1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 156 DenseSet<Value *> &Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> &PostorderStack, 163 DenseSet<Value *> &Visited) const; 164 165 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 const Operator &Op = cast<Operator>(V); 208 switch (Op.getOpcode()) { 209 case Instruction::PHI: { 210 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 211 return SmallVector<Value *, 2>(IncomingValues.begin(), 212 IncomingValues.end()); 213 } 214 case Instruction::BitCast: 215 case Instruction::AddrSpaceCast: 216 case Instruction::GetElementPtr: 217 return {Op.getOperand(0)}; 218 case Instruction::Select: 219 return {Op.getOperand(1), Op.getOperand(2)}; 220 default: 221 llvm_unreachable("Unexpected instruction type."); 222 } 223 } 224 225 // TODO: Move logic to TTI? 226 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 227 Value *OldV, 228 Value *NewV) const { 229 Module *M = II->getParent()->getParent()->getParent(); 230 231 switch (II->getIntrinsicID()) { 232 case Intrinsic::amdgcn_atomic_inc: 233 case Intrinsic::amdgcn_atomic_dec:{ 234 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 235 if (!IsVolatile || !IsVolatile->isNullValue()) 236 return false; 237 238 LLVM_FALLTHROUGH; 239 } 240 case Intrinsic::objectsize: { 241 Type *DestTy = II->getType(); 242 Type *SrcTy = NewV->getType(); 243 Function *NewDecl = 244 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 245 II->setArgOperand(0, NewV); 246 II->setCalledFunction(NewDecl); 247 return true; 248 } 249 default: 250 return false; 251 } 252 } 253 254 // TODO: Move logic to TTI? 255 void InferAddressSpaces::collectRewritableIntrinsicOperands( 256 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 257 DenseSet<Value *> &Visited) const { 258 switch (II->getIntrinsicID()) { 259 case Intrinsic::objectsize: 260 case Intrinsic::amdgcn_atomic_inc: 261 case Intrinsic::amdgcn_atomic_dec: 262 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 263 PostorderStack, Visited); 264 break; 265 default: 266 break; 267 } 268 } 269 270 // Returns all flat address expressions in function F. The elements are 271 // If V is an unvisited flat address expression, appends V to PostorderStack 272 // and marks it as visited. 273 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 274 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 275 DenseSet<Value *> &Visited) const { 276 assert(V->getType()->isPointerTy()); 277 278 // Generic addressing expressions may be hidden in nested constant 279 // expressions. 280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 281 // TODO: Look in non-address parts, like icmp operands. 282 if (isAddressExpression(*CE) && Visited.insert(CE).second) 283 PostorderStack.push_back(std::make_pair(CE, false)); 284 285 return; 286 } 287 288 if (isAddressExpression(*V) && 289 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 290 if (Visited.insert(V).second) { 291 PostorderStack.push_back(std::make_pair(V, false)); 292 293 Operator *Op = cast<Operator>(V); 294 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 296 if (isAddressExpression(*CE) && Visited.insert(CE).second) 297 PostorderStack.emplace_back(CE, false); 298 } 299 } 300 } 301 } 302 } 303 304 // Returns all flat address expressions in function F. The elements are ordered 305 // ordered in postorder. 306 std::vector<WeakTrackingVH> 307 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 308 // This function implements a non-recursive postorder traversal of a partial 309 // use-def graph of function F. 310 std::vector<std::pair<Value *, bool>> PostorderStack; 311 // The set of visited expressions. 312 DenseSet<Value *> Visited; 313 314 auto PushPtrOperand = [&](Value *Ptr) { 315 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 316 Visited); 317 }; 318 319 // Look at operations that may be interesting accelerate by moving to a known 320 // address space. We aim at generating after loads and stores, but pure 321 // addressing calculations may also be faster. 322 for (Instruction &I : instructions(F)) { 323 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 324 if (!GEP->getType()->isVectorTy()) 325 PushPtrOperand(GEP->getPointerOperand()); 326 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 327 PushPtrOperand(LI->getPointerOperand()); 328 else if (auto *SI = dyn_cast<StoreInst>(&I)) 329 PushPtrOperand(SI->getPointerOperand()); 330 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 331 PushPtrOperand(RMW->getPointerOperand()); 332 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 333 PushPtrOperand(CmpX->getPointerOperand()); 334 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 335 // For memset/memcpy/memmove, any pointer operand can be replaced. 336 PushPtrOperand(MI->getRawDest()); 337 338 // Handle 2nd operand for memcpy/memmove. 339 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 340 PushPtrOperand(MTI->getRawSource()); 341 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 342 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 343 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 344 // FIXME: Handle vectors of pointers 345 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 346 PushPtrOperand(Cmp->getOperand(0)); 347 PushPtrOperand(Cmp->getOperand(1)); 348 } 349 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 350 if (!ASC->getType()->isVectorTy()) 351 PushPtrOperand(ASC->getPointerOperand()); 352 } 353 } 354 355 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 356 while (!PostorderStack.empty()) { 357 Value *TopVal = PostorderStack.back().first; 358 // If the operands of the expression on the top are already explored, 359 // adds that expression to the resultant postorder. 360 if (PostorderStack.back().second) { 361 Postorder.push_back(TopVal); 362 PostorderStack.pop_back(); 363 continue; 364 } 365 // Otherwise, adds its operands to the stack and explores them. 366 PostorderStack.back().second = true; 367 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 368 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 369 Visited); 370 } 371 } 372 return Postorder; 373 } 374 375 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 376 // of OperandUse.get() in the new address space. If the clone is not ready yet, 377 // returns an undef in the new address space as a placeholder. 378 static Value *operandWithNewAddressSpaceOrCreateUndef( 379 const Use &OperandUse, unsigned NewAddrSpace, 380 const ValueToValueMapTy &ValueWithNewAddrSpace, 381 SmallVectorImpl<const Use *> *UndefUsesToFix) { 382 Value *Operand = OperandUse.get(); 383 384 Type *NewPtrTy = 385 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 386 387 if (Constant *C = dyn_cast<Constant>(Operand)) 388 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 389 390 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 391 return NewOperand; 392 393 UndefUsesToFix->push_back(&OperandUse); 394 return UndefValue::get(NewPtrTy); 395 } 396 397 // Returns a clone of `I` with its operands converted to those specified in 398 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 399 // operand whose address space needs to be modified might not exist in 400 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 401 // adds that operand use to UndefUsesToFix so that caller can fix them later. 402 // 403 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 404 // from a pointer whose type already matches. Therefore, this function returns a 405 // Value* instead of an Instruction*. 406 static Value *cloneInstructionWithNewAddressSpace( 407 Instruction *I, unsigned NewAddrSpace, 408 const ValueToValueMapTy &ValueWithNewAddrSpace, 409 SmallVectorImpl<const Use *> *UndefUsesToFix) { 410 Type *NewPtrType = 411 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 412 413 if (I->getOpcode() == Instruction::AddrSpaceCast) { 414 Value *Src = I->getOperand(0); 415 // Because `I` is flat, the source address space must be specific. 416 // Therefore, the inferred address space must be the source space, according 417 // to our algorithm. 418 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 419 if (Src->getType() != NewPtrType) 420 return new BitCastInst(Src, NewPtrType); 421 return Src; 422 } 423 424 // Computes the converted pointer operands. 425 SmallVector<Value *, 4> NewPointerOperands; 426 for (const Use &OperandUse : I->operands()) { 427 if (!OperandUse.get()->getType()->isPointerTy()) 428 NewPointerOperands.push_back(nullptr); 429 else 430 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 431 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 432 } 433 434 switch (I->getOpcode()) { 435 case Instruction::BitCast: 436 return new BitCastInst(NewPointerOperands[0], NewPtrType); 437 case Instruction::PHI: { 438 assert(I->getType()->isPointerTy()); 439 PHINode *PHI = cast<PHINode>(I); 440 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 441 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 442 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 443 NewPHI->addIncoming(NewPointerOperands[OperandNo], 444 PHI->getIncomingBlock(Index)); 445 } 446 return NewPHI; 447 } 448 case Instruction::GetElementPtr: { 449 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 450 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 451 GEP->getSourceElementType(), NewPointerOperands[0], 452 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 453 NewGEP->setIsInBounds(GEP->isInBounds()); 454 return NewGEP; 455 } 456 case Instruction::Select: { 457 assert(I->getType()->isPointerTy()); 458 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 459 NewPointerOperands[2], "", nullptr, I); 460 } 461 default: 462 llvm_unreachable("Unexpected opcode"); 463 } 464 } 465 466 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 467 // constant expression `CE` with its operands replaced as specified in 468 // ValueWithNewAddrSpace. 469 static Value *cloneConstantExprWithNewAddressSpace( 470 ConstantExpr *CE, unsigned NewAddrSpace, 471 const ValueToValueMapTy &ValueWithNewAddrSpace) { 472 Type *TargetType = 473 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 474 475 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 476 // Because CE is flat, the source address space must be specific. 477 // Therefore, the inferred address space must be the source space according 478 // to our algorithm. 479 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 480 NewAddrSpace); 481 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 482 } 483 484 if (CE->getOpcode() == Instruction::BitCast) { 485 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 486 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 487 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 488 } 489 490 if (CE->getOpcode() == Instruction::Select) { 491 Constant *Src0 = CE->getOperand(1); 492 Constant *Src1 = CE->getOperand(2); 493 if (Src0->getType()->getPointerAddressSpace() == 494 Src1->getType()->getPointerAddressSpace()) { 495 496 return ConstantExpr::getSelect( 497 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 498 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 499 } 500 } 501 502 // Computes the operands of the new constant expression. 503 SmallVector<Constant *, 4> NewOperands; 504 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 505 Constant *Operand = CE->getOperand(Index); 506 // If the address space of `Operand` needs to be modified, the new operand 507 // with the new address space should already be in ValueWithNewAddrSpace 508 // because (1) the constant expressions we consider (i.e. addrspacecast, 509 // bitcast, and getelementptr) do not incur cycles in the data flow graph 510 // and (2) this function is called on constant expressions in postorder. 511 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 512 NewOperands.push_back(cast<Constant>(NewOperand)); 513 } else { 514 // Otherwise, reuses the old operand. 515 NewOperands.push_back(Operand); 516 } 517 } 518 519 if (CE->getOpcode() == Instruction::GetElementPtr) { 520 // Needs to specify the source type while constructing a getelementptr 521 // constant expression. 522 return CE->getWithOperands( 523 NewOperands, TargetType, /*OnlyIfReduced=*/false, 524 NewOperands[0]->getType()->getPointerElementType()); 525 } 526 527 return CE->getWithOperands(NewOperands, TargetType); 528 } 529 530 // Returns a clone of the value `V`, with its operands replaced as specified in 531 // ValueWithNewAddrSpace. This function is called on every flat address 532 // expression whose address space needs to be modified, in postorder. 533 // 534 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 535 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 536 Value *V, unsigned NewAddrSpace, 537 const ValueToValueMapTy &ValueWithNewAddrSpace, 538 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 539 // All values in Postorder are flat address expressions. 540 assert(isAddressExpression(*V) && 541 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 542 543 if (Instruction *I = dyn_cast<Instruction>(V)) { 544 Value *NewV = cloneInstructionWithNewAddressSpace( 545 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 546 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 547 if (NewI->getParent() == nullptr) { 548 NewI->insertBefore(I); 549 NewI->takeName(I); 550 } 551 } 552 return NewV; 553 } 554 555 return cloneConstantExprWithNewAddressSpace( 556 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 557 } 558 559 // Defines the join operation on the address space lattice (see the file header 560 // comments). 561 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 562 unsigned AS2) const { 563 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 564 return FlatAddrSpace; 565 566 if (AS1 == UninitializedAddressSpace) 567 return AS2; 568 if (AS2 == UninitializedAddressSpace) 569 return AS1; 570 571 // The join of two different specific address spaces is flat. 572 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 573 } 574 575 bool InferAddressSpaces::runOnFunction(Function &F) { 576 if (skipFunction(F)) 577 return false; 578 579 const TargetTransformInfo &TTI = 580 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 581 FlatAddrSpace = TTI.getFlatAddressSpace(); 582 if (FlatAddrSpace == UninitializedAddressSpace) 583 return false; 584 585 // Collects all flat address expressions in postorder. 586 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 587 588 // Runs a data-flow analysis to refine the address spaces of every expression 589 // in Postorder. 590 ValueToAddrSpaceMapTy InferredAddrSpace; 591 inferAddressSpaces(Postorder, &InferredAddrSpace); 592 593 // Changes the address spaces of the flat address expressions who are inferred 594 // to point to a specific address space. 595 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 596 } 597 598 // Constants need to be tracked through RAUW to handle cases with nested 599 // constant expressions, so wrap values in WeakTrackingVH. 600 void InferAddressSpaces::inferAddressSpaces( 601 ArrayRef<WeakTrackingVH> Postorder, 602 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 603 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 604 // Initially, all expressions are in the uninitialized address space. 605 for (Value *V : Postorder) 606 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 607 608 while (!Worklist.empty()) { 609 Value *V = Worklist.pop_back_val(); 610 611 // Tries to update the address space of the stack top according to the 612 // address spaces of its operands. 613 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 614 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 615 if (!NewAS.hasValue()) 616 continue; 617 // If any updates are made, grabs its users to the worklist because 618 // their address spaces can also be possibly updated. 619 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 620 (*InferredAddrSpace)[V] = NewAS.getValue(); 621 622 for (Value *User : V->users()) { 623 // Skip if User is already in the worklist. 624 if (Worklist.count(User)) 625 continue; 626 627 auto Pos = InferredAddrSpace->find(User); 628 // Our algorithm only updates the address spaces of flat address 629 // expressions, which are those in InferredAddrSpace. 630 if (Pos == InferredAddrSpace->end()) 631 continue; 632 633 // Function updateAddressSpace moves the address space down a lattice 634 // path. Therefore, nothing to do if User is already inferred as flat (the 635 // bottom element in the lattice). 636 if (Pos->second == FlatAddrSpace) 637 continue; 638 639 Worklist.insert(User); 640 } 641 } 642 } 643 644 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 645 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 646 assert(InferredAddrSpace.count(&V)); 647 648 // The new inferred address space equals the join of the address spaces 649 // of all its pointer operands. 650 unsigned NewAS = UninitializedAddressSpace; 651 652 const Operator &Op = cast<Operator>(V); 653 if (Op.getOpcode() == Instruction::Select) { 654 Value *Src0 = Op.getOperand(1); 655 Value *Src1 = Op.getOperand(2); 656 657 auto I = InferredAddrSpace.find(Src0); 658 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 659 I->second : Src0->getType()->getPointerAddressSpace(); 660 661 auto J = InferredAddrSpace.find(Src1); 662 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 663 J->second : Src1->getType()->getPointerAddressSpace(); 664 665 auto *C0 = dyn_cast<Constant>(Src0); 666 auto *C1 = dyn_cast<Constant>(Src1); 667 668 // If one of the inputs is a constant, we may be able to do a constant 669 // addrspacecast of it. Defer inferring the address space until the input 670 // address space is known. 671 if ((C1 && Src0AS == UninitializedAddressSpace) || 672 (C0 && Src1AS == UninitializedAddressSpace)) 673 return None; 674 675 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 676 NewAS = Src1AS; 677 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 678 NewAS = Src0AS; 679 else 680 NewAS = joinAddressSpaces(Src0AS, Src1AS); 681 } else { 682 for (Value *PtrOperand : getPointerOperands(V)) { 683 auto I = InferredAddrSpace.find(PtrOperand); 684 unsigned OperandAS = I != InferredAddrSpace.end() ? 685 I->second : PtrOperand->getType()->getPointerAddressSpace(); 686 687 // join(flat, *) = flat. So we can break if NewAS is already flat. 688 NewAS = joinAddressSpaces(NewAS, OperandAS); 689 if (NewAS == FlatAddrSpace) 690 break; 691 } 692 } 693 694 unsigned OldAS = InferredAddrSpace.lookup(&V); 695 assert(OldAS != FlatAddrSpace); 696 if (OldAS == NewAS) 697 return None; 698 return NewAS; 699 } 700 701 /// \p returns true if \p U is the pointer operand of a memory instruction with 702 /// a single pointer operand that can have its address space changed by simply 703 /// mutating the use to a new value. 704 static bool isSimplePointerUseValidToReplace(Use &U) { 705 User *Inst = U.getUser(); 706 unsigned OpNo = U.getOperandNo(); 707 708 if (auto *LI = dyn_cast<LoadInst>(Inst)) 709 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 710 711 if (auto *SI = dyn_cast<StoreInst>(Inst)) 712 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 713 714 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 715 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 716 717 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 718 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 719 !CmpX->isVolatile(); 720 } 721 722 return false; 723 } 724 725 /// Update memory intrinsic uses that require more complex processing than 726 /// simple memory instructions. Thse require re-mangling and may have multiple 727 /// pointer operands. 728 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 729 Value *NewV) { 730 IRBuilder<> B(MI); 731 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 732 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 733 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 734 735 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 736 B.CreateMemSet(NewV, MSI->getValue(), 737 MSI->getLength(), MSI->getAlignment(), 738 false, // isVolatile 739 TBAA, ScopeMD, NoAliasMD); 740 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 741 Value *Src = MTI->getRawSource(); 742 Value *Dest = MTI->getRawDest(); 743 744 // Be careful in case this is a self-to-self copy. 745 if (Src == OldV) 746 Src = NewV; 747 748 if (Dest == OldV) 749 Dest = NewV; 750 751 if (isa<MemCpyInst>(MTI)) { 752 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 753 B.CreateMemCpy(Dest, Src, MTI->getLength(), 754 MTI->getAlignment(), 755 false, // isVolatile 756 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 757 } else { 758 assert(isa<MemMoveInst>(MTI)); 759 B.CreateMemMove(Dest, Src, MTI->getLength(), 760 MTI->getAlignment(), 761 false, // isVolatile 762 TBAA, ScopeMD, NoAliasMD); 763 } 764 } else 765 llvm_unreachable("unhandled MemIntrinsic"); 766 767 MI->eraseFromParent(); 768 return true; 769 } 770 771 // \p returns true if it is OK to change the address space of constant \p C with 772 // a ConstantExpr addrspacecast. 773 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 774 assert(NewAS != UninitializedAddressSpace); 775 776 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 777 if (SrcAS == NewAS || isa<UndefValue>(C)) 778 return true; 779 780 // Prevent illegal casts between different non-flat address spaces. 781 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 782 return false; 783 784 if (isa<ConstantPointerNull>(C)) 785 return true; 786 787 if (auto *Op = dyn_cast<Operator>(C)) { 788 // If we already have a constant addrspacecast, it should be safe to cast it 789 // off. 790 if (Op->getOpcode() == Instruction::AddrSpaceCast) 791 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 792 793 if (Op->getOpcode() == Instruction::IntToPtr && 794 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 795 return true; 796 } 797 798 return false; 799 } 800 801 static Value::use_iterator skipToNextUser(Value::use_iterator I, 802 Value::use_iterator End) { 803 User *CurUser = I->getUser(); 804 ++I; 805 806 while (I != End && I->getUser() == CurUser) 807 ++I; 808 809 return I; 810 } 811 812 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 813 ArrayRef<WeakTrackingVH> Postorder, 814 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 815 // For each address expression to be modified, creates a clone of it with its 816 // pointer operands converted to the new address space. Since the pointer 817 // operands are converted, the clone is naturally in the new address space by 818 // construction. 819 ValueToValueMapTy ValueWithNewAddrSpace; 820 SmallVector<const Use *, 32> UndefUsesToFix; 821 for (Value* V : Postorder) { 822 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 823 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 824 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 825 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 826 } 827 } 828 829 if (ValueWithNewAddrSpace.empty()) 830 return false; 831 832 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 833 for (const Use *UndefUse : UndefUsesToFix) { 834 User *V = UndefUse->getUser(); 835 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 836 unsigned OperandNo = UndefUse->getOperandNo(); 837 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 838 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 839 } 840 841 SmallVector<Instruction *, 16> DeadInstructions; 842 843 // Replaces the uses of the old address expressions with the new ones. 844 for (const WeakTrackingVH &WVH : Postorder) { 845 assert(WVH && "value was unexpectedly deleted"); 846 Value *V = WVH; 847 Value *NewV = ValueWithNewAddrSpace.lookup(V); 848 if (NewV == nullptr) 849 continue; 850 851 DEBUG(dbgs() << "Replacing the uses of " << *V 852 << "\n with\n " << *NewV << '\n'); 853 854 if (Constant *C = dyn_cast<Constant>(V)) { 855 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 856 C->getType()); 857 if (C != Replace) { 858 DEBUG(dbgs() << "Inserting replacement const cast: " 859 << Replace << ": " << *Replace << '\n'); 860 C->replaceAllUsesWith(Replace); 861 V = Replace; 862 } 863 } 864 865 Value::use_iterator I, E, Next; 866 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 867 Use &U = *I; 868 869 // Some users may see the same pointer operand in multiple operands. Skip 870 // to the next instruction. 871 I = skipToNextUser(I, E); 872 873 if (isSimplePointerUseValidToReplace(U)) { 874 // If V is used as the pointer operand of a compatible memory operation, 875 // sets the pointer operand to NewV. This replacement does not change 876 // the element type, so the resultant load/store is still valid. 877 U.set(NewV); 878 continue; 879 } 880 881 User *CurUser = U.getUser(); 882 // Handle more complex cases like intrinsic that need to be remangled. 883 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 884 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 885 continue; 886 } 887 888 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 889 if (rewriteIntrinsicOperands(II, V, NewV)) 890 continue; 891 } 892 893 if (isa<Instruction>(CurUser)) { 894 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 895 // If we can infer that both pointers are in the same addrspace, 896 // transform e.g. 897 // %cmp = icmp eq float* %p, %q 898 // into 899 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 900 901 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 902 int SrcIdx = U.getOperandNo(); 903 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 904 Value *OtherSrc = Cmp->getOperand(OtherIdx); 905 906 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 907 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 908 Cmp->setOperand(OtherIdx, OtherNewV); 909 Cmp->setOperand(SrcIdx, NewV); 910 continue; 911 } 912 } 913 914 // Even if the type mismatches, we can cast the constant. 915 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 916 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 917 Cmp->setOperand(SrcIdx, NewV); 918 Cmp->setOperand(OtherIdx, 919 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 920 continue; 921 } 922 } 923 } 924 925 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 926 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 927 if (ASC->getDestAddressSpace() == NewAS) { 928 ASC->replaceAllUsesWith(NewV); 929 DeadInstructions.push_back(ASC); 930 continue; 931 } 932 } 933 934 // Otherwise, replaces the use with flat(NewV). 935 if (Instruction *I = dyn_cast<Instruction>(V)) { 936 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 937 while (isa<PHINode>(InsertPos)) 938 ++InsertPos; 939 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 940 } else { 941 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 942 V->getType())); 943 } 944 } 945 } 946 947 if (V->use_empty()) { 948 if (Instruction *I = dyn_cast<Instruction>(V)) 949 DeadInstructions.push_back(I); 950 } 951 } 952 953 for (Instruction *I : DeadInstructions) 954 RecursivelyDeleteTriviallyDeadInstructions(I); 955 956 return true; 957 } 958 959 FunctionPass *llvm::createInferAddressSpacesPass() { 960 return new InferAddressSpaces(); 961 } 962