xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision c20ccd2c0209fdaae7f7efe066c4b59b4ca46842)
1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/Optional.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/Operator.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include "llvm/Transforms/Utils/ValueMapper.h"
105 
106 #define DEBUG_TYPE "infer-address-spaces"
107 
108 using namespace llvm;
109 
110 namespace {
111 static const unsigned UninitializedAddressSpace = ~0u;
112 
113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114 
115 /// \brief InferAddressSpaces
116 class InferAddressSpaces : public FunctionPass {
117   /// Target specific address space which uses of should be replaced if
118   /// possible.
119   unsigned FlatAddrSpace;
120 
121 public:
122   static char ID;
123 
124   InferAddressSpaces() : FunctionPass(ID) {}
125 
126   void getAnalysisUsage(AnalysisUsage &AU) const override {
127     AU.setPreservesCFG();
128     AU.addRequired<TargetTransformInfoWrapperPass>();
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133 private:
134   // Returns the new address space of V if updated; otherwise, returns None.
135   Optional<unsigned>
136   updateAddressSpace(const Value &V,
137                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
138 
139   // Tries to infer the specific address space of each address expression in
140   // Postorder.
141   void inferAddressSpaces(const std::vector<Value *> &Postorder,
142                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
143 
144   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145 
146   // Changes the flat address expressions in function F to point to specific
147   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
148   // all flat expressions in the use-def graph of function F.
149   bool
150   rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
152                               Function *F) const;
153 
154   void appendsFlatAddressExpressionToPostorderStack(
155     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
156     DenseSet<Value *> &Visited) const;
157 
158   bool rewriteIntrinsicOperands(IntrinsicInst *II,
159                                 Value *OldV, Value *NewV) const;
160   void collectRewritableIntrinsicOperands(
161     IntrinsicInst *II,
162     std::vector<std::pair<Value *, bool>> &PostorderStack,
163     DenseSet<Value *> &Visited) const;
164 
165   std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
166 
167   Value *cloneValueWithNewAddressSpace(
168     Value *V, unsigned NewAddrSpace,
169     const ValueToValueMapTy &ValueWithNewAddrSpace,
170     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
172 };
173 } // end anonymous namespace
174 
175 char InferAddressSpaces::ID = 0;
176 
177 namespace llvm {
178 void initializeInferAddressSpacesPass(PassRegistry &);
179 }
180 
181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
182                 false, false)
183 
184 // Returns true if V is an address expression.
185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186 // getelementptr operators.
187 static bool isAddressExpression(const Value &V) {
188   if (!isa<Operator>(V))
189     return false;
190 
191   switch (cast<Operator>(V).getOpcode()) {
192   case Instruction::PHI:
193   case Instruction::BitCast:
194   case Instruction::AddrSpaceCast:
195   case Instruction::GetElementPtr:
196   case Instruction::Select:
197     return true;
198   default:
199     return false;
200   }
201 }
202 
203 // Returns the pointer operands of V.
204 //
205 // Precondition: V is an address expression.
206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207   const Operator &Op = cast<Operator>(V);
208   switch (Op.getOpcode()) {
209   case Instruction::PHI: {
210     auto IncomingValues = cast<PHINode>(Op).incoming_values();
211     return SmallVector<Value *, 2>(IncomingValues.begin(),
212                                    IncomingValues.end());
213   }
214   case Instruction::BitCast:
215   case Instruction::AddrSpaceCast:
216   case Instruction::GetElementPtr:
217     return {Op.getOperand(0)};
218   case Instruction::Select:
219     return {Op.getOperand(1), Op.getOperand(2)};
220   default:
221     llvm_unreachable("Unexpected instruction type.");
222   }
223 }
224 
225 // TODO: Move logic to TTI?
226 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
227                                                   Value *OldV,
228                                                   Value *NewV) const {
229   Module *M = II->getParent()->getParent()->getParent();
230 
231   switch (II->getIntrinsicID()) {
232   case Intrinsic::amdgcn_atomic_inc:
233   case Intrinsic::amdgcn_atomic_dec:{
234     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
235     if (!IsVolatile || !IsVolatile->isNullValue())
236       return false;
237 
238     LLVM_FALLTHROUGH;
239   }
240   case Intrinsic::objectsize: {
241     Type *DestTy = II->getType();
242     Type *SrcTy = NewV->getType();
243     Function *NewDecl =
244         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
245     II->setArgOperand(0, NewV);
246     II->setCalledFunction(NewDecl);
247     return true;
248   }
249   default:
250     return false;
251   }
252 }
253 
254 // TODO: Move logic to TTI?
255 void InferAddressSpaces::collectRewritableIntrinsicOperands(
256     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
257     DenseSet<Value *> &Visited) const {
258   switch (II->getIntrinsicID()) {
259   case Intrinsic::objectsize:
260   case Intrinsic::amdgcn_atomic_inc:
261   case Intrinsic::amdgcn_atomic_dec:
262     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
263                                                  PostorderStack, Visited);
264     break;
265   default:
266     break;
267   }
268 }
269 
270 // Returns all flat address expressions in function F. The elements are
271 // If V is an unvisited flat address expression, appends V to PostorderStack
272 // and marks it as visited.
273 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
274     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
275     DenseSet<Value *> &Visited) const {
276   assert(V->getType()->isPointerTy());
277   if (isAddressExpression(*V) &&
278       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
279     if (Visited.insert(V).second)
280       PostorderStack.push_back(std::make_pair(V, false));
281   }
282 }
283 
284 // Returns all flat address expressions in function F. The elements are ordered
285 // ordered in postorder.
286 std::vector<Value *>
287 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
288   // This function implements a non-recursive postorder traversal of a partial
289   // use-def graph of function F.
290   std::vector<std::pair<Value *, bool>> PostorderStack;
291   // The set of visited expressions.
292   DenseSet<Value *> Visited;
293 
294   auto PushPtrOperand = [&](Value *Ptr) {
295     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
296                                                  Visited);
297   };
298 
299   // Look at operations that may be interesting accelerate by moving to a known
300   // address space. We aim at generating after loads and stores, but pure
301   // addressing calculations may also be faster.
302   for (Instruction &I : instructions(F)) {
303     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
304       if (!GEP->getType()->isVectorTy())
305         PushPtrOperand(GEP->getPointerOperand());
306     } else if (auto *LI = dyn_cast<LoadInst>(&I))
307       PushPtrOperand(LI->getPointerOperand());
308     else if (auto *SI = dyn_cast<StoreInst>(&I))
309       PushPtrOperand(SI->getPointerOperand());
310     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
311       PushPtrOperand(RMW->getPointerOperand());
312     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
313       PushPtrOperand(CmpX->getPointerOperand());
314     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
315       // For memset/memcpy/memmove, any pointer operand can be replaced.
316       PushPtrOperand(MI->getRawDest());
317 
318       // Handle 2nd operand for memcpy/memmove.
319       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
320         PushPtrOperand(MTI->getRawSource());
321     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
322       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
323     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
324       // FIXME: Handle vectors of pointers
325       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
326         PushPtrOperand(Cmp->getOperand(0));
327         PushPtrOperand(Cmp->getOperand(1));
328       }
329     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
330       if (!ASC->getType()->isVectorTy())
331         PushPtrOperand(ASC->getPointerOperand());
332     }
333   }
334 
335   std::vector<Value *> Postorder; // The resultant postorder.
336   while (!PostorderStack.empty()) {
337     // If the operands of the expression on the top are already explored,
338     // adds that expression to the resultant postorder.
339     if (PostorderStack.back().second) {
340       Postorder.push_back(PostorderStack.back().first);
341       PostorderStack.pop_back();
342       continue;
343     }
344     // Otherwise, adds its operands to the stack and explores them.
345     PostorderStack.back().second = true;
346     for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
347       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
348                                                    Visited);
349     }
350   }
351   return Postorder;
352 }
353 
354 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
355 // of OperandUse.get() in the new address space. If the clone is not ready yet,
356 // returns an undef in the new address space as a placeholder.
357 static Value *operandWithNewAddressSpaceOrCreateUndef(
358     const Use &OperandUse, unsigned NewAddrSpace,
359     const ValueToValueMapTy &ValueWithNewAddrSpace,
360     SmallVectorImpl<const Use *> *UndefUsesToFix) {
361   Value *Operand = OperandUse.get();
362 
363   Type *NewPtrTy =
364       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
365 
366   if (Constant *C = dyn_cast<Constant>(Operand))
367     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
368 
369   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
370     return NewOperand;
371 
372   UndefUsesToFix->push_back(&OperandUse);
373   return UndefValue::get(NewPtrTy);
374 }
375 
376 // Returns a clone of `I` with its operands converted to those specified in
377 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
378 // operand whose address space needs to be modified might not exist in
379 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
380 // adds that operand use to UndefUsesToFix so that caller can fix them later.
381 //
382 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
383 // from a pointer whose type already matches. Therefore, this function returns a
384 // Value* instead of an Instruction*.
385 static Value *cloneInstructionWithNewAddressSpace(
386     Instruction *I, unsigned NewAddrSpace,
387     const ValueToValueMapTy &ValueWithNewAddrSpace,
388     SmallVectorImpl<const Use *> *UndefUsesToFix) {
389   Type *NewPtrType =
390       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
391 
392   if (I->getOpcode() == Instruction::AddrSpaceCast) {
393     Value *Src = I->getOperand(0);
394     // Because `I` is flat, the source address space must be specific.
395     // Therefore, the inferred address space must be the source space, according
396     // to our algorithm.
397     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
398     if (Src->getType() != NewPtrType)
399       return new BitCastInst(Src, NewPtrType);
400     return Src;
401   }
402 
403   // Computes the converted pointer operands.
404   SmallVector<Value *, 4> NewPointerOperands;
405   for (const Use &OperandUse : I->operands()) {
406     if (!OperandUse.get()->getType()->isPointerTy())
407       NewPointerOperands.push_back(nullptr);
408     else
409       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
410                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
411   }
412 
413   switch (I->getOpcode()) {
414   case Instruction::BitCast:
415     return new BitCastInst(NewPointerOperands[0], NewPtrType);
416   case Instruction::PHI: {
417     assert(I->getType()->isPointerTy());
418     PHINode *PHI = cast<PHINode>(I);
419     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
420     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
421       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
422       NewPHI->addIncoming(NewPointerOperands[OperandNo],
423                           PHI->getIncomingBlock(Index));
424     }
425     return NewPHI;
426   }
427   case Instruction::GetElementPtr: {
428     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
429     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
430         GEP->getSourceElementType(), NewPointerOperands[0],
431         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
432     NewGEP->setIsInBounds(GEP->isInBounds());
433     return NewGEP;
434   }
435   case Instruction::Select: {
436     assert(I->getType()->isPointerTy());
437     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
438                               NewPointerOperands[2], "", nullptr, I);
439   }
440   default:
441     llvm_unreachable("Unexpected opcode");
442   }
443 }
444 
445 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
446 // constant expression `CE` with its operands replaced as specified in
447 // ValueWithNewAddrSpace.
448 static Value *cloneConstantExprWithNewAddressSpace(
449   ConstantExpr *CE, unsigned NewAddrSpace,
450   const ValueToValueMapTy &ValueWithNewAddrSpace) {
451   Type *TargetType =
452     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
453 
454   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
455     // Because CE is flat, the source address space must be specific.
456     // Therefore, the inferred address space must be the source space according
457     // to our algorithm.
458     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
459            NewAddrSpace);
460     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
461   }
462 
463   if (CE->getOpcode() == Instruction::BitCast) {
464     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
465       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
466     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
467   }
468 
469   if (CE->getOpcode() == Instruction::Select) {
470     Constant *Src0 = CE->getOperand(1);
471     Constant *Src1 = CE->getOperand(2);
472     if (Src0->getType()->getPointerAddressSpace() ==
473         Src1->getType()->getPointerAddressSpace()) {
474 
475       return ConstantExpr::getSelect(
476           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
477           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
478     }
479   }
480 
481   // Computes the operands of the new constant expression.
482   SmallVector<Constant *, 4> NewOperands;
483   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
484     Constant *Operand = CE->getOperand(Index);
485     // If the address space of `Operand` needs to be modified, the new operand
486     // with the new address space should already be in ValueWithNewAddrSpace
487     // because (1) the constant expressions we consider (i.e. addrspacecast,
488     // bitcast, and getelementptr) do not incur cycles in the data flow graph
489     // and (2) this function is called on constant expressions in postorder.
490     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
491       NewOperands.push_back(cast<Constant>(NewOperand));
492     } else {
493       // Otherwise, reuses the old operand.
494       NewOperands.push_back(Operand);
495     }
496   }
497 
498   if (CE->getOpcode() == Instruction::GetElementPtr) {
499     // Needs to specify the source type while constructing a getelementptr
500     // constant expression.
501     return CE->getWithOperands(
502       NewOperands, TargetType, /*OnlyIfReduced=*/false,
503       NewOperands[0]->getType()->getPointerElementType());
504   }
505 
506   return CE->getWithOperands(NewOperands, TargetType);
507 }
508 
509 // Returns a clone of the value `V`, with its operands replaced as specified in
510 // ValueWithNewAddrSpace. This function is called on every flat address
511 // expression whose address space needs to be modified, in postorder.
512 //
513 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
514 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
515   Value *V, unsigned NewAddrSpace,
516   const ValueToValueMapTy &ValueWithNewAddrSpace,
517   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
518   // All values in Postorder are flat address expressions.
519   assert(isAddressExpression(*V) &&
520          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
521 
522   if (Instruction *I = dyn_cast<Instruction>(V)) {
523     Value *NewV = cloneInstructionWithNewAddressSpace(
524       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
525     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
526       if (NewI->getParent() == nullptr) {
527         NewI->insertBefore(I);
528         NewI->takeName(I);
529       }
530     }
531     return NewV;
532   }
533 
534   return cloneConstantExprWithNewAddressSpace(
535     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
536 }
537 
538 // Defines the join operation on the address space lattice (see the file header
539 // comments).
540 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
541                                                unsigned AS2) const {
542   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
543     return FlatAddrSpace;
544 
545   if (AS1 == UninitializedAddressSpace)
546     return AS2;
547   if (AS2 == UninitializedAddressSpace)
548     return AS1;
549 
550   // The join of two different specific address spaces is flat.
551   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
552 }
553 
554 bool InferAddressSpaces::runOnFunction(Function &F) {
555   if (skipFunction(F))
556     return false;
557 
558   const TargetTransformInfo &TTI =
559       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
560   FlatAddrSpace = TTI.getFlatAddressSpace();
561   if (FlatAddrSpace == UninitializedAddressSpace)
562     return false;
563 
564   // Collects all flat address expressions in postorder.
565   std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
566 
567   // Runs a data-flow analysis to refine the address spaces of every expression
568   // in Postorder.
569   ValueToAddrSpaceMapTy InferredAddrSpace;
570   inferAddressSpaces(Postorder, &InferredAddrSpace);
571 
572   // Changes the address spaces of the flat address expressions who are inferred
573   // to point to a specific address space.
574   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
575 }
576 
577 void InferAddressSpaces::inferAddressSpaces(
578     const std::vector<Value *> &Postorder,
579     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
580   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
581   // Initially, all expressions are in the uninitialized address space.
582   for (Value *V : Postorder)
583     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
584 
585   while (!Worklist.empty()) {
586     Value *V = Worklist.pop_back_val();
587 
588     // Tries to update the address space of the stack top according to the
589     // address spaces of its operands.
590     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
591     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
592     if (!NewAS.hasValue())
593       continue;
594     // If any updates are made, grabs its users to the worklist because
595     // their address spaces can also be possibly updated.
596     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
597     (*InferredAddrSpace)[V] = NewAS.getValue();
598 
599     for (Value *User : V->users()) {
600       // Skip if User is already in the worklist.
601       if (Worklist.count(User))
602         continue;
603 
604       auto Pos = InferredAddrSpace->find(User);
605       // Our algorithm only updates the address spaces of flat address
606       // expressions, which are those in InferredAddrSpace.
607       if (Pos == InferredAddrSpace->end())
608         continue;
609 
610       // Function updateAddressSpace moves the address space down a lattice
611       // path. Therefore, nothing to do if User is already inferred as flat (the
612       // bottom element in the lattice).
613       if (Pos->second == FlatAddrSpace)
614         continue;
615 
616       Worklist.insert(User);
617     }
618   }
619 }
620 
621 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
622     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
623   assert(InferredAddrSpace.count(&V));
624 
625   // The new inferred address space equals the join of the address spaces
626   // of all its pointer operands.
627   unsigned NewAS = UninitializedAddressSpace;
628 
629   const Operator &Op = cast<Operator>(V);
630   if (Op.getOpcode() == Instruction::Select) {
631     Value *Src0 = Op.getOperand(1);
632     Value *Src1 = Op.getOperand(2);
633 
634     auto I = InferredAddrSpace.find(Src0);
635     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
636       I->second : Src0->getType()->getPointerAddressSpace();
637 
638     auto J = InferredAddrSpace.find(Src1);
639     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
640       J->second : Src1->getType()->getPointerAddressSpace();
641 
642     auto *C0 = dyn_cast<Constant>(Src0);
643     auto *C1 = dyn_cast<Constant>(Src1);
644 
645     // If one of the inputs is a constant, we may be able to do a constant
646     // addrspacecast of it. Defer inferring the address space until the input
647     // address space is known.
648     if ((C1 && Src0AS == UninitializedAddressSpace) ||
649         (C0 && Src1AS == UninitializedAddressSpace))
650       return None;
651 
652     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
653       NewAS = Src1AS;
654     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
655       NewAS = Src0AS;
656     else
657       NewAS = joinAddressSpaces(Src0AS, Src1AS);
658   } else {
659     for (Value *PtrOperand : getPointerOperands(V)) {
660       auto I = InferredAddrSpace.find(PtrOperand);
661       unsigned OperandAS = I != InferredAddrSpace.end() ?
662         I->second : PtrOperand->getType()->getPointerAddressSpace();
663 
664       // join(flat, *) = flat. So we can break if NewAS is already flat.
665       NewAS = joinAddressSpaces(NewAS, OperandAS);
666       if (NewAS == FlatAddrSpace)
667         break;
668     }
669   }
670 
671   unsigned OldAS = InferredAddrSpace.lookup(&V);
672   assert(OldAS != FlatAddrSpace);
673   if (OldAS == NewAS)
674     return None;
675   return NewAS;
676 }
677 
678 /// \p returns true if \p U is the pointer operand of a memory instruction with
679 /// a single pointer operand that can have its address space changed by simply
680 /// mutating the use to a new value.
681 static bool isSimplePointerUseValidToReplace(Use &U) {
682   User *Inst = U.getUser();
683   unsigned OpNo = U.getOperandNo();
684 
685   if (auto *LI = dyn_cast<LoadInst>(Inst))
686     return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
687 
688   if (auto *SI = dyn_cast<StoreInst>(Inst))
689     return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
690 
691   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
692     return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
693 
694   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
695     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
696            !CmpX->isVolatile();
697   }
698 
699   return false;
700 }
701 
702 /// Update memory intrinsic uses that require more complex processing than
703 /// simple memory instructions. Thse require re-mangling and may have multiple
704 /// pointer operands.
705 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
706                                      Value *NewV) {
707   IRBuilder<> B(MI);
708   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
709   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
710   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
711 
712   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
713     B.CreateMemSet(NewV, MSI->getValue(),
714                    MSI->getLength(), MSI->getAlignment(),
715                    false, // isVolatile
716                    TBAA, ScopeMD, NoAliasMD);
717   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
718     Value *Src = MTI->getRawSource();
719     Value *Dest = MTI->getRawDest();
720 
721     // Be careful in case this is a self-to-self copy.
722     if (Src == OldV)
723       Src = NewV;
724 
725     if (Dest == OldV)
726       Dest = NewV;
727 
728     if (isa<MemCpyInst>(MTI)) {
729       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
730       B.CreateMemCpy(Dest, Src, MTI->getLength(),
731                      MTI->getAlignment(),
732                      false, // isVolatile
733                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
734     } else {
735       assert(isa<MemMoveInst>(MTI));
736       B.CreateMemMove(Dest, Src, MTI->getLength(),
737                       MTI->getAlignment(),
738                       false, // isVolatile
739                       TBAA, ScopeMD, NoAliasMD);
740     }
741   } else
742     llvm_unreachable("unhandled MemIntrinsic");
743 
744   MI->eraseFromParent();
745   return true;
746 }
747 
748 // \p returns true if it is OK to change the address space of constant \p C with
749 // a ConstantExpr addrspacecast.
750 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
751   assert(NewAS != UninitializedAddressSpace);
752 
753   unsigned SrcAS = C->getType()->getPointerAddressSpace();
754   if (SrcAS == NewAS || isa<UndefValue>(C))
755     return true;
756 
757   // Prevent illegal casts between different non-flat address spaces.
758   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
759     return false;
760 
761   if (isa<ConstantPointerNull>(C))
762     return true;
763 
764   if (auto *Op = dyn_cast<Operator>(C)) {
765     // If we already have a constant addrspacecast, it should be safe to cast it
766     // off.
767     if (Op->getOpcode() == Instruction::AddrSpaceCast)
768       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
769 
770     if (Op->getOpcode() == Instruction::IntToPtr &&
771         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
772       return true;
773   }
774 
775   return false;
776 }
777 
778 static Value::use_iterator skipToNextUser(Value::use_iterator I,
779                                           Value::use_iterator End) {
780   User *CurUser = I->getUser();
781   ++I;
782 
783   while (I != End && I->getUser() == CurUser)
784     ++I;
785 
786   return I;
787 }
788 
789 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
790   const std::vector<Value *> &Postorder,
791   const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
792   // For each address expression to be modified, creates a clone of it with its
793   // pointer operands converted to the new address space. Since the pointer
794   // operands are converted, the clone is naturally in the new address space by
795   // construction.
796   ValueToValueMapTy ValueWithNewAddrSpace;
797   SmallVector<const Use *, 32> UndefUsesToFix;
798   for (Value* V : Postorder) {
799     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
800     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
801       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
802         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
803     }
804   }
805 
806   if (ValueWithNewAddrSpace.empty())
807     return false;
808 
809   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
810   for (const Use *UndefUse : UndefUsesToFix) {
811     User *V = UndefUse->getUser();
812     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
813     unsigned OperandNo = UndefUse->getOperandNo();
814     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
815     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
816   }
817 
818   SmallVector<Instruction *, 16> DeadInstructions;
819 
820   // Replaces the uses of the old address expressions with the new ones.
821   for (Value *V : Postorder) {
822     Value *NewV = ValueWithNewAddrSpace.lookup(V);
823     if (NewV == nullptr)
824       continue;
825 
826     DEBUG(dbgs() << "Replacing the uses of " << *V
827                  << "\n  with\n  " << *NewV << '\n');
828 
829     Value::use_iterator I, E, Next;
830     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
831       Use &U = *I;
832 
833       // Some users may see the same pointer operand in multiple operands. Skip
834       // to the next instruction.
835       I = skipToNextUser(I, E);
836 
837       if (isSimplePointerUseValidToReplace(U)) {
838         // If V is used as the pointer operand of a compatible memory operation,
839         // sets the pointer operand to NewV. This replacement does not change
840         // the element type, so the resultant load/store is still valid.
841         U.set(NewV);
842         continue;
843       }
844 
845       User *CurUser = U.getUser();
846       // Handle more complex cases like intrinsic that need to be remangled.
847       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
848         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
849           continue;
850       }
851 
852       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
853         if (rewriteIntrinsicOperands(II, V, NewV))
854           continue;
855       }
856 
857       if (isa<Instruction>(CurUser)) {
858         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
859           // If we can infer that both pointers are in the same addrspace,
860           // transform e.g.
861           //   %cmp = icmp eq float* %p, %q
862           // into
863           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
864 
865           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
866           int SrcIdx = U.getOperandNo();
867           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
868           Value *OtherSrc = Cmp->getOperand(OtherIdx);
869 
870           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
871             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
872               Cmp->setOperand(OtherIdx, OtherNewV);
873               Cmp->setOperand(SrcIdx, NewV);
874               continue;
875             }
876           }
877 
878           // Even if the type mismatches, we can cast the constant.
879           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
880             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
881               Cmp->setOperand(SrcIdx, NewV);
882               Cmp->setOperand(OtherIdx,
883                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
884               continue;
885             }
886           }
887         }
888 
889         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
890           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
891           if (ASC->getDestAddressSpace() == NewAS) {
892             ASC->replaceAllUsesWith(NewV);
893             DeadInstructions.push_back(ASC);
894             continue;
895           }
896         }
897 
898         // Otherwise, replaces the use with flat(NewV).
899         if (Instruction *I = dyn_cast<Instruction>(V)) {
900           BasicBlock::iterator InsertPos = std::next(I->getIterator());
901           while (isa<PHINode>(InsertPos))
902             ++InsertPos;
903           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
904         } else {
905           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
906                                                V->getType()));
907         }
908       }
909     }
910 
911     if (V->use_empty()) {
912       if (Instruction *I = dyn_cast<Instruction>(V))
913         DeadInstructions.push_back(I);
914     }
915   }
916 
917   for (Instruction *I : DeadInstructions)
918     RecursivelyDeleteTriviallyDeadInstructions(I);
919 
920   return true;
921 }
922 
923 FunctionPass *llvm::createInferAddressSpacesPass() {
924   return new InferAddressSpaces();
925 }
926