1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces: public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 156 DenseSet<Value *> *Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> *PostorderStack, 163 DenseSet<Value *> *Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 assert(isAddressExpression(V)); 208 const Operator& Op = cast<Operator>(V); 209 switch (Op.getOpcode()) { 210 case Instruction::PHI: { 211 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 212 return SmallVector<Value *, 2>(IncomingValues.begin(), 213 IncomingValues.end()); 214 } 215 case Instruction::BitCast: 216 case Instruction::AddrSpaceCast: 217 case Instruction::GetElementPtr: 218 return {Op.getOperand(0)}; 219 case Instruction::Select: 220 return {Op.getOperand(1), Op.getOperand(2)}; 221 default: 222 llvm_unreachable("Unexpected instruction type."); 223 } 224 } 225 226 // TODO: Move logic to TTI? 227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 228 Value *OldV, 229 Value *NewV) const { 230 Module *M = II->getParent()->getParent()->getParent(); 231 232 switch (II->getIntrinsicID()) { 233 case Intrinsic::objectsize: 234 case Intrinsic::amdgcn_atomic_inc: 235 case Intrinsic::amdgcn_atomic_dec: { 236 Type *DestTy = II->getType(); 237 Type *SrcTy = NewV->getType(); 238 Function *NewDecl 239 = Intrinsic::getDeclaration(M, II->getIntrinsicID(), { DestTy, SrcTy }); 240 II->setArgOperand(0, NewV); 241 II->setCalledFunction(NewDecl); 242 return true; 243 } 244 default: 245 return false; 246 } 247 } 248 249 // TODO: Move logic to TTI? 250 void InferAddressSpaces::collectRewritableIntrinsicOperands( 251 IntrinsicInst *II, 252 std::vector<std::pair<Value *, bool>> *PostorderStack, 253 DenseSet<Value *> *Visited) const { 254 switch (II->getIntrinsicID()) { 255 case Intrinsic::objectsize: 256 case Intrinsic::amdgcn_atomic_inc: 257 case Intrinsic::amdgcn_atomic_dec: 258 appendsFlatAddressExpressionToPostorderStack( 259 II->getArgOperand(0), PostorderStack, Visited); 260 break; 261 default: 262 break; 263 } 264 } 265 266 // Returns all flat address expressions in function F. The elements are 267 // If V is an unvisited flat address expression, appends V to PostorderStack 268 // and marks it as visited. 269 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 270 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 271 DenseSet<Value *> *Visited) const { 272 assert(V->getType()->isPointerTy()); 273 if (isAddressExpression(*V) && 274 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 275 if (Visited->insert(V).second) 276 PostorderStack->push_back(std::make_pair(V, false)); 277 } 278 } 279 280 // Returns all flat address expressions in function F. The elements are ordered 281 // ordered in postorder. 282 std::vector<Value *> 283 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 284 // This function implements a non-recursive postorder traversal of a partial 285 // use-def graph of function F. 286 std::vector<std::pair<Value*, bool>> PostorderStack; 287 // The set of visited expressions. 288 DenseSet<Value*> Visited; 289 290 auto PushPtrOperand = [&](Value *Ptr) { 291 appendsFlatAddressExpressionToPostorderStack( 292 Ptr, &PostorderStack, &Visited); 293 }; 294 295 // We only explore address expressions that are reachable from loads and 296 // stores for now because we aim at generating faster loads and stores. 297 for (Instruction &I : instructions(F)) { 298 if (auto *LI = dyn_cast<LoadInst>(&I)) 299 PushPtrOperand(LI->getPointerOperand()); 300 else if (auto *SI = dyn_cast<StoreInst>(&I)) 301 PushPtrOperand(SI->getPointerOperand()); 302 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 303 PushPtrOperand(RMW->getPointerOperand()); 304 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 305 PushPtrOperand(CmpX->getPointerOperand()); 306 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 307 // For memset/memcpy/memmove, any pointer operand can be replaced. 308 PushPtrOperand(MI->getRawDest()); 309 310 // Handle 2nd operand for memcpy/memmove. 311 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 312 PushPtrOperand(MTI->getRawSource()); 313 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 314 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited); 315 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 316 // FIXME: Handle vectors of pointers 317 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 318 PushPtrOperand(Cmp->getOperand(0)); 319 PushPtrOperand(Cmp->getOperand(1)); 320 } 321 } 322 } 323 324 std::vector<Value *> Postorder; // The resultant postorder. 325 while (!PostorderStack.empty()) { 326 // If the operands of the expression on the top are already explored, 327 // adds that expression to the resultant postorder. 328 if (PostorderStack.back().second) { 329 Postorder.push_back(PostorderStack.back().first); 330 PostorderStack.pop_back(); 331 continue; 332 } 333 // Otherwise, adds its operands to the stack and explores them. 334 PostorderStack.back().second = true; 335 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 336 appendsFlatAddressExpressionToPostorderStack( 337 PtrOperand, &PostorderStack, &Visited); 338 } 339 } 340 return Postorder; 341 } 342 343 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 344 // of OperandUse.get() in the new address space. If the clone is not ready yet, 345 // returns an undef in the new address space as a placeholder. 346 static Value *operandWithNewAddressSpaceOrCreateUndef( 347 const Use &OperandUse, unsigned NewAddrSpace, 348 const ValueToValueMapTy &ValueWithNewAddrSpace, 349 SmallVectorImpl<const Use *> *UndefUsesToFix) { 350 Value *Operand = OperandUse.get(); 351 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 352 return NewOperand; 353 354 UndefUsesToFix->push_back(&OperandUse); 355 return UndefValue::get( 356 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace)); 357 } 358 359 // Returns a clone of `I` with its operands converted to those specified in 360 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 361 // operand whose address space needs to be modified might not exist in 362 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 363 // adds that operand use to UndefUsesToFix so that caller can fix them later. 364 // 365 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 366 // from a pointer whose type already matches. Therefore, this function returns a 367 // Value* instead of an Instruction*. 368 static Value *cloneInstructionWithNewAddressSpace( 369 Instruction *I, unsigned NewAddrSpace, 370 const ValueToValueMapTy &ValueWithNewAddrSpace, 371 SmallVectorImpl<const Use *> *UndefUsesToFix) { 372 Type *NewPtrType = 373 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 374 375 if (I->getOpcode() == Instruction::AddrSpaceCast) { 376 Value *Src = I->getOperand(0); 377 // Because `I` is flat, the source address space must be specific. 378 // Therefore, the inferred address space must be the source space, according 379 // to our algorithm. 380 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 381 if (Src->getType() != NewPtrType) 382 return new BitCastInst(Src, NewPtrType); 383 return Src; 384 } 385 386 // Computes the converted pointer operands. 387 SmallVector<Value *, 4> NewPointerOperands; 388 for (const Use &OperandUse : I->operands()) { 389 if (!OperandUse.get()->getType()->isPointerTy()) 390 NewPointerOperands.push_back(nullptr); 391 else 392 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 393 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 394 } 395 396 switch (I->getOpcode()) { 397 case Instruction::BitCast: 398 return new BitCastInst(NewPointerOperands[0], NewPtrType); 399 case Instruction::PHI: { 400 assert(I->getType()->isPointerTy()); 401 PHINode *PHI = cast<PHINode>(I); 402 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 403 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 404 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 405 NewPHI->addIncoming(NewPointerOperands[OperandNo], 406 PHI->getIncomingBlock(Index)); 407 } 408 return NewPHI; 409 } 410 case Instruction::GetElementPtr: { 411 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 412 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 413 GEP->getSourceElementType(), NewPointerOperands[0], 414 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 415 NewGEP->setIsInBounds(GEP->isInBounds()); 416 return NewGEP; 417 } 418 case Instruction::Select: { 419 assert(I->getType()->isPointerTy()); 420 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 421 NewPointerOperands[2], "", nullptr, I); 422 } 423 default: 424 llvm_unreachable("Unexpected opcode"); 425 } 426 } 427 428 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 429 // constant expression `CE` with its operands replaced as specified in 430 // ValueWithNewAddrSpace. 431 static Value *cloneConstantExprWithNewAddressSpace( 432 ConstantExpr *CE, unsigned NewAddrSpace, 433 const ValueToValueMapTy &ValueWithNewAddrSpace) { 434 Type *TargetType = 435 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 436 437 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 438 // Because CE is flat, the source address space must be specific. 439 // Therefore, the inferred address space must be the source space according 440 // to our algorithm. 441 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 442 NewAddrSpace); 443 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 444 } 445 446 // Computes the operands of the new constant expression. 447 SmallVector<Constant *, 4> NewOperands; 448 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 449 Constant *Operand = CE->getOperand(Index); 450 // If the address space of `Operand` needs to be modified, the new operand 451 // with the new address space should already be in ValueWithNewAddrSpace 452 // because (1) the constant expressions we consider (i.e. addrspacecast, 453 // bitcast, and getelementptr) do not incur cycles in the data flow graph 454 // and (2) this function is called on constant expressions in postorder. 455 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 456 NewOperands.push_back(cast<Constant>(NewOperand)); 457 } else { 458 // Otherwise, reuses the old operand. 459 NewOperands.push_back(Operand); 460 } 461 } 462 463 if (CE->getOpcode() == Instruction::GetElementPtr) { 464 // Needs to specify the source type while constructing a getelementptr 465 // constant expression. 466 return CE->getWithOperands( 467 NewOperands, TargetType, /*OnlyIfReduced=*/false, 468 NewOperands[0]->getType()->getPointerElementType()); 469 } 470 471 return CE->getWithOperands(NewOperands, TargetType); 472 } 473 474 // Returns a clone of the value `V`, with its operands replaced as specified in 475 // ValueWithNewAddrSpace. This function is called on every flat address 476 // expression whose address space needs to be modified, in postorder. 477 // 478 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 479 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 480 Value *V, unsigned NewAddrSpace, 481 const ValueToValueMapTy &ValueWithNewAddrSpace, 482 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 483 // All values in Postorder are flat address expressions. 484 assert(isAddressExpression(*V) && 485 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 486 487 if (Instruction *I = dyn_cast<Instruction>(V)) { 488 Value *NewV = cloneInstructionWithNewAddressSpace( 489 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 490 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 491 if (NewI->getParent() == nullptr) { 492 NewI->insertBefore(I); 493 NewI->takeName(I); 494 } 495 } 496 return NewV; 497 } 498 499 return cloneConstantExprWithNewAddressSpace( 500 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 501 } 502 503 // Defines the join operation on the address space lattice (see the file header 504 // comments). 505 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 506 unsigned AS2) const { 507 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 508 return FlatAddrSpace; 509 510 if (AS1 == UninitializedAddressSpace) 511 return AS2; 512 if (AS2 == UninitializedAddressSpace) 513 return AS1; 514 515 // The join of two different specific address spaces is flat. 516 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 517 } 518 519 bool InferAddressSpaces::runOnFunction(Function &F) { 520 if (skipFunction(F)) 521 return false; 522 523 const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 524 FlatAddrSpace = TTI.getFlatAddressSpace(); 525 if (FlatAddrSpace == UninitializedAddressSpace) 526 return false; 527 528 // Collects all flat address expressions in postorder. 529 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 530 531 // Runs a data-flow analysis to refine the address spaces of every expression 532 // in Postorder. 533 ValueToAddrSpaceMapTy InferredAddrSpace; 534 inferAddressSpaces(Postorder, &InferredAddrSpace); 535 536 // Changes the address spaces of the flat address expressions who are inferred 537 // to point to a specific address space. 538 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 539 } 540 541 void InferAddressSpaces::inferAddressSpaces( 542 const std::vector<Value *> &Postorder, 543 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 544 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 545 // Initially, all expressions are in the uninitialized address space. 546 for (Value *V : Postorder) 547 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 548 549 while (!Worklist.empty()) { 550 Value* V = Worklist.pop_back_val(); 551 552 // Tries to update the address space of the stack top according to the 553 // address spaces of its operands. 554 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 555 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 556 if (!NewAS.hasValue()) 557 continue; 558 // If any updates are made, grabs its users to the worklist because 559 // their address spaces can also be possibly updated. 560 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 561 (*InferredAddrSpace)[V] = NewAS.getValue(); 562 563 for (Value *User : V->users()) { 564 // Skip if User is already in the worklist. 565 if (Worklist.count(User)) 566 continue; 567 568 auto Pos = InferredAddrSpace->find(User); 569 // Our algorithm only updates the address spaces of flat address 570 // expressions, which are those in InferredAddrSpace. 571 if (Pos == InferredAddrSpace->end()) 572 continue; 573 574 // Function updateAddressSpace moves the address space down a lattice 575 // path. Therefore, nothing to do if User is already inferred as flat (the 576 // bottom element in the lattice). 577 if (Pos->second == FlatAddrSpace) 578 continue; 579 580 Worklist.insert(User); 581 } 582 } 583 } 584 585 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 586 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 587 assert(InferredAddrSpace.count(&V)); 588 589 // The new inferred address space equals the join of the address spaces 590 // of all its pointer operands. 591 unsigned NewAS = UninitializedAddressSpace; 592 for (Value *PtrOperand : getPointerOperands(V)) { 593 auto I = InferredAddrSpace.find(PtrOperand); 594 unsigned OperandAS = I != InferredAddrSpace.end() ? 595 I->second : PtrOperand->getType()->getPointerAddressSpace(); 596 597 // join(flat, *) = flat. So we can break if NewAS is already flat. 598 NewAS = joinAddressSpaces(NewAS, OperandAS); 599 if (NewAS == FlatAddrSpace) 600 break; 601 } 602 603 unsigned OldAS = InferredAddrSpace.lookup(&V); 604 assert(OldAS != FlatAddrSpace); 605 if (OldAS == NewAS) 606 return None; 607 return NewAS; 608 } 609 610 /// \p returns true if \p U is the pointer operand of a memory instruction with 611 /// a single pointer operand that can have its address space changed by simply 612 /// mutating the use to a new value. 613 static bool isSimplePointerUseValidToReplace(Use &U) { 614 User *Inst = U.getUser(); 615 unsigned OpNo = U.getOperandNo(); 616 617 if (auto *LI = dyn_cast<LoadInst>(Inst)) 618 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 619 620 if (auto *SI = dyn_cast<StoreInst>(Inst)) 621 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 622 623 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 624 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 625 626 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 627 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 628 !CmpX->isVolatile(); 629 } 630 631 return false; 632 } 633 634 /// Update memory intrinsic uses that require more complex processing than 635 /// simple memory instructions. Thse require re-mangling and may have multiple 636 /// pointer operands. 637 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, 638 Value *OldV, Value *NewV) { 639 IRBuilder<> B(MI); 640 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 641 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 642 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 643 644 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 645 B.CreateMemSet(NewV, MSI->getValue(), 646 MSI->getLength(), MSI->getAlignment(), 647 false, // isVolatile 648 TBAA, ScopeMD, NoAliasMD); 649 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 650 Value *Src = MTI->getRawSource(); 651 Value *Dest = MTI->getRawDest(); 652 653 // Be careful in case this is a self-to-self copy. 654 if (Src == OldV) 655 Src = NewV; 656 657 if (Dest == OldV) 658 Dest = NewV; 659 660 if (isa<MemCpyInst>(MTI)) { 661 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 662 B.CreateMemCpy(Dest, Src, MTI->getLength(), 663 MTI->getAlignment(), 664 false, // isVolatile 665 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 666 } else { 667 assert(isa<MemMoveInst>(MTI)); 668 B.CreateMemMove(Dest, Src, MTI->getLength(), 669 MTI->getAlignment(), 670 false, // isVolatile 671 TBAA, ScopeMD, NoAliasMD); 672 } 673 } else 674 llvm_unreachable("unhandled MemIntrinsic"); 675 676 MI->eraseFromParent(); 677 return true; 678 } 679 680 // \p returns true if it is OK to change the address space of constant \p C with 681 // a ConstantExpr addrspacecast. 682 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 683 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 684 if (SrcAS == NewAS || isa<UndefValue>(C)) 685 return true; 686 687 // Prevent illegal casts between different non-flat address spaces. 688 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 689 return false; 690 691 if (isa<ConstantPointerNull>(C)) 692 return true; 693 694 if (auto *Op = dyn_cast<Operator>(C)) { 695 // If we already have a constant addrspacecast, it should be safe to cast it 696 // off. 697 if (Op->getOpcode() == Instruction::AddrSpaceCast) 698 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 699 700 if (Op->getOpcode() == Instruction::IntToPtr && 701 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 702 return true; 703 } 704 705 return false; 706 } 707 708 static Value::use_iterator skipToNextUser(Value::use_iterator I, 709 Value::use_iterator End) { 710 User *CurUser = I->getUser(); 711 ++I; 712 713 while (I != End && I->getUser() == CurUser) 714 ++I; 715 716 return I; 717 } 718 719 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 720 const std::vector<Value *> &Postorder, 721 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 722 // For each address expression to be modified, creates a clone of it with its 723 // pointer operands converted to the new address space. Since the pointer 724 // operands are converted, the clone is naturally in the new address space by 725 // construction. 726 ValueToValueMapTy ValueWithNewAddrSpace; 727 SmallVector<const Use *, 32> UndefUsesToFix; 728 for (Value* V : Postorder) { 729 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 730 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 731 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 732 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 733 } 734 } 735 736 if (ValueWithNewAddrSpace.empty()) 737 return false; 738 739 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 740 for (const Use* UndefUse : UndefUsesToFix) { 741 User *V = UndefUse->getUser(); 742 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 743 unsigned OperandNo = UndefUse->getOperandNo(); 744 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 745 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 746 } 747 748 // Replaces the uses of the old address expressions with the new ones. 749 for (Value *V : Postorder) { 750 Value *NewV = ValueWithNewAddrSpace.lookup(V); 751 if (NewV == nullptr) 752 continue; 753 754 DEBUG(dbgs() << "Replacing the uses of " << *V 755 << "\n with\n " << *NewV << '\n'); 756 757 Value::use_iterator I, E, Next; 758 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 759 Use &U = *I; 760 761 // Some users may see the same pointer operand in multiple operands. Skip 762 // to the next instruction. 763 I = skipToNextUser(I, E); 764 765 if (isSimplePointerUseValidToReplace(U)) { 766 // If V is used as the pointer operand of a compatible memory operation, 767 // sets the pointer operand to NewV. This replacement does not change 768 // the element type, so the resultant load/store is still valid. 769 U.set(NewV); 770 continue; 771 } 772 773 User *CurUser = U.getUser(); 774 // Handle more complex cases like intrinsic that need to be remangled. 775 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 776 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 777 continue; 778 } 779 780 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 781 if (rewriteIntrinsicOperands(II, V, NewV)) 782 continue; 783 } 784 785 if (isa<Instruction>(CurUser)) { 786 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 787 // If we can infer that both pointers are in the same addrspace, 788 // transform e.g. 789 // %cmp = icmp eq float* %p, %q 790 // into 791 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 792 793 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 794 int SrcIdx = U.getOperandNo(); 795 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 796 Value *OtherSrc = Cmp->getOperand(OtherIdx); 797 798 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 799 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 800 Cmp->setOperand(OtherIdx, OtherNewV); 801 Cmp->setOperand(SrcIdx, NewV); 802 continue; 803 } 804 } 805 806 // Even if the type mismatches, we can cast the constant. 807 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 808 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 809 Cmp->setOperand(SrcIdx, NewV); 810 Cmp->setOperand(OtherIdx, 811 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 812 continue; 813 } 814 } 815 } 816 817 // Otherwise, replaces the use with flat(NewV). 818 if (Instruction *I = dyn_cast<Instruction>(V)) { 819 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 820 while (isa<PHINode>(InsertPos)) 821 ++InsertPos; 822 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 823 } else { 824 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 825 V->getType())); 826 } 827 } 828 } 829 830 if (V->use_empty()) 831 RecursivelyDeleteTriviallyDeadInstructions(V); 832 } 833 834 return true; 835 } 836 837 FunctionPass *llvm::createInferAddressSpacesPass() { 838 return new InferAddressSpaces(); 839 } 840