xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision c07bda7b8788b80dff43ab2f5827f7e7224fc64b)
1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/Optional.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/Operator.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include "llvm/Transforms/Utils/ValueMapper.h"
105 
106 #define DEBUG_TYPE "infer-address-spaces"
107 
108 using namespace llvm;
109 
110 namespace {
111 static const unsigned UninitializedAddressSpace = ~0u;
112 
113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114 
115 /// \brief InferAddressSpaces
116 class InferAddressSpaces : public FunctionPass {
117   /// Target specific address space which uses of should be replaced if
118   /// possible.
119   unsigned FlatAddrSpace;
120 
121 public:
122   static char ID;
123 
124   InferAddressSpaces() : FunctionPass(ID) {}
125 
126   void getAnalysisUsage(AnalysisUsage &AU) const override {
127     AU.setPreservesCFG();
128     AU.addRequired<TargetTransformInfoWrapperPass>();
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133 private:
134   // Returns the new address space of V if updated; otherwise, returns None.
135   Optional<unsigned>
136   updateAddressSpace(const Value &V,
137                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
138 
139   // Tries to infer the specific address space of each address expression in
140   // Postorder.
141   void inferAddressSpaces(const std::vector<Value *> &Postorder,
142                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
143 
144   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145 
146   // Changes the flat address expressions in function F to point to specific
147   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
148   // all flat expressions in the use-def graph of function F.
149   bool
150   rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
152                               Function *F) const;
153 
154   void appendsFlatAddressExpressionToPostorderStack(
155     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156     DenseSet<Value *> *Visited) const;
157 
158   bool rewriteIntrinsicOperands(IntrinsicInst *II,
159                                 Value *OldV, Value *NewV) const;
160   void collectRewritableIntrinsicOperands(
161     IntrinsicInst *II,
162     std::vector<std::pair<Value *, bool>> *PostorderStack,
163     DenseSet<Value *> *Visited) const;
164 
165   std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
166 
167   Value *cloneValueWithNewAddressSpace(
168     Value *V, unsigned NewAddrSpace,
169     const ValueToValueMapTy &ValueWithNewAddrSpace,
170     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
172 };
173 } // end anonymous namespace
174 
175 char InferAddressSpaces::ID = 0;
176 
177 namespace llvm {
178 void initializeInferAddressSpacesPass(PassRegistry &);
179 }
180 
181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
182                 false, false)
183 
184 // Returns true if V is an address expression.
185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186 // getelementptr operators.
187 static bool isAddressExpression(const Value &V) {
188   if (!isa<Operator>(V))
189     return false;
190 
191   switch (cast<Operator>(V).getOpcode()) {
192   case Instruction::PHI:
193   case Instruction::BitCast:
194   case Instruction::AddrSpaceCast:
195   case Instruction::GetElementPtr:
196   case Instruction::Select:
197     return true;
198   default:
199     return false;
200   }
201 }
202 
203 // Returns the pointer operands of V.
204 //
205 // Precondition: V is an address expression.
206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207   assert(isAddressExpression(V));
208   const Operator &Op = cast<Operator>(V);
209   switch (Op.getOpcode()) {
210   case Instruction::PHI: {
211     auto IncomingValues = cast<PHINode>(Op).incoming_values();
212     return SmallVector<Value *, 2>(IncomingValues.begin(),
213                                    IncomingValues.end());
214   }
215   case Instruction::BitCast:
216   case Instruction::AddrSpaceCast:
217   case Instruction::GetElementPtr:
218     return {Op.getOperand(0)};
219   case Instruction::Select:
220     return {Op.getOperand(1), Op.getOperand(2)};
221   default:
222     llvm_unreachable("Unexpected instruction type.");
223   }
224 }
225 
226 // TODO: Move logic to TTI?
227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228                                                   Value *OldV,
229                                                   Value *NewV) const {
230   Module *M = II->getParent()->getParent()->getParent();
231 
232   switch (II->getIntrinsicID()) {
233   case Intrinsic::amdgcn_atomic_inc:
234   case Intrinsic::amdgcn_atomic_dec:{
235     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
236     if (!IsVolatile || !IsVolatile->isNullValue())
237       return false;
238 
239     LLVM_FALLTHROUGH;
240   }
241   case Intrinsic::objectsize: {
242     Type *DestTy = II->getType();
243     Type *SrcTy = NewV->getType();
244     Function *NewDecl =
245         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
246     II->setArgOperand(0, NewV);
247     II->setCalledFunction(NewDecl);
248     return true;
249   }
250   default:
251     return false;
252   }
253 }
254 
255 // TODO: Move logic to TTI?
256 void InferAddressSpaces::collectRewritableIntrinsicOperands(
257     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
258     DenseSet<Value *> *Visited) const {
259   switch (II->getIntrinsicID()) {
260   case Intrinsic::objectsize:
261   case Intrinsic::amdgcn_atomic_inc:
262   case Intrinsic::amdgcn_atomic_dec:
263     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
264                                                  PostorderStack, Visited);
265     break;
266   default:
267     break;
268   }
269 }
270 
271 // Returns all flat address expressions in function F. The elements are
272 // If V is an unvisited flat address expression, appends V to PostorderStack
273 // and marks it as visited.
274 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
275     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
276     DenseSet<Value *> *Visited) const {
277   assert(V->getType()->isPointerTy());
278   if (isAddressExpression(*V) &&
279       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
280     if (Visited->insert(V).second)
281       PostorderStack->push_back(std::make_pair(V, false));
282   }
283 }
284 
285 // Returns all flat address expressions in function F. The elements are ordered
286 // ordered in postorder.
287 std::vector<Value *>
288 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
289   // This function implements a non-recursive postorder traversal of a partial
290   // use-def graph of function F.
291   std::vector<std::pair<Value *, bool>> PostorderStack;
292   // The set of visited expressions.
293   DenseSet<Value *> Visited;
294 
295   auto PushPtrOperand = [&](Value *Ptr) {
296     appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
297                                                  &Visited);
298   };
299 
300   // Look at operations that may be interesting accelerate by moving to a known
301   // address space. We aim at generating after loads and stores, but pure
302   // addressing calculations may also be faster.
303   for (Instruction &I : instructions(F)) {
304     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
305       if (!GEP->getType()->isVectorTy())
306         PushPtrOperand(GEP->getPointerOperand());
307     } else if (auto *LI = dyn_cast<LoadInst>(&I))
308       PushPtrOperand(LI->getPointerOperand());
309     else if (auto *SI = dyn_cast<StoreInst>(&I))
310       PushPtrOperand(SI->getPointerOperand());
311     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
312       PushPtrOperand(RMW->getPointerOperand());
313     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
314       PushPtrOperand(CmpX->getPointerOperand());
315     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
316       // For memset/memcpy/memmove, any pointer operand can be replaced.
317       PushPtrOperand(MI->getRawDest());
318 
319       // Handle 2nd operand for memcpy/memmove.
320       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
321         PushPtrOperand(MTI->getRawSource());
322     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
323       collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
324     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
325       // FIXME: Handle vectors of pointers
326       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
327         PushPtrOperand(Cmp->getOperand(0));
328         PushPtrOperand(Cmp->getOperand(1));
329       }
330     }
331   }
332 
333   std::vector<Value *> Postorder; // The resultant postorder.
334   while (!PostorderStack.empty()) {
335     // If the operands of the expression on the top are already explored,
336     // adds that expression to the resultant postorder.
337     if (PostorderStack.back().second) {
338       Postorder.push_back(PostorderStack.back().first);
339       PostorderStack.pop_back();
340       continue;
341     }
342     // Otherwise, adds its operands to the stack and explores them.
343     PostorderStack.back().second = true;
344     for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
345       appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
346                                                    &Visited);
347     }
348   }
349   return Postorder;
350 }
351 
352 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
353 // of OperandUse.get() in the new address space. If the clone is not ready yet,
354 // returns an undef in the new address space as a placeholder.
355 static Value *operandWithNewAddressSpaceOrCreateUndef(
356     const Use &OperandUse, unsigned NewAddrSpace,
357     const ValueToValueMapTy &ValueWithNewAddrSpace,
358     SmallVectorImpl<const Use *> *UndefUsesToFix) {
359   Value *Operand = OperandUse.get();
360 
361   Type *NewPtrTy =
362       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
363 
364   if (Constant *C = dyn_cast<Constant>(Operand))
365     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
366 
367   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
368     return NewOperand;
369 
370   UndefUsesToFix->push_back(&OperandUse);
371   return UndefValue::get(NewPtrTy);
372 }
373 
374 // Returns a clone of `I` with its operands converted to those specified in
375 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
376 // operand whose address space needs to be modified might not exist in
377 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
378 // adds that operand use to UndefUsesToFix so that caller can fix them later.
379 //
380 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
381 // from a pointer whose type already matches. Therefore, this function returns a
382 // Value* instead of an Instruction*.
383 static Value *cloneInstructionWithNewAddressSpace(
384     Instruction *I, unsigned NewAddrSpace,
385     const ValueToValueMapTy &ValueWithNewAddrSpace,
386     SmallVectorImpl<const Use *> *UndefUsesToFix) {
387   Type *NewPtrType =
388       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
389 
390   if (I->getOpcode() == Instruction::AddrSpaceCast) {
391     Value *Src = I->getOperand(0);
392     // Because `I` is flat, the source address space must be specific.
393     // Therefore, the inferred address space must be the source space, according
394     // to our algorithm.
395     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
396     if (Src->getType() != NewPtrType)
397       return new BitCastInst(Src, NewPtrType);
398     return Src;
399   }
400 
401   // Computes the converted pointer operands.
402   SmallVector<Value *, 4> NewPointerOperands;
403   for (const Use &OperandUse : I->operands()) {
404     if (!OperandUse.get()->getType()->isPointerTy())
405       NewPointerOperands.push_back(nullptr);
406     else
407       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
408                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
409   }
410 
411   switch (I->getOpcode()) {
412   case Instruction::BitCast:
413     return new BitCastInst(NewPointerOperands[0], NewPtrType);
414   case Instruction::PHI: {
415     assert(I->getType()->isPointerTy());
416     PHINode *PHI = cast<PHINode>(I);
417     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
418     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
419       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
420       NewPHI->addIncoming(NewPointerOperands[OperandNo],
421                           PHI->getIncomingBlock(Index));
422     }
423     return NewPHI;
424   }
425   case Instruction::GetElementPtr: {
426     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
427     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
428         GEP->getSourceElementType(), NewPointerOperands[0],
429         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
430     NewGEP->setIsInBounds(GEP->isInBounds());
431     return NewGEP;
432   }
433   case Instruction::Select: {
434     assert(I->getType()->isPointerTy());
435     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
436                               NewPointerOperands[2], "", nullptr, I);
437   }
438   default:
439     llvm_unreachable("Unexpected opcode");
440   }
441 }
442 
443 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
444 // constant expression `CE` with its operands replaced as specified in
445 // ValueWithNewAddrSpace.
446 static Value *cloneConstantExprWithNewAddressSpace(
447   ConstantExpr *CE, unsigned NewAddrSpace,
448   const ValueToValueMapTy &ValueWithNewAddrSpace) {
449   Type *TargetType =
450     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
451 
452   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
453     // Because CE is flat, the source address space must be specific.
454     // Therefore, the inferred address space must be the source space according
455     // to our algorithm.
456     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
457            NewAddrSpace);
458     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
459   }
460 
461   if (CE->getOpcode() == Instruction::BitCast) {
462     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
463       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
464     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
465   }
466 
467   if (CE->getOpcode() == Instruction::Select) {
468     Constant *Src0 = CE->getOperand(1);
469     Constant *Src1 = CE->getOperand(2);
470     if (Src0->getType()->getPointerAddressSpace() ==
471         Src1->getType()->getPointerAddressSpace()) {
472 
473       return ConstantExpr::getSelect(
474           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
475           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
476     }
477   }
478 
479   // Computes the operands of the new constant expression.
480   SmallVector<Constant *, 4> NewOperands;
481   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
482     Constant *Operand = CE->getOperand(Index);
483     // If the address space of `Operand` needs to be modified, the new operand
484     // with the new address space should already be in ValueWithNewAddrSpace
485     // because (1) the constant expressions we consider (i.e. addrspacecast,
486     // bitcast, and getelementptr) do not incur cycles in the data flow graph
487     // and (2) this function is called on constant expressions in postorder.
488     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
489       NewOperands.push_back(cast<Constant>(NewOperand));
490     } else {
491       // Otherwise, reuses the old operand.
492       NewOperands.push_back(Operand);
493     }
494   }
495 
496   if (CE->getOpcode() == Instruction::GetElementPtr) {
497     // Needs to specify the source type while constructing a getelementptr
498     // constant expression.
499     return CE->getWithOperands(
500       NewOperands, TargetType, /*OnlyIfReduced=*/false,
501       NewOperands[0]->getType()->getPointerElementType());
502   }
503 
504   return CE->getWithOperands(NewOperands, TargetType);
505 }
506 
507 // Returns a clone of the value `V`, with its operands replaced as specified in
508 // ValueWithNewAddrSpace. This function is called on every flat address
509 // expression whose address space needs to be modified, in postorder.
510 //
511 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
512 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
513   Value *V, unsigned NewAddrSpace,
514   const ValueToValueMapTy &ValueWithNewAddrSpace,
515   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
516   // All values in Postorder are flat address expressions.
517   assert(isAddressExpression(*V) &&
518          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
519 
520   if (Instruction *I = dyn_cast<Instruction>(V)) {
521     Value *NewV = cloneInstructionWithNewAddressSpace(
522       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
523     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
524       if (NewI->getParent() == nullptr) {
525         NewI->insertBefore(I);
526         NewI->takeName(I);
527       }
528     }
529     return NewV;
530   }
531 
532   return cloneConstantExprWithNewAddressSpace(
533     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
534 }
535 
536 // Defines the join operation on the address space lattice (see the file header
537 // comments).
538 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
539                                                unsigned AS2) const {
540   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
541     return FlatAddrSpace;
542 
543   if (AS1 == UninitializedAddressSpace)
544     return AS2;
545   if (AS2 == UninitializedAddressSpace)
546     return AS1;
547 
548   // The join of two different specific address spaces is flat.
549   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
550 }
551 
552 bool InferAddressSpaces::runOnFunction(Function &F) {
553   if (skipFunction(F))
554     return false;
555 
556   const TargetTransformInfo &TTI =
557       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
558   FlatAddrSpace = TTI.getFlatAddressSpace();
559   if (FlatAddrSpace == UninitializedAddressSpace)
560     return false;
561 
562   // Collects all flat address expressions in postorder.
563   std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
564 
565   // Runs a data-flow analysis to refine the address spaces of every expression
566   // in Postorder.
567   ValueToAddrSpaceMapTy InferredAddrSpace;
568   inferAddressSpaces(Postorder, &InferredAddrSpace);
569 
570   // Changes the address spaces of the flat address expressions who are inferred
571   // to point to a specific address space.
572   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
573 }
574 
575 void InferAddressSpaces::inferAddressSpaces(
576     const std::vector<Value *> &Postorder,
577     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
578   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
579   // Initially, all expressions are in the uninitialized address space.
580   for (Value *V : Postorder)
581     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
582 
583   while (!Worklist.empty()) {
584     Value *V = Worklist.pop_back_val();
585 
586     // Tries to update the address space of the stack top according to the
587     // address spaces of its operands.
588     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
589     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
590     if (!NewAS.hasValue())
591       continue;
592     // If any updates are made, grabs its users to the worklist because
593     // their address spaces can also be possibly updated.
594     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
595     (*InferredAddrSpace)[V] = NewAS.getValue();
596 
597     for (Value *User : V->users()) {
598       // Skip if User is already in the worklist.
599       if (Worklist.count(User))
600         continue;
601 
602       auto Pos = InferredAddrSpace->find(User);
603       // Our algorithm only updates the address spaces of flat address
604       // expressions, which are those in InferredAddrSpace.
605       if (Pos == InferredAddrSpace->end())
606         continue;
607 
608       // Function updateAddressSpace moves the address space down a lattice
609       // path. Therefore, nothing to do if User is already inferred as flat (the
610       // bottom element in the lattice).
611       if (Pos->second == FlatAddrSpace)
612         continue;
613 
614       Worklist.insert(User);
615     }
616   }
617 }
618 
619 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
620     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
621   assert(InferredAddrSpace.count(&V));
622 
623   // The new inferred address space equals the join of the address spaces
624   // of all its pointer operands.
625   unsigned NewAS = UninitializedAddressSpace;
626 
627   const Operator &Op = cast<Operator>(V);
628   if (Op.getOpcode() == Instruction::Select) {
629     Value *Src0 = Op.getOperand(1);
630     Value *Src1 = Op.getOperand(2);
631 
632     auto I = InferredAddrSpace.find(Src0);
633     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
634       I->second : Src0->getType()->getPointerAddressSpace();
635 
636     auto J = InferredAddrSpace.find(Src1);
637     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
638       J->second : Src1->getType()->getPointerAddressSpace();
639 
640     auto *C0 = dyn_cast<Constant>(Src0);
641     auto *C1 = dyn_cast<Constant>(Src1);
642 
643     // If one of the inputs is a constant, we may be able to do a constant
644     // addrspacecast of it. Defer inferring the address space until the input
645     // address space is known.
646     if ((C1 && Src0AS == UninitializedAddressSpace) ||
647         (C0 && Src1AS == UninitializedAddressSpace))
648       return None;
649 
650     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
651       NewAS = Src1AS;
652     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
653       NewAS = Src0AS;
654     else
655       NewAS = joinAddressSpaces(Src0AS, Src1AS);
656   } else {
657     for (Value *PtrOperand : getPointerOperands(V)) {
658       auto I = InferredAddrSpace.find(PtrOperand);
659       unsigned OperandAS = I != InferredAddrSpace.end() ?
660         I->second : PtrOperand->getType()->getPointerAddressSpace();
661 
662       // join(flat, *) = flat. So we can break if NewAS is already flat.
663       NewAS = joinAddressSpaces(NewAS, OperandAS);
664       if (NewAS == FlatAddrSpace)
665         break;
666     }
667   }
668 
669   unsigned OldAS = InferredAddrSpace.lookup(&V);
670   assert(OldAS != FlatAddrSpace);
671   if (OldAS == NewAS)
672     return None;
673   return NewAS;
674 }
675 
676 /// \p returns true if \p U is the pointer operand of a memory instruction with
677 /// a single pointer operand that can have its address space changed by simply
678 /// mutating the use to a new value.
679 static bool isSimplePointerUseValidToReplace(Use &U) {
680   User *Inst = U.getUser();
681   unsigned OpNo = U.getOperandNo();
682 
683   if (auto *LI = dyn_cast<LoadInst>(Inst))
684     return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
685 
686   if (auto *SI = dyn_cast<StoreInst>(Inst))
687     return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
688 
689   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
690     return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
691 
692   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
693     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
694            !CmpX->isVolatile();
695   }
696 
697   return false;
698 }
699 
700 /// Update memory intrinsic uses that require more complex processing than
701 /// simple memory instructions. Thse require re-mangling and may have multiple
702 /// pointer operands.
703 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
704                                      Value *NewV) {
705   IRBuilder<> B(MI);
706   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
707   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
708   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
709 
710   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
711     B.CreateMemSet(NewV, MSI->getValue(),
712                    MSI->getLength(), MSI->getAlignment(),
713                    false, // isVolatile
714                    TBAA, ScopeMD, NoAliasMD);
715   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
716     Value *Src = MTI->getRawSource();
717     Value *Dest = MTI->getRawDest();
718 
719     // Be careful in case this is a self-to-self copy.
720     if (Src == OldV)
721       Src = NewV;
722 
723     if (Dest == OldV)
724       Dest = NewV;
725 
726     if (isa<MemCpyInst>(MTI)) {
727       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
728       B.CreateMemCpy(Dest, Src, MTI->getLength(),
729                      MTI->getAlignment(),
730                      false, // isVolatile
731                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
732     } else {
733       assert(isa<MemMoveInst>(MTI));
734       B.CreateMemMove(Dest, Src, MTI->getLength(),
735                       MTI->getAlignment(),
736                       false, // isVolatile
737                       TBAA, ScopeMD, NoAliasMD);
738     }
739   } else
740     llvm_unreachable("unhandled MemIntrinsic");
741 
742   MI->eraseFromParent();
743   return true;
744 }
745 
746 // \p returns true if it is OK to change the address space of constant \p C with
747 // a ConstantExpr addrspacecast.
748 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
749   assert(NewAS != UninitializedAddressSpace);
750 
751   unsigned SrcAS = C->getType()->getPointerAddressSpace();
752   if (SrcAS == NewAS || isa<UndefValue>(C))
753     return true;
754 
755   // Prevent illegal casts between different non-flat address spaces.
756   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
757     return false;
758 
759   if (isa<ConstantPointerNull>(C))
760     return true;
761 
762   if (auto *Op = dyn_cast<Operator>(C)) {
763     // If we already have a constant addrspacecast, it should be safe to cast it
764     // off.
765     if (Op->getOpcode() == Instruction::AddrSpaceCast)
766       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
767 
768     if (Op->getOpcode() == Instruction::IntToPtr &&
769         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
770       return true;
771   }
772 
773   return false;
774 }
775 
776 static Value::use_iterator skipToNextUser(Value::use_iterator I,
777                                           Value::use_iterator End) {
778   User *CurUser = I->getUser();
779   ++I;
780 
781   while (I != End && I->getUser() == CurUser)
782     ++I;
783 
784   return I;
785 }
786 
787 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
788   const std::vector<Value *> &Postorder,
789   const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
790   // For each address expression to be modified, creates a clone of it with its
791   // pointer operands converted to the new address space. Since the pointer
792   // operands are converted, the clone is naturally in the new address space by
793   // construction.
794   ValueToValueMapTy ValueWithNewAddrSpace;
795   SmallVector<const Use *, 32> UndefUsesToFix;
796   for (Value* V : Postorder) {
797     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
798     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
799       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
800         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
801     }
802   }
803 
804   if (ValueWithNewAddrSpace.empty())
805     return false;
806 
807   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
808   for (const Use *UndefUse : UndefUsesToFix) {
809     User *V = UndefUse->getUser();
810     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
811     unsigned OperandNo = UndefUse->getOperandNo();
812     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
813     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
814   }
815 
816   // Replaces the uses of the old address expressions with the new ones.
817   for (Value *V : Postorder) {
818     Value *NewV = ValueWithNewAddrSpace.lookup(V);
819     if (NewV == nullptr)
820       continue;
821 
822     DEBUG(dbgs() << "Replacing the uses of " << *V
823                  << "\n  with\n  " << *NewV << '\n');
824 
825     Value::use_iterator I, E, Next;
826     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
827       Use &U = *I;
828 
829       // Some users may see the same pointer operand in multiple operands. Skip
830       // to the next instruction.
831       I = skipToNextUser(I, E);
832 
833       if (isSimplePointerUseValidToReplace(U)) {
834         // If V is used as the pointer operand of a compatible memory operation,
835         // sets the pointer operand to NewV. This replacement does not change
836         // the element type, so the resultant load/store is still valid.
837         U.set(NewV);
838         continue;
839       }
840 
841       User *CurUser = U.getUser();
842       // Handle more complex cases like intrinsic that need to be remangled.
843       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
844         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
845           continue;
846       }
847 
848       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
849         if (rewriteIntrinsicOperands(II, V, NewV))
850           continue;
851       }
852 
853       if (isa<Instruction>(CurUser)) {
854         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
855           // If we can infer that both pointers are in the same addrspace,
856           // transform e.g.
857           //   %cmp = icmp eq float* %p, %q
858           // into
859           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
860 
861           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
862           int SrcIdx = U.getOperandNo();
863           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
864           Value *OtherSrc = Cmp->getOperand(OtherIdx);
865 
866           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
867             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
868               Cmp->setOperand(OtherIdx, OtherNewV);
869               Cmp->setOperand(SrcIdx, NewV);
870               continue;
871             }
872           }
873 
874           // Even if the type mismatches, we can cast the constant.
875           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
876             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
877               Cmp->setOperand(SrcIdx, NewV);
878               Cmp->setOperand(OtherIdx,
879                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
880               continue;
881             }
882           }
883         }
884 
885         // Otherwise, replaces the use with flat(NewV).
886         if (Instruction *I = dyn_cast<Instruction>(V)) {
887           BasicBlock::iterator InsertPos = std::next(I->getIterator());
888           while (isa<PHINode>(InsertPos))
889             ++InsertPos;
890           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
891         } else {
892           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
893                                                V->getType()));
894         }
895       }
896     }
897 
898     if (V->use_empty())
899       RecursivelyDeleteTriviallyDeadInstructions(V);
900   }
901 
902   return true;
903 }
904 
905 FunctionPass *llvm::createInferAddressSpacesPass() {
906   return new InferAddressSpaces();
907 }
908