1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/None.h" 96 #include "llvm/ADT/Optional.h" 97 #include "llvm/ADT/SetVector.h" 98 #include "llvm/ADT/SmallVector.h" 99 #include "llvm/Analysis/TargetTransformInfo.h" 100 #include "llvm/Analysis/Utils/Local.h" 101 #include "llvm/IR/BasicBlock.h" 102 #include "llvm/IR/Constant.h" 103 #include "llvm/IR/Constants.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/Type.h" 114 #include "llvm/IR/Use.h" 115 #include "llvm/IR/User.h" 116 #include "llvm/IR/Value.h" 117 #include "llvm/IR/ValueHandle.h" 118 #include "llvm/Pass.h" 119 #include "llvm/Support/Casting.h" 120 #include "llvm/Support/Compiler.h" 121 #include "llvm/Support/Debug.h" 122 #include "llvm/Support/ErrorHandling.h" 123 #include "llvm/Support/raw_ostream.h" 124 #include "llvm/Transforms/Scalar.h" 125 #include "llvm/Transforms/Utils/ValueMapper.h" 126 #include <cassert> 127 #include <iterator> 128 #include <limits> 129 #include <utility> 130 #include <vector> 131 132 #define DEBUG_TYPE "infer-address-spaces" 133 134 using namespace llvm; 135 136 static const unsigned UninitializedAddressSpace = 137 std::numeric_limits<unsigned>::max(); 138 139 namespace { 140 141 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 142 143 /// InferAddressSpaces 144 class InferAddressSpaces : public FunctionPass { 145 /// Target specific address space which uses of should be replaced if 146 /// possible. 147 unsigned FlatAddrSpace; 148 149 public: 150 static char ID; 151 152 InferAddressSpaces() : FunctionPass(ID) {} 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.setPreservesCFG(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 } 158 159 bool runOnFunction(Function &F) override; 160 161 private: 162 // Returns the new address space of V if updated; otherwise, returns None. 163 Optional<unsigned> 164 updateAddressSpace(const Value &V, 165 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 166 167 // Tries to infer the specific address space of each address expression in 168 // Postorder. 169 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 170 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 171 172 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 173 174 // Changes the flat address expressions in function F to point to specific 175 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 176 // all flat expressions in the use-def graph of function F. 177 bool rewriteWithNewAddressSpaces( 178 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 179 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 180 181 void appendsFlatAddressExpressionToPostorderStack( 182 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 183 DenseSet<Value *> &Visited) const; 184 185 bool rewriteIntrinsicOperands(IntrinsicInst *II, 186 Value *OldV, Value *NewV) const; 187 void collectRewritableIntrinsicOperands( 188 IntrinsicInst *II, 189 std::vector<std::pair<Value *, bool>> &PostorderStack, 190 DenseSet<Value *> &Visited) const; 191 192 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 193 194 Value *cloneValueWithNewAddressSpace( 195 Value *V, unsigned NewAddrSpace, 196 const ValueToValueMapTy &ValueWithNewAddrSpace, 197 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 198 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 199 }; 200 201 } // end anonymous namespace 202 203 char InferAddressSpaces::ID = 0; 204 205 namespace llvm { 206 207 void initializeInferAddressSpacesPass(PassRegistry &); 208 209 } // end namespace llvm 210 211 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 212 false, false) 213 214 // Returns true if V is an address expression. 215 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 216 // getelementptr operators. 217 static bool isAddressExpression(const Value &V) { 218 if (!isa<Operator>(V)) 219 return false; 220 221 switch (cast<Operator>(V).getOpcode()) { 222 case Instruction::PHI: 223 case Instruction::BitCast: 224 case Instruction::AddrSpaceCast: 225 case Instruction::GetElementPtr: 226 case Instruction::Select: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 // Returns the pointer operands of V. 234 // 235 // Precondition: V is an address expression. 236 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 237 const Operator &Op = cast<Operator>(V); 238 switch (Op.getOpcode()) { 239 case Instruction::PHI: { 240 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 241 return SmallVector<Value *, 2>(IncomingValues.begin(), 242 IncomingValues.end()); 243 } 244 case Instruction::BitCast: 245 case Instruction::AddrSpaceCast: 246 case Instruction::GetElementPtr: 247 return {Op.getOperand(0)}; 248 case Instruction::Select: 249 return {Op.getOperand(1), Op.getOperand(2)}; 250 default: 251 llvm_unreachable("Unexpected instruction type."); 252 } 253 } 254 255 // TODO: Move logic to TTI? 256 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 257 Value *OldV, 258 Value *NewV) const { 259 Module *M = II->getParent()->getParent()->getParent(); 260 261 switch (II->getIntrinsicID()) { 262 case Intrinsic::amdgcn_atomic_inc: 263 case Intrinsic::amdgcn_atomic_dec: 264 case Intrinsic::amdgcn_ds_fadd: 265 case Intrinsic::amdgcn_ds_fmin: 266 case Intrinsic::amdgcn_ds_fmax: { 267 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 268 if (!IsVolatile || !IsVolatile->isZero()) 269 return false; 270 271 LLVM_FALLTHROUGH; 272 } 273 case Intrinsic::objectsize: { 274 Type *DestTy = II->getType(); 275 Type *SrcTy = NewV->getType(); 276 Function *NewDecl = 277 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 278 II->setArgOperand(0, NewV); 279 II->setCalledFunction(NewDecl); 280 return true; 281 } 282 default: 283 return false; 284 } 285 } 286 287 // TODO: Move logic to TTI? 288 void InferAddressSpaces::collectRewritableIntrinsicOperands( 289 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 290 DenseSet<Value *> &Visited) const { 291 switch (II->getIntrinsicID()) { 292 case Intrinsic::objectsize: 293 case Intrinsic::amdgcn_atomic_inc: 294 case Intrinsic::amdgcn_atomic_dec: 295 case Intrinsic::amdgcn_ds_fadd: 296 case Intrinsic::amdgcn_ds_fmin: 297 case Intrinsic::amdgcn_ds_fmax: 298 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 299 PostorderStack, Visited); 300 break; 301 default: 302 break; 303 } 304 } 305 306 // Returns all flat address expressions in function F. The elements are 307 // If V is an unvisited flat address expression, appends V to PostorderStack 308 // and marks it as visited. 309 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 310 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 311 DenseSet<Value *> &Visited) const { 312 assert(V->getType()->isPointerTy()); 313 314 // Generic addressing expressions may be hidden in nested constant 315 // expressions. 316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 317 // TODO: Look in non-address parts, like icmp operands. 318 if (isAddressExpression(*CE) && Visited.insert(CE).second) 319 PostorderStack.push_back(std::make_pair(CE, false)); 320 321 return; 322 } 323 324 if (isAddressExpression(*V) && 325 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 326 if (Visited.insert(V).second) { 327 PostorderStack.push_back(std::make_pair(V, false)); 328 329 Operator *Op = cast<Operator>(V); 330 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 331 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 332 if (isAddressExpression(*CE) && Visited.insert(CE).second) 333 PostorderStack.emplace_back(CE, false); 334 } 335 } 336 } 337 } 338 } 339 340 // Returns all flat address expressions in function F. The elements are ordered 341 // ordered in postorder. 342 std::vector<WeakTrackingVH> 343 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 344 // This function implements a non-recursive postorder traversal of a partial 345 // use-def graph of function F. 346 std::vector<std::pair<Value *, bool>> PostorderStack; 347 // The set of visited expressions. 348 DenseSet<Value *> Visited; 349 350 auto PushPtrOperand = [&](Value *Ptr) { 351 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 352 Visited); 353 }; 354 355 // Look at operations that may be interesting accelerate by moving to a known 356 // address space. We aim at generating after loads and stores, but pure 357 // addressing calculations may also be faster. 358 for (Instruction &I : instructions(F)) { 359 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 360 if (!GEP->getType()->isVectorTy()) 361 PushPtrOperand(GEP->getPointerOperand()); 362 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 363 PushPtrOperand(LI->getPointerOperand()); 364 else if (auto *SI = dyn_cast<StoreInst>(&I)) 365 PushPtrOperand(SI->getPointerOperand()); 366 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 367 PushPtrOperand(RMW->getPointerOperand()); 368 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 369 PushPtrOperand(CmpX->getPointerOperand()); 370 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 371 // For memset/memcpy/memmove, any pointer operand can be replaced. 372 PushPtrOperand(MI->getRawDest()); 373 374 // Handle 2nd operand for memcpy/memmove. 375 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 376 PushPtrOperand(MTI->getRawSource()); 377 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 378 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 379 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 380 // FIXME: Handle vectors of pointers 381 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 382 PushPtrOperand(Cmp->getOperand(0)); 383 PushPtrOperand(Cmp->getOperand(1)); 384 } 385 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 386 if (!ASC->getType()->isVectorTy()) 387 PushPtrOperand(ASC->getPointerOperand()); 388 } 389 } 390 391 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 392 while (!PostorderStack.empty()) { 393 Value *TopVal = PostorderStack.back().first; 394 // If the operands of the expression on the top are already explored, 395 // adds that expression to the resultant postorder. 396 if (PostorderStack.back().second) { 397 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 398 Postorder.push_back(TopVal); 399 PostorderStack.pop_back(); 400 continue; 401 } 402 // Otherwise, adds its operands to the stack and explores them. 403 PostorderStack.back().second = true; 404 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 405 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 406 Visited); 407 } 408 } 409 return Postorder; 410 } 411 412 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 413 // of OperandUse.get() in the new address space. If the clone is not ready yet, 414 // returns an undef in the new address space as a placeholder. 415 static Value *operandWithNewAddressSpaceOrCreateUndef( 416 const Use &OperandUse, unsigned NewAddrSpace, 417 const ValueToValueMapTy &ValueWithNewAddrSpace, 418 SmallVectorImpl<const Use *> *UndefUsesToFix) { 419 Value *Operand = OperandUse.get(); 420 421 Type *NewPtrTy = 422 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 423 424 if (Constant *C = dyn_cast<Constant>(Operand)) 425 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 426 427 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 428 return NewOperand; 429 430 UndefUsesToFix->push_back(&OperandUse); 431 return UndefValue::get(NewPtrTy); 432 } 433 434 // Returns a clone of `I` with its operands converted to those specified in 435 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 436 // operand whose address space needs to be modified might not exist in 437 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 438 // adds that operand use to UndefUsesToFix so that caller can fix them later. 439 // 440 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 441 // from a pointer whose type already matches. Therefore, this function returns a 442 // Value* instead of an Instruction*. 443 static Value *cloneInstructionWithNewAddressSpace( 444 Instruction *I, unsigned NewAddrSpace, 445 const ValueToValueMapTy &ValueWithNewAddrSpace, 446 SmallVectorImpl<const Use *> *UndefUsesToFix) { 447 Type *NewPtrType = 448 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 449 450 if (I->getOpcode() == Instruction::AddrSpaceCast) { 451 Value *Src = I->getOperand(0); 452 // Because `I` is flat, the source address space must be specific. 453 // Therefore, the inferred address space must be the source space, according 454 // to our algorithm. 455 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 456 if (Src->getType() != NewPtrType) 457 return new BitCastInst(Src, NewPtrType); 458 return Src; 459 } 460 461 // Computes the converted pointer operands. 462 SmallVector<Value *, 4> NewPointerOperands; 463 for (const Use &OperandUse : I->operands()) { 464 if (!OperandUse.get()->getType()->isPointerTy()) 465 NewPointerOperands.push_back(nullptr); 466 else 467 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 468 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 469 } 470 471 switch (I->getOpcode()) { 472 case Instruction::BitCast: 473 return new BitCastInst(NewPointerOperands[0], NewPtrType); 474 case Instruction::PHI: { 475 assert(I->getType()->isPointerTy()); 476 PHINode *PHI = cast<PHINode>(I); 477 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 478 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 479 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 480 NewPHI->addIncoming(NewPointerOperands[OperandNo], 481 PHI->getIncomingBlock(Index)); 482 } 483 return NewPHI; 484 } 485 case Instruction::GetElementPtr: { 486 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 487 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 488 GEP->getSourceElementType(), NewPointerOperands[0], 489 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 490 NewGEP->setIsInBounds(GEP->isInBounds()); 491 return NewGEP; 492 } 493 case Instruction::Select: 494 assert(I->getType()->isPointerTy()); 495 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 496 NewPointerOperands[2], "", nullptr, I); 497 default: 498 llvm_unreachable("Unexpected opcode"); 499 } 500 } 501 502 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 503 // constant expression `CE` with its operands replaced as specified in 504 // ValueWithNewAddrSpace. 505 static Value *cloneConstantExprWithNewAddressSpace( 506 ConstantExpr *CE, unsigned NewAddrSpace, 507 const ValueToValueMapTy &ValueWithNewAddrSpace) { 508 Type *TargetType = 509 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 510 511 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 512 // Because CE is flat, the source address space must be specific. 513 // Therefore, the inferred address space must be the source space according 514 // to our algorithm. 515 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 516 NewAddrSpace); 517 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 518 } 519 520 if (CE->getOpcode() == Instruction::BitCast) { 521 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 522 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 523 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 524 } 525 526 if (CE->getOpcode() == Instruction::Select) { 527 Constant *Src0 = CE->getOperand(1); 528 Constant *Src1 = CE->getOperand(2); 529 if (Src0->getType()->getPointerAddressSpace() == 530 Src1->getType()->getPointerAddressSpace()) { 531 532 return ConstantExpr::getSelect( 533 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 534 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 535 } 536 } 537 538 // Computes the operands of the new constant expression. 539 bool IsNew = false; 540 SmallVector<Constant *, 4> NewOperands; 541 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 542 Constant *Operand = CE->getOperand(Index); 543 // If the address space of `Operand` needs to be modified, the new operand 544 // with the new address space should already be in ValueWithNewAddrSpace 545 // because (1) the constant expressions we consider (i.e. addrspacecast, 546 // bitcast, and getelementptr) do not incur cycles in the data flow graph 547 // and (2) this function is called on constant expressions in postorder. 548 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 549 IsNew = true; 550 NewOperands.push_back(cast<Constant>(NewOperand)); 551 } else { 552 // Otherwise, reuses the old operand. 553 NewOperands.push_back(Operand); 554 } 555 } 556 557 // If !IsNew, we will replace the Value with itself. However, replaced values 558 // are assumed to wrapped in a addrspace cast later so drop it now. 559 if (!IsNew) 560 return nullptr; 561 562 if (CE->getOpcode() == Instruction::GetElementPtr) { 563 // Needs to specify the source type while constructing a getelementptr 564 // constant expression. 565 return CE->getWithOperands( 566 NewOperands, TargetType, /*OnlyIfReduced=*/false, 567 NewOperands[0]->getType()->getPointerElementType()); 568 } 569 570 return CE->getWithOperands(NewOperands, TargetType); 571 } 572 573 // Returns a clone of the value `V`, with its operands replaced as specified in 574 // ValueWithNewAddrSpace. This function is called on every flat address 575 // expression whose address space needs to be modified, in postorder. 576 // 577 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 578 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 579 Value *V, unsigned NewAddrSpace, 580 const ValueToValueMapTy &ValueWithNewAddrSpace, 581 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 582 // All values in Postorder are flat address expressions. 583 assert(isAddressExpression(*V) && 584 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 585 586 if (Instruction *I = dyn_cast<Instruction>(V)) { 587 Value *NewV = cloneInstructionWithNewAddressSpace( 588 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 589 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 590 if (NewI->getParent() == nullptr) { 591 NewI->insertBefore(I); 592 NewI->takeName(I); 593 } 594 } 595 return NewV; 596 } 597 598 return cloneConstantExprWithNewAddressSpace( 599 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 600 } 601 602 // Defines the join operation on the address space lattice (see the file header 603 // comments). 604 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 605 unsigned AS2) const { 606 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 607 return FlatAddrSpace; 608 609 if (AS1 == UninitializedAddressSpace) 610 return AS2; 611 if (AS2 == UninitializedAddressSpace) 612 return AS1; 613 614 // The join of two different specific address spaces is flat. 615 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 616 } 617 618 bool InferAddressSpaces::runOnFunction(Function &F) { 619 if (skipFunction(F)) 620 return false; 621 622 const TargetTransformInfo &TTI = 623 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 624 FlatAddrSpace = TTI.getFlatAddressSpace(); 625 if (FlatAddrSpace == UninitializedAddressSpace) 626 return false; 627 628 // Collects all flat address expressions in postorder. 629 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 630 631 // Runs a data-flow analysis to refine the address spaces of every expression 632 // in Postorder. 633 ValueToAddrSpaceMapTy InferredAddrSpace; 634 inferAddressSpaces(Postorder, &InferredAddrSpace); 635 636 // Changes the address spaces of the flat address expressions who are inferred 637 // to point to a specific address space. 638 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F); 639 } 640 641 // Constants need to be tracked through RAUW to handle cases with nested 642 // constant expressions, so wrap values in WeakTrackingVH. 643 void InferAddressSpaces::inferAddressSpaces( 644 ArrayRef<WeakTrackingVH> Postorder, 645 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 646 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 647 // Initially, all expressions are in the uninitialized address space. 648 for (Value *V : Postorder) 649 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 650 651 while (!Worklist.empty()) { 652 Value *V = Worklist.pop_back_val(); 653 654 // Tries to update the address space of the stack top according to the 655 // address spaces of its operands. 656 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 657 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 658 if (!NewAS.hasValue()) 659 continue; 660 // If any updates are made, grabs its users to the worklist because 661 // their address spaces can also be possibly updated. 662 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 663 (*InferredAddrSpace)[V] = NewAS.getValue(); 664 665 for (Value *User : V->users()) { 666 // Skip if User is already in the worklist. 667 if (Worklist.count(User)) 668 continue; 669 670 auto Pos = InferredAddrSpace->find(User); 671 // Our algorithm only updates the address spaces of flat address 672 // expressions, which are those in InferredAddrSpace. 673 if (Pos == InferredAddrSpace->end()) 674 continue; 675 676 // Function updateAddressSpace moves the address space down a lattice 677 // path. Therefore, nothing to do if User is already inferred as flat (the 678 // bottom element in the lattice). 679 if (Pos->second == FlatAddrSpace) 680 continue; 681 682 Worklist.insert(User); 683 } 684 } 685 } 686 687 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 688 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 689 assert(InferredAddrSpace.count(&V)); 690 691 // The new inferred address space equals the join of the address spaces 692 // of all its pointer operands. 693 unsigned NewAS = UninitializedAddressSpace; 694 695 const Operator &Op = cast<Operator>(V); 696 if (Op.getOpcode() == Instruction::Select) { 697 Value *Src0 = Op.getOperand(1); 698 Value *Src1 = Op.getOperand(2); 699 700 auto I = InferredAddrSpace.find(Src0); 701 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 702 I->second : Src0->getType()->getPointerAddressSpace(); 703 704 auto J = InferredAddrSpace.find(Src1); 705 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 706 J->second : Src1->getType()->getPointerAddressSpace(); 707 708 auto *C0 = dyn_cast<Constant>(Src0); 709 auto *C1 = dyn_cast<Constant>(Src1); 710 711 // If one of the inputs is a constant, we may be able to do a constant 712 // addrspacecast of it. Defer inferring the address space until the input 713 // address space is known. 714 if ((C1 && Src0AS == UninitializedAddressSpace) || 715 (C0 && Src1AS == UninitializedAddressSpace)) 716 return None; 717 718 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 719 NewAS = Src1AS; 720 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 721 NewAS = Src0AS; 722 else 723 NewAS = joinAddressSpaces(Src0AS, Src1AS); 724 } else { 725 for (Value *PtrOperand : getPointerOperands(V)) { 726 auto I = InferredAddrSpace.find(PtrOperand); 727 unsigned OperandAS = I != InferredAddrSpace.end() ? 728 I->second : PtrOperand->getType()->getPointerAddressSpace(); 729 730 // join(flat, *) = flat. So we can break if NewAS is already flat. 731 NewAS = joinAddressSpaces(NewAS, OperandAS); 732 if (NewAS == FlatAddrSpace) 733 break; 734 } 735 } 736 737 unsigned OldAS = InferredAddrSpace.lookup(&V); 738 assert(OldAS != FlatAddrSpace); 739 if (OldAS == NewAS) 740 return None; 741 return NewAS; 742 } 743 744 /// \p returns true if \p U is the pointer operand of a memory instruction with 745 /// a single pointer operand that can have its address space changed by simply 746 /// mutating the use to a new value. If the memory instruction is volatile, 747 /// return true only if the target allows the memory instruction to be volatile 748 /// in the new address space. 749 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 750 Use &U, unsigned AddrSpace) { 751 User *Inst = U.getUser(); 752 unsigned OpNo = U.getOperandNo(); 753 bool VolatileIsAllowed = false; 754 if (auto *I = dyn_cast<Instruction>(Inst)) 755 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 756 757 if (auto *LI = dyn_cast<LoadInst>(Inst)) 758 return OpNo == LoadInst::getPointerOperandIndex() && 759 (VolatileIsAllowed || !LI->isVolatile()); 760 761 if (auto *SI = dyn_cast<StoreInst>(Inst)) 762 return OpNo == StoreInst::getPointerOperandIndex() && 763 (VolatileIsAllowed || !SI->isVolatile()); 764 765 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 766 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 767 (VolatileIsAllowed || !RMW->isVolatile()); 768 769 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 770 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 771 (VolatileIsAllowed || !CmpX->isVolatile()); 772 773 return false; 774 } 775 776 /// Update memory intrinsic uses that require more complex processing than 777 /// simple memory instructions. Thse require re-mangling and may have multiple 778 /// pointer operands. 779 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 780 Value *NewV) { 781 IRBuilder<> B(MI); 782 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 783 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 784 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 785 786 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 787 B.CreateMemSet(NewV, MSI->getValue(), 788 MSI->getLength(), MSI->getDestAlignment(), 789 false, // isVolatile 790 TBAA, ScopeMD, NoAliasMD); 791 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 792 Value *Src = MTI->getRawSource(); 793 Value *Dest = MTI->getRawDest(); 794 795 // Be careful in case this is a self-to-self copy. 796 if (Src == OldV) 797 Src = NewV; 798 799 if (Dest == OldV) 800 Dest = NewV; 801 802 if (isa<MemCpyInst>(MTI)) { 803 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 804 B.CreateMemCpy(Dest, MTI->getDestAlignment(), 805 Src, MTI->getSourceAlignment(), 806 MTI->getLength(), 807 false, // isVolatile 808 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 809 } else { 810 assert(isa<MemMoveInst>(MTI)); 811 B.CreateMemMove(Dest, MTI->getDestAlignment(), 812 Src, MTI->getSourceAlignment(), 813 MTI->getLength(), 814 false, // isVolatile 815 TBAA, ScopeMD, NoAliasMD); 816 } 817 } else 818 llvm_unreachable("unhandled MemIntrinsic"); 819 820 MI->eraseFromParent(); 821 return true; 822 } 823 824 // \p returns true if it is OK to change the address space of constant \p C with 825 // a ConstantExpr addrspacecast. 826 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 827 assert(NewAS != UninitializedAddressSpace); 828 829 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 830 if (SrcAS == NewAS || isa<UndefValue>(C)) 831 return true; 832 833 // Prevent illegal casts between different non-flat address spaces. 834 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 835 return false; 836 837 if (isa<ConstantPointerNull>(C)) 838 return true; 839 840 if (auto *Op = dyn_cast<Operator>(C)) { 841 // If we already have a constant addrspacecast, it should be safe to cast it 842 // off. 843 if (Op->getOpcode() == Instruction::AddrSpaceCast) 844 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 845 846 if (Op->getOpcode() == Instruction::IntToPtr && 847 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 848 return true; 849 } 850 851 return false; 852 } 853 854 static Value::use_iterator skipToNextUser(Value::use_iterator I, 855 Value::use_iterator End) { 856 User *CurUser = I->getUser(); 857 ++I; 858 859 while (I != End && I->getUser() == CurUser) 860 ++I; 861 862 return I; 863 } 864 865 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 866 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 867 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 868 // For each address expression to be modified, creates a clone of it with its 869 // pointer operands converted to the new address space. Since the pointer 870 // operands are converted, the clone is naturally in the new address space by 871 // construction. 872 ValueToValueMapTy ValueWithNewAddrSpace; 873 SmallVector<const Use *, 32> UndefUsesToFix; 874 for (Value* V : Postorder) { 875 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 876 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 877 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 878 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 879 } 880 } 881 882 if (ValueWithNewAddrSpace.empty()) 883 return false; 884 885 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 886 for (const Use *UndefUse : UndefUsesToFix) { 887 User *V = UndefUse->getUser(); 888 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 889 unsigned OperandNo = UndefUse->getOperandNo(); 890 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 891 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 892 } 893 894 SmallVector<Instruction *, 16> DeadInstructions; 895 896 // Replaces the uses of the old address expressions with the new ones. 897 for (const WeakTrackingVH &WVH : Postorder) { 898 assert(WVH && "value was unexpectedly deleted"); 899 Value *V = WVH; 900 Value *NewV = ValueWithNewAddrSpace.lookup(V); 901 if (NewV == nullptr) 902 continue; 903 904 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 905 << *NewV << '\n'); 906 907 if (Constant *C = dyn_cast<Constant>(V)) { 908 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 909 C->getType()); 910 if (C != Replace) { 911 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 912 << ": " << *Replace << '\n'); 913 C->replaceAllUsesWith(Replace); 914 V = Replace; 915 } 916 } 917 918 Value::use_iterator I, E, Next; 919 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 920 Use &U = *I; 921 922 // Some users may see the same pointer operand in multiple operands. Skip 923 // to the next instruction. 924 I = skipToNextUser(I, E); 925 926 if (isSimplePointerUseValidToReplace( 927 TTI, U, V->getType()->getPointerAddressSpace())) { 928 // If V is used as the pointer operand of a compatible memory operation, 929 // sets the pointer operand to NewV. This replacement does not change 930 // the element type, so the resultant load/store is still valid. 931 U.set(NewV); 932 continue; 933 } 934 935 User *CurUser = U.getUser(); 936 // Handle more complex cases like intrinsic that need to be remangled. 937 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 938 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 939 continue; 940 } 941 942 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 943 if (rewriteIntrinsicOperands(II, V, NewV)) 944 continue; 945 } 946 947 if (isa<Instruction>(CurUser)) { 948 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 949 // If we can infer that both pointers are in the same addrspace, 950 // transform e.g. 951 // %cmp = icmp eq float* %p, %q 952 // into 953 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 954 955 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 956 int SrcIdx = U.getOperandNo(); 957 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 958 Value *OtherSrc = Cmp->getOperand(OtherIdx); 959 960 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 961 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 962 Cmp->setOperand(OtherIdx, OtherNewV); 963 Cmp->setOperand(SrcIdx, NewV); 964 continue; 965 } 966 } 967 968 // Even if the type mismatches, we can cast the constant. 969 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 970 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 971 Cmp->setOperand(SrcIdx, NewV); 972 Cmp->setOperand(OtherIdx, 973 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 974 continue; 975 } 976 } 977 } 978 979 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 980 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 981 if (ASC->getDestAddressSpace() == NewAS) { 982 if (ASC->getType()->getPointerElementType() != 983 NewV->getType()->getPointerElementType()) { 984 NewV = CastInst::Create(Instruction::BitCast, NewV, 985 ASC->getType(), "", ASC); 986 } 987 ASC->replaceAllUsesWith(NewV); 988 DeadInstructions.push_back(ASC); 989 continue; 990 } 991 } 992 993 // Otherwise, replaces the use with flat(NewV). 994 if (Instruction *I = dyn_cast<Instruction>(V)) { 995 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 996 while (isa<PHINode>(InsertPos)) 997 ++InsertPos; 998 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 999 } else { 1000 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1001 V->getType())); 1002 } 1003 } 1004 } 1005 1006 if (V->use_empty()) { 1007 if (Instruction *I = dyn_cast<Instruction>(V)) 1008 DeadInstructions.push_back(I); 1009 } 1010 } 1011 1012 for (Instruction *I : DeadInstructions) 1013 RecursivelyDeleteTriviallyDeadInstructions(I); 1014 1015 return true; 1016 } 1017 1018 FunctionPass *llvm::createInferAddressSpacesPass() { 1019 return new InferAddressSpaces(); 1020 } 1021