xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 864fbacb4a60f5aa6abfa7d169448d6b4d38c871)
1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/Optional.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/Operator.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include "llvm/Transforms/Utils/ValueMapper.h"
105 
106 #define DEBUG_TYPE "infer-address-spaces"
107 
108 using namespace llvm;
109 
110 namespace {
111 static const unsigned UninitializedAddressSpace = ~0u;
112 
113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114 
115 /// \brief InferAddressSpaces
116 class InferAddressSpaces: public FunctionPass {
117   /// Target specific address space which uses of should be replaced if
118   /// possible.
119   unsigned FlatAddrSpace;
120 
121 public:
122   static char ID;
123 
124   InferAddressSpaces() : FunctionPass(ID) {}
125 
126   void getAnalysisUsage(AnalysisUsage &AU) const override {
127     AU.setPreservesCFG();
128     AU.addRequired<TargetTransformInfoWrapperPass>();
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133 private:
134   // Returns the new address space of V if updated; otherwise, returns None.
135   Optional<unsigned>
136   updateAddressSpace(const Value &V,
137                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
138 
139   // Tries to infer the specific address space of each address expression in
140   // Postorder.
141   void inferAddressSpaces(const std::vector<Value *> &Postorder,
142                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
143 
144   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145 
146   // Changes the flat address expressions in function F to point to specific
147   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
148   // all flat expressions in the use-def graph of function F.
149   bool
150   rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
152                               Function *F) const;
153 
154   void appendsFlatAddressExpressionToPostorderStack(
155     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156     DenseSet<Value *> *Visited) const;
157 
158   bool rewriteIntrinsicOperands(IntrinsicInst *II,
159                                 Value *OldV, Value *NewV) const;
160   void collectRewritableIntrinsicOperands(
161     IntrinsicInst *II,
162     std::vector<std::pair<Value *, bool>> *PostorderStack,
163     DenseSet<Value *> *Visited) const;
164 
165   std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
166 
167   Value *cloneValueWithNewAddressSpace(
168     Value *V, unsigned NewAddrSpace,
169     const ValueToValueMapTy &ValueWithNewAddrSpace,
170     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
172 };
173 } // end anonymous namespace
174 
175 char InferAddressSpaces::ID = 0;
176 
177 namespace llvm {
178 void initializeInferAddressSpacesPass(PassRegistry &);
179 }
180 
181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
182                 false, false)
183 
184 // Returns true if V is an address expression.
185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186 // getelementptr operators.
187 static bool isAddressExpression(const Value &V) {
188   if (!isa<Operator>(V))
189     return false;
190 
191   switch (cast<Operator>(V).getOpcode()) {
192   case Instruction::PHI:
193   case Instruction::BitCast:
194   case Instruction::AddrSpaceCast:
195   case Instruction::GetElementPtr:
196     return true;
197   default:
198     return false;
199   }
200 }
201 
202 // Returns the pointer operands of V.
203 //
204 // Precondition: V is an address expression.
205 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
206   assert(isAddressExpression(V));
207   const Operator& Op = cast<Operator>(V);
208   switch (Op.getOpcode()) {
209   case Instruction::PHI: {
210     auto IncomingValues = cast<PHINode>(Op).incoming_values();
211     return SmallVector<Value *, 2>(IncomingValues.begin(),
212                                    IncomingValues.end());
213   }
214   case Instruction::BitCast:
215   case Instruction::AddrSpaceCast:
216   case Instruction::GetElementPtr:
217     return {Op.getOperand(0)};
218   default:
219     llvm_unreachable("Unexpected instruction type.");
220   }
221 }
222 
223 // TODO: Move logic to TTI?
224 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
225                                                   Value *OldV,
226                                                   Value *NewV) const {
227   Module *M = II->getParent()->getParent()->getParent();
228 
229   switch (II->getIntrinsicID()) {
230   case Intrinsic::objectsize:
231   case Intrinsic::amdgcn_atomic_inc:
232   case Intrinsic::amdgcn_atomic_dec: {
233     Type *DestTy = II->getType();
234     Type *SrcTy = NewV->getType();
235     Function *NewDecl
236       = Intrinsic::getDeclaration(M, II->getIntrinsicID(), { DestTy, SrcTy });
237     II->setArgOperand(0, NewV);
238     II->setCalledFunction(NewDecl);
239     return true;
240   }
241   default:
242     return false;
243   }
244 }
245 
246 // TODO: Move logic to TTI?
247 void InferAddressSpaces::collectRewritableIntrinsicOperands(
248   IntrinsicInst *II,
249   std::vector<std::pair<Value *, bool>> *PostorderStack,
250   DenseSet<Value *> *Visited) const {
251   switch (II->getIntrinsicID()) {
252   case Intrinsic::objectsize:
253   case Intrinsic::amdgcn_atomic_inc:
254   case Intrinsic::amdgcn_atomic_dec:
255     appendsFlatAddressExpressionToPostorderStack(
256       II->getArgOperand(0), PostorderStack, Visited);
257     break;
258   default:
259     break;
260   }
261 }
262 
263 // Returns all flat address expressions in function F. The elements are
264 // If V is an unvisited flat address expression, appends V to PostorderStack
265 // and marks it as visited.
266 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
267   Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
268   DenseSet<Value *> *Visited) const {
269   assert(V->getType()->isPointerTy());
270   if (isAddressExpression(*V) &&
271       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
272     if (Visited->insert(V).second)
273       PostorderStack->push_back(std::make_pair(V, false));
274   }
275 }
276 
277 // Returns all flat address expressions in function F. The elements are ordered
278 // ordered in postorder.
279 std::vector<Value *>
280 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
281   // This function implements a non-recursive postorder traversal of a partial
282   // use-def graph of function F.
283   std::vector<std::pair<Value*, bool>> PostorderStack;
284   // The set of visited expressions.
285   DenseSet<Value*> Visited;
286 
287   auto PushPtrOperand = [&](Value *Ptr) {
288     appendsFlatAddressExpressionToPostorderStack(
289       Ptr, &PostorderStack, &Visited);
290   };
291 
292   // We only explore address expressions that are reachable from loads and
293   // stores for now because we aim at generating faster loads and stores.
294   for (Instruction &I : instructions(F)) {
295     if (auto *LI = dyn_cast<LoadInst>(&I))
296       PushPtrOperand(LI->getPointerOperand());
297     else if (auto *SI = dyn_cast<StoreInst>(&I))
298       PushPtrOperand(SI->getPointerOperand());
299     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
300       PushPtrOperand(RMW->getPointerOperand());
301     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
302       PushPtrOperand(CmpX->getPointerOperand());
303     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
304       // For memset/memcpy/memmove, any pointer operand can be replaced.
305       PushPtrOperand(MI->getRawDest());
306 
307       // Handle 2nd operand for memcpy/memmove.
308       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
309        PushPtrOperand(MTI->getRawSource());
310     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
311       collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
312     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
313       // FIXME: Handle vectors of pointers
314       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
315         PushPtrOperand(Cmp->getOperand(0));
316         PushPtrOperand(Cmp->getOperand(1));
317       }
318     }
319   }
320 
321   std::vector<Value *> Postorder; // The resultant postorder.
322   while (!PostorderStack.empty()) {
323     // If the operands of the expression on the top are already explored,
324     // adds that expression to the resultant postorder.
325     if (PostorderStack.back().second) {
326       Postorder.push_back(PostorderStack.back().first);
327       PostorderStack.pop_back();
328       continue;
329     }
330     // Otherwise, adds its operands to the stack and explores them.
331     PostorderStack.back().second = true;
332     for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
333       appendsFlatAddressExpressionToPostorderStack(
334         PtrOperand, &PostorderStack, &Visited);
335     }
336   }
337   return Postorder;
338 }
339 
340 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
341 // of OperandUse.get() in the new address space. If the clone is not ready yet,
342 // returns an undef in the new address space as a placeholder.
343 static Value *operandWithNewAddressSpaceOrCreateUndef(
344   const Use &OperandUse, unsigned NewAddrSpace,
345   const ValueToValueMapTy &ValueWithNewAddrSpace,
346   SmallVectorImpl<const Use *> *UndefUsesToFix) {
347   Value *Operand = OperandUse.get();
348   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
349     return NewOperand;
350 
351   UndefUsesToFix->push_back(&OperandUse);
352   return UndefValue::get(
353     Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace));
354 }
355 
356 // Returns a clone of `I` with its operands converted to those specified in
357 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
358 // operand whose address space needs to be modified might not exist in
359 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
360 // adds that operand use to UndefUsesToFix so that caller can fix them later.
361 //
362 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
363 // from a pointer whose type already matches. Therefore, this function returns a
364 // Value* instead of an Instruction*.
365 static Value *cloneInstructionWithNewAddressSpace(
366   Instruction *I, unsigned NewAddrSpace,
367   const ValueToValueMapTy &ValueWithNewAddrSpace,
368   SmallVectorImpl<const Use *> *UndefUsesToFix) {
369   Type *NewPtrType =
370     I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
371 
372   if (I->getOpcode() == Instruction::AddrSpaceCast) {
373     Value *Src = I->getOperand(0);
374     // Because `I` is flat, the source address space must be specific.
375     // Therefore, the inferred address space must be the source space, according
376     // to our algorithm.
377     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
378     if (Src->getType() != NewPtrType)
379       return new BitCastInst(Src, NewPtrType);
380     return Src;
381   }
382 
383   // Computes the converted pointer operands.
384   SmallVector<Value *, 4> NewPointerOperands;
385   for (const Use &OperandUse : I->operands()) {
386     if (!OperandUse.get()->getType()->isPointerTy())
387       NewPointerOperands.push_back(nullptr);
388     else
389       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
390                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
391   }
392 
393   switch (I->getOpcode()) {
394   case Instruction::BitCast:
395     return new BitCastInst(NewPointerOperands[0], NewPtrType);
396   case Instruction::PHI: {
397     assert(I->getType()->isPointerTy());
398     PHINode *PHI = cast<PHINode>(I);
399     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
400     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
401       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
402       NewPHI->addIncoming(NewPointerOperands[OperandNo],
403                           PHI->getIncomingBlock(Index));
404     }
405     return NewPHI;
406   }
407   case Instruction::GetElementPtr: {
408     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
409     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
410       GEP->getSourceElementType(), NewPointerOperands[0],
411       SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
412     NewGEP->setIsInBounds(GEP->isInBounds());
413     return NewGEP;
414   }
415   default:
416     llvm_unreachable("Unexpected opcode");
417   }
418 }
419 
420 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
421 // constant expression `CE` with its operands replaced as specified in
422 // ValueWithNewAddrSpace.
423 static Value *cloneConstantExprWithNewAddressSpace(
424   ConstantExpr *CE, unsigned NewAddrSpace,
425   const ValueToValueMapTy &ValueWithNewAddrSpace) {
426   Type *TargetType =
427     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
428 
429   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
430     // Because CE is flat, the source address space must be specific.
431     // Therefore, the inferred address space must be the source space according
432     // to our algorithm.
433     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
434            NewAddrSpace);
435     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
436   }
437 
438   // Computes the operands of the new constant expression.
439   SmallVector<Constant *, 4> NewOperands;
440   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
441     Constant *Operand = CE->getOperand(Index);
442     // If the address space of `Operand` needs to be modified, the new operand
443     // with the new address space should already be in ValueWithNewAddrSpace
444     // because (1) the constant expressions we consider (i.e. addrspacecast,
445     // bitcast, and getelementptr) do not incur cycles in the data flow graph
446     // and (2) this function is called on constant expressions in postorder.
447     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
448       NewOperands.push_back(cast<Constant>(NewOperand));
449     } else {
450       // Otherwise, reuses the old operand.
451       NewOperands.push_back(Operand);
452     }
453   }
454 
455   if (CE->getOpcode() == Instruction::GetElementPtr) {
456     // Needs to specify the source type while constructing a getelementptr
457     // constant expression.
458     return CE->getWithOperands(
459       NewOperands, TargetType, /*OnlyIfReduced=*/false,
460       NewOperands[0]->getType()->getPointerElementType());
461   }
462 
463   return CE->getWithOperands(NewOperands, TargetType);
464 }
465 
466 // Returns a clone of the value `V`, with its operands replaced as specified in
467 // ValueWithNewAddrSpace. This function is called on every flat address
468 // expression whose address space needs to be modified, in postorder.
469 //
470 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
471 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
472   Value *V, unsigned NewAddrSpace,
473   const ValueToValueMapTy &ValueWithNewAddrSpace,
474   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
475   // All values in Postorder are flat address expressions.
476   assert(isAddressExpression(*V) &&
477          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
478 
479   if (Instruction *I = dyn_cast<Instruction>(V)) {
480     Value *NewV = cloneInstructionWithNewAddressSpace(
481       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
482     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
483       if (NewI->getParent() == nullptr) {
484         NewI->insertBefore(I);
485         NewI->takeName(I);
486       }
487     }
488     return NewV;
489   }
490 
491   return cloneConstantExprWithNewAddressSpace(
492     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
493 }
494 
495 // Defines the join operation on the address space lattice (see the file header
496 // comments).
497 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
498                                                unsigned AS2) const {
499   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
500     return FlatAddrSpace;
501 
502   if (AS1 == UninitializedAddressSpace)
503     return AS2;
504   if (AS2 == UninitializedAddressSpace)
505     return AS1;
506 
507   // The join of two different specific address spaces is flat.
508   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
509 }
510 
511 bool InferAddressSpaces::runOnFunction(Function &F) {
512   if (skipFunction(F))
513     return false;
514 
515   const TargetTransformInfo &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
516   FlatAddrSpace = TTI.getFlatAddressSpace();
517   if (FlatAddrSpace == UninitializedAddressSpace)
518     return false;
519 
520   // Collects all flat address expressions in postorder.
521   std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
522 
523   // Runs a data-flow analysis to refine the address spaces of every expression
524   // in Postorder.
525   ValueToAddrSpaceMapTy InferredAddrSpace;
526   inferAddressSpaces(Postorder, &InferredAddrSpace);
527 
528   // Changes the address spaces of the flat address expressions who are inferred
529   // to point to a specific address space.
530   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
531 }
532 
533 void InferAddressSpaces::inferAddressSpaces(
534   const std::vector<Value *> &Postorder,
535   ValueToAddrSpaceMapTy *InferredAddrSpace) const {
536   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
537   // Initially, all expressions are in the uninitialized address space.
538   for (Value *V : Postorder)
539     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
540 
541   while (!Worklist.empty()) {
542     Value* V = Worklist.pop_back_val();
543 
544     // Tries to update the address space of the stack top according to the
545     // address spaces of its operands.
546     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
547     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
548     if (!NewAS.hasValue())
549       continue;
550     // If any updates are made, grabs its users to the worklist because
551     // their address spaces can also be possibly updated.
552     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
553     (*InferredAddrSpace)[V] = NewAS.getValue();
554 
555     for (Value *User : V->users()) {
556       // Skip if User is already in the worklist.
557       if (Worklist.count(User))
558         continue;
559 
560       auto Pos = InferredAddrSpace->find(User);
561       // Our algorithm only updates the address spaces of flat address
562       // expressions, which are those in InferredAddrSpace.
563       if (Pos == InferredAddrSpace->end())
564         continue;
565 
566       // Function updateAddressSpace moves the address space down a lattice
567       // path. Therefore, nothing to do if User is already inferred as flat (the
568       // bottom element in the lattice).
569       if (Pos->second == FlatAddrSpace)
570         continue;
571 
572       Worklist.insert(User);
573     }
574   }
575 }
576 
577 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
578   const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
579   assert(InferredAddrSpace.count(&V));
580 
581   // The new inferred address space equals the join of the address spaces
582   // of all its pointer operands.
583   unsigned NewAS = UninitializedAddressSpace;
584   for (Value *PtrOperand : getPointerOperands(V)) {
585     auto I = InferredAddrSpace.find(PtrOperand);
586     unsigned OperandAS = I != InferredAddrSpace.end() ?
587       I->second : PtrOperand->getType()->getPointerAddressSpace();
588 
589     // join(flat, *) = flat. So we can break if NewAS is already flat.
590     NewAS = joinAddressSpaces(NewAS, OperandAS);
591     if (NewAS == FlatAddrSpace)
592       break;
593   }
594 
595   unsigned OldAS = InferredAddrSpace.lookup(&V);
596   assert(OldAS != FlatAddrSpace);
597   if (OldAS == NewAS)
598     return None;
599   return NewAS;
600 }
601 
602 /// \p returns true if \p U is the pointer operand of a memory instruction with
603 /// a single pointer operand that can have its address space changed by simply
604 /// mutating the use to a new value.
605 static bool isSimplePointerUseValidToReplace(Use &U) {
606   User *Inst = U.getUser();
607   unsigned OpNo = U.getOperandNo();
608 
609   if (auto *LI = dyn_cast<LoadInst>(Inst))
610     return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
611 
612   if (auto *SI = dyn_cast<StoreInst>(Inst))
613     return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
614 
615   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
616     return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
617 
618   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
619     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
620            !CmpX->isVolatile();
621   }
622 
623   return false;
624 }
625 
626 /// Update memory intrinsic uses that require more complex processing than
627 /// simple memory instructions. Thse require re-mangling and may have multiple
628 /// pointer operands.
629 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI,
630                                      Value *OldV, Value *NewV) {
631   IRBuilder<> B(MI);
632   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
633   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
634   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
635 
636   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
637     B.CreateMemSet(NewV, MSI->getValue(),
638                    MSI->getLength(), MSI->getAlignment(),
639                    false, // isVolatile
640                    TBAA, ScopeMD, NoAliasMD);
641   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
642     Value *Src = MTI->getRawSource();
643     Value *Dest = MTI->getRawDest();
644 
645     // Be careful in case this is a self-to-self copy.
646     if (Src == OldV)
647       Src = NewV;
648 
649     if (Dest == OldV)
650       Dest = NewV;
651 
652     if (isa<MemCpyInst>(MTI)) {
653       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
654       B.CreateMemCpy(Dest, Src, MTI->getLength(),
655                      MTI->getAlignment(),
656                      false, // isVolatile
657                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
658     } else {
659       assert(isa<MemMoveInst>(MTI));
660       B.CreateMemMove(Dest, Src, MTI->getLength(),
661                       MTI->getAlignment(),
662                       false, // isVolatile
663                       TBAA, ScopeMD, NoAliasMD);
664     }
665   } else
666     llvm_unreachable("unhandled MemIntrinsic");
667 
668   MI->eraseFromParent();
669   return true;
670 }
671 
672 // \p returns true if it is OK to change the address space of constant \p C with
673 // a ConstantExpr addrspacecast.
674 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
675   unsigned SrcAS = C->getType()->getPointerAddressSpace();
676   if (SrcAS == NewAS || isa<UndefValue>(C))
677     return true;
678 
679   // Prevent illegal casts between different non-flat address spaces.
680   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
681     return false;
682 
683   if (isa<ConstantPointerNull>(C))
684     return true;
685 
686   if (auto *Op = dyn_cast<Operator>(C)) {
687     // If we already have a constant addrspacecast, it should be safe to cast it
688     // off.
689     if (Op->getOpcode() == Instruction::AddrSpaceCast)
690       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
691 
692     if (Op->getOpcode() == Instruction::IntToPtr &&
693         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
694       return true;
695   }
696 
697   return false;
698 }
699 
700 static Value::use_iterator skipToNextUser(Value::use_iterator I,
701                                           Value::use_iterator End) {
702   User *CurUser = I->getUser();
703   ++I;
704 
705   while (I != End && I->getUser() == CurUser)
706     ++I;
707 
708   return I;
709 }
710 
711 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
712   const std::vector<Value *> &Postorder,
713   const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
714   // For each address expression to be modified, creates a clone of it with its
715   // pointer operands converted to the new address space. Since the pointer
716   // operands are converted, the clone is naturally in the new address space by
717   // construction.
718   ValueToValueMapTy ValueWithNewAddrSpace;
719   SmallVector<const Use *, 32> UndefUsesToFix;
720   for (Value* V : Postorder) {
721     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
722     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
723       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
724         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
725     }
726   }
727 
728   if (ValueWithNewAddrSpace.empty())
729     return false;
730 
731   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
732   for (const Use* UndefUse : UndefUsesToFix) {
733     User *V = UndefUse->getUser();
734     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
735     unsigned OperandNo = UndefUse->getOperandNo();
736     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
737     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
738   }
739 
740   // Replaces the uses of the old address expressions with the new ones.
741   for (Value *V : Postorder) {
742     Value *NewV = ValueWithNewAddrSpace.lookup(V);
743     if (NewV == nullptr)
744       continue;
745 
746     DEBUG(dbgs() << "Replacing the uses of " << *V
747                  << "\n  with\n  " << *NewV << '\n');
748 
749     Value::use_iterator I, E, Next;
750     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
751       Use &U = *I;
752 
753       // Some users may see the same pointer operand in multiple operands. Skip
754       // to the next instruction.
755       I = skipToNextUser(I, E);
756 
757       if (isSimplePointerUseValidToReplace(U)) {
758         // If V is used as the pointer operand of a compatible memory operation,
759         // sets the pointer operand to NewV. This replacement does not change
760         // the element type, so the resultant load/store is still valid.
761         U.set(NewV);
762         continue;
763       }
764 
765       User *CurUser = U.getUser();
766       // Handle more complex cases like intrinsic that need to be remangled.
767       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
768         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
769           continue;
770       }
771 
772       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
773         if (rewriteIntrinsicOperands(II, V, NewV))
774           continue;
775       }
776 
777       if (isa<Instruction>(CurUser)) {
778         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
779           // If we can infer that both pointers are in the same addrspace,
780           // transform e.g.
781           //   %cmp = icmp eq float* %p, %q
782           // into
783           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
784 
785           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
786           int SrcIdx = U.getOperandNo();
787           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
788           Value *OtherSrc = Cmp->getOperand(OtherIdx);
789 
790           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
791             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
792               Cmp->setOperand(OtherIdx, OtherNewV);
793               Cmp->setOperand(SrcIdx, NewV);
794               continue;
795             }
796           }
797 
798           // Even if the type mismatches, we can cast the constant.
799           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
800             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
801               Cmp->setOperand(SrcIdx, NewV);
802               Cmp->setOperand(OtherIdx,
803                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
804               continue;
805             }
806           }
807         }
808 
809         // Otherwise, replaces the use with flat(NewV).
810         if (Instruction *I = dyn_cast<Instruction>(V)) {
811           BasicBlock::iterator InsertPos = std::next(I->getIterator());
812           while (isa<PHINode>(InsertPos))
813             ++InsertPos;
814           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
815         } else {
816           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
817                                                V->getType()));
818         }
819       }
820     }
821 
822     if (V->use_empty())
823       RecursivelyDeleteTriviallyDeadInstructions(V);
824   }
825 
826   return true;
827 }
828 
829 FunctionPass *llvm::createInferAddressSpacesPass() {
830   return new InferAddressSpaces();
831 }
832