xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision cb8f6328dc6e81b2f572e15f9d28be5c8c233655)
1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/ADT/DenseSet.h"
93 #include "llvm/ADT/Optional.h"
94 #include "llvm/ADT/SetVector.h"
95 #include "llvm/Analysis/TargetTransformInfo.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/IRBuilder.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/IntrinsicInst.h"
101 #include "llvm/IR/Operator.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/raw_ostream.h"
104 #include "llvm/Transforms/Scalar.h"
105 #include "llvm/Transforms/Utils/Local.h"
106 #include "llvm/Transforms/Utils/ValueMapper.h"
107 
108 #define DEBUG_TYPE "infer-address-spaces"
109 
110 using namespace llvm;
111 
112 namespace {
113 static const unsigned UninitializedAddressSpace = ~0u;
114 
115 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
116 
117 /// \brief InferAddressSpaces
118 class InferAddressSpaces : public FunctionPass {
119   /// Target specific address space which uses of should be replaced if
120   /// possible.
121   unsigned FlatAddrSpace;
122 
123 public:
124   static char ID;
125 
126   InferAddressSpaces() : FunctionPass(ID) {}
127 
128   void getAnalysisUsage(AnalysisUsage &AU) const override {
129     AU.setPreservesCFG();
130     AU.addRequired<TargetTransformInfoWrapperPass>();
131   }
132 
133   bool runOnFunction(Function &F) override;
134 
135 private:
136   // Returns the new address space of V if updated; otherwise, returns None.
137   Optional<unsigned>
138   updateAddressSpace(const Value &V,
139                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
140 
141   // Tries to infer the specific address space of each address expression in
142   // Postorder.
143   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
144                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
145 
146   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
147 
148   // Changes the flat address expressions in function F to point to specific
149   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
150   // all flat expressions in the use-def graph of function F.
151   bool rewriteWithNewAddressSpaces(
152       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
153       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
154 
155   void appendsFlatAddressExpressionToPostorderStack(
156     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
157     DenseSet<Value *> &Visited) const;
158 
159   bool rewriteIntrinsicOperands(IntrinsicInst *II,
160                                 Value *OldV, Value *NewV) const;
161   void collectRewritableIntrinsicOperands(
162     IntrinsicInst *II,
163     std::vector<std::pair<Value *, bool>> &PostorderStack,
164     DenseSet<Value *> &Visited) const;
165 
166   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
167 
168   Value *cloneValueWithNewAddressSpace(
169     Value *V, unsigned NewAddrSpace,
170     const ValueToValueMapTy &ValueWithNewAddrSpace,
171     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
172   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
173 };
174 } // end anonymous namespace
175 
176 char InferAddressSpaces::ID = 0;
177 
178 namespace llvm {
179 void initializeInferAddressSpacesPass(PassRegistry &);
180 }
181 
182 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
183                 false, false)
184 
185 // Returns true if V is an address expression.
186 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
187 // getelementptr operators.
188 static bool isAddressExpression(const Value &V) {
189   if (!isa<Operator>(V))
190     return false;
191 
192   switch (cast<Operator>(V).getOpcode()) {
193   case Instruction::PHI:
194   case Instruction::BitCast:
195   case Instruction::AddrSpaceCast:
196   case Instruction::GetElementPtr:
197   case Instruction::Select:
198     return true;
199   default:
200     return false;
201   }
202 }
203 
204 // Returns the pointer operands of V.
205 //
206 // Precondition: V is an address expression.
207 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
208   const Operator &Op = cast<Operator>(V);
209   switch (Op.getOpcode()) {
210   case Instruction::PHI: {
211     auto IncomingValues = cast<PHINode>(Op).incoming_values();
212     return SmallVector<Value *, 2>(IncomingValues.begin(),
213                                    IncomingValues.end());
214   }
215   case Instruction::BitCast:
216   case Instruction::AddrSpaceCast:
217   case Instruction::GetElementPtr:
218     return {Op.getOperand(0)};
219   case Instruction::Select:
220     return {Op.getOperand(1), Op.getOperand(2)};
221   default:
222     llvm_unreachable("Unexpected instruction type.");
223   }
224 }
225 
226 // TODO: Move logic to TTI?
227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228                                                   Value *OldV,
229                                                   Value *NewV) const {
230   Module *M = II->getParent()->getParent()->getParent();
231 
232   switch (II->getIntrinsicID()) {
233   case Intrinsic::amdgcn_atomic_inc:
234   case Intrinsic::amdgcn_atomic_dec:{
235     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
236     if (!IsVolatile || !IsVolatile->isZero())
237       return false;
238 
239     LLVM_FALLTHROUGH;
240   }
241   case Intrinsic::objectsize: {
242     Type *DestTy = II->getType();
243     Type *SrcTy = NewV->getType();
244     Function *NewDecl =
245         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
246     II->setArgOperand(0, NewV);
247     II->setCalledFunction(NewDecl);
248     return true;
249   }
250   default:
251     return false;
252   }
253 }
254 
255 // TODO: Move logic to TTI?
256 void InferAddressSpaces::collectRewritableIntrinsicOperands(
257     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
258     DenseSet<Value *> &Visited) const {
259   switch (II->getIntrinsicID()) {
260   case Intrinsic::objectsize:
261   case Intrinsic::amdgcn_atomic_inc:
262   case Intrinsic::amdgcn_atomic_dec:
263     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
264                                                  PostorderStack, Visited);
265     break;
266   default:
267     break;
268   }
269 }
270 
271 // Returns all flat address expressions in function F. The elements are
272 // If V is an unvisited flat address expression, appends V to PostorderStack
273 // and marks it as visited.
274 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
275     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
276     DenseSet<Value *> &Visited) const {
277   assert(V->getType()->isPointerTy());
278 
279   // Generic addressing expressions may be hidden in nested constant
280   // expressions.
281   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
282     // TODO: Look in non-address parts, like icmp operands.
283     if (isAddressExpression(*CE) && Visited.insert(CE).second)
284       PostorderStack.push_back(std::make_pair(CE, false));
285 
286     return;
287   }
288 
289   if (isAddressExpression(*V) &&
290       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
291     if (Visited.insert(V).second) {
292       PostorderStack.push_back(std::make_pair(V, false));
293 
294       Operator *Op = cast<Operator>(V);
295       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
296         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
297           if (isAddressExpression(*CE) && Visited.insert(CE).second)
298             PostorderStack.emplace_back(CE, false);
299         }
300       }
301     }
302   }
303 }
304 
305 // Returns all flat address expressions in function F. The elements are ordered
306 // ordered in postorder.
307 std::vector<WeakTrackingVH>
308 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
309   // This function implements a non-recursive postorder traversal of a partial
310   // use-def graph of function F.
311   std::vector<std::pair<Value *, bool>> PostorderStack;
312   // The set of visited expressions.
313   DenseSet<Value *> Visited;
314 
315   auto PushPtrOperand = [&](Value *Ptr) {
316     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
317                                                  Visited);
318   };
319 
320   // Look at operations that may be interesting accelerate by moving to a known
321   // address space. We aim at generating after loads and stores, but pure
322   // addressing calculations may also be faster.
323   for (Instruction &I : instructions(F)) {
324     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
325       if (!GEP->getType()->isVectorTy())
326         PushPtrOperand(GEP->getPointerOperand());
327     } else if (auto *LI = dyn_cast<LoadInst>(&I))
328       PushPtrOperand(LI->getPointerOperand());
329     else if (auto *SI = dyn_cast<StoreInst>(&I))
330       PushPtrOperand(SI->getPointerOperand());
331     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
332       PushPtrOperand(RMW->getPointerOperand());
333     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
334       PushPtrOperand(CmpX->getPointerOperand());
335     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
336       // For memset/memcpy/memmove, any pointer operand can be replaced.
337       PushPtrOperand(MI->getRawDest());
338 
339       // Handle 2nd operand for memcpy/memmove.
340       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
341         PushPtrOperand(MTI->getRawSource());
342     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
343       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
344     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
345       // FIXME: Handle vectors of pointers
346       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
347         PushPtrOperand(Cmp->getOperand(0));
348         PushPtrOperand(Cmp->getOperand(1));
349       }
350     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
351       if (!ASC->getType()->isVectorTy())
352         PushPtrOperand(ASC->getPointerOperand());
353     }
354   }
355 
356   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
357   while (!PostorderStack.empty()) {
358     Value *TopVal = PostorderStack.back().first;
359     // If the operands of the expression on the top are already explored,
360     // adds that expression to the resultant postorder.
361     if (PostorderStack.back().second) {
362       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
363         Postorder.push_back(TopVal);
364       PostorderStack.pop_back();
365       continue;
366     }
367     // Otherwise, adds its operands to the stack and explores them.
368     PostorderStack.back().second = true;
369     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
370       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
371                                                    Visited);
372     }
373   }
374   return Postorder;
375 }
376 
377 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
378 // of OperandUse.get() in the new address space. If the clone is not ready yet,
379 // returns an undef in the new address space as a placeholder.
380 static Value *operandWithNewAddressSpaceOrCreateUndef(
381     const Use &OperandUse, unsigned NewAddrSpace,
382     const ValueToValueMapTy &ValueWithNewAddrSpace,
383     SmallVectorImpl<const Use *> *UndefUsesToFix) {
384   Value *Operand = OperandUse.get();
385 
386   Type *NewPtrTy =
387       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
388 
389   if (Constant *C = dyn_cast<Constant>(Operand))
390     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
391 
392   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
393     return NewOperand;
394 
395   UndefUsesToFix->push_back(&OperandUse);
396   return UndefValue::get(NewPtrTy);
397 }
398 
399 // Returns a clone of `I` with its operands converted to those specified in
400 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
401 // operand whose address space needs to be modified might not exist in
402 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
403 // adds that operand use to UndefUsesToFix so that caller can fix them later.
404 //
405 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
406 // from a pointer whose type already matches. Therefore, this function returns a
407 // Value* instead of an Instruction*.
408 static Value *cloneInstructionWithNewAddressSpace(
409     Instruction *I, unsigned NewAddrSpace,
410     const ValueToValueMapTy &ValueWithNewAddrSpace,
411     SmallVectorImpl<const Use *> *UndefUsesToFix) {
412   Type *NewPtrType =
413       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
414 
415   if (I->getOpcode() == Instruction::AddrSpaceCast) {
416     Value *Src = I->getOperand(0);
417     // Because `I` is flat, the source address space must be specific.
418     // Therefore, the inferred address space must be the source space, according
419     // to our algorithm.
420     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
421     if (Src->getType() != NewPtrType)
422       return new BitCastInst(Src, NewPtrType);
423     return Src;
424   }
425 
426   // Computes the converted pointer operands.
427   SmallVector<Value *, 4> NewPointerOperands;
428   for (const Use &OperandUse : I->operands()) {
429     if (!OperandUse.get()->getType()->isPointerTy())
430       NewPointerOperands.push_back(nullptr);
431     else
432       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
433                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
434   }
435 
436   switch (I->getOpcode()) {
437   case Instruction::BitCast:
438     return new BitCastInst(NewPointerOperands[0], NewPtrType);
439   case Instruction::PHI: {
440     assert(I->getType()->isPointerTy());
441     PHINode *PHI = cast<PHINode>(I);
442     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
443     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
444       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
445       NewPHI->addIncoming(NewPointerOperands[OperandNo],
446                           PHI->getIncomingBlock(Index));
447     }
448     return NewPHI;
449   }
450   case Instruction::GetElementPtr: {
451     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
452     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
453         GEP->getSourceElementType(), NewPointerOperands[0],
454         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
455     NewGEP->setIsInBounds(GEP->isInBounds());
456     return NewGEP;
457   }
458   case Instruction::Select: {
459     assert(I->getType()->isPointerTy());
460     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
461                               NewPointerOperands[2], "", nullptr, I);
462   }
463   default:
464     llvm_unreachable("Unexpected opcode");
465   }
466 }
467 
468 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
469 // constant expression `CE` with its operands replaced as specified in
470 // ValueWithNewAddrSpace.
471 static Value *cloneConstantExprWithNewAddressSpace(
472   ConstantExpr *CE, unsigned NewAddrSpace,
473   const ValueToValueMapTy &ValueWithNewAddrSpace) {
474   Type *TargetType =
475     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
476 
477   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
478     // Because CE is flat, the source address space must be specific.
479     // Therefore, the inferred address space must be the source space according
480     // to our algorithm.
481     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
482            NewAddrSpace);
483     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
484   }
485 
486   if (CE->getOpcode() == Instruction::BitCast) {
487     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
488       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
489     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
490   }
491 
492   if (CE->getOpcode() == Instruction::Select) {
493     Constant *Src0 = CE->getOperand(1);
494     Constant *Src1 = CE->getOperand(2);
495     if (Src0->getType()->getPointerAddressSpace() ==
496         Src1->getType()->getPointerAddressSpace()) {
497 
498       return ConstantExpr::getSelect(
499           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
500           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
501     }
502   }
503 
504   // Computes the operands of the new constant expression.
505   bool IsNew = false;
506   SmallVector<Constant *, 4> NewOperands;
507   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
508     Constant *Operand = CE->getOperand(Index);
509     // If the address space of `Operand` needs to be modified, the new operand
510     // with the new address space should already be in ValueWithNewAddrSpace
511     // because (1) the constant expressions we consider (i.e. addrspacecast,
512     // bitcast, and getelementptr) do not incur cycles in the data flow graph
513     // and (2) this function is called on constant expressions in postorder.
514     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
515       IsNew = true;
516       NewOperands.push_back(cast<Constant>(NewOperand));
517     } else {
518       // Otherwise, reuses the old operand.
519       NewOperands.push_back(Operand);
520     }
521   }
522 
523   // If !IsNew, we will replace the Value with itself. However, replaced values
524   // are assumed to wrapped in a addrspace cast later so drop it now.
525   if (!IsNew)
526     return nullptr;
527 
528   if (CE->getOpcode() == Instruction::GetElementPtr) {
529     // Needs to specify the source type while constructing a getelementptr
530     // constant expression.
531     return CE->getWithOperands(
532       NewOperands, TargetType, /*OnlyIfReduced=*/false,
533       NewOperands[0]->getType()->getPointerElementType());
534   }
535 
536   return CE->getWithOperands(NewOperands, TargetType);
537 }
538 
539 // Returns a clone of the value `V`, with its operands replaced as specified in
540 // ValueWithNewAddrSpace. This function is called on every flat address
541 // expression whose address space needs to be modified, in postorder.
542 //
543 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
544 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
545   Value *V, unsigned NewAddrSpace,
546   const ValueToValueMapTy &ValueWithNewAddrSpace,
547   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
548   // All values in Postorder are flat address expressions.
549   assert(isAddressExpression(*V) &&
550          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
551 
552   if (Instruction *I = dyn_cast<Instruction>(V)) {
553     Value *NewV = cloneInstructionWithNewAddressSpace(
554       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
555     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
556       if (NewI->getParent() == nullptr) {
557         NewI->insertBefore(I);
558         NewI->takeName(I);
559       }
560     }
561     return NewV;
562   }
563 
564   return cloneConstantExprWithNewAddressSpace(
565     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
566 }
567 
568 // Defines the join operation on the address space lattice (see the file header
569 // comments).
570 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
571                                                unsigned AS2) const {
572   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
573     return FlatAddrSpace;
574 
575   if (AS1 == UninitializedAddressSpace)
576     return AS2;
577   if (AS2 == UninitializedAddressSpace)
578     return AS1;
579 
580   // The join of two different specific address spaces is flat.
581   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
582 }
583 
584 bool InferAddressSpaces::runOnFunction(Function &F) {
585   if (skipFunction(F))
586     return false;
587 
588   const TargetTransformInfo &TTI =
589       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
590   FlatAddrSpace = TTI.getFlatAddressSpace();
591   if (FlatAddrSpace == UninitializedAddressSpace)
592     return false;
593 
594   // Collects all flat address expressions in postorder.
595   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
596 
597   // Runs a data-flow analysis to refine the address spaces of every expression
598   // in Postorder.
599   ValueToAddrSpaceMapTy InferredAddrSpace;
600   inferAddressSpaces(Postorder, &InferredAddrSpace);
601 
602   // Changes the address spaces of the flat address expressions who are inferred
603   // to point to a specific address space.
604   return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
605 }
606 
607 // Constants need to be tracked through RAUW to handle cases with nested
608 // constant expressions, so wrap values in WeakTrackingVH.
609 void InferAddressSpaces::inferAddressSpaces(
610     ArrayRef<WeakTrackingVH> Postorder,
611     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
612   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
613   // Initially, all expressions are in the uninitialized address space.
614   for (Value *V : Postorder)
615     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
616 
617   while (!Worklist.empty()) {
618     Value *V = Worklist.pop_back_val();
619 
620     // Tries to update the address space of the stack top according to the
621     // address spaces of its operands.
622     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
623     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
624     if (!NewAS.hasValue())
625       continue;
626     // If any updates are made, grabs its users to the worklist because
627     // their address spaces can also be possibly updated.
628     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
629     (*InferredAddrSpace)[V] = NewAS.getValue();
630 
631     for (Value *User : V->users()) {
632       // Skip if User is already in the worklist.
633       if (Worklist.count(User))
634         continue;
635 
636       auto Pos = InferredAddrSpace->find(User);
637       // Our algorithm only updates the address spaces of flat address
638       // expressions, which are those in InferredAddrSpace.
639       if (Pos == InferredAddrSpace->end())
640         continue;
641 
642       // Function updateAddressSpace moves the address space down a lattice
643       // path. Therefore, nothing to do if User is already inferred as flat (the
644       // bottom element in the lattice).
645       if (Pos->second == FlatAddrSpace)
646         continue;
647 
648       Worklist.insert(User);
649     }
650   }
651 }
652 
653 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
654     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
655   assert(InferredAddrSpace.count(&V));
656 
657   // The new inferred address space equals the join of the address spaces
658   // of all its pointer operands.
659   unsigned NewAS = UninitializedAddressSpace;
660 
661   const Operator &Op = cast<Operator>(V);
662   if (Op.getOpcode() == Instruction::Select) {
663     Value *Src0 = Op.getOperand(1);
664     Value *Src1 = Op.getOperand(2);
665 
666     auto I = InferredAddrSpace.find(Src0);
667     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
668       I->second : Src0->getType()->getPointerAddressSpace();
669 
670     auto J = InferredAddrSpace.find(Src1);
671     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
672       J->second : Src1->getType()->getPointerAddressSpace();
673 
674     auto *C0 = dyn_cast<Constant>(Src0);
675     auto *C1 = dyn_cast<Constant>(Src1);
676 
677     // If one of the inputs is a constant, we may be able to do a constant
678     // addrspacecast of it. Defer inferring the address space until the input
679     // address space is known.
680     if ((C1 && Src0AS == UninitializedAddressSpace) ||
681         (C0 && Src1AS == UninitializedAddressSpace))
682       return None;
683 
684     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
685       NewAS = Src1AS;
686     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
687       NewAS = Src0AS;
688     else
689       NewAS = joinAddressSpaces(Src0AS, Src1AS);
690   } else {
691     for (Value *PtrOperand : getPointerOperands(V)) {
692       auto I = InferredAddrSpace.find(PtrOperand);
693       unsigned OperandAS = I != InferredAddrSpace.end() ?
694         I->second : PtrOperand->getType()->getPointerAddressSpace();
695 
696       // join(flat, *) = flat. So we can break if NewAS is already flat.
697       NewAS = joinAddressSpaces(NewAS, OperandAS);
698       if (NewAS == FlatAddrSpace)
699         break;
700     }
701   }
702 
703   unsigned OldAS = InferredAddrSpace.lookup(&V);
704   assert(OldAS != FlatAddrSpace);
705   if (OldAS == NewAS)
706     return None;
707   return NewAS;
708 }
709 
710 /// \p returns true if \p U is the pointer operand of a memory instruction with
711 /// a single pointer operand that can have its address space changed by simply
712 /// mutating the use to a new value. If the memory instruction is volatile,
713 /// return true only if the target allows the memory instruction to be volatile
714 /// in the new address space.
715 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
716                                              Use &U, unsigned AddrSpace) {
717   User *Inst = U.getUser();
718   unsigned OpNo = U.getOperandNo();
719   bool VolatileIsAllowed = false;
720   if (auto *I = dyn_cast<Instruction>(Inst))
721     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
722 
723   if (auto *LI = dyn_cast<LoadInst>(Inst))
724     return OpNo == LoadInst::getPointerOperandIndex() &&
725            (VolatileIsAllowed || !LI->isVolatile());
726 
727   if (auto *SI = dyn_cast<StoreInst>(Inst))
728     return OpNo == StoreInst::getPointerOperandIndex() &&
729            (VolatileIsAllowed || !SI->isVolatile());
730 
731   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
732     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
733            (VolatileIsAllowed || !RMW->isVolatile());
734 
735   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
736     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
737            (VolatileIsAllowed || !CmpX->isVolatile());
738   }
739 
740   return false;
741 }
742 
743 /// Update memory intrinsic uses that require more complex processing than
744 /// simple memory instructions. Thse require re-mangling and may have multiple
745 /// pointer operands.
746 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
747                                      Value *NewV) {
748   IRBuilder<> B(MI);
749   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
750   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
751   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
752 
753   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
754     B.CreateMemSet(NewV, MSI->getValue(),
755                    MSI->getLength(), MSI->getAlignment(),
756                    false, // isVolatile
757                    TBAA, ScopeMD, NoAliasMD);
758   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
759     Value *Src = MTI->getRawSource();
760     Value *Dest = MTI->getRawDest();
761 
762     // Be careful in case this is a self-to-self copy.
763     if (Src == OldV)
764       Src = NewV;
765 
766     if (Dest == OldV)
767       Dest = NewV;
768 
769     if (isa<MemCpyInst>(MTI)) {
770       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
771       B.CreateMemCpy(Dest, Src, MTI->getLength(),
772                      MTI->getAlignment(),
773                      false, // isVolatile
774                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
775     } else {
776       assert(isa<MemMoveInst>(MTI));
777       B.CreateMemMove(Dest, Src, MTI->getLength(),
778                       MTI->getAlignment(),
779                       false, // isVolatile
780                       TBAA, ScopeMD, NoAliasMD);
781     }
782   } else
783     llvm_unreachable("unhandled MemIntrinsic");
784 
785   MI->eraseFromParent();
786   return true;
787 }
788 
789 // \p returns true if it is OK to change the address space of constant \p C with
790 // a ConstantExpr addrspacecast.
791 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
792   assert(NewAS != UninitializedAddressSpace);
793 
794   unsigned SrcAS = C->getType()->getPointerAddressSpace();
795   if (SrcAS == NewAS || isa<UndefValue>(C))
796     return true;
797 
798   // Prevent illegal casts between different non-flat address spaces.
799   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
800     return false;
801 
802   if (isa<ConstantPointerNull>(C))
803     return true;
804 
805   if (auto *Op = dyn_cast<Operator>(C)) {
806     // If we already have a constant addrspacecast, it should be safe to cast it
807     // off.
808     if (Op->getOpcode() == Instruction::AddrSpaceCast)
809       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
810 
811     if (Op->getOpcode() == Instruction::IntToPtr &&
812         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
813       return true;
814   }
815 
816   return false;
817 }
818 
819 static Value::use_iterator skipToNextUser(Value::use_iterator I,
820                                           Value::use_iterator End) {
821   User *CurUser = I->getUser();
822   ++I;
823 
824   while (I != End && I->getUser() == CurUser)
825     ++I;
826 
827   return I;
828 }
829 
830 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
831     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
832     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
833   // For each address expression to be modified, creates a clone of it with its
834   // pointer operands converted to the new address space. Since the pointer
835   // operands are converted, the clone is naturally in the new address space by
836   // construction.
837   ValueToValueMapTy ValueWithNewAddrSpace;
838   SmallVector<const Use *, 32> UndefUsesToFix;
839   for (Value* V : Postorder) {
840     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
841     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
842       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
843         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
844     }
845   }
846 
847   if (ValueWithNewAddrSpace.empty())
848     return false;
849 
850   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
851   for (const Use *UndefUse : UndefUsesToFix) {
852     User *V = UndefUse->getUser();
853     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
854     unsigned OperandNo = UndefUse->getOperandNo();
855     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
856     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
857   }
858 
859   SmallVector<Instruction *, 16> DeadInstructions;
860 
861   // Replaces the uses of the old address expressions with the new ones.
862   for (const WeakTrackingVH &WVH : Postorder) {
863     assert(WVH && "value was unexpectedly deleted");
864     Value *V = WVH;
865     Value *NewV = ValueWithNewAddrSpace.lookup(V);
866     if (NewV == nullptr)
867       continue;
868 
869     DEBUG(dbgs() << "Replacing the uses of " << *V
870                  << "\n  with\n  " << *NewV << '\n');
871 
872     if (Constant *C = dyn_cast<Constant>(V)) {
873       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
874                                                          C->getType());
875       if (C != Replace) {
876         DEBUG(dbgs() << "Inserting replacement const cast: "
877               << Replace << ": " << *Replace << '\n');
878         C->replaceAllUsesWith(Replace);
879         V = Replace;
880       }
881     }
882 
883     Value::use_iterator I, E, Next;
884     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
885       Use &U = *I;
886 
887       // Some users may see the same pointer operand in multiple operands. Skip
888       // to the next instruction.
889       I = skipToNextUser(I, E);
890 
891       if (isSimplePointerUseValidToReplace(
892               TTI, U, V->getType()->getPointerAddressSpace())) {
893         // If V is used as the pointer operand of a compatible memory operation,
894         // sets the pointer operand to NewV. This replacement does not change
895         // the element type, so the resultant load/store is still valid.
896         U.set(NewV);
897         continue;
898       }
899 
900       User *CurUser = U.getUser();
901       // Handle more complex cases like intrinsic that need to be remangled.
902       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
903         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
904           continue;
905       }
906 
907       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
908         if (rewriteIntrinsicOperands(II, V, NewV))
909           continue;
910       }
911 
912       if (isa<Instruction>(CurUser)) {
913         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
914           // If we can infer that both pointers are in the same addrspace,
915           // transform e.g.
916           //   %cmp = icmp eq float* %p, %q
917           // into
918           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
919 
920           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
921           int SrcIdx = U.getOperandNo();
922           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
923           Value *OtherSrc = Cmp->getOperand(OtherIdx);
924 
925           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
926             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
927               Cmp->setOperand(OtherIdx, OtherNewV);
928               Cmp->setOperand(SrcIdx, NewV);
929               continue;
930             }
931           }
932 
933           // Even if the type mismatches, we can cast the constant.
934           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
935             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
936               Cmp->setOperand(SrcIdx, NewV);
937               Cmp->setOperand(OtherIdx,
938                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
939               continue;
940             }
941           }
942         }
943 
944         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
945           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
946           if (ASC->getDestAddressSpace() == NewAS) {
947             ASC->replaceAllUsesWith(NewV);
948             DeadInstructions.push_back(ASC);
949             continue;
950           }
951         }
952 
953         // Otherwise, replaces the use with flat(NewV).
954         if (Instruction *I = dyn_cast<Instruction>(V)) {
955           BasicBlock::iterator InsertPos = std::next(I->getIterator());
956           while (isa<PHINode>(InsertPos))
957             ++InsertPos;
958           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
959         } else {
960           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
961                                                V->getType()));
962         }
963       }
964     }
965 
966     if (V->use_empty()) {
967       if (Instruction *I = dyn_cast<Instruction>(V))
968         DeadInstructions.push_back(I);
969     }
970   }
971 
972   for (Instruction *I : DeadInstructions)
973     RecursivelyDeleteTriviallyDeadInstructions(I);
974 
975   return true;
976 }
977 
978 FunctionPass *llvm::createInferAddressSpacesPass() {
979   return new InferAddressSpaces();
980 }
981