1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/DenseSet.h" 93 #include "llvm/ADT/Optional.h" 94 #include "llvm/ADT/SetVector.h" 95 #include "llvm/Analysis/TargetTransformInfo.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/InstIterator.h" 98 #include "llvm/IR/Instructions.h" 99 #include "llvm/IR/Operator.h" 100 #include "llvm/Support/Debug.h" 101 #include "llvm/Support/raw_ostream.h" 102 #include "llvm/Transforms/Scalar.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 156 DenseSet<Value *> &Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> &PostorderStack, 163 DenseSet<Value *> &Visited) const; 164 165 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 const Operator &Op = cast<Operator>(V); 208 switch (Op.getOpcode()) { 209 case Instruction::PHI: { 210 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 211 return SmallVector<Value *, 2>(IncomingValues.begin(), 212 IncomingValues.end()); 213 } 214 case Instruction::BitCast: 215 case Instruction::AddrSpaceCast: 216 case Instruction::GetElementPtr: 217 return {Op.getOperand(0)}; 218 case Instruction::Select: 219 return {Op.getOperand(1), Op.getOperand(2)}; 220 default: 221 llvm_unreachable("Unexpected instruction type."); 222 } 223 } 224 225 // TODO: Move logic to TTI? 226 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 227 Value *OldV, 228 Value *NewV) const { 229 Module *M = II->getParent()->getParent()->getParent(); 230 231 switch (II->getIntrinsicID()) { 232 case Intrinsic::amdgcn_atomic_inc: 233 case Intrinsic::amdgcn_atomic_dec:{ 234 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 235 if (!IsVolatile || !IsVolatile->isZero()) 236 return false; 237 238 LLVM_FALLTHROUGH; 239 } 240 case Intrinsic::objectsize: { 241 Type *DestTy = II->getType(); 242 Type *SrcTy = NewV->getType(); 243 Function *NewDecl = 244 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 245 II->setArgOperand(0, NewV); 246 II->setCalledFunction(NewDecl); 247 return true; 248 } 249 default: 250 return false; 251 } 252 } 253 254 // TODO: Move logic to TTI? 255 void InferAddressSpaces::collectRewritableIntrinsicOperands( 256 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 257 DenseSet<Value *> &Visited) const { 258 switch (II->getIntrinsicID()) { 259 case Intrinsic::objectsize: 260 case Intrinsic::amdgcn_atomic_inc: 261 case Intrinsic::amdgcn_atomic_dec: 262 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 263 PostorderStack, Visited); 264 break; 265 default: 266 break; 267 } 268 } 269 270 // Returns all flat address expressions in function F. The elements are 271 // If V is an unvisited flat address expression, appends V to PostorderStack 272 // and marks it as visited. 273 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 274 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 275 DenseSet<Value *> &Visited) const { 276 assert(V->getType()->isPointerTy()); 277 278 // Generic addressing expressions may be hidden in nested constant 279 // expressions. 280 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 281 // TODO: Look in non-address parts, like icmp operands. 282 if (isAddressExpression(*CE) && Visited.insert(CE).second) 283 PostorderStack.push_back(std::make_pair(CE, false)); 284 285 return; 286 } 287 288 if (isAddressExpression(*V) && 289 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 290 if (Visited.insert(V).second) { 291 PostorderStack.push_back(std::make_pair(V, false)); 292 293 Operator *Op = cast<Operator>(V); 294 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 295 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 296 if (isAddressExpression(*CE) && Visited.insert(CE).second) 297 PostorderStack.emplace_back(CE, false); 298 } 299 } 300 } 301 } 302 } 303 304 // Returns all flat address expressions in function F. The elements are ordered 305 // ordered in postorder. 306 std::vector<WeakTrackingVH> 307 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 308 // This function implements a non-recursive postorder traversal of a partial 309 // use-def graph of function F. 310 std::vector<std::pair<Value *, bool>> PostorderStack; 311 // The set of visited expressions. 312 DenseSet<Value *> Visited; 313 314 auto PushPtrOperand = [&](Value *Ptr) { 315 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 316 Visited); 317 }; 318 319 // Look at operations that may be interesting accelerate by moving to a known 320 // address space. We aim at generating after loads and stores, but pure 321 // addressing calculations may also be faster. 322 for (Instruction &I : instructions(F)) { 323 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 324 if (!GEP->getType()->isVectorTy()) 325 PushPtrOperand(GEP->getPointerOperand()); 326 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 327 PushPtrOperand(LI->getPointerOperand()); 328 else if (auto *SI = dyn_cast<StoreInst>(&I)) 329 PushPtrOperand(SI->getPointerOperand()); 330 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 331 PushPtrOperand(RMW->getPointerOperand()); 332 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 333 PushPtrOperand(CmpX->getPointerOperand()); 334 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 335 // For memset/memcpy/memmove, any pointer operand can be replaced. 336 PushPtrOperand(MI->getRawDest()); 337 338 // Handle 2nd operand for memcpy/memmove. 339 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 340 PushPtrOperand(MTI->getRawSource()); 341 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 342 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 343 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 344 // FIXME: Handle vectors of pointers 345 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 346 PushPtrOperand(Cmp->getOperand(0)); 347 PushPtrOperand(Cmp->getOperand(1)); 348 } 349 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 350 if (!ASC->getType()->isVectorTy()) 351 PushPtrOperand(ASC->getPointerOperand()); 352 } 353 } 354 355 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 356 while (!PostorderStack.empty()) { 357 Value *TopVal = PostorderStack.back().first; 358 // If the operands of the expression on the top are already explored, 359 // adds that expression to the resultant postorder. 360 if (PostorderStack.back().second) { 361 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 362 Postorder.push_back(TopVal); 363 PostorderStack.pop_back(); 364 continue; 365 } 366 // Otherwise, adds its operands to the stack and explores them. 367 PostorderStack.back().second = true; 368 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 369 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 370 Visited); 371 } 372 } 373 return Postorder; 374 } 375 376 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 377 // of OperandUse.get() in the new address space. If the clone is not ready yet, 378 // returns an undef in the new address space as a placeholder. 379 static Value *operandWithNewAddressSpaceOrCreateUndef( 380 const Use &OperandUse, unsigned NewAddrSpace, 381 const ValueToValueMapTy &ValueWithNewAddrSpace, 382 SmallVectorImpl<const Use *> *UndefUsesToFix) { 383 Value *Operand = OperandUse.get(); 384 385 Type *NewPtrTy = 386 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 387 388 if (Constant *C = dyn_cast<Constant>(Operand)) 389 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 390 391 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 392 return NewOperand; 393 394 UndefUsesToFix->push_back(&OperandUse); 395 return UndefValue::get(NewPtrTy); 396 } 397 398 // Returns a clone of `I` with its operands converted to those specified in 399 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 400 // operand whose address space needs to be modified might not exist in 401 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 402 // adds that operand use to UndefUsesToFix so that caller can fix them later. 403 // 404 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 405 // from a pointer whose type already matches. Therefore, this function returns a 406 // Value* instead of an Instruction*. 407 static Value *cloneInstructionWithNewAddressSpace( 408 Instruction *I, unsigned NewAddrSpace, 409 const ValueToValueMapTy &ValueWithNewAddrSpace, 410 SmallVectorImpl<const Use *> *UndefUsesToFix) { 411 Type *NewPtrType = 412 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 413 414 if (I->getOpcode() == Instruction::AddrSpaceCast) { 415 Value *Src = I->getOperand(0); 416 // Because `I` is flat, the source address space must be specific. 417 // Therefore, the inferred address space must be the source space, according 418 // to our algorithm. 419 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 420 if (Src->getType() != NewPtrType) 421 return new BitCastInst(Src, NewPtrType); 422 return Src; 423 } 424 425 // Computes the converted pointer operands. 426 SmallVector<Value *, 4> NewPointerOperands; 427 for (const Use &OperandUse : I->operands()) { 428 if (!OperandUse.get()->getType()->isPointerTy()) 429 NewPointerOperands.push_back(nullptr); 430 else 431 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 432 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 433 } 434 435 switch (I->getOpcode()) { 436 case Instruction::BitCast: 437 return new BitCastInst(NewPointerOperands[0], NewPtrType); 438 case Instruction::PHI: { 439 assert(I->getType()->isPointerTy()); 440 PHINode *PHI = cast<PHINode>(I); 441 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 442 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 443 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 444 NewPHI->addIncoming(NewPointerOperands[OperandNo], 445 PHI->getIncomingBlock(Index)); 446 } 447 return NewPHI; 448 } 449 case Instruction::GetElementPtr: { 450 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 451 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 452 GEP->getSourceElementType(), NewPointerOperands[0], 453 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 454 NewGEP->setIsInBounds(GEP->isInBounds()); 455 return NewGEP; 456 } 457 case Instruction::Select: { 458 assert(I->getType()->isPointerTy()); 459 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 460 NewPointerOperands[2], "", nullptr, I); 461 } 462 default: 463 llvm_unreachable("Unexpected opcode"); 464 } 465 } 466 467 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 468 // constant expression `CE` with its operands replaced as specified in 469 // ValueWithNewAddrSpace. 470 static Value *cloneConstantExprWithNewAddressSpace( 471 ConstantExpr *CE, unsigned NewAddrSpace, 472 const ValueToValueMapTy &ValueWithNewAddrSpace) { 473 Type *TargetType = 474 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 475 476 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 477 // Because CE is flat, the source address space must be specific. 478 // Therefore, the inferred address space must be the source space according 479 // to our algorithm. 480 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 481 NewAddrSpace); 482 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 483 } 484 485 if (CE->getOpcode() == Instruction::BitCast) { 486 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 487 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 488 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 489 } 490 491 if (CE->getOpcode() == Instruction::Select) { 492 Constant *Src0 = CE->getOperand(1); 493 Constant *Src1 = CE->getOperand(2); 494 if (Src0->getType()->getPointerAddressSpace() == 495 Src1->getType()->getPointerAddressSpace()) { 496 497 return ConstantExpr::getSelect( 498 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 499 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 500 } 501 } 502 503 // Computes the operands of the new constant expression. 504 bool IsNew = false; 505 SmallVector<Constant *, 4> NewOperands; 506 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 507 Constant *Operand = CE->getOperand(Index); 508 // If the address space of `Operand` needs to be modified, the new operand 509 // with the new address space should already be in ValueWithNewAddrSpace 510 // because (1) the constant expressions we consider (i.e. addrspacecast, 511 // bitcast, and getelementptr) do not incur cycles in the data flow graph 512 // and (2) this function is called on constant expressions in postorder. 513 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 514 IsNew = true; 515 NewOperands.push_back(cast<Constant>(NewOperand)); 516 } else { 517 // Otherwise, reuses the old operand. 518 NewOperands.push_back(Operand); 519 } 520 } 521 522 // If !IsNew, we will replace the Value with itself. However, replaced values 523 // are assumed to wrapped in a addrspace cast later so drop it now. 524 if (!IsNew) 525 return nullptr; 526 527 if (CE->getOpcode() == Instruction::GetElementPtr) { 528 // Needs to specify the source type while constructing a getelementptr 529 // constant expression. 530 return CE->getWithOperands( 531 NewOperands, TargetType, /*OnlyIfReduced=*/false, 532 NewOperands[0]->getType()->getPointerElementType()); 533 } 534 535 return CE->getWithOperands(NewOperands, TargetType); 536 } 537 538 // Returns a clone of the value `V`, with its operands replaced as specified in 539 // ValueWithNewAddrSpace. This function is called on every flat address 540 // expression whose address space needs to be modified, in postorder. 541 // 542 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 543 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 544 Value *V, unsigned NewAddrSpace, 545 const ValueToValueMapTy &ValueWithNewAddrSpace, 546 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 547 // All values in Postorder are flat address expressions. 548 assert(isAddressExpression(*V) && 549 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 550 551 if (Instruction *I = dyn_cast<Instruction>(V)) { 552 Value *NewV = cloneInstructionWithNewAddressSpace( 553 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 554 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 555 if (NewI->getParent() == nullptr) { 556 NewI->insertBefore(I); 557 NewI->takeName(I); 558 } 559 } 560 return NewV; 561 } 562 563 return cloneConstantExprWithNewAddressSpace( 564 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 565 } 566 567 // Defines the join operation on the address space lattice (see the file header 568 // comments). 569 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 570 unsigned AS2) const { 571 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 572 return FlatAddrSpace; 573 574 if (AS1 == UninitializedAddressSpace) 575 return AS2; 576 if (AS2 == UninitializedAddressSpace) 577 return AS1; 578 579 // The join of two different specific address spaces is flat. 580 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 581 } 582 583 bool InferAddressSpaces::runOnFunction(Function &F) { 584 if (skipFunction(F)) 585 return false; 586 587 const TargetTransformInfo &TTI = 588 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 589 FlatAddrSpace = TTI.getFlatAddressSpace(); 590 if (FlatAddrSpace == UninitializedAddressSpace) 591 return false; 592 593 // Collects all flat address expressions in postorder. 594 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 595 596 // Runs a data-flow analysis to refine the address spaces of every expression 597 // in Postorder. 598 ValueToAddrSpaceMapTy InferredAddrSpace; 599 inferAddressSpaces(Postorder, &InferredAddrSpace); 600 601 // Changes the address spaces of the flat address expressions who are inferred 602 // to point to a specific address space. 603 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 604 } 605 606 // Constants need to be tracked through RAUW to handle cases with nested 607 // constant expressions, so wrap values in WeakTrackingVH. 608 void InferAddressSpaces::inferAddressSpaces( 609 ArrayRef<WeakTrackingVH> Postorder, 610 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 611 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 612 // Initially, all expressions are in the uninitialized address space. 613 for (Value *V : Postorder) 614 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 615 616 while (!Worklist.empty()) { 617 Value *V = Worklist.pop_back_val(); 618 619 // Tries to update the address space of the stack top according to the 620 // address spaces of its operands. 621 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 622 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 623 if (!NewAS.hasValue()) 624 continue; 625 // If any updates are made, grabs its users to the worklist because 626 // their address spaces can also be possibly updated. 627 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 628 (*InferredAddrSpace)[V] = NewAS.getValue(); 629 630 for (Value *User : V->users()) { 631 // Skip if User is already in the worklist. 632 if (Worklist.count(User)) 633 continue; 634 635 auto Pos = InferredAddrSpace->find(User); 636 // Our algorithm only updates the address spaces of flat address 637 // expressions, which are those in InferredAddrSpace. 638 if (Pos == InferredAddrSpace->end()) 639 continue; 640 641 // Function updateAddressSpace moves the address space down a lattice 642 // path. Therefore, nothing to do if User is already inferred as flat (the 643 // bottom element in the lattice). 644 if (Pos->second == FlatAddrSpace) 645 continue; 646 647 Worklist.insert(User); 648 } 649 } 650 } 651 652 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 653 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 654 assert(InferredAddrSpace.count(&V)); 655 656 // The new inferred address space equals the join of the address spaces 657 // of all its pointer operands. 658 unsigned NewAS = UninitializedAddressSpace; 659 660 const Operator &Op = cast<Operator>(V); 661 if (Op.getOpcode() == Instruction::Select) { 662 Value *Src0 = Op.getOperand(1); 663 Value *Src1 = Op.getOperand(2); 664 665 auto I = InferredAddrSpace.find(Src0); 666 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 667 I->second : Src0->getType()->getPointerAddressSpace(); 668 669 auto J = InferredAddrSpace.find(Src1); 670 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 671 J->second : Src1->getType()->getPointerAddressSpace(); 672 673 auto *C0 = dyn_cast<Constant>(Src0); 674 auto *C1 = dyn_cast<Constant>(Src1); 675 676 // If one of the inputs is a constant, we may be able to do a constant 677 // addrspacecast of it. Defer inferring the address space until the input 678 // address space is known. 679 if ((C1 && Src0AS == UninitializedAddressSpace) || 680 (C0 && Src1AS == UninitializedAddressSpace)) 681 return None; 682 683 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 684 NewAS = Src1AS; 685 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 686 NewAS = Src0AS; 687 else 688 NewAS = joinAddressSpaces(Src0AS, Src1AS); 689 } else { 690 for (Value *PtrOperand : getPointerOperands(V)) { 691 auto I = InferredAddrSpace.find(PtrOperand); 692 unsigned OperandAS = I != InferredAddrSpace.end() ? 693 I->second : PtrOperand->getType()->getPointerAddressSpace(); 694 695 // join(flat, *) = flat. So we can break if NewAS is already flat. 696 NewAS = joinAddressSpaces(NewAS, OperandAS); 697 if (NewAS == FlatAddrSpace) 698 break; 699 } 700 } 701 702 unsigned OldAS = InferredAddrSpace.lookup(&V); 703 assert(OldAS != FlatAddrSpace); 704 if (OldAS == NewAS) 705 return None; 706 return NewAS; 707 } 708 709 /// \p returns true if \p U is the pointer operand of a memory instruction with 710 /// a single pointer operand that can have its address space changed by simply 711 /// mutating the use to a new value. 712 static bool isSimplePointerUseValidToReplace(Use &U) { 713 User *Inst = U.getUser(); 714 unsigned OpNo = U.getOperandNo(); 715 716 if (auto *LI = dyn_cast<LoadInst>(Inst)) 717 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 718 719 if (auto *SI = dyn_cast<StoreInst>(Inst)) 720 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 721 722 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 723 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 724 725 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 726 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 727 !CmpX->isVolatile(); 728 } 729 730 return false; 731 } 732 733 /// Update memory intrinsic uses that require more complex processing than 734 /// simple memory instructions. Thse require re-mangling and may have multiple 735 /// pointer operands. 736 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 737 Value *NewV) { 738 IRBuilder<> B(MI); 739 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 740 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 741 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 742 743 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 744 B.CreateMemSet(NewV, MSI->getValue(), 745 MSI->getLength(), MSI->getAlignment(), 746 false, // isVolatile 747 TBAA, ScopeMD, NoAliasMD); 748 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 749 Value *Src = MTI->getRawSource(); 750 Value *Dest = MTI->getRawDest(); 751 752 // Be careful in case this is a self-to-self copy. 753 if (Src == OldV) 754 Src = NewV; 755 756 if (Dest == OldV) 757 Dest = NewV; 758 759 if (isa<MemCpyInst>(MTI)) { 760 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 761 B.CreateMemCpy(Dest, Src, MTI->getLength(), 762 MTI->getAlignment(), 763 false, // isVolatile 764 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 765 } else { 766 assert(isa<MemMoveInst>(MTI)); 767 B.CreateMemMove(Dest, Src, MTI->getLength(), 768 MTI->getAlignment(), 769 false, // isVolatile 770 TBAA, ScopeMD, NoAliasMD); 771 } 772 } else 773 llvm_unreachable("unhandled MemIntrinsic"); 774 775 MI->eraseFromParent(); 776 return true; 777 } 778 779 // \p returns true if it is OK to change the address space of constant \p C with 780 // a ConstantExpr addrspacecast. 781 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 782 assert(NewAS != UninitializedAddressSpace); 783 784 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 785 if (SrcAS == NewAS || isa<UndefValue>(C)) 786 return true; 787 788 // Prevent illegal casts between different non-flat address spaces. 789 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 790 return false; 791 792 if (isa<ConstantPointerNull>(C)) 793 return true; 794 795 if (auto *Op = dyn_cast<Operator>(C)) { 796 // If we already have a constant addrspacecast, it should be safe to cast it 797 // off. 798 if (Op->getOpcode() == Instruction::AddrSpaceCast) 799 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 800 801 if (Op->getOpcode() == Instruction::IntToPtr && 802 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 803 return true; 804 } 805 806 return false; 807 } 808 809 static Value::use_iterator skipToNextUser(Value::use_iterator I, 810 Value::use_iterator End) { 811 User *CurUser = I->getUser(); 812 ++I; 813 814 while (I != End && I->getUser() == CurUser) 815 ++I; 816 817 return I; 818 } 819 820 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 821 ArrayRef<WeakTrackingVH> Postorder, 822 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 823 // For each address expression to be modified, creates a clone of it with its 824 // pointer operands converted to the new address space. Since the pointer 825 // operands are converted, the clone is naturally in the new address space by 826 // construction. 827 ValueToValueMapTy ValueWithNewAddrSpace; 828 SmallVector<const Use *, 32> UndefUsesToFix; 829 for (Value* V : Postorder) { 830 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 831 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 832 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 833 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 834 } 835 } 836 837 if (ValueWithNewAddrSpace.empty()) 838 return false; 839 840 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 841 for (const Use *UndefUse : UndefUsesToFix) { 842 User *V = UndefUse->getUser(); 843 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 844 unsigned OperandNo = UndefUse->getOperandNo(); 845 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 846 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 847 } 848 849 SmallVector<Instruction *, 16> DeadInstructions; 850 851 // Replaces the uses of the old address expressions with the new ones. 852 for (const WeakTrackingVH &WVH : Postorder) { 853 assert(WVH && "value was unexpectedly deleted"); 854 Value *V = WVH; 855 Value *NewV = ValueWithNewAddrSpace.lookup(V); 856 if (NewV == nullptr) 857 continue; 858 859 DEBUG(dbgs() << "Replacing the uses of " << *V 860 << "\n with\n " << *NewV << '\n'); 861 862 if (Constant *C = dyn_cast<Constant>(V)) { 863 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 864 C->getType()); 865 if (C != Replace) { 866 DEBUG(dbgs() << "Inserting replacement const cast: " 867 << Replace << ": " << *Replace << '\n'); 868 C->replaceAllUsesWith(Replace); 869 V = Replace; 870 } 871 } 872 873 Value::use_iterator I, E, Next; 874 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 875 Use &U = *I; 876 877 // Some users may see the same pointer operand in multiple operands. Skip 878 // to the next instruction. 879 I = skipToNextUser(I, E); 880 881 if (isSimplePointerUseValidToReplace(U)) { 882 // If V is used as the pointer operand of a compatible memory operation, 883 // sets the pointer operand to NewV. This replacement does not change 884 // the element type, so the resultant load/store is still valid. 885 U.set(NewV); 886 continue; 887 } 888 889 User *CurUser = U.getUser(); 890 // Handle more complex cases like intrinsic that need to be remangled. 891 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 892 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 893 continue; 894 } 895 896 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 897 if (rewriteIntrinsicOperands(II, V, NewV)) 898 continue; 899 } 900 901 if (isa<Instruction>(CurUser)) { 902 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 903 // If we can infer that both pointers are in the same addrspace, 904 // transform e.g. 905 // %cmp = icmp eq float* %p, %q 906 // into 907 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 908 909 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 910 int SrcIdx = U.getOperandNo(); 911 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 912 Value *OtherSrc = Cmp->getOperand(OtherIdx); 913 914 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 915 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 916 Cmp->setOperand(OtherIdx, OtherNewV); 917 Cmp->setOperand(SrcIdx, NewV); 918 continue; 919 } 920 } 921 922 // Even if the type mismatches, we can cast the constant. 923 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 924 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 925 Cmp->setOperand(SrcIdx, NewV); 926 Cmp->setOperand(OtherIdx, 927 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 928 continue; 929 } 930 } 931 } 932 933 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 934 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 935 if (ASC->getDestAddressSpace() == NewAS) { 936 ASC->replaceAllUsesWith(NewV); 937 DeadInstructions.push_back(ASC); 938 continue; 939 } 940 } 941 942 // Otherwise, replaces the use with flat(NewV). 943 if (Instruction *I = dyn_cast<Instruction>(V)) { 944 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 945 while (isa<PHINode>(InsertPos)) 946 ++InsertPos; 947 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 948 } else { 949 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 950 V->getType())); 951 } 952 } 953 } 954 955 if (V->use_empty()) { 956 if (Instruction *I = dyn_cast<Instruction>(V)) 957 DeadInstructions.push_back(I); 958 } 959 } 960 961 for (Instruction *I : DeadInstructions) 962 RecursivelyDeleteTriviallyDeadInstructions(I); 963 964 return true; 965 } 966 967 FunctionPass *llvm::createInferAddressSpacesPass() { 968 return new InferAddressSpaces(); 969 } 970