueWithNewAddrSpace.empty())
1311     return false;
1312 
1313   // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1314   for (const Use *PoisonUse : PoisonUsesToFix) {
1315     User *V = PoisonUse->getUser();
1316     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1317     if (!NewV)
1318       continue;
1319 
1320     unsigned OperandNo = PoisonUse->getOperandNo();
1321     assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1322     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1323   }
1324 
1325   SmallVector<Instruction *, 16> DeadInstructions;
1326   ValueToValueMapTy VMap;
1327   ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1328 
1329   // Replaces the uses of the old address expressions with the new ones.
1330   for (const WeakTrackingVH &WVH : Postorder) {
1331     assert(WVH && "value was unexpectedly deleted");
1332     Value *V = WVH;
1333     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1334     if (NewV == nullptr)
1335       continue;
1336 
1337     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1338                       << *NewV << '\n');
1339 
1340     if (Constant *C = dyn_cast<Constant>(V)) {
1341       Constant *Replace =
1342           ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1343       if (C != Replace) {
1344         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1345                           << ": " << *Replace << '\n');
1346         SmallVector<User *, 16> WorkList;
1347         for (User *U : make_early_inc_range(C->users())) {
1348           if (auto *I = dyn_cast<Instruction>(U)) {
1349             if (I->getFunction() == F)
1350               I->replaceUsesOfWith(C, Replace);
1351           } else {
1352             WorkList.append(U->user_begin(), U->user_end());
1353           }
1354         }
1355         if (!WorkList.empty()) {
1356           VMap[C] = Replace;
1357           DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1358           while (!WorkList.empty()) {
1359             User *U = WorkList.pop_back_val();
1360             if (auto *I = dyn_cast<Instruction>(U)) {
1361               if (I->getFunction() == F)
1362                 VMapper.remapInstruction(*I);
1363               continue;
1364             }
1365             for (User *U2 : U->users())
1366               if (Visited.insert(U2).second)
1367                 WorkList.push_back(U2);
1368           }
1369         }
1370         V = Replace;
1371       }
1372     }
1373 
1374     Value::use_iterator I, E, Next;
1375     for (I = V->use_begin(), E = V->use_end(); I != E;) {
1376       Use &U = *I;
1377 
1378       // Some users may see the same pointer operand in multiple operands. Skip
1379       // to the next instruction.
1380       I = skipToNextUser(I, E);
1381 
1382       performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace,
1383                                 DeadInstructions);
1384     }
1385 
1386     if (V->use_empty()) {
1387       if (Instruction *I = dyn_cast<Instruction>(V))
1388         DeadInstructions.push_back(I);
1389     }
1390   }
1391 
1392   for (Instruction *I : DeadInstructions)
1393     RecursivelyDeleteTriviallyDeadInstructions(I);
1394 
1395   return true;
1396 }
1397 
1398 bool InferAddressSpaces::runOnFunction(Function &F) {
1399   if (skipFunction(F))
1400     return false;
1401 
1402   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1403   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1404   return InferAddressSpacesImpl(
1405              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1406              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1407              FlatAddrSpace)
1408       .run(F);
1409 }
1410 
1411 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1412   return new InferAddressSpaces(AddressSpace);
1413 }
1414 
1415 InferAddressSpacesPass::InferAddressSpacesPass()
1416     : FlatAddrSpace(UninitializedAddressSpace) {}
1417 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1418     : FlatAddrSpace(AddressSpace) {}
1419 
1420 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1421                                               FunctionAnalysisManager &AM) {
1422   bool Changed =
1423       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1424                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1425                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1426           .run(F);
1427   if (Changed) {
1428     PreservedAnalyses PA;
1429     PA.preserveSet<CFGAnalyses>();
1430     PA.preserve<DominatorTreeAnalysis>();
1431     return PA;
1432   }
1433   return PreservedAnalyses::all();
1434 }
1435