1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 156 DenseSet<Value *> *Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> *PostorderStack, 163 DenseSet<Value *> *Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 assert(isAddressExpression(V)); 208 const Operator &Op = cast<Operator>(V); 209 switch (Op.getOpcode()) { 210 case Instruction::PHI: { 211 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 212 return SmallVector<Value *, 2>(IncomingValues.begin(), 213 IncomingValues.end()); 214 } 215 case Instruction::BitCast: 216 case Instruction::AddrSpaceCast: 217 case Instruction::GetElementPtr: 218 return {Op.getOperand(0)}; 219 case Instruction::Select: 220 return {Op.getOperand(1), Op.getOperand(2)}; 221 default: 222 llvm_unreachable("Unexpected instruction type."); 223 } 224 } 225 226 // TODO: Move logic to TTI? 227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 228 Value *OldV, 229 Value *NewV) const { 230 Module *M = II->getParent()->getParent()->getParent(); 231 232 switch (II->getIntrinsicID()) { 233 case Intrinsic::objectsize: 234 case Intrinsic::amdgcn_atomic_inc: 235 case Intrinsic::amdgcn_atomic_dec: { 236 Type *DestTy = II->getType(); 237 Type *SrcTy = NewV->getType(); 238 Function *NewDecl = 239 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 240 II->setArgOperand(0, NewV); 241 II->setCalledFunction(NewDecl); 242 return true; 243 } 244 default: 245 return false; 246 } 247 } 248 249 // TODO: Move logic to TTI? 250 void InferAddressSpaces::collectRewritableIntrinsicOperands( 251 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack, 252 DenseSet<Value *> *Visited) const { 253 switch (II->getIntrinsicID()) { 254 case Intrinsic::objectsize: 255 case Intrinsic::amdgcn_atomic_inc: 256 case Intrinsic::amdgcn_atomic_dec: 257 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 258 PostorderStack, Visited); 259 break; 260 default: 261 break; 262 } 263 } 264 265 // Returns all flat address expressions in function F. The elements are 266 // If V is an unvisited flat address expression, appends V to PostorderStack 267 // and marks it as visited. 268 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 269 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 270 DenseSet<Value *> *Visited) const { 271 assert(V->getType()->isPointerTy()); 272 if (isAddressExpression(*V) && 273 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 274 if (Visited->insert(V).second) 275 PostorderStack->push_back(std::make_pair(V, false)); 276 } 277 } 278 279 // Returns all flat address expressions in function F. The elements are ordered 280 // ordered in postorder. 281 std::vector<Value *> 282 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 283 // This function implements a non-recursive postorder traversal of a partial 284 // use-def graph of function F. 285 std::vector<std::pair<Value *, bool>> PostorderStack; 286 // The set of visited expressions. 287 DenseSet<Value *> Visited; 288 289 auto PushPtrOperand = [&](Value *Ptr) { 290 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack, 291 &Visited); 292 }; 293 294 // We only explore address expressions that are reachable from loads and 295 // stores for now because we aim at generating faster loads and stores. 296 for (Instruction &I : instructions(F)) { 297 if (auto *LI = dyn_cast<LoadInst>(&I)) 298 PushPtrOperand(LI->getPointerOperand()); 299 else if (auto *SI = dyn_cast<StoreInst>(&I)) 300 PushPtrOperand(SI->getPointerOperand()); 301 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 302 PushPtrOperand(RMW->getPointerOperand()); 303 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 304 PushPtrOperand(CmpX->getPointerOperand()); 305 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 306 // For memset/memcpy/memmove, any pointer operand can be replaced. 307 PushPtrOperand(MI->getRawDest()); 308 309 // Handle 2nd operand for memcpy/memmove. 310 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 311 PushPtrOperand(MTI->getRawSource()); 312 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 313 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited); 314 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 315 // FIXME: Handle vectors of pointers 316 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 317 PushPtrOperand(Cmp->getOperand(0)); 318 PushPtrOperand(Cmp->getOperand(1)); 319 } 320 } 321 } 322 323 std::vector<Value *> Postorder; // The resultant postorder. 324 while (!PostorderStack.empty()) { 325 // If the operands of the expression on the top are already explored, 326 // adds that expression to the resultant postorder. 327 if (PostorderStack.back().second) { 328 Postorder.push_back(PostorderStack.back().first); 329 PostorderStack.pop_back(); 330 continue; 331 } 332 // Otherwise, adds its operands to the stack and explores them. 333 PostorderStack.back().second = true; 334 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 335 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack, 336 &Visited); 337 } 338 } 339 return Postorder; 340 } 341 342 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 343 // of OperandUse.get() in the new address space. If the clone is not ready yet, 344 // returns an undef in the new address space as a placeholder. 345 static Value *operandWithNewAddressSpaceOrCreateUndef( 346 const Use &OperandUse, unsigned NewAddrSpace, 347 const ValueToValueMapTy &ValueWithNewAddrSpace, 348 SmallVectorImpl<const Use *> *UndefUsesToFix) { 349 Value *Operand = OperandUse.get(); 350 351 Type *NewPtrTy = 352 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 353 354 if (Constant *C = dyn_cast<Constant>(Operand)) 355 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 356 357 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 358 return NewOperand; 359 360 UndefUsesToFix->push_back(&OperandUse); 361 return UndefValue::get(NewPtrTy); 362 } 363 364 // Returns a clone of `I` with its operands converted to those specified in 365 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 366 // operand whose address space needs to be modified might not exist in 367 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 368 // adds that operand use to UndefUsesToFix so that caller can fix them later. 369 // 370 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 371 // from a pointer whose type already matches. Therefore, this function returns a 372 // Value* instead of an Instruction*. 373 static Value *cloneInstructionWithNewAddressSpace( 374 Instruction *I, unsigned NewAddrSpace, 375 const ValueToValueMapTy &ValueWithNewAddrSpace, 376 SmallVectorImpl<const Use *> *UndefUsesToFix) { 377 Type *NewPtrType = 378 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 379 380 if (I->getOpcode() == Instruction::AddrSpaceCast) { 381 Value *Src = I->getOperand(0); 382 // Because `I` is flat, the source address space must be specific. 383 // Therefore, the inferred address space must be the source space, according 384 // to our algorithm. 385 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 386 if (Src->getType() != NewPtrType) 387 return new BitCastInst(Src, NewPtrType); 388 return Src; 389 } 390 391 // Computes the converted pointer operands. 392 SmallVector<Value *, 4> NewPointerOperands; 393 for (const Use &OperandUse : I->operands()) { 394 if (!OperandUse.get()->getType()->isPointerTy()) 395 NewPointerOperands.push_back(nullptr); 396 else 397 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 398 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 399 } 400 401 switch (I->getOpcode()) { 402 case Instruction::BitCast: 403 return new BitCastInst(NewPointerOperands[0], NewPtrType); 404 case Instruction::PHI: { 405 assert(I->getType()->isPointerTy()); 406 PHINode *PHI = cast<PHINode>(I); 407 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 408 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 409 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 410 NewPHI->addIncoming(NewPointerOperands[OperandNo], 411 PHI->getIncomingBlock(Index)); 412 } 413 return NewPHI; 414 } 415 case Instruction::GetElementPtr: { 416 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 417 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 418 GEP->getSourceElementType(), NewPointerOperands[0], 419 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 420 NewGEP->setIsInBounds(GEP->isInBounds()); 421 return NewGEP; 422 } 423 case Instruction::Select: { 424 assert(I->getType()->isPointerTy()); 425 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 426 NewPointerOperands[2], "", nullptr, I); 427 } 428 default: 429 llvm_unreachable("Unexpected opcode"); 430 } 431 } 432 433 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 434 // constant expression `CE` with its operands replaced as specified in 435 // ValueWithNewAddrSpace. 436 static Value *cloneConstantExprWithNewAddressSpace( 437 ConstantExpr *CE, unsigned NewAddrSpace, 438 const ValueToValueMapTy &ValueWithNewAddrSpace) { 439 Type *TargetType = 440 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 441 442 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 443 // Because CE is flat, the source address space must be specific. 444 // Therefore, the inferred address space must be the source space according 445 // to our algorithm. 446 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 447 NewAddrSpace); 448 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 449 } 450 451 if (CE->getOpcode() == Instruction::BitCast) { 452 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 453 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 454 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 455 } 456 457 if (CE->getOpcode() == Instruction::Select) { 458 Constant *Src0 = CE->getOperand(1); 459 Constant *Src1 = CE->getOperand(2); 460 if (Src0->getType()->getPointerAddressSpace() == 461 Src1->getType()->getPointerAddressSpace()) { 462 463 return ConstantExpr::getSelect( 464 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 465 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 466 } 467 } 468 469 // Computes the operands of the new constant expression. 470 SmallVector<Constant *, 4> NewOperands; 471 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 472 Constant *Operand = CE->getOperand(Index); 473 // If the address space of `Operand` needs to be modified, the new operand 474 // with the new address space should already be in ValueWithNewAddrSpace 475 // because (1) the constant expressions we consider (i.e. addrspacecast, 476 // bitcast, and getelementptr) do not incur cycles in the data flow graph 477 // and (2) this function is called on constant expressions in postorder. 478 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 479 NewOperands.push_back(cast<Constant>(NewOperand)); 480 } else { 481 // Otherwise, reuses the old operand. 482 NewOperands.push_back(Operand); 483 } 484 } 485 486 if (CE->getOpcode() == Instruction::GetElementPtr) { 487 // Needs to specify the source type while constructing a getelementptr 488 // constant expression. 489 return CE->getWithOperands( 490 NewOperands, TargetType, /*OnlyIfReduced=*/false, 491 NewOperands[0]->getType()->getPointerElementType()); 492 } 493 494 return CE->getWithOperands(NewOperands, TargetType); 495 } 496 497 // Returns a clone of the value `V`, with its operands replaced as specified in 498 // ValueWithNewAddrSpace. This function is called on every flat address 499 // expression whose address space needs to be modified, in postorder. 500 // 501 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 502 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 503 Value *V, unsigned NewAddrSpace, 504 const ValueToValueMapTy &ValueWithNewAddrSpace, 505 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 506 // All values in Postorder are flat address expressions. 507 assert(isAddressExpression(*V) && 508 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 509 510 if (Instruction *I = dyn_cast<Instruction>(V)) { 511 Value *NewV = cloneInstructionWithNewAddressSpace( 512 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 513 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 514 if (NewI->getParent() == nullptr) { 515 NewI->insertBefore(I); 516 NewI->takeName(I); 517 } 518 } 519 return NewV; 520 } 521 522 return cloneConstantExprWithNewAddressSpace( 523 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 524 } 525 526 // Defines the join operation on the address space lattice (see the file header 527 // comments). 528 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 529 unsigned AS2) const { 530 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 531 return FlatAddrSpace; 532 533 if (AS1 == UninitializedAddressSpace) 534 return AS2; 535 if (AS2 == UninitializedAddressSpace) 536 return AS1; 537 538 // The join of two different specific address spaces is flat. 539 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 540 } 541 542 bool InferAddressSpaces::runOnFunction(Function &F) { 543 if (skipFunction(F)) 544 return false; 545 546 const TargetTransformInfo &TTI = 547 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 548 FlatAddrSpace = TTI.getFlatAddressSpace(); 549 if (FlatAddrSpace == UninitializedAddressSpace) 550 return false; 551 552 // Collects all flat address expressions in postorder. 553 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 554 555 // Runs a data-flow analysis to refine the address spaces of every expression 556 // in Postorder. 557 ValueToAddrSpaceMapTy InferredAddrSpace; 558 inferAddressSpaces(Postorder, &InferredAddrSpace); 559 560 // Changes the address spaces of the flat address expressions who are inferred 561 // to point to a specific address space. 562 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 563 } 564 565 void InferAddressSpaces::inferAddressSpaces( 566 const std::vector<Value *> &Postorder, 567 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 568 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 569 // Initially, all expressions are in the uninitialized address space. 570 for (Value *V : Postorder) 571 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 572 573 while (!Worklist.empty()) { 574 Value *V = Worklist.pop_back_val(); 575 576 // Tries to update the address space of the stack top according to the 577 // address spaces of its operands. 578 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 579 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 580 if (!NewAS.hasValue()) 581 continue; 582 // If any updates are made, grabs its users to the worklist because 583 // their address spaces can also be possibly updated. 584 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 585 (*InferredAddrSpace)[V] = NewAS.getValue(); 586 587 for (Value *User : V->users()) { 588 // Skip if User is already in the worklist. 589 if (Worklist.count(User)) 590 continue; 591 592 auto Pos = InferredAddrSpace->find(User); 593 // Our algorithm only updates the address spaces of flat address 594 // expressions, which are those in InferredAddrSpace. 595 if (Pos == InferredAddrSpace->end()) 596 continue; 597 598 // Function updateAddressSpace moves the address space down a lattice 599 // path. Therefore, nothing to do if User is already inferred as flat (the 600 // bottom element in the lattice). 601 if (Pos->second == FlatAddrSpace) 602 continue; 603 604 Worklist.insert(User); 605 } 606 } 607 } 608 609 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 610 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 611 assert(InferredAddrSpace.count(&V)); 612 613 // The new inferred address space equals the join of the address spaces 614 // of all its pointer operands. 615 unsigned NewAS = UninitializedAddressSpace; 616 617 const Operator &Op = cast<Operator>(V); 618 if (Op.getOpcode() == Instruction::Select) { 619 Value *Src0 = Op.getOperand(1); 620 Value *Src1 = Op.getOperand(2); 621 622 auto I = InferredAddrSpace.find(Src0); 623 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 624 I->second : Src0->getType()->getPointerAddressSpace(); 625 626 auto J = InferredAddrSpace.find(Src1); 627 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 628 J->second : Src1->getType()->getPointerAddressSpace(); 629 630 auto *C0 = dyn_cast<Constant>(Src0); 631 auto *C1 = dyn_cast<Constant>(Src1); 632 633 // If one of the inputs is a constant, we may be able to do a constant 634 // addrspacecast of it. Defer inferring the address space until the input 635 // address space is known. 636 if ((C1 && Src0AS == UninitializedAddressSpace) || 637 (C0 && Src1AS == UninitializedAddressSpace)) 638 return None; 639 640 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 641 NewAS = Src1AS; 642 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 643 NewAS = Src0AS; 644 else 645 NewAS = joinAddressSpaces(Src0AS, Src1AS); 646 } else { 647 for (Value *PtrOperand : getPointerOperands(V)) { 648 auto I = InferredAddrSpace.find(PtrOperand); 649 unsigned OperandAS = I != InferredAddrSpace.end() ? 650 I->second : PtrOperand->getType()->getPointerAddressSpace(); 651 652 // join(flat, *) = flat. So we can break if NewAS is already flat. 653 NewAS = joinAddressSpaces(NewAS, OperandAS); 654 if (NewAS == FlatAddrSpace) 655 break; 656 } 657 } 658 659 unsigned OldAS = InferredAddrSpace.lookup(&V); 660 assert(OldAS != FlatAddrSpace); 661 if (OldAS == NewAS) 662 return None; 663 return NewAS; 664 } 665 666 /// \p returns true if \p U is the pointer operand of a memory instruction with 667 /// a single pointer operand that can have its address space changed by simply 668 /// mutating the use to a new value. 669 static bool isSimplePointerUseValidToReplace(Use &U) { 670 User *Inst = U.getUser(); 671 unsigned OpNo = U.getOperandNo(); 672 673 if (auto *LI = dyn_cast<LoadInst>(Inst)) 674 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 675 676 if (auto *SI = dyn_cast<StoreInst>(Inst)) 677 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 678 679 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 680 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 681 682 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 683 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 684 !CmpX->isVolatile(); 685 } 686 687 return false; 688 } 689 690 /// Update memory intrinsic uses that require more complex processing than 691 /// simple memory instructions. Thse require re-mangling and may have multiple 692 /// pointer operands. 693 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 694 Value *NewV) { 695 IRBuilder<> B(MI); 696 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 697 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 698 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 699 700 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 701 B.CreateMemSet(NewV, MSI->getValue(), 702 MSI->getLength(), MSI->getAlignment(), 703 false, // isVolatile 704 TBAA, ScopeMD, NoAliasMD); 705 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 706 Value *Src = MTI->getRawSource(); 707 Value *Dest = MTI->getRawDest(); 708 709 // Be careful in case this is a self-to-self copy. 710 if (Src == OldV) 711 Src = NewV; 712 713 if (Dest == OldV) 714 Dest = NewV; 715 716 if (isa<MemCpyInst>(MTI)) { 717 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 718 B.CreateMemCpy(Dest, Src, MTI->getLength(), 719 MTI->getAlignment(), 720 false, // isVolatile 721 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 722 } else { 723 assert(isa<MemMoveInst>(MTI)); 724 B.CreateMemMove(Dest, Src, MTI->getLength(), 725 MTI->getAlignment(), 726 false, // isVolatile 727 TBAA, ScopeMD, NoAliasMD); 728 } 729 } else 730 llvm_unreachable("unhandled MemIntrinsic"); 731 732 MI->eraseFromParent(); 733 return true; 734 } 735 736 // \p returns true if it is OK to change the address space of constant \p C with 737 // a ConstantExpr addrspacecast. 738 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 739 assert(NewAS != UninitializedAddressSpace); 740 741 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 742 if (SrcAS == NewAS || isa<UndefValue>(C)) 743 return true; 744 745 // Prevent illegal casts between different non-flat address spaces. 746 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 747 return false; 748 749 if (isa<ConstantPointerNull>(C)) 750 return true; 751 752 if (auto *Op = dyn_cast<Operator>(C)) { 753 // If we already have a constant addrspacecast, it should be safe to cast it 754 // off. 755 if (Op->getOpcode() == Instruction::AddrSpaceCast) 756 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 757 758 if (Op->getOpcode() == Instruction::IntToPtr && 759 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 760 return true; 761 } 762 763 return false; 764 } 765 766 static Value::use_iterator skipToNextUser(Value::use_iterator I, 767 Value::use_iterator End) { 768 User *CurUser = I->getUser(); 769 ++I; 770 771 while (I != End && I->getUser() == CurUser) 772 ++I; 773 774 return I; 775 } 776 777 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 778 const std::vector<Value *> &Postorder, 779 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 780 // For each address expression to be modified, creates a clone of it with its 781 // pointer operands converted to the new address space. Since the pointer 782 // operands are converted, the clone is naturally in the new address space by 783 // construction. 784 ValueToValueMapTy ValueWithNewAddrSpace; 785 SmallVector<const Use *, 32> UndefUsesToFix; 786 for (Value* V : Postorder) { 787 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 788 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 789 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 790 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 791 } 792 } 793 794 if (ValueWithNewAddrSpace.empty()) 795 return false; 796 797 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 798 for (const Use *UndefUse : UndefUsesToFix) { 799 User *V = UndefUse->getUser(); 800 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 801 unsigned OperandNo = UndefUse->getOperandNo(); 802 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 803 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 804 } 805 806 // Replaces the uses of the old address expressions with the new ones. 807 for (Value *V : Postorder) { 808 Value *NewV = ValueWithNewAddrSpace.lookup(V); 809 if (NewV == nullptr) 810 continue; 811 812 DEBUG(dbgs() << "Replacing the uses of " << *V 813 << "\n with\n " << *NewV << '\n'); 814 815 Value::use_iterator I, E, Next; 816 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 817 Use &U = *I; 818 819 // Some users may see the same pointer operand in multiple operands. Skip 820 // to the next instruction. 821 I = skipToNextUser(I, E); 822 823 if (isSimplePointerUseValidToReplace(U)) { 824 // If V is used as the pointer operand of a compatible memory operation, 825 // sets the pointer operand to NewV. This replacement does not change 826 // the element type, so the resultant load/store is still valid. 827 U.set(NewV); 828 continue; 829 } 830 831 User *CurUser = U.getUser(); 832 // Handle more complex cases like intrinsic that need to be remangled. 833 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 834 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 835 continue; 836 } 837 838 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 839 if (rewriteIntrinsicOperands(II, V, NewV)) 840 continue; 841 } 842 843 if (isa<Instruction>(CurUser)) { 844 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 845 // If we can infer that both pointers are in the same addrspace, 846 // transform e.g. 847 // %cmp = icmp eq float* %p, %q 848 // into 849 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 850 851 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 852 int SrcIdx = U.getOperandNo(); 853 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 854 Value *OtherSrc = Cmp->getOperand(OtherIdx); 855 856 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 857 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 858 Cmp->setOperand(OtherIdx, OtherNewV); 859 Cmp->setOperand(SrcIdx, NewV); 860 continue; 861 } 862 } 863 864 // Even if the type mismatches, we can cast the constant. 865 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 866 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 867 Cmp->setOperand(SrcIdx, NewV); 868 Cmp->setOperand(OtherIdx, 869 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 870 continue; 871 } 872 } 873 } 874 875 // Otherwise, replaces the use with flat(NewV). 876 if (Instruction *I = dyn_cast<Instruction>(V)) { 877 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 878 while (isa<PHINode>(InsertPos)) 879 ++InsertPos; 880 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 881 } else { 882 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 883 V->getType())); 884 } 885 } 886 } 887 888 if (V->use_empty()) 889 RecursivelyDeleteTriviallyDeadInstructions(V); 890 } 891 892 return true; 893 } 894 895 FunctionPass *llvm::createInferAddressSpacesPass() { 896 return new InferAddressSpaces(); 897 } 898