1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 156 DenseSet<Value *> &Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> &PostorderStack, 163 DenseSet<Value *> &Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 const Operator &Op = cast<Operator>(V); 208 switch (Op.getOpcode()) { 209 case Instruction::PHI: { 210 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 211 return SmallVector<Value *, 2>(IncomingValues.begin(), 212 IncomingValues.end()); 213 } 214 case Instruction::BitCast: 215 case Instruction::AddrSpaceCast: 216 case Instruction::GetElementPtr: 217 return {Op.getOperand(0)}; 218 case Instruction::Select: 219 return {Op.getOperand(1), Op.getOperand(2)}; 220 default: 221 llvm_unreachable("Unexpected instruction type."); 222 } 223 } 224 225 // TODO: Move logic to TTI? 226 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 227 Value *OldV, 228 Value *NewV) const { 229 Module *M = II->getParent()->getParent()->getParent(); 230 231 switch (II->getIntrinsicID()) { 232 case Intrinsic::amdgcn_atomic_inc: 233 case Intrinsic::amdgcn_atomic_dec:{ 234 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 235 if (!IsVolatile || !IsVolatile->isNullValue()) 236 return false; 237 238 LLVM_FALLTHROUGH; 239 } 240 case Intrinsic::objectsize: { 241 Type *DestTy = II->getType(); 242 Type *SrcTy = NewV->getType(); 243 Function *NewDecl = 244 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 245 II->setArgOperand(0, NewV); 246 II->setCalledFunction(NewDecl); 247 return true; 248 } 249 default: 250 return false; 251 } 252 } 253 254 // TODO: Move logic to TTI? 255 void InferAddressSpaces::collectRewritableIntrinsicOperands( 256 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 257 DenseSet<Value *> &Visited) const { 258 switch (II->getIntrinsicID()) { 259 case Intrinsic::objectsize: 260 case Intrinsic::amdgcn_atomic_inc: 261 case Intrinsic::amdgcn_atomic_dec: 262 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 263 PostorderStack, Visited); 264 break; 265 default: 266 break; 267 } 268 } 269 270 // Returns all flat address expressions in function F. The elements are 271 // If V is an unvisited flat address expression, appends V to PostorderStack 272 // and marks it as visited. 273 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 274 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 275 DenseSet<Value *> &Visited) const { 276 assert(V->getType()->isPointerTy()); 277 if (isAddressExpression(*V) && 278 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 279 if (Visited.insert(V).second) 280 PostorderStack.push_back(std::make_pair(V, false)); 281 } 282 } 283 284 // Returns all flat address expressions in function F. The elements are ordered 285 // ordered in postorder. 286 std::vector<Value *> 287 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 288 // This function implements a non-recursive postorder traversal of a partial 289 // use-def graph of function F. 290 std::vector<std::pair<Value *, bool>> PostorderStack; 291 // The set of visited expressions. 292 DenseSet<Value *> Visited; 293 294 auto PushPtrOperand = [&](Value *Ptr) { 295 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 296 Visited); 297 }; 298 299 // Look at operations that may be interesting accelerate by moving to a known 300 // address space. We aim at generating after loads and stores, but pure 301 // addressing calculations may also be faster. 302 for (Instruction &I : instructions(F)) { 303 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 304 if (!GEP->getType()->isVectorTy()) 305 PushPtrOperand(GEP->getPointerOperand()); 306 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 307 PushPtrOperand(LI->getPointerOperand()); 308 else if (auto *SI = dyn_cast<StoreInst>(&I)) 309 PushPtrOperand(SI->getPointerOperand()); 310 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 311 PushPtrOperand(RMW->getPointerOperand()); 312 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 313 PushPtrOperand(CmpX->getPointerOperand()); 314 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 315 // For memset/memcpy/memmove, any pointer operand can be replaced. 316 PushPtrOperand(MI->getRawDest()); 317 318 // Handle 2nd operand for memcpy/memmove. 319 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 320 PushPtrOperand(MTI->getRawSource()); 321 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 322 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 323 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 324 // FIXME: Handle vectors of pointers 325 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 326 PushPtrOperand(Cmp->getOperand(0)); 327 PushPtrOperand(Cmp->getOperand(1)); 328 } 329 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 330 if (!ASC->getType()->isVectorTy()) 331 PushPtrOperand(ASC->getPointerOperand()); 332 } 333 } 334 335 std::vector<Value *> Postorder; // The resultant postorder. 336 while (!PostorderStack.empty()) { 337 // If the operands of the expression on the top are already explored, 338 // adds that expression to the resultant postorder. 339 if (PostorderStack.back().second) { 340 Postorder.push_back(PostorderStack.back().first); 341 PostorderStack.pop_back(); 342 continue; 343 } 344 // Otherwise, adds its operands to the stack and explores them. 345 PostorderStack.back().second = true; 346 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 347 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 348 Visited); 349 } 350 } 351 return Postorder; 352 } 353 354 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 355 // of OperandUse.get() in the new address space. If the clone is not ready yet, 356 // returns an undef in the new address space as a placeholder. 357 static Value *operandWithNewAddressSpaceOrCreateUndef( 358 const Use &OperandUse, unsigned NewAddrSpace, 359 const ValueToValueMapTy &ValueWithNewAddrSpace, 360 SmallVectorImpl<const Use *> *UndefUsesToFix) { 361 Value *Operand = OperandUse.get(); 362 363 Type *NewPtrTy = 364 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 365 366 if (Constant *C = dyn_cast<Constant>(Operand)) 367 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 368 369 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 370 return NewOperand; 371 372 UndefUsesToFix->push_back(&OperandUse); 373 return UndefValue::get(NewPtrTy); 374 } 375 376 // Returns a clone of `I` with its operands converted to those specified in 377 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 378 // operand whose address space needs to be modified might not exist in 379 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 380 // adds that operand use to UndefUsesToFix so that caller can fix them later. 381 // 382 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 383 // from a pointer whose type already matches. Therefore, this function returns a 384 // Value* instead of an Instruction*. 385 static Value *cloneInstructionWithNewAddressSpace( 386 Instruction *I, unsigned NewAddrSpace, 387 const ValueToValueMapTy &ValueWithNewAddrSpace, 388 SmallVectorImpl<const Use *> *UndefUsesToFix) { 389 Type *NewPtrType = 390 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 391 392 if (I->getOpcode() == Instruction::AddrSpaceCast) { 393 Value *Src = I->getOperand(0); 394 // Because `I` is flat, the source address space must be specific. 395 // Therefore, the inferred address space must be the source space, according 396 // to our algorithm. 397 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 398 if (Src->getType() != NewPtrType) 399 return new BitCastInst(Src, NewPtrType); 400 return Src; 401 } 402 403 // Computes the converted pointer operands. 404 SmallVector<Value *, 4> NewPointerOperands; 405 for (const Use &OperandUse : I->operands()) { 406 if (!OperandUse.get()->getType()->isPointerTy()) 407 NewPointerOperands.push_back(nullptr); 408 else 409 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 410 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 411 } 412 413 switch (I->getOpcode()) { 414 case Instruction::BitCast: 415 return new BitCastInst(NewPointerOperands[0], NewPtrType); 416 case Instruction::PHI: { 417 assert(I->getType()->isPointerTy()); 418 PHINode *PHI = cast<PHINode>(I); 419 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 420 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 421 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 422 NewPHI->addIncoming(NewPointerOperands[OperandNo], 423 PHI->getIncomingBlock(Index)); 424 } 425 return NewPHI; 426 } 427 case Instruction::GetElementPtr: { 428 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 429 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 430 GEP->getSourceElementType(), NewPointerOperands[0], 431 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 432 NewGEP->setIsInBounds(GEP->isInBounds()); 433 return NewGEP; 434 } 435 case Instruction::Select: { 436 assert(I->getType()->isPointerTy()); 437 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 438 NewPointerOperands[2], "", nullptr, I); 439 } 440 default: 441 llvm_unreachable("Unexpected opcode"); 442 } 443 } 444 445 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 446 // constant expression `CE` with its operands replaced as specified in 447 // ValueWithNewAddrSpace. 448 static Value *cloneConstantExprWithNewAddressSpace( 449 ConstantExpr *CE, unsigned NewAddrSpace, 450 const ValueToValueMapTy &ValueWithNewAddrSpace) { 451 Type *TargetType = 452 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 453 454 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 455 // Because CE is flat, the source address space must be specific. 456 // Therefore, the inferred address space must be the source space according 457 // to our algorithm. 458 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 459 NewAddrSpace); 460 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 461 } 462 463 if (CE->getOpcode() == Instruction::BitCast) { 464 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 465 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 466 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 467 } 468 469 if (CE->getOpcode() == Instruction::Select) { 470 Constant *Src0 = CE->getOperand(1); 471 Constant *Src1 = CE->getOperand(2); 472 if (Src0->getType()->getPointerAddressSpace() == 473 Src1->getType()->getPointerAddressSpace()) { 474 475 return ConstantExpr::getSelect( 476 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 477 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 478 } 479 } 480 481 // Computes the operands of the new constant expression. 482 SmallVector<Constant *, 4> NewOperands; 483 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 484 Constant *Operand = CE->getOperand(Index); 485 // If the address space of `Operand` needs to be modified, the new operand 486 // with the new address space should already be in ValueWithNewAddrSpace 487 // because (1) the constant expressions we consider (i.e. addrspacecast, 488 // bitcast, and getelementptr) do not incur cycles in the data flow graph 489 // and (2) this function is called on constant expressions in postorder. 490 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 491 NewOperands.push_back(cast<Constant>(NewOperand)); 492 } else { 493 // Otherwise, reuses the old operand. 494 NewOperands.push_back(Operand); 495 } 496 } 497 498 if (CE->getOpcode() == Instruction::GetElementPtr) { 499 // Needs to specify the source type while constructing a getelementptr 500 // constant expression. 501 return CE->getWithOperands( 502 NewOperands, TargetType, /*OnlyIfReduced=*/false, 503 NewOperands[0]->getType()->getPointerElementType()); 504 } 505 506 return CE->getWithOperands(NewOperands, TargetType); 507 } 508 509 // Returns a clone of the value `V`, with its operands replaced as specified in 510 // ValueWithNewAddrSpace. This function is called on every flat address 511 // expression whose address space needs to be modified, in postorder. 512 // 513 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 514 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 515 Value *V, unsigned NewAddrSpace, 516 const ValueToValueMapTy &ValueWithNewAddrSpace, 517 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 518 // All values in Postorder are flat address expressions. 519 assert(isAddressExpression(*V) && 520 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 521 522 if (Instruction *I = dyn_cast<Instruction>(V)) { 523 Value *NewV = cloneInstructionWithNewAddressSpace( 524 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 525 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 526 if (NewI->getParent() == nullptr) { 527 NewI->insertBefore(I); 528 NewI->takeName(I); 529 } 530 } 531 return NewV; 532 } 533 534 return cloneConstantExprWithNewAddressSpace( 535 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 536 } 537 538 // Defines the join operation on the address space lattice (see the file header 539 // comments). 540 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 541 unsigned AS2) const { 542 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 543 return FlatAddrSpace; 544 545 if (AS1 == UninitializedAddressSpace) 546 return AS2; 547 if (AS2 == UninitializedAddressSpace) 548 return AS1; 549 550 // The join of two different specific address spaces is flat. 551 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 552 } 553 554 bool InferAddressSpaces::runOnFunction(Function &F) { 555 if (skipFunction(F)) 556 return false; 557 558 const TargetTransformInfo &TTI = 559 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 560 FlatAddrSpace = TTI.getFlatAddressSpace(); 561 if (FlatAddrSpace == UninitializedAddressSpace) 562 return false; 563 564 // Collects all flat address expressions in postorder. 565 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 566 567 // Runs a data-flow analysis to refine the address spaces of every expression 568 // in Postorder. 569 ValueToAddrSpaceMapTy InferredAddrSpace; 570 inferAddressSpaces(Postorder, &InferredAddrSpace); 571 572 // Changes the address spaces of the flat address expressions who are inferred 573 // to point to a specific address space. 574 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 575 } 576 577 void InferAddressSpaces::inferAddressSpaces( 578 const std::vector<Value *> &Postorder, 579 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 580 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 581 // Initially, all expressions are in the uninitialized address space. 582 for (Value *V : Postorder) 583 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 584 585 while (!Worklist.empty()) { 586 Value *V = Worklist.pop_back_val(); 587 588 // Tries to update the address space of the stack top according to the 589 // address spaces of its operands. 590 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 591 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 592 if (!NewAS.hasValue()) 593 continue; 594 // If any updates are made, grabs its users to the worklist because 595 // their address spaces can also be possibly updated. 596 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 597 (*InferredAddrSpace)[V] = NewAS.getValue(); 598 599 for (Value *User : V->users()) { 600 // Skip if User is already in the worklist. 601 if (Worklist.count(User)) 602 continue; 603 604 auto Pos = InferredAddrSpace->find(User); 605 // Our algorithm only updates the address spaces of flat address 606 // expressions, which are those in InferredAddrSpace. 607 if (Pos == InferredAddrSpace->end()) 608 continue; 609 610 // Function updateAddressSpace moves the address space down a lattice 611 // path. Therefore, nothing to do if User is already inferred as flat (the 612 // bottom element in the lattice). 613 if (Pos->second == FlatAddrSpace) 614 continue; 615 616 Worklist.insert(User); 617 } 618 } 619 } 620 621 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 622 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 623 assert(InferredAddrSpace.count(&V)); 624 625 // The new inferred address space equals the join of the address spaces 626 // of all its pointer operands. 627 unsigned NewAS = UninitializedAddressSpace; 628 629 const Operator &Op = cast<Operator>(V); 630 if (Op.getOpcode() == Instruction::Select) { 631 Value *Src0 = Op.getOperand(1); 632 Value *Src1 = Op.getOperand(2); 633 634 auto I = InferredAddrSpace.find(Src0); 635 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 636 I->second : Src0->getType()->getPointerAddressSpace(); 637 638 auto J = InferredAddrSpace.find(Src1); 639 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 640 J->second : Src1->getType()->getPointerAddressSpace(); 641 642 auto *C0 = dyn_cast<Constant>(Src0); 643 auto *C1 = dyn_cast<Constant>(Src1); 644 645 // If one of the inputs is a constant, we may be able to do a constant 646 // addrspacecast of it. Defer inferring the address space until the input 647 // address space is known. 648 if ((C1 && Src0AS == UninitializedAddressSpace) || 649 (C0 && Src1AS == UninitializedAddressSpace)) 650 return None; 651 652 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 653 NewAS = Src1AS; 654 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 655 NewAS = Src0AS; 656 else 657 NewAS = joinAddressSpaces(Src0AS, Src1AS); 658 } else { 659 for (Value *PtrOperand : getPointerOperands(V)) { 660 auto I = InferredAddrSpace.find(PtrOperand); 661 unsigned OperandAS = I != InferredAddrSpace.end() ? 662 I->second : PtrOperand->getType()->getPointerAddressSpace(); 663 664 // join(flat, *) = flat. So we can break if NewAS is already flat. 665 NewAS = joinAddressSpaces(NewAS, OperandAS); 666 if (NewAS == FlatAddrSpace) 667 break; 668 } 669 } 670 671 unsigned OldAS = InferredAddrSpace.lookup(&V); 672 assert(OldAS != FlatAddrSpace); 673 if (OldAS == NewAS) 674 return None; 675 return NewAS; 676 } 677 678 /// \p returns true if \p U is the pointer operand of a memory instruction with 679 /// a single pointer operand that can have its address space changed by simply 680 /// mutating the use to a new value. 681 static bool isSimplePointerUseValidToReplace(Use &U) { 682 User *Inst = U.getUser(); 683 unsigned OpNo = U.getOperandNo(); 684 685 if (auto *LI = dyn_cast<LoadInst>(Inst)) 686 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 687 688 if (auto *SI = dyn_cast<StoreInst>(Inst)) 689 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 690 691 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 692 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 693 694 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 695 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 696 !CmpX->isVolatile(); 697 } 698 699 return false; 700 } 701 702 /// Update memory intrinsic uses that require more complex processing than 703 /// simple memory instructions. Thse require re-mangling and may have multiple 704 /// pointer operands. 705 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 706 Value *NewV) { 707 IRBuilder<> B(MI); 708 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 709 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 710 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 711 712 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 713 B.CreateMemSet(NewV, MSI->getValue(), 714 MSI->getLength(), MSI->getAlignment(), 715 false, // isVolatile 716 TBAA, ScopeMD, NoAliasMD); 717 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 718 Value *Src = MTI->getRawSource(); 719 Value *Dest = MTI->getRawDest(); 720 721 // Be careful in case this is a self-to-self copy. 722 if (Src == OldV) 723 Src = NewV; 724 725 if (Dest == OldV) 726 Dest = NewV; 727 728 if (isa<MemCpyInst>(MTI)) { 729 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 730 B.CreateMemCpy(Dest, Src, MTI->getLength(), 731 MTI->getAlignment(), 732 false, // isVolatile 733 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 734 } else { 735 assert(isa<MemMoveInst>(MTI)); 736 B.CreateMemMove(Dest, Src, MTI->getLength(), 737 MTI->getAlignment(), 738 false, // isVolatile 739 TBAA, ScopeMD, NoAliasMD); 740 } 741 } else 742 llvm_unreachable("unhandled MemIntrinsic"); 743 744 MI->eraseFromParent(); 745 return true; 746 } 747 748 // \p returns true if it is OK to change the address space of constant \p C with 749 // a ConstantExpr addrspacecast. 750 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 751 assert(NewAS != UninitializedAddressSpace); 752 753 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 754 if (SrcAS == NewAS || isa<UndefValue>(C)) 755 return true; 756 757 // Prevent illegal casts between different non-flat address spaces. 758 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 759 return false; 760 761 if (isa<ConstantPointerNull>(C)) 762 return true; 763 764 if (auto *Op = dyn_cast<Operator>(C)) { 765 // If we already have a constant addrspacecast, it should be safe to cast it 766 // off. 767 if (Op->getOpcode() == Instruction::AddrSpaceCast) 768 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 769 770 if (Op->getOpcode() == Instruction::IntToPtr && 771 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 772 return true; 773 } 774 775 return false; 776 } 777 778 static Value::use_iterator skipToNextUser(Value::use_iterator I, 779 Value::use_iterator End) { 780 User *CurUser = I->getUser(); 781 ++I; 782 783 while (I != End && I->getUser() == CurUser) 784 ++I; 785 786 return I; 787 } 788 789 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 790 const std::vector<Value *> &Postorder, 791 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 792 // For each address expression to be modified, creates a clone of it with its 793 // pointer operands converted to the new address space. Since the pointer 794 // operands are converted, the clone is naturally in the new address space by 795 // construction. 796 ValueToValueMapTy ValueWithNewAddrSpace; 797 SmallVector<const Use *, 32> UndefUsesToFix; 798 for (Value* V : Postorder) { 799 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 800 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 801 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 802 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 803 } 804 } 805 806 if (ValueWithNewAddrSpace.empty()) 807 return false; 808 809 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 810 for (const Use *UndefUse : UndefUsesToFix) { 811 User *V = UndefUse->getUser(); 812 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 813 unsigned OperandNo = UndefUse->getOperandNo(); 814 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 815 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 816 } 817 818 SmallVector<Instruction *, 16> DeadInstructions; 819 820 // Replaces the uses of the old address expressions with the new ones. 821 for (Value *V : Postorder) { 822 Value *NewV = ValueWithNewAddrSpace.lookup(V); 823 if (NewV == nullptr) 824 continue; 825 826 DEBUG(dbgs() << "Replacing the uses of " << *V 827 << "\n with\n " << *NewV << '\n'); 828 829 Value::use_iterator I, E, Next; 830 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 831 Use &U = *I; 832 833 // Some users may see the same pointer operand in multiple operands. Skip 834 // to the next instruction. 835 I = skipToNextUser(I, E); 836 837 if (isSimplePointerUseValidToReplace(U)) { 838 // If V is used as the pointer operand of a compatible memory operation, 839 // sets the pointer operand to NewV. This replacement does not change 840 // the element type, so the resultant load/store is still valid. 841 U.set(NewV); 842 continue; 843 } 844 845 User *CurUser = U.getUser(); 846 // Handle more complex cases like intrinsic that need to be remangled. 847 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 848 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 849 continue; 850 } 851 852 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 853 if (rewriteIntrinsicOperands(II, V, NewV)) 854 continue; 855 } 856 857 if (isa<Instruction>(CurUser)) { 858 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 859 // If we can infer that both pointers are in the same addrspace, 860 // transform e.g. 861 // %cmp = icmp eq float* %p, %q 862 // into 863 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 864 865 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 866 int SrcIdx = U.getOperandNo(); 867 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 868 Value *OtherSrc = Cmp->getOperand(OtherIdx); 869 870 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 871 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 872 Cmp->setOperand(OtherIdx, OtherNewV); 873 Cmp->setOperand(SrcIdx, NewV); 874 continue; 875 } 876 } 877 878 // Even if the type mismatches, we can cast the constant. 879 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 880 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 881 Cmp->setOperand(SrcIdx, NewV); 882 Cmp->setOperand(OtherIdx, 883 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 884 continue; 885 } 886 } 887 } 888 889 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 890 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 891 if (ASC->getDestAddressSpace() == NewAS) { 892 ASC->replaceAllUsesWith(NewV); 893 DeadInstructions.push_back(ASC); 894 continue; 895 } 896 } 897 898 // Otherwise, replaces the use with flat(NewV). 899 if (Instruction *I = dyn_cast<Instruction>(V)) { 900 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 901 while (isa<PHINode>(InsertPos)) 902 ++InsertPos; 903 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 904 } else { 905 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 906 V->getType())); 907 } 908 } 909 } 910 911 if (V->use_empty()) { 912 if (Instruction *I = dyn_cast<Instruction>(V)) 913 DeadInstructions.push_back(I); 914 } 915 } 916 917 for (Instruction *I : DeadInstructions) 918 RecursivelyDeleteTriviallyDeadInstructions(I); 919 920 return true; 921 } 922 923 FunctionPass *llvm::createInferAddressSpacesPass() { 924 return new InferAddressSpaces(); 925 } 926