1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 156 DenseSet<Value *> *Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> *PostorderStack, 163 DenseSet<Value *> *Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 assert(isAddressExpression(V)); 208 const Operator &Op = cast<Operator>(V); 209 switch (Op.getOpcode()) { 210 case Instruction::PHI: { 211 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 212 return SmallVector<Value *, 2>(IncomingValues.begin(), 213 IncomingValues.end()); 214 } 215 case Instruction::BitCast: 216 case Instruction::AddrSpaceCast: 217 case Instruction::GetElementPtr: 218 return {Op.getOperand(0)}; 219 case Instruction::Select: 220 return {Op.getOperand(1), Op.getOperand(2)}; 221 default: 222 llvm_unreachable("Unexpected instruction type."); 223 } 224 } 225 226 // TODO: Move logic to TTI? 227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 228 Value *OldV, 229 Value *NewV) const { 230 Module *M = II->getParent()->getParent()->getParent(); 231 232 switch (II->getIntrinsicID()) { 233 case Intrinsic::amdgcn_atomic_inc: 234 case Intrinsic::amdgcn_atomic_dec:{ 235 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 236 if (!IsVolatile || !IsVolatile->isNullValue()) 237 return false; 238 239 LLVM_FALLTHROUGH; 240 } 241 case Intrinsic::objectsize: { 242 Type *DestTy = II->getType(); 243 Type *SrcTy = NewV->getType(); 244 Function *NewDecl = 245 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 246 II->setArgOperand(0, NewV); 247 II->setCalledFunction(NewDecl); 248 return true; 249 } 250 default: 251 return false; 252 } 253 } 254 255 // TODO: Move logic to TTI? 256 void InferAddressSpaces::collectRewritableIntrinsicOperands( 257 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack, 258 DenseSet<Value *> *Visited) const { 259 switch (II->getIntrinsicID()) { 260 case Intrinsic::objectsize: 261 case Intrinsic::amdgcn_atomic_inc: 262 case Intrinsic::amdgcn_atomic_dec: 263 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 264 PostorderStack, Visited); 265 break; 266 default: 267 break; 268 } 269 } 270 271 // Returns all flat address expressions in function F. The elements are 272 // If V is an unvisited flat address expression, appends V to PostorderStack 273 // and marks it as visited. 274 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 275 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 276 DenseSet<Value *> *Visited) const { 277 assert(V->getType()->isPointerTy()); 278 if (isAddressExpression(*V) && 279 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 280 if (Visited->insert(V).second) 281 PostorderStack->push_back(std::make_pair(V, false)); 282 } 283 } 284 285 // Returns all flat address expressions in function F. The elements are ordered 286 // ordered in postorder. 287 std::vector<Value *> 288 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 289 // This function implements a non-recursive postorder traversal of a partial 290 // use-def graph of function F. 291 std::vector<std::pair<Value *, bool>> PostorderStack; 292 // The set of visited expressions. 293 DenseSet<Value *> Visited; 294 295 auto PushPtrOperand = [&](Value *Ptr) { 296 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack, 297 &Visited); 298 }; 299 300 // Look at operations that may be interesting accelerate by moving to a known 301 // address space. We aim at generating after loads and stores, but pure 302 // addressing calculations may also be faster. 303 for (Instruction &I : instructions(F)) { 304 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 305 if (!GEP->getType()->isVectorTy()) 306 PushPtrOperand(GEP->getPointerOperand()); 307 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 308 PushPtrOperand(LI->getPointerOperand()); 309 else if (auto *SI = dyn_cast<StoreInst>(&I)) 310 PushPtrOperand(SI->getPointerOperand()); 311 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 312 PushPtrOperand(RMW->getPointerOperand()); 313 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 314 PushPtrOperand(CmpX->getPointerOperand()); 315 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 316 // For memset/memcpy/memmove, any pointer operand can be replaced. 317 PushPtrOperand(MI->getRawDest()); 318 319 // Handle 2nd operand for memcpy/memmove. 320 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 321 PushPtrOperand(MTI->getRawSource()); 322 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 323 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited); 324 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 325 // FIXME: Handle vectors of pointers 326 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 327 PushPtrOperand(Cmp->getOperand(0)); 328 PushPtrOperand(Cmp->getOperand(1)); 329 } 330 } 331 } 332 333 std::vector<Value *> Postorder; // The resultant postorder. 334 while (!PostorderStack.empty()) { 335 // If the operands of the expression on the top are already explored, 336 // adds that expression to the resultant postorder. 337 if (PostorderStack.back().second) { 338 Postorder.push_back(PostorderStack.back().first); 339 PostorderStack.pop_back(); 340 continue; 341 } 342 // Otherwise, adds its operands to the stack and explores them. 343 PostorderStack.back().second = true; 344 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 345 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack, 346 &Visited); 347 } 348 } 349 return Postorder; 350 } 351 352 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 353 // of OperandUse.get() in the new address space. If the clone is not ready yet, 354 // returns an undef in the new address space as a placeholder. 355 static Value *operandWithNewAddressSpaceOrCreateUndef( 356 const Use &OperandUse, unsigned NewAddrSpace, 357 const ValueToValueMapTy &ValueWithNewAddrSpace, 358 SmallVectorImpl<const Use *> *UndefUsesToFix) { 359 Value *Operand = OperandUse.get(); 360 361 Type *NewPtrTy = 362 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 363 364 if (Constant *C = dyn_cast<Constant>(Operand)) 365 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 366 367 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 368 return NewOperand; 369 370 UndefUsesToFix->push_back(&OperandUse); 371 return UndefValue::get(NewPtrTy); 372 } 373 374 // Returns a clone of `I` with its operands converted to those specified in 375 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 376 // operand whose address space needs to be modified might not exist in 377 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 378 // adds that operand use to UndefUsesToFix so that caller can fix them later. 379 // 380 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 381 // from a pointer whose type already matches. Therefore, this function returns a 382 // Value* instead of an Instruction*. 383 static Value *cloneInstructionWithNewAddressSpace( 384 Instruction *I, unsigned NewAddrSpace, 385 const ValueToValueMapTy &ValueWithNewAddrSpace, 386 SmallVectorImpl<const Use *> *UndefUsesToFix) { 387 Type *NewPtrType = 388 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 389 390 if (I->getOpcode() == Instruction::AddrSpaceCast) { 391 Value *Src = I->getOperand(0); 392 // Because `I` is flat, the source address space must be specific. 393 // Therefore, the inferred address space must be the source space, according 394 // to our algorithm. 395 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 396 if (Src->getType() != NewPtrType) 397 return new BitCastInst(Src, NewPtrType); 398 return Src; 399 } 400 401 // Computes the converted pointer operands. 402 SmallVector<Value *, 4> NewPointerOperands; 403 for (const Use &OperandUse : I->operands()) { 404 if (!OperandUse.get()->getType()->isPointerTy()) 405 NewPointerOperands.push_back(nullptr); 406 else 407 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 408 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 409 } 410 411 switch (I->getOpcode()) { 412 case Instruction::BitCast: 413 return new BitCastInst(NewPointerOperands[0], NewPtrType); 414 case Instruction::PHI: { 415 assert(I->getType()->isPointerTy()); 416 PHINode *PHI = cast<PHINode>(I); 417 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 418 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 419 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 420 NewPHI->addIncoming(NewPointerOperands[OperandNo], 421 PHI->getIncomingBlock(Index)); 422 } 423 return NewPHI; 424 } 425 case Instruction::GetElementPtr: { 426 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 427 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 428 GEP->getSourceElementType(), NewPointerOperands[0], 429 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 430 NewGEP->setIsInBounds(GEP->isInBounds()); 431 return NewGEP; 432 } 433 case Instruction::Select: { 434 assert(I->getType()->isPointerTy()); 435 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 436 NewPointerOperands[2], "", nullptr, I); 437 } 438 default: 439 llvm_unreachable("Unexpected opcode"); 440 } 441 } 442 443 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 444 // constant expression `CE` with its operands replaced as specified in 445 // ValueWithNewAddrSpace. 446 static Value *cloneConstantExprWithNewAddressSpace( 447 ConstantExpr *CE, unsigned NewAddrSpace, 448 const ValueToValueMapTy &ValueWithNewAddrSpace) { 449 Type *TargetType = 450 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 451 452 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 453 // Because CE is flat, the source address space must be specific. 454 // Therefore, the inferred address space must be the source space according 455 // to our algorithm. 456 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 457 NewAddrSpace); 458 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 459 } 460 461 if (CE->getOpcode() == Instruction::BitCast) { 462 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 463 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 464 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 465 } 466 467 if (CE->getOpcode() == Instruction::Select) { 468 Constant *Src0 = CE->getOperand(1); 469 Constant *Src1 = CE->getOperand(2); 470 if (Src0->getType()->getPointerAddressSpace() == 471 Src1->getType()->getPointerAddressSpace()) { 472 473 return ConstantExpr::getSelect( 474 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 475 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 476 } 477 } 478 479 // Computes the operands of the new constant expression. 480 SmallVector<Constant *, 4> NewOperands; 481 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 482 Constant *Operand = CE->getOperand(Index); 483 // If the address space of `Operand` needs to be modified, the new operand 484 // with the new address space should already be in ValueWithNewAddrSpace 485 // because (1) the constant expressions we consider (i.e. addrspacecast, 486 // bitcast, and getelementptr) do not incur cycles in the data flow graph 487 // and (2) this function is called on constant expressions in postorder. 488 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 489 NewOperands.push_back(cast<Constant>(NewOperand)); 490 } else { 491 // Otherwise, reuses the old operand. 492 NewOperands.push_back(Operand); 493 } 494 } 495 496 if (CE->getOpcode() == Instruction::GetElementPtr) { 497 // Needs to specify the source type while constructing a getelementptr 498 // constant expression. 499 return CE->getWithOperands( 500 NewOperands, TargetType, /*OnlyIfReduced=*/false, 501 NewOperands[0]->getType()->getPointerElementType()); 502 } 503 504 return CE->getWithOperands(NewOperands, TargetType); 505 } 506 507 // Returns a clone of the value `V`, with its operands replaced as specified in 508 // ValueWithNewAddrSpace. This function is called on every flat address 509 // expression whose address space needs to be modified, in postorder. 510 // 511 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 512 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 513 Value *V, unsigned NewAddrSpace, 514 const ValueToValueMapTy &ValueWithNewAddrSpace, 515 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 516 // All values in Postorder are flat address expressions. 517 assert(isAddressExpression(*V) && 518 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 519 520 if (Instruction *I = dyn_cast<Instruction>(V)) { 521 Value *NewV = cloneInstructionWithNewAddressSpace( 522 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 523 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 524 if (NewI->getParent() == nullptr) { 525 NewI->insertBefore(I); 526 NewI->takeName(I); 527 } 528 } 529 return NewV; 530 } 531 532 return cloneConstantExprWithNewAddressSpace( 533 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 534 } 535 536 // Defines the join operation on the address space lattice (see the file header 537 // comments). 538 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 539 unsigned AS2) const { 540 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 541 return FlatAddrSpace; 542 543 if (AS1 == UninitializedAddressSpace) 544 return AS2; 545 if (AS2 == UninitializedAddressSpace) 546 return AS1; 547 548 // The join of two different specific address spaces is flat. 549 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 550 } 551 552 bool InferAddressSpaces::runOnFunction(Function &F) { 553 if (skipFunction(F)) 554 return false; 555 556 const TargetTransformInfo &TTI = 557 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 558 FlatAddrSpace = TTI.getFlatAddressSpace(); 559 if (FlatAddrSpace == UninitializedAddressSpace) 560 return false; 561 562 // Collects all flat address expressions in postorder. 563 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 564 565 // Runs a data-flow analysis to refine the address spaces of every expression 566 // in Postorder. 567 ValueToAddrSpaceMapTy InferredAddrSpace; 568 inferAddressSpaces(Postorder, &InferredAddrSpace); 569 570 // Changes the address spaces of the flat address expressions who are inferred 571 // to point to a specific address space. 572 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 573 } 574 575 void InferAddressSpaces::inferAddressSpaces( 576 const std::vector<Value *> &Postorder, 577 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 578 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 579 // Initially, all expressions are in the uninitialized address space. 580 for (Value *V : Postorder) 581 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 582 583 while (!Worklist.empty()) { 584 Value *V = Worklist.pop_back_val(); 585 586 // Tries to update the address space of the stack top according to the 587 // address spaces of its operands. 588 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 589 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 590 if (!NewAS.hasValue()) 591 continue; 592 // If any updates are made, grabs its users to the worklist because 593 // their address spaces can also be possibly updated. 594 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 595 (*InferredAddrSpace)[V] = NewAS.getValue(); 596 597 for (Value *User : V->users()) { 598 // Skip if User is already in the worklist. 599 if (Worklist.count(User)) 600 continue; 601 602 auto Pos = InferredAddrSpace->find(User); 603 // Our algorithm only updates the address spaces of flat address 604 // expressions, which are those in InferredAddrSpace. 605 if (Pos == InferredAddrSpace->end()) 606 continue; 607 608 // Function updateAddressSpace moves the address space down a lattice 609 // path. Therefore, nothing to do if User is already inferred as flat (the 610 // bottom element in the lattice). 611 if (Pos->second == FlatAddrSpace) 612 continue; 613 614 Worklist.insert(User); 615 } 616 } 617 } 618 619 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 620 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 621 assert(InferredAddrSpace.count(&V)); 622 623 // The new inferred address space equals the join of the address spaces 624 // of all its pointer operands. 625 unsigned NewAS = UninitializedAddressSpace; 626 627 const Operator &Op = cast<Operator>(V); 628 if (Op.getOpcode() == Instruction::Select) { 629 Value *Src0 = Op.getOperand(1); 630 Value *Src1 = Op.getOperand(2); 631 632 auto I = InferredAddrSpace.find(Src0); 633 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 634 I->second : Src0->getType()->getPointerAddressSpace(); 635 636 auto J = InferredAddrSpace.find(Src1); 637 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 638 J->second : Src1->getType()->getPointerAddressSpace(); 639 640 auto *C0 = dyn_cast<Constant>(Src0); 641 auto *C1 = dyn_cast<Constant>(Src1); 642 643 // If one of the inputs is a constant, we may be able to do a constant 644 // addrspacecast of it. Defer inferring the address space until the input 645 // address space is known. 646 if ((C1 && Src0AS == UninitializedAddressSpace) || 647 (C0 && Src1AS == UninitializedAddressSpace)) 648 return None; 649 650 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 651 NewAS = Src1AS; 652 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 653 NewAS = Src0AS; 654 else 655 NewAS = joinAddressSpaces(Src0AS, Src1AS); 656 } else { 657 for (Value *PtrOperand : getPointerOperands(V)) { 658 auto I = InferredAddrSpace.find(PtrOperand); 659 unsigned OperandAS = I != InferredAddrSpace.end() ? 660 I->second : PtrOperand->getType()->getPointerAddressSpace(); 661 662 // join(flat, *) = flat. So we can break if NewAS is already flat. 663 NewAS = joinAddressSpaces(NewAS, OperandAS); 664 if (NewAS == FlatAddrSpace) 665 break; 666 } 667 } 668 669 unsigned OldAS = InferredAddrSpace.lookup(&V); 670 assert(OldAS != FlatAddrSpace); 671 if (OldAS == NewAS) 672 return None; 673 return NewAS; 674 } 675 676 /// \p returns true if \p U is the pointer operand of a memory instruction with 677 /// a single pointer operand that can have its address space changed by simply 678 /// mutating the use to a new value. 679 static bool isSimplePointerUseValidToReplace(Use &U) { 680 User *Inst = U.getUser(); 681 unsigned OpNo = U.getOperandNo(); 682 683 if (auto *LI = dyn_cast<LoadInst>(Inst)) 684 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 685 686 if (auto *SI = dyn_cast<StoreInst>(Inst)) 687 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 688 689 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 690 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 691 692 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 693 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 694 !CmpX->isVolatile(); 695 } 696 697 return false; 698 } 699 700 /// Update memory intrinsic uses that require more complex processing than 701 /// simple memory instructions. Thse require re-mangling and may have multiple 702 /// pointer operands. 703 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 704 Value *NewV) { 705 IRBuilder<> B(MI); 706 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 707 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 708 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 709 710 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 711 B.CreateMemSet(NewV, MSI->getValue(), 712 MSI->getLength(), MSI->getAlignment(), 713 false, // isVolatile 714 TBAA, ScopeMD, NoAliasMD); 715 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 716 Value *Src = MTI->getRawSource(); 717 Value *Dest = MTI->getRawDest(); 718 719 // Be careful in case this is a self-to-self copy. 720 if (Src == OldV) 721 Src = NewV; 722 723 if (Dest == OldV) 724 Dest = NewV; 725 726 if (isa<MemCpyInst>(MTI)) { 727 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 728 B.CreateMemCpy(Dest, Src, MTI->getLength(), 729 MTI->getAlignment(), 730 false, // isVolatile 731 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 732 } else { 733 assert(isa<MemMoveInst>(MTI)); 734 B.CreateMemMove(Dest, Src, MTI->getLength(), 735 MTI->getAlignment(), 736 false, // isVolatile 737 TBAA, ScopeMD, NoAliasMD); 738 } 739 } else 740 llvm_unreachable("unhandled MemIntrinsic"); 741 742 MI->eraseFromParent(); 743 return true; 744 } 745 746 // \p returns true if it is OK to change the address space of constant \p C with 747 // a ConstantExpr addrspacecast. 748 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 749 assert(NewAS != UninitializedAddressSpace); 750 751 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 752 if (SrcAS == NewAS || isa<UndefValue>(C)) 753 return true; 754 755 // Prevent illegal casts between different non-flat address spaces. 756 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 757 return false; 758 759 if (isa<ConstantPointerNull>(C)) 760 return true; 761 762 if (auto *Op = dyn_cast<Operator>(C)) { 763 // If we already have a constant addrspacecast, it should be safe to cast it 764 // off. 765 if (Op->getOpcode() == Instruction::AddrSpaceCast) 766 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 767 768 if (Op->getOpcode() == Instruction::IntToPtr && 769 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 770 return true; 771 } 772 773 return false; 774 } 775 776 static Value::use_iterator skipToNextUser(Value::use_iterator I, 777 Value::use_iterator End) { 778 User *CurUser = I->getUser(); 779 ++I; 780 781 while (I != End && I->getUser() == CurUser) 782 ++I; 783 784 return I; 785 } 786 787 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 788 const std::vector<Value *> &Postorder, 789 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 790 // For each address expression to be modified, creates a clone of it with its 791 // pointer operands converted to the new address space. Since the pointer 792 // operands are converted, the clone is naturally in the new address space by 793 // construction. 794 ValueToValueMapTy ValueWithNewAddrSpace; 795 SmallVector<const Use *, 32> UndefUsesToFix; 796 for (Value* V : Postorder) { 797 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 798 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 799 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 800 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 801 } 802 } 803 804 if (ValueWithNewAddrSpace.empty()) 805 return false; 806 807 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 808 for (const Use *UndefUse : UndefUsesToFix) { 809 User *V = UndefUse->getUser(); 810 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 811 unsigned OperandNo = UndefUse->getOperandNo(); 812 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 813 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 814 } 815 816 // Replaces the uses of the old address expressions with the new ones. 817 for (Value *V : Postorder) { 818 Value *NewV = ValueWithNewAddrSpace.lookup(V); 819 if (NewV == nullptr) 820 continue; 821 822 DEBUG(dbgs() << "Replacing the uses of " << *V 823 << "\n with\n " << *NewV << '\n'); 824 825 Value::use_iterator I, E, Next; 826 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 827 Use &U = *I; 828 829 // Some users may see the same pointer operand in multiple operands. Skip 830 // to the next instruction. 831 I = skipToNextUser(I, E); 832 833 if (isSimplePointerUseValidToReplace(U)) { 834 // If V is used as the pointer operand of a compatible memory operation, 835 // sets the pointer operand to NewV. This replacement does not change 836 // the element type, so the resultant load/store is still valid. 837 U.set(NewV); 838 continue; 839 } 840 841 User *CurUser = U.getUser(); 842 // Handle more complex cases like intrinsic that need to be remangled. 843 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 844 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 845 continue; 846 } 847 848 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 849 if (rewriteIntrinsicOperands(II, V, NewV)) 850 continue; 851 } 852 853 if (isa<Instruction>(CurUser)) { 854 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 855 // If we can infer that both pointers are in the same addrspace, 856 // transform e.g. 857 // %cmp = icmp eq float* %p, %q 858 // into 859 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 860 861 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 862 int SrcIdx = U.getOperandNo(); 863 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 864 Value *OtherSrc = Cmp->getOperand(OtherIdx); 865 866 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 867 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 868 Cmp->setOperand(OtherIdx, OtherNewV); 869 Cmp->setOperand(SrcIdx, NewV); 870 continue; 871 } 872 } 873 874 // Even if the type mismatches, we can cast the constant. 875 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 876 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 877 Cmp->setOperand(SrcIdx, NewV); 878 Cmp->setOperand(OtherIdx, 879 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 880 continue; 881 } 882 } 883 } 884 885 // Otherwise, replaces the use with flat(NewV). 886 if (Instruction *I = dyn_cast<Instruction>(V)) { 887 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 888 while (isa<PHINode>(InsertPos)) 889 ++InsertPos; 890 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 891 } else { 892 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 893 V->getType())); 894 } 895 } 896 } 897 898 if (V->use_empty()) 899 RecursivelyDeleteTriviallyDeadInstructions(V); 900 } 901 902 return true; 903 } 904 905 FunctionPass *llvm::createInferAddressSpacesPass() { 906 return new InferAddressSpaces(); 907 } 908