xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 90a8e5a7ac52d05c2331f0f3d1461fcab6b7d520)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "poison" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `poison` and fix all the uses later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, poison ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the poison in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
92 #include "llvm/ADT/ArrayRef.h"
93 #include "llvm/ADT/DenseMap.h"
94 #include "llvm/ADT/DenseSet.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/ADT/SmallVector.h"
97 #include "llvm/Analysis/AssumptionCache.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Analysis/ValueTracking.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Dominators.h"
104 #include "llvm/IR/Function.h"
105 #include "llvm/IR/IRBuilder.h"
106 #include "llvm/IR/InstIterator.h"
107 #include "llvm/IR/Instruction.h"
108 #include "llvm/IR/Instructions.h"
109 #include "llvm/IR/IntrinsicInst.h"
110 #include "llvm/IR/Intrinsics.h"
111 #include "llvm/IR/LLVMContext.h"
112 #include "llvm/IR/Operator.h"
113 #include "llvm/IR/PassManager.h"
114 #include "llvm/IR/Type.h"
115 #include "llvm/IR/Use.h"
116 #include "llvm/IR/User.h"
117 #include "llvm/IR/Value.h"
118 #include "llvm/IR/ValueHandle.h"
119 #include "llvm/InitializePasses.h"
120 #include "llvm/Pass.h"
121 #include "llvm/Support/Casting.h"
122 #include "llvm/Support/CommandLine.h"
123 #include "llvm/Support/Compiler.h"
124 #include "llvm/Support/Debug.h"
125 #include "llvm/Support/ErrorHandling.h"
126 #include "llvm/Support/raw_ostream.h"
127 #include "llvm/Transforms/Scalar.h"
128 #include "llvm/Transforms/Utils/Local.h"
129 #include "llvm/Transforms/Utils/ValueMapper.h"
130 #include <cassert>
131 #include <iterator>
132 #include <limits>
133 #include <utility>
134 #include <vector>
135 
136 #define DEBUG_TYPE "infer-address-spaces"
137 
138 using namespace llvm;
139 
140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace(
141     "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden,
142     cl::desc("The default address space is assumed as the flat address space. "
143              "This is mainly for test purpose."));
144 
145 static const unsigned UninitializedAddressSpace =
146     std::numeric_limits<unsigned>::max();
147 
148 namespace {
149 
150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on
152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new
153 // addrspace is inferred on the *use* of a pointer. This map is introduced to
154 // infer addrspace from the addrspace predicate assumption built from assume
155 // intrinsic. In that scenario, only specific uses (under valid assumption
156 // context) could be inferred with a new addrspace.
157 using PredicatedAddrSpaceMapTy =
158     DenseMap<std::pair<const Value *, const Value *>, unsigned>;
159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>;
160 
161 class InferAddressSpaces : public FunctionPass {
162   unsigned FlatAddrSpace = 0;
163 
164 public:
165   static char ID;
166 
167   InferAddressSpaces()
168       : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {
169     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
170   }
171   InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {
172     initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry());
173   }
174 
175   void getAnalysisUsage(AnalysisUsage &AU) const override {
176     AU.setPreservesCFG();
177     AU.addPreserved<DominatorTreeWrapperPass>();
178     AU.addRequired<AssumptionCacheTracker>();
179     AU.addRequired<TargetTransformInfoWrapperPass>();
180   }
181 
182   bool runOnFunction(Function &F) override;
183 };
184 
185 class InferAddressSpacesImpl {
186   AssumptionCache &AC;
187   Function *F = nullptr;
188   const DominatorTree *DT = nullptr;
189   const TargetTransformInfo *TTI = nullptr;
190   const DataLayout *DL = nullptr;
191 
192   /// Target specific address space which uses of should be replaced if
193   /// possible.
194   unsigned FlatAddrSpace = 0;
195 
196   // Try to update the address space of V. If V is updated, returns true and
197   // false otherwise.
198   bool updateAddressSpace(const Value &V,
199                           ValueToAddrSpaceMapTy &InferredAddrSpace,
200                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
201 
202   // Tries to infer the specific address space of each address expression in
203   // Postorder.
204   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
205                           ValueToAddrSpaceMapTy &InferredAddrSpace,
206                           PredicatedAddrSpaceMapTy &PredicatedAS) const;
207 
208   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
209 
210   Value *cloneInstructionWithNewAddressSpace(
211       Instruction *I, unsigned NewAddrSpace,
212       const ValueToValueMapTy &ValueWithNewAddrSpace,
213       const PredicatedAddrSpaceMapTy &PredicatedAS,
214       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
215 
216   void performPointerReplacement(
217       Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
218       SmallVectorImpl<Instruction *> &DeadInstructions) const;
219 
220   // Changes the flat address expressions in function F to point to specific
221   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
222   // all flat expressions in the use-def graph of function F.
223   bool rewriteWithNewAddressSpaces(
224       ArrayRef<WeakTrackingVH> Postorder,
225       const ValueToAddrSpaceMapTy &InferredAddrSpace,
226       const PredicatedAddrSpaceMapTy &PredicatedAS) const;
227 
228   void appendsFlatAddressExpressionToPostorderStack(
229       Value *V, PostorderStackTy &PostorderStack,
230       DenseSet<Value *> &Visited) const;
231 
232   bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV,
233                                 Value *NewV) const;
234   void collectRewritableIntrinsicOperands(IntrinsicInst *II,
235                                           PostorderStackTy &PostorderStack,
236                                           DenseSet<Value *> &Visited) const;
237 
238   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
239 
240   Value *cloneValueWithNewAddressSpace(
241       Value *V, unsigned NewAddrSpace,
242       const ValueToValueMapTy &ValueWithNewAddrSpace,
243       const PredicatedAddrSpaceMapTy &PredicatedAS,
244       SmallVectorImpl<const Use *> *PoisonUsesToFix) const;
245   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
246 
247   unsigned getPredicatedAddrSpace(const Value &PtrV,
248                                   const Value *UserCtx) const;
249 
250 public:
251   InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT,
252                          const TargetTransformInfo *TTI, unsigned FlatAddrSpace)
253       : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {}
254   bool run(Function &F);
255 };
256 
257 } // end anonymous namespace
258 
259 char InferAddressSpaces::ID = 0;
260 
261 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
262                       false, false)
263 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
264 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
265 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
266                     false, false)
267 
268 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) {
269   assert(Ty->isPtrOrPtrVectorTy());
270   PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace);
271   return Ty->getWithNewType(NPT);
272 }
273 
274 // Check whether that's no-op pointer bicast using a pair of
275 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over
276 // different address spaces.
277 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL,
278                                  const TargetTransformInfo *TTI) {
279   assert(I2P->getOpcode() == Instruction::IntToPtr);
280   auto *P2I = dyn_cast<Operator>(I2P->getOperand(0));
281   if (!P2I || P2I->getOpcode() != Instruction::PtrToInt)
282     return false;
283   // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a
284   // no-op cast. Besides checking both of them are no-op casts, as the
285   // reinterpreted pointer may be used in other pointer arithmetic, we also
286   // need to double-check that through the target-specific hook. That ensures
287   // the underlying target also agrees that's a no-op address space cast and
288   // pointer bits are preserved.
289   // The current IR spec doesn't have clear rules on address space casts,
290   // especially a clear definition for pointer bits in non-default address
291   // spaces. It would be undefined if that pointer is dereferenced after an
292   // invalid reinterpret cast. Also, due to the unclearness for the meaning of
293   // bits in non-default address spaces in the current spec, the pointer
294   // arithmetic may also be undefined after invalid pointer reinterpret cast.
295   // However, as we confirm through the target hooks that it's a no-op
296   // addrspacecast, it doesn't matter since the bits should be the same.
297   unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace();
298   unsigned I2PAS = I2P->getType()->getPointerAddressSpace();
299   return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()),
300                               I2P->getOperand(0)->getType(), I2P->getType(),
301                               DL) &&
302          CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()),
303                               P2I->getOperand(0)->getType(), P2I->getType(),
304                               DL) &&
305          (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS));
306 }
307 
308 // Returns true if V is an address expression.
309 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
310 // getelementptr operators.
311 static bool isAddressExpression(const Value &V, const DataLayout &DL,
312                                 const TargetTransformInfo *TTI) {
313   const Operator *Op = dyn_cast<Operator>(&V);
314   if (!Op)
315     return false;
316 
317   switch (Op->getOpcode()) {
318   case Instruction::PHI:
319     assert(Op->getType()->isPtrOrPtrVectorTy());
320     return true;
321   case Instruction::BitCast:
322   case Instruction::AddrSpaceCast:
323   case Instruction::GetElementPtr:
324     return true;
325   case Instruction::Select:
326     return Op->getType()->isPtrOrPtrVectorTy();
327   case Instruction::Call: {
328     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V);
329     return II && II->getIntrinsicID() == Intrinsic::ptrmask;
330   }
331   case Instruction::IntToPtr:
332     return isNoopPtrIntCastPair(Op, DL, TTI);
333   default:
334     // That value is an address expression if it has an assumed address space.
335     return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace;
336   }
337 }
338 
339 // Returns the pointer operands of V.
340 //
341 // Precondition: V is an address expression.
342 static SmallVector<Value *, 2>
343 getPointerOperands(const Value &V, const DataLayout &DL,
344                    const TargetTransformInfo *TTI) {
345   const Operator &Op = cast<Operator>(V);
346   switch (Op.getOpcode()) {
347   case Instruction::PHI: {
348     auto IncomingValues = cast<PHINode>(Op).incoming_values();
349     return {IncomingValues.begin(), IncomingValues.end()};
350   }
351   case Instruction::BitCast:
352   case Instruction::AddrSpaceCast:
353   case Instruction::GetElementPtr:
354     return {Op.getOperand(0)};
355   case Instruction::Select:
356     return {Op.getOperand(1), Op.getOperand(2)};
357   case Instruction::Call: {
358     const IntrinsicInst &II = cast<IntrinsicInst>(Op);
359     assert(II.getIntrinsicID() == Intrinsic::ptrmask &&
360            "unexpected intrinsic call");
361     return {II.getArgOperand(0)};
362   }
363   case Instruction::IntToPtr: {
364     assert(isNoopPtrIntCastPair(&Op, DL, TTI));
365     auto *P2I = cast<Operator>(Op.getOperand(0));
366     return {P2I->getOperand(0)};
367   }
368   default:
369     llvm_unreachable("Unexpected instruction type.");
370   }
371 }
372 
373 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II,
374                                                       Value *OldV,
375                                                       Value *NewV) const {
376   Module *M = II->getParent()->getParent()->getParent();
377   Intrinsic::ID IID = II->getIntrinsicID();
378   switch (IID) {
379   case Intrinsic::objectsize:
380   case Intrinsic::masked_load: {
381     Type *DestTy = II->getType();
382     Type *SrcTy = NewV->getType();
383     Function *NewDecl = Intrinsic::getDeclaration(M, IID, {DestTy, SrcTy});
384     II->setArgOperand(0, NewV);
385     II->setCalledFunction(NewDecl);
386     return true;
387   }
388   case Intrinsic::ptrmask:
389     // This is handled as an address expression, not as a use memory operation.
390     return false;
391   case Intrinsic::masked_gather: {
392     Type *RetTy = II->getType();
393     Type *NewPtrTy = NewV->getType();
394     Function *NewDecl = Intrinsic::getDeclaration(M, IID, {RetTy, NewPtrTy});
395     II->setArgOperand(0, NewV);
396     II->setCalledFunction(NewDecl);
397     return true;
398   }
399   case Intrinsic::masked_store:
400   case Intrinsic::masked_scatter: {
401     Type *ValueTy = II->getOperand(0)->getType();
402     Type *NewPtrTy = NewV->getType();
403     Function *NewDecl =
404         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy});
405     II->setArgOperand(1, NewV);
406     II->setCalledFunction(NewDecl);
407     return true;
408   }
409   case Intrinsic::prefetch:
410   case Intrinsic::is_constant: {
411     Function *NewDecl =
412         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {NewV->getType()});
413     II->setArgOperand(0, NewV);
414     II->setCalledFunction(NewDecl);
415     return true;
416   }
417   default: {
418     Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
419     if (!Rewrite)
420       return false;
421     if (Rewrite != II)
422       II->replaceAllUsesWith(Rewrite);
423     return true;
424   }
425   }
426 }
427 
428 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands(
429     IntrinsicInst *II, PostorderStackTy &PostorderStack,
430     DenseSet<Value *> &Visited) const {
431   auto IID = II->getIntrinsicID();
432   switch (IID) {
433   case Intrinsic::ptrmask:
434   case Intrinsic::objectsize:
435     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
436                                                  PostorderStack, Visited);
437     break;
438   case Intrinsic::is_constant: {
439     Value *Ptr = II->getArgOperand(0);
440     if (Ptr->getType()->isPtrOrPtrVectorTy()) {
441       appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
442                                                    Visited);
443     }
444 
445     break;
446   }
447   case Intrinsic::masked_load:
448   case Intrinsic::masked_gather:
449   case Intrinsic::prefetch:
450     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
451                                                  PostorderStack, Visited);
452     break;
453   case Intrinsic::masked_store:
454   case Intrinsic::masked_scatter:
455     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1),
456                                                  PostorderStack, Visited);
457     break;
458   default:
459     SmallVector<int, 2> OpIndexes;
460     if (TTI->collectFlatAddressOperands(OpIndexes, IID)) {
461       for (int Idx : OpIndexes) {
462         appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx),
463                                                      PostorderStack, Visited);
464       }
465     }
466     break;
467   }
468 }
469 
470 // Returns all flat address expressions in function F. The elements are
471 // If V is an unvisited flat address expression, appends V to PostorderStack
472 // and marks it as visited.
473 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack(
474     Value *V, PostorderStackTy &PostorderStack,
475     DenseSet<Value *> &Visited) const {
476   assert(V->getType()->isPtrOrPtrVectorTy());
477 
478   // Generic addressing expressions may be hidden in nested constant
479   // expressions.
480   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
481     // TODO: Look in non-address parts, like icmp operands.
482     if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
483       PostorderStack.emplace_back(CE, false);
484 
485     return;
486   }
487 
488   if (V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
489       isAddressExpression(*V, *DL, TTI)) {
490     if (Visited.insert(V).second) {
491       PostorderStack.emplace_back(V, false);
492 
493       Operator *Op = cast<Operator>(V);
494       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
495         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
496           if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second)
497             PostorderStack.emplace_back(CE, false);
498         }
499       }
500     }
501   }
502 }
503 
504 // Returns all flat address expressions in function F. The elements are ordered
505 // in postorder.
506 std::vector<WeakTrackingVH>
507 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const {
508   // This function implements a non-recursive postorder traversal of a partial
509   // use-def graph of function F.
510   PostorderStackTy PostorderStack;
511   // The set of visited expressions.
512   DenseSet<Value *> Visited;
513 
514   auto PushPtrOperand = [&](Value *Ptr) {
515     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited);
516   };
517 
518   // Look at operations that may be interesting accelerate by moving to a known
519   // address space. We aim at generating after loads and stores, but pure
520   // addressing calculations may also be faster.
521   for (Instruction &I : instructions(F)) {
522     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
523       PushPtrOperand(GEP->getPointerOperand());
524     } else if (auto *LI = dyn_cast<LoadInst>(&I))
525       PushPtrOperand(LI->getPointerOperand());
526     else if (auto *SI = dyn_cast<StoreInst>(&I))
527       PushPtrOperand(SI->getPointerOperand());
528     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
529       PushPtrOperand(RMW->getPointerOperand());
530     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
531       PushPtrOperand(CmpX->getPointerOperand());
532     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
533       // For memset/memcpy/memmove, any pointer operand can be replaced.
534       PushPtrOperand(MI->getRawDest());
535 
536       // Handle 2nd operand for memcpy/memmove.
537       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
538         PushPtrOperand(MTI->getRawSource());
539     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
540       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
541     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
542       if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) {
543         PushPtrOperand(Cmp->getOperand(0));
544         PushPtrOperand(Cmp->getOperand(1));
545       }
546     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
547       PushPtrOperand(ASC->getPointerOperand());
548     } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) {
549       if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI))
550         PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0));
551     } else if (auto *RI = dyn_cast<ReturnInst>(&I)) {
552       if (auto *RV = RI->getReturnValue();
553           RV && RV->getType()->isPtrOrPtrVectorTy())
554         PushPtrOperand(RV);
555     }
556   }
557 
558   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
559   while (!PostorderStack.empty()) {
560     Value *TopVal = PostorderStack.back().getPointer();
561     // If the operands of the expression on the top are already explored,
562     // adds that expression to the resultant postorder.
563     if (PostorderStack.back().getInt()) {
564       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
565         Postorder.push_back(TopVal);
566       PostorderStack.pop_back();
567       continue;
568     }
569     // Otherwise, adds its operands to the stack and explores them.
570     PostorderStack.back().setInt(true);
571     // Skip values with an assumed address space.
572     if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) {
573       for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) {
574         appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
575                                                      Visited);
576       }
577     }
578   }
579   return Postorder;
580 }
581 
582 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
583 // of OperandUse.get() in the new address space. If the clone is not ready yet,
584 // returns poison in the new address space as a placeholder.
585 static Value *operandWithNewAddressSpaceOrCreatePoison(
586     const Use &OperandUse, unsigned NewAddrSpace,
587     const ValueToValueMapTy &ValueWithNewAddrSpace,
588     const PredicatedAddrSpaceMapTy &PredicatedAS,
589     SmallVectorImpl<const Use *> *PoisonUsesToFix) {
590   Value *Operand = OperandUse.get();
591 
592   Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace);
593 
594   if (Constant *C = dyn_cast<Constant>(Operand))
595     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
596 
597   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
598     return NewOperand;
599 
600   Instruction *Inst = cast<Instruction>(OperandUse.getUser());
601   auto I = PredicatedAS.find(std::make_pair(Inst, Operand));
602   if (I != PredicatedAS.end()) {
603     // Insert an addrspacecast on that operand before the user.
604     unsigned NewAS = I->second;
605     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS);
606     auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy);
607     NewI->insertBefore(Inst);
608     NewI->setDebugLoc(Inst->getDebugLoc());
609     return NewI;
610   }
611 
612   PoisonUsesToFix->push_back(&OperandUse);
613   return PoisonValue::get(NewPtrTy);
614 }
615 
616 // Returns a clone of `I` with its operands converted to those specified in
617 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
618 // operand whose address space needs to be modified might not exist in
619 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and
620 // adds that operand use to PoisonUsesToFix so that caller can fix them later.
621 //
622 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
623 // from a pointer whose type already matches. Therefore, this function returns a
624 // Value* instead of an Instruction*.
625 //
626 // This may also return nullptr in the case the instruction could not be
627 // rewritten.
628 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace(
629     Instruction *I, unsigned NewAddrSpace,
630     const ValueToValueMapTy &ValueWithNewAddrSpace,
631     const PredicatedAddrSpaceMapTy &PredicatedAS,
632     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
633   Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace);
634 
635   if (I->getOpcode() == Instruction::AddrSpaceCast) {
636     Value *Src = I->getOperand(0);
637     // Because `I` is flat, the source address space must be specific.
638     // Therefore, the inferred address space must be the source space, according
639     // to our algorithm.
640     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
641     if (Src->getType() != NewPtrType)
642       return new BitCastInst(Src, NewPtrType);
643     return Src;
644   }
645 
646   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
647     // Technically the intrinsic ID is a pointer typed argument, so specially
648     // handle calls early.
649     assert(II->getIntrinsicID() == Intrinsic::ptrmask);
650     Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison(
651         II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace,
652         PredicatedAS, PoisonUsesToFix);
653     Value *Rewrite =
654         TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr);
655     if (Rewrite) {
656       assert(Rewrite != II && "cannot modify this pointer operation in place");
657       return Rewrite;
658     }
659 
660     return nullptr;
661   }
662 
663   unsigned AS = TTI->getAssumedAddrSpace(I);
664   if (AS != UninitializedAddressSpace) {
665     // For the assumed address space, insert an `addrspacecast` to make that
666     // explicit.
667     Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS);
668     auto *NewI = new AddrSpaceCastInst(I, NewPtrTy);
669     NewI->insertAfter(I);
670     NewI->setDebugLoc(I->getDebugLoc());
671     return NewI;
672   }
673 
674   // Computes the converted pointer operands.
675   SmallVector<Value *, 4> NewPointerOperands;
676   for (const Use &OperandUse : I->operands()) {
677     if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy())
678       NewPointerOperands.push_back(nullptr);
679     else
680       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison(
681           OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS,
682           PoisonUsesToFix));
683   }
684 
685   switch (I->getOpcode()) {
686   case Instruction::BitCast:
687     return new BitCastInst(NewPointerOperands[0], NewPtrType);
688   case Instruction::PHI: {
689     assert(I->getType()->isPtrOrPtrVectorTy());
690     PHINode *PHI = cast<PHINode>(I);
691     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
692     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
693       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
694       NewPHI->addIncoming(NewPointerOperands[OperandNo],
695                           PHI->getIncomingBlock(Index));
696     }
697     return NewPHI;
698   }
699   case Instruction::GetElementPtr: {
700     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
701     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
702         GEP->getSourceElementType(), NewPointerOperands[0],
703         SmallVector<Value *, 4>(GEP->indices()));
704     NewGEP->setIsInBounds(GEP->isInBounds());
705     return NewGEP;
706   }
707   case Instruction::Select:
708     assert(I->getType()->isPtrOrPtrVectorTy());
709     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
710                               NewPointerOperands[2], "", nullptr, I);
711   case Instruction::IntToPtr: {
712     assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI));
713     Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0);
714     if (Src->getType() == NewPtrType)
715       return Src;
716 
717     // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a
718     // source address space from a generic pointer source need to insert a cast
719     // back.
720     return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType);
721   }
722   default:
723     llvm_unreachable("Unexpected opcode");
724   }
725 }
726 
727 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
728 // constant expression `CE` with its operands replaced as specified in
729 // ValueWithNewAddrSpace.
730 static Value *cloneConstantExprWithNewAddressSpace(
731     ConstantExpr *CE, unsigned NewAddrSpace,
732     const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL,
733     const TargetTransformInfo *TTI) {
734   Type *TargetType =
735       CE->getType()->isPtrOrPtrVectorTy()
736           ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace)
737           : CE->getType();
738 
739   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
740     // Because CE is flat, the source address space must be specific.
741     // Therefore, the inferred address space must be the source space according
742     // to our algorithm.
743     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
744            NewAddrSpace);
745     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
746   }
747 
748   if (CE->getOpcode() == Instruction::BitCast) {
749     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
750       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
751     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
752   }
753 
754   if (CE->getOpcode() == Instruction::IntToPtr) {
755     assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI));
756     Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0);
757     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
758     return ConstantExpr::getBitCast(Src, TargetType);
759   }
760 
761   // Computes the operands of the new constant expression.
762   bool IsNew = false;
763   SmallVector<Constant *, 4> NewOperands;
764   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
765     Constant *Operand = CE->getOperand(Index);
766     // If the address space of `Operand` needs to be modified, the new operand
767     // with the new address space should already be in ValueWithNewAddrSpace
768     // because (1) the constant expressions we consider (i.e. addrspacecast,
769     // bitcast, and getelementptr) do not incur cycles in the data flow graph
770     // and (2) this function is called on constant expressions in postorder.
771     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
772       IsNew = true;
773       NewOperands.push_back(cast<Constant>(NewOperand));
774       continue;
775     }
776     if (auto *CExpr = dyn_cast<ConstantExpr>(Operand))
777       if (Value *NewOperand = cloneConstantExprWithNewAddressSpace(
778               CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) {
779         IsNew = true;
780         NewOperands.push_back(cast<Constant>(NewOperand));
781         continue;
782       }
783     // Otherwise, reuses the old operand.
784     NewOperands.push_back(Operand);
785   }
786 
787   // If !IsNew, we will replace the Value with itself. However, replaced values
788   // are assumed to wrapped in an addrspacecast cast later so drop it now.
789   if (!IsNew)
790     return nullptr;
791 
792   if (CE->getOpcode() == Instruction::GetElementPtr) {
793     // Needs to specify the source type while constructing a getelementptr
794     // constant expression.
795     return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false,
796                                cast<GEPOperator>(CE)->getSourceElementType());
797   }
798 
799   return CE->getWithOperands(NewOperands, TargetType);
800 }
801 
802 // Returns a clone of the value `V`, with its operands replaced as specified in
803 // ValueWithNewAddrSpace. This function is called on every flat address
804 // expression whose address space needs to be modified, in postorder.
805 //
806 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix.
807 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace(
808     Value *V, unsigned NewAddrSpace,
809     const ValueToValueMapTy &ValueWithNewAddrSpace,
810     const PredicatedAddrSpaceMapTy &PredicatedAS,
811     SmallVectorImpl<const Use *> *PoisonUsesToFix) const {
812   // All values in Postorder are flat address expressions.
813   assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace &&
814          isAddressExpression(*V, *DL, TTI));
815 
816   if (Instruction *I = dyn_cast<Instruction>(V)) {
817     Value *NewV = cloneInstructionWithNewAddressSpace(
818         I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix);
819     if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) {
820       if (NewI->getParent() == nullptr) {
821         NewI->insertBefore(I);
822         NewI->takeName(I);
823         NewI->setDebugLoc(I->getDebugLoc());
824       }
825     }
826     return NewV;
827   }
828 
829   return cloneConstantExprWithNewAddressSpace(
830       cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI);
831 }
832 
833 // Defines the join operation on the address space lattice (see the file header
834 // comments).
835 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1,
836                                                    unsigned AS2) const {
837   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
838     return FlatAddrSpace;
839 
840   if (AS1 == UninitializedAddressSpace)
841     return AS2;
842   if (AS2 == UninitializedAddressSpace)
843     return AS1;
844 
845   // The join of two different specific address spaces is flat.
846   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
847 }
848 
849 bool InferAddressSpacesImpl::run(Function &CurFn) {
850   F = &CurFn;
851   DL = &F->getDataLayout();
852 
853   if (AssumeDefaultIsFlatAddressSpace)
854     FlatAddrSpace = 0;
855 
856   if (FlatAddrSpace == UninitializedAddressSpace) {
857     FlatAddrSpace = TTI->getFlatAddressSpace();
858     if (FlatAddrSpace == UninitializedAddressSpace)
859       return false;
860   }
861 
862   // Collects all flat address expressions in postorder.
863   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(*F);
864 
865   // Runs a data-flow analysis to refine the address spaces of every expression
866   // in Postorder.
867   ValueToAddrSpaceMapTy InferredAddrSpace;
868   PredicatedAddrSpaceMapTy PredicatedAS;
869   inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS);
870 
871   // Changes the address spaces of the flat address expressions who are inferred
872   // to point to a specific address space.
873   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace,
874                                      PredicatedAS);
875 }
876 
877 // Constants need to be tracked through RAUW to handle cases with nested
878 // constant expressions, so wrap values in WeakTrackingVH.
879 void InferAddressSpacesImpl::inferAddressSpaces(
880     ArrayRef<WeakTrackingVH> Postorder,
881     ValueToAddrSpaceMapTy &InferredAddrSpace,
882     PredicatedAddrSpaceMapTy &PredicatedAS) const {
883   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
884   // Initially, all expressions are in the uninitialized address space.
885   for (Value *V : Postorder)
886     InferredAddrSpace[V] = UninitializedAddressSpace;
887 
888   while (!Worklist.empty()) {
889     Value *V = Worklist.pop_back_val();
890 
891     // Try to update the address space of the stack top according to the
892     // address spaces of its operands.
893     if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS))
894       continue;
895 
896     for (Value *User : V->users()) {
897       // Skip if User is already in the worklist.
898       if (Worklist.count(User))
899         continue;
900 
901       auto Pos = InferredAddrSpace.find(User);
902       // Our algorithm only updates the address spaces of flat address
903       // expressions, which are those in InferredAddrSpace.
904       if (Pos == InferredAddrSpace.end())
905         continue;
906 
907       // Function updateAddressSpace moves the address space down a lattice
908       // path. Therefore, nothing to do if User is already inferred as flat (the
909       // bottom element in the lattice).
910       if (Pos->second == FlatAddrSpace)
911         continue;
912 
913       Worklist.insert(User);
914     }
915   }
916 }
917 
918 unsigned
919 InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr,
920                                                const Value *UserCtx) const {
921   const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx);
922   if (!UserCtxI)
923     return UninitializedAddressSpace;
924 
925   const Value *StrippedPtr = Ptr.stripInBoundsOffsets();
926   for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) {
927     if (!AssumeVH)
928       continue;
929     CallInst *CI = cast<CallInst>(AssumeVH);
930     if (!isValidAssumeForContext(CI, UserCtxI, DT))
931       continue;
932 
933     const Value *Ptr;
934     unsigned AS;
935     std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0));
936     if (Ptr)
937       return AS;
938   }
939 
940   return UninitializedAddressSpace;
941 }
942 
943 bool InferAddressSpacesImpl::updateAddressSpace(
944     const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace,
945     PredicatedAddrSpaceMapTy &PredicatedAS) const {
946   assert(InferredAddrSpace.count(&V));
947 
948   LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << V << '\n');
949 
950   // The new inferred address space equals the join of the address spaces
951   // of all its pointer operands.
952   unsigned NewAS = UninitializedAddressSpace;
953 
954   const Operator &Op = cast<Operator>(V);
955   if (Op.getOpcode() == Instruction::Select) {
956     Value *Src0 = Op.getOperand(1);
957     Value *Src1 = Op.getOperand(2);
958 
959     auto I = InferredAddrSpace.find(Src0);
960     unsigned Src0AS = (I != InferredAddrSpace.end())
961                           ? I->second
962                           : Src0->getType()->getPointerAddressSpace();
963 
964     auto J = InferredAddrSpace.find(Src1);
965     unsigned Src1AS = (J != InferredAddrSpace.end())
966                           ? J->second
967                           : Src1->getType()->getPointerAddressSpace();
968 
969     auto *C0 = dyn_cast<Constant>(Src0);
970     auto *C1 = dyn_cast<Constant>(Src1);
971 
972     // If one of the inputs is a constant, we may be able to do a constant
973     // addrspacecast of it. Defer inferring the address space until the input
974     // address space is known.
975     if ((C1 && Src0AS == UninitializedAddressSpace) ||
976         (C0 && Src1AS == UninitializedAddressSpace))
977       return false;
978 
979     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
980       NewAS = Src1AS;
981     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
982       NewAS = Src0AS;
983     else
984       NewAS = joinAddressSpaces(Src0AS, Src1AS);
985   } else {
986     unsigned AS = TTI->getAssumedAddrSpace(&V);
987     if (AS != UninitializedAddressSpace) {
988       // Use the assumed address space directly.
989       NewAS = AS;
990     } else {
991       // Otherwise, infer the address space from its pointer operands.
992       for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) {
993         auto I = InferredAddrSpace.find(PtrOperand);
994         unsigned OperandAS;
995         if (I == InferredAddrSpace.end()) {
996           OperandAS = PtrOperand->getType()->getPointerAddressSpace();
997           if (OperandAS == FlatAddrSpace) {
998             // Check AC for assumption dominating V.
999             unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V);
1000             if (AS != UninitializedAddressSpace) {
1001               LLVM_DEBUG(dbgs()
1002                          << "  deduce operand AS from the predicate addrspace "
1003                          << AS << '\n');
1004               OperandAS = AS;
1005               // Record this use with the predicated AS.
1006               PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS;
1007             }
1008           }
1009         } else
1010           OperandAS = I->second;
1011 
1012         // join(flat, *) = flat. So we can break if NewAS is already flat.
1013         NewAS = joinAddressSpaces(NewAS, OperandAS);
1014         if (NewAS == FlatAddrSpace)
1015           break;
1016       }
1017     }
1018   }
1019 
1020   unsigned OldAS = InferredAddrSpace.lookup(&V);
1021   assert(OldAS != FlatAddrSpace);
1022   if (OldAS == NewAS)
1023     return false;
1024 
1025   // If any updates are made, grabs its users to the worklist because
1026   // their address spaces can also be possibly updated.
1027   LLVM_DEBUG(dbgs() << "  to " << NewAS << '\n');
1028   InferredAddrSpace[&V] = NewAS;
1029   return true;
1030 }
1031 
1032 /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal
1033 /// with \p NewVal.
1034 static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx,
1035                                  Value *OldVal, Value *NewVal) {
1036   Use &U = Inst->getOperandUse(OpIdx);
1037   if (U.get() == OldVal) {
1038     U.set(NewVal);
1039     return true;
1040   }
1041 
1042   return false;
1043 }
1044 
1045 template <typename InstrType>
1046 static bool replaceSimplePointerUse(const TargetTransformInfo &TTI,
1047                                     InstrType *MemInstr, unsigned AddrSpace,
1048                                     Value *OldV, Value *NewV) {
1049   if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) {
1050     return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(),
1051                                 OldV, NewV);
1052   }
1053 
1054   return false;
1055 }
1056 
1057 /// If \p OldV is used as the pointer operand of a compatible memory operation
1058 /// \p Inst, replaces the pointer operand with NewV.
1059 ///
1060 /// This covers memory instructions with a single pointer operand that can have
1061 /// its address space changed by simply mutating the use to a new value.
1062 ///
1063 /// \p returns true the user replacement was made.
1064 static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI,
1065                                       User *Inst, unsigned AddrSpace,
1066                                       Value *OldV, Value *NewV) {
1067   if (auto *LI = dyn_cast<LoadInst>(Inst))
1068     return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV);
1069 
1070   if (auto *SI = dyn_cast<StoreInst>(Inst))
1071     return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV);
1072 
1073   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
1074     return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV);
1075 
1076   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
1077     return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV);
1078 
1079   return false;
1080 }
1081 
1082 /// Update memory intrinsic uses that require more complex processing than
1083 /// simple memory instructions. These require re-mangling and may have multiple
1084 /// pointer operands.
1085 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
1086                                      Value *NewV) {
1087   IRBuilder<> B(MI);
1088   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
1089   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
1090   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
1091 
1092   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
1093     B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(),
1094                    false, // isVolatile
1095                    TBAA, ScopeMD, NoAliasMD);
1096   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
1097     Value *Src = MTI->getRawSource();
1098     Value *Dest = MTI->getRawDest();
1099 
1100     // Be careful in case this is a self-to-self copy.
1101     if (Src == OldV)
1102       Src = NewV;
1103 
1104     if (Dest == OldV)
1105       Dest = NewV;
1106 
1107     if (isa<MemCpyInlineInst>(MTI)) {
1108       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1109       B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src,
1110                            MTI->getSourceAlign(), MTI->getLength(),
1111                            false, // isVolatile
1112                            TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1113     } else if (isa<MemCpyInst>(MTI)) {
1114       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
1115       B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1116                      MTI->getLength(),
1117                      false, // isVolatile
1118                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
1119     } else {
1120       assert(isa<MemMoveInst>(MTI));
1121       B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(),
1122                       MTI->getLength(),
1123                       false, // isVolatile
1124                       TBAA, ScopeMD, NoAliasMD);
1125     }
1126   } else
1127     llvm_unreachable("unhandled MemIntrinsic");
1128 
1129   MI->eraseFromParent();
1130   return true;
1131 }
1132 
1133 // \p returns true if it is OK to change the address space of constant \p C with
1134 // a ConstantExpr addrspacecast.
1135 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C,
1136                                                         unsigned NewAS) const {
1137   assert(NewAS != UninitializedAddressSpace);
1138 
1139   unsigned SrcAS = C->getType()->getPointerAddressSpace();
1140   if (SrcAS == NewAS || isa<UndefValue>(C))
1141     return true;
1142 
1143   // Prevent illegal casts between different non-flat address spaces.
1144   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
1145     return false;
1146 
1147   if (isa<ConstantPointerNull>(C))
1148     return true;
1149 
1150   if (auto *Op = dyn_cast<Operator>(C)) {
1151     // If we already have a constant addrspacecast, it should be safe to cast it
1152     // off.
1153     if (Op->getOpcode() == Instruction::AddrSpaceCast)
1154       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)),
1155                                         NewAS);
1156 
1157     if (Op->getOpcode() == Instruction::IntToPtr &&
1158         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
1159       return true;
1160   }
1161 
1162   return false;
1163 }
1164 
1165 static Value::use_iterator skipToNextUser(Value::use_iterator I,
1166                                           Value::use_iterator End) {
1167   User *CurUser = I->getUser();
1168   ++I;
1169 
1170   while (I != End && I->getUser() == CurUser)
1171     ++I;
1172 
1173   return I;
1174 }
1175 
1176 void InferAddressSpacesImpl::performPointerReplacement(
1177     Value *V, Value *NewV, Use &U, ValueToValueMapTy &ValueWithNewAddrSpace,
1178     SmallVectorImpl<Instruction *> &DeadInstructions) const {
1179 
1180   User *CurUser = U.getUser();
1181 
1182   unsigned AddrSpace = V->getType()->getPointerAddressSpace();
1183   if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV))
1184     return;
1185 
1186   // Skip if the current user is the new value itself.
1187   if (CurUser == NewV)
1188     return;
1189 
1190   auto *CurUserI = dyn_cast<Instruction>(CurUser);
1191   if (!CurUserI || CurUserI->getFunction() != F)
1192     return;
1193 
1194   // Handle more complex cases like intrinsic that need to be remangled.
1195   if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
1196     if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
1197       return;
1198   }
1199 
1200   if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
1201     if (rewriteIntrinsicOperands(II, V, NewV))
1202       return;
1203   }
1204 
1205   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUserI)) {
1206     // If we can infer that both pointers are in the same addrspace,
1207     // transform e.g.
1208     //   %cmp = icmp eq float* %p, %q
1209     // into
1210     //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
1211 
1212     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1213     int SrcIdx = U.getOperandNo();
1214     int OtherIdx = (SrcIdx == 0) ? 1 : 0;
1215     Value *OtherSrc = Cmp->getOperand(OtherIdx);
1216 
1217     if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
1218       if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
1219         Cmp->setOperand(OtherIdx, OtherNewV);
1220         Cmp->setOperand(SrcIdx, NewV);
1221         return;
1222       }
1223     }
1224 
1225     // Even if the type mismatches, we can cast the constant.
1226     if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
1227       if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
1228         Cmp->setOperand(SrcIdx, NewV);
1229         Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast(
1230                                       KOtherSrc, NewV->getType()));
1231         return;
1232       }
1233     }
1234   }
1235 
1236   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUserI)) {
1237     unsigned NewAS = NewV->getType()->getPointerAddressSpace();
1238     if (ASC->getDestAddressSpace() == NewAS) {
1239       ASC->replaceAllUsesWith(NewV);
1240       DeadInstructions.push_back(ASC);
1241       return;
1242     }
1243   }
1244 
1245   // Otherwise, replaces the use with flat(NewV).
1246   if (Instruction *VInst = dyn_cast<Instruction>(V)) {
1247     // Don't create a copy of the original addrspacecast.
1248     if (U == V && isa<AddrSpaceCastInst>(V))
1249       return;
1250 
1251     // Insert the addrspacecast after NewV.
1252     BasicBlock::iterator InsertPos;
1253     if (Instruction *NewVInst = dyn_cast<Instruction>(NewV))
1254       InsertPos = std::next(NewVInst->getIterator());
1255     else
1256       InsertPos = std::next(VInst->getIterator());
1257 
1258     while (isa<PHINode>(InsertPos))
1259       ++InsertPos;
1260     // This instruction may contain multiple uses of V, update them all.
1261     CurUser->replaceUsesOfWith(
1262         V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos));
1263   } else {
1264     CurUserI->replaceUsesOfWith(
1265         V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), V->getType()));
1266   }
1267 }
1268 
1269 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces(
1270     ArrayRef<WeakTrackingVH> Postorder,
1271     const ValueToAddrSpaceMapTy &InferredAddrSpace,
1272     const PredicatedAddrSpaceMapTy &PredicatedAS) const {
1273   // For each address expression to be modified, creates a clone of it with its
1274   // pointer operands converted to the new address space. Since the pointer
1275   // operands are converted, the clone is naturally in the new address space by
1276   // construction.
1277   ValueToValueMapTy ValueWithNewAddrSpace;
1278   SmallVector<const Use *, 32> PoisonUsesToFix;
1279   for (Value *V : Postorder) {
1280     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
1281 
1282     // In some degenerate cases (e.g. invalid IR in unreachable code), we may
1283     // not even infer the value to have its original address space.
1284     if (NewAddrSpace == UninitializedAddressSpace)
1285       continue;
1286 
1287     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
1288       Value *New =
1289           cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace,
1290                                         PredicatedAS, &PoisonUsesToFix);
1291       if (New)
1292         ValueWithNewAddrSpace[V] = New;
1293     }
1294   }
1295 
1296   if (ValueWithNewAddrSpace.empty())
1297     return false;
1298 
1299   // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace.
1300   for (const Use *PoisonUse : PoisonUsesToFix) {
1301     User *V = PoisonUse->getUser();
1302     User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V));
1303     if (!NewV)
1304       continue;
1305 
1306     unsigned OperandNo = PoisonUse->getOperandNo();
1307     assert(isa<PoisonValue>(NewV->getOperand(OperandNo)));
1308     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get()));
1309   }
1310 
1311   SmallVector<Instruction *, 16> DeadInstructions;
1312   ValueToValueMapTy VMap;
1313   ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1314 
1315   // Replaces the uses of the old address expressions with the new ones.
1316   for (const WeakTrackingVH &WVH : Postorder) {
1317     assert(WVH && "value was unexpectedly deleted");
1318     Value *V = WVH;
1319     Value *NewV = ValueWithNewAddrSpace.lookup(V);
1320     if (NewV == nullptr)
1321       continue;
1322 
1323     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
1324                       << *NewV << '\n');
1325 
1326     if (Constant *C = dyn_cast<Constant>(V)) {
1327       Constant *Replace =
1328           ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType());
1329       if (C != Replace) {
1330         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
1331                           << ": " << *Replace << '\n');
1332         SmallVector<User *, 16> WorkList;
1333         for (User *U : make_early_inc_range(C->users())) {
1334           if (auto *I = dyn_cast<Instruction>(U)) {
1335             if (I->getFunction() == F)
1336               I->replaceUsesOfWith(C, Replace);
1337           } else {
1338             WorkList.append(U->user_begin(), U->user_end());
1339           }
1340         }
1341         if (!WorkList.empty()) {
1342           VMap[C] = Replace;
1343           DenseSet<User *> Visited{WorkList.begin(), WorkList.end()};
1344           while (!WorkList.empty()) {
1345             User *U = WorkList.pop_back_val();
1346             if (auto *I = dyn_cast<Instruction>(U)) {
1347               if (I->getFunction() == F)
1348                 VMapper.remapInstruction(*I);
1349               continue;
1350             }
1351             for (User *U2 : U->users())
1352               if (Visited.insert(U2).second)
1353                 WorkList.push_back(U2);
1354           }
1355         }
1356         V = Replace;
1357       }
1358     }
1359 
1360     Value::use_iterator I, E, Next;
1361     for (I = V->use_begin(), E = V->use_end(); I != E;) {
1362       Use &U = *I;
1363 
1364       // Some users may see the same pointer operand in multiple operands. Skip
1365       // to the next instruction.
1366       I = skipToNextUser(I, E);
1367 
1368       performPointerReplacement(V, NewV, U, ValueWithNewAddrSpace,
1369                                 DeadInstructions);
1370     }
1371 
1372     if (V->use_empty()) {
1373       if (Instruction *I = dyn_cast<Instruction>(V))
1374         DeadInstructions.push_back(I);
1375     }
1376   }
1377 
1378   for (Instruction *I : DeadInstructions)
1379     RecursivelyDeleteTriviallyDeadInstructions(I);
1380 
1381   return true;
1382 }
1383 
1384 bool InferAddressSpaces::runOnFunction(Function &F) {
1385   if (skipFunction(F))
1386     return false;
1387 
1388   auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1389   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
1390   return InferAddressSpacesImpl(
1391              getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT,
1392              &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1393              FlatAddrSpace)
1394       .run(F);
1395 }
1396 
1397 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) {
1398   return new InferAddressSpaces(AddressSpace);
1399 }
1400 
1401 InferAddressSpacesPass::InferAddressSpacesPass()
1402     : FlatAddrSpace(UninitializedAddressSpace) {}
1403 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace)
1404     : FlatAddrSpace(AddressSpace) {}
1405 
1406 PreservedAnalyses InferAddressSpacesPass::run(Function &F,
1407                                               FunctionAnalysisManager &AM) {
1408   bool Changed =
1409       InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F),
1410                              AM.getCachedResult<DominatorTreeAnalysis>(F),
1411                              &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace)
1412           .run(F);
1413   if (Changed) {
1414     PreservedAnalyses PA;
1415     PA.preserveSet<CFGAnalyses>();
1416     PA.preserve<DominatorTreeAnalysis>();
1417     return PA;
1418   }
1419   return PreservedAnalyses::all();
1420 }
1421