1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 156 DenseSet<Value *> *Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> *PostorderStack, 163 DenseSet<Value *> *Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 assert(isAddressExpression(V)); 208 const Operator &Op = cast<Operator>(V); 209 switch (Op.getOpcode()) { 210 case Instruction::PHI: { 211 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 212 return SmallVector<Value *, 2>(IncomingValues.begin(), 213 IncomingValues.end()); 214 } 215 case Instruction::BitCast: 216 case Instruction::AddrSpaceCast: 217 case Instruction::GetElementPtr: 218 return {Op.getOperand(0)}; 219 case Instruction::Select: 220 return {Op.getOperand(1), Op.getOperand(2)}; 221 default: 222 llvm_unreachable("Unexpected instruction type."); 223 } 224 } 225 226 // TODO: Move logic to TTI? 227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 228 Value *OldV, 229 Value *NewV) const { 230 Module *M = II->getParent()->getParent()->getParent(); 231 232 switch (II->getIntrinsicID()) { 233 case Intrinsic::amdgcn_atomic_inc: 234 case Intrinsic::amdgcn_atomic_dec:{ 235 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 236 if (!IsVolatile || !IsVolatile->isNullValue()) 237 return false; 238 239 LLVM_FALLTHROUGH; 240 } 241 case Intrinsic::objectsize: { 242 Type *DestTy = II->getType(); 243 Type *SrcTy = NewV->getType(); 244 Function *NewDecl = 245 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 246 II->setArgOperand(0, NewV); 247 II->setCalledFunction(NewDecl); 248 return true; 249 } 250 default: 251 return false; 252 } 253 } 254 255 // TODO: Move logic to TTI? 256 void InferAddressSpaces::collectRewritableIntrinsicOperands( 257 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack, 258 DenseSet<Value *> *Visited) const { 259 switch (II->getIntrinsicID()) { 260 case Intrinsic::objectsize: 261 case Intrinsic::amdgcn_atomic_inc: 262 case Intrinsic::amdgcn_atomic_dec: 263 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 264 PostorderStack, Visited); 265 break; 266 default: 267 break; 268 } 269 } 270 271 // Returns all flat address expressions in function F. The elements are 272 // If V is an unvisited flat address expression, appends V to PostorderStack 273 // and marks it as visited. 274 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 275 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 276 DenseSet<Value *> *Visited) const { 277 assert(V->getType()->isPointerTy()); 278 if (isAddressExpression(*V) && 279 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 280 if (Visited->insert(V).second) 281 PostorderStack->push_back(std::make_pair(V, false)); 282 } 283 } 284 285 // Returns all flat address expressions in function F. The elements are ordered 286 // ordered in postorder. 287 std::vector<Value *> 288 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 289 // This function implements a non-recursive postorder traversal of a partial 290 // use-def graph of function F. 291 std::vector<std::pair<Value *, bool>> PostorderStack; 292 // The set of visited expressions. 293 DenseSet<Value *> Visited; 294 295 auto PushPtrOperand = [&](Value *Ptr) { 296 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack, 297 &Visited); 298 }; 299 300 // We only explore address expressions that are reachable from loads and 301 // stores for now because we aim at generating faster loads and stores. 302 for (Instruction &I : instructions(F)) { 303 if (auto *LI = dyn_cast<LoadInst>(&I)) 304 PushPtrOperand(LI->getPointerOperand()); 305 else if (auto *SI = dyn_cast<StoreInst>(&I)) 306 PushPtrOperand(SI->getPointerOperand()); 307 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 308 PushPtrOperand(RMW->getPointerOperand()); 309 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 310 PushPtrOperand(CmpX->getPointerOperand()); 311 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 312 // For memset/memcpy/memmove, any pointer operand can be replaced. 313 PushPtrOperand(MI->getRawDest()); 314 315 // Handle 2nd operand for memcpy/memmove. 316 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 317 PushPtrOperand(MTI->getRawSource()); 318 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 319 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited); 320 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 321 // FIXME: Handle vectors of pointers 322 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 323 PushPtrOperand(Cmp->getOperand(0)); 324 PushPtrOperand(Cmp->getOperand(1)); 325 } 326 } 327 } 328 329 std::vector<Value *> Postorder; // The resultant postorder. 330 while (!PostorderStack.empty()) { 331 // If the operands of the expression on the top are already explored, 332 // adds that expression to the resultant postorder. 333 if (PostorderStack.back().second) { 334 Postorder.push_back(PostorderStack.back().first); 335 PostorderStack.pop_back(); 336 continue; 337 } 338 // Otherwise, adds its operands to the stack and explores them. 339 PostorderStack.back().second = true; 340 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 341 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack, 342 &Visited); 343 } 344 } 345 return Postorder; 346 } 347 348 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 349 // of OperandUse.get() in the new address space. If the clone is not ready yet, 350 // returns an undef in the new address space as a placeholder. 351 static Value *operandWithNewAddressSpaceOrCreateUndef( 352 const Use &OperandUse, unsigned NewAddrSpace, 353 const ValueToValueMapTy &ValueWithNewAddrSpace, 354 SmallVectorImpl<const Use *> *UndefUsesToFix) { 355 Value *Operand = OperandUse.get(); 356 357 Type *NewPtrTy = 358 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 359 360 if (Constant *C = dyn_cast<Constant>(Operand)) 361 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 362 363 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 364 return NewOperand; 365 366 UndefUsesToFix->push_back(&OperandUse); 367 return UndefValue::get(NewPtrTy); 368 } 369 370 // Returns a clone of `I` with its operands converted to those specified in 371 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 372 // operand whose address space needs to be modified might not exist in 373 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 374 // adds that operand use to UndefUsesToFix so that caller can fix them later. 375 // 376 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 377 // from a pointer whose type already matches. Therefore, this function returns a 378 // Value* instead of an Instruction*. 379 static Value *cloneInstructionWithNewAddressSpace( 380 Instruction *I, unsigned NewAddrSpace, 381 const ValueToValueMapTy &ValueWithNewAddrSpace, 382 SmallVectorImpl<const Use *> *UndefUsesToFix) { 383 Type *NewPtrType = 384 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 385 386 if (I->getOpcode() == Instruction::AddrSpaceCast) { 387 Value *Src = I->getOperand(0); 388 // Because `I` is flat, the source address space must be specific. 389 // Therefore, the inferred address space must be the source space, according 390 // to our algorithm. 391 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 392 if (Src->getType() != NewPtrType) 393 return new BitCastInst(Src, NewPtrType); 394 return Src; 395 } 396 397 // Computes the converted pointer operands. 398 SmallVector<Value *, 4> NewPointerOperands; 399 for (const Use &OperandUse : I->operands()) { 400 if (!OperandUse.get()->getType()->isPointerTy()) 401 NewPointerOperands.push_back(nullptr); 402 else 403 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 404 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 405 } 406 407 switch (I->getOpcode()) { 408 case Instruction::BitCast: 409 return new BitCastInst(NewPointerOperands[0], NewPtrType); 410 case Instruction::PHI: { 411 assert(I->getType()->isPointerTy()); 412 PHINode *PHI = cast<PHINode>(I); 413 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 414 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 415 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 416 NewPHI->addIncoming(NewPointerOperands[OperandNo], 417 PHI->getIncomingBlock(Index)); 418 } 419 return NewPHI; 420 } 421 case Instruction::GetElementPtr: { 422 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 423 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 424 GEP->getSourceElementType(), NewPointerOperands[0], 425 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 426 NewGEP->setIsInBounds(GEP->isInBounds()); 427 return NewGEP; 428 } 429 case Instruction::Select: { 430 assert(I->getType()->isPointerTy()); 431 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 432 NewPointerOperands[2], "", nullptr, I); 433 } 434 default: 435 llvm_unreachable("Unexpected opcode"); 436 } 437 } 438 439 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 440 // constant expression `CE` with its operands replaced as specified in 441 // ValueWithNewAddrSpace. 442 static Value *cloneConstantExprWithNewAddressSpace( 443 ConstantExpr *CE, unsigned NewAddrSpace, 444 const ValueToValueMapTy &ValueWithNewAddrSpace) { 445 Type *TargetType = 446 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 447 448 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 449 // Because CE is flat, the source address space must be specific. 450 // Therefore, the inferred address space must be the source space according 451 // to our algorithm. 452 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 453 NewAddrSpace); 454 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 455 } 456 457 if (CE->getOpcode() == Instruction::BitCast) { 458 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 459 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 460 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 461 } 462 463 if (CE->getOpcode() == Instruction::Select) { 464 Constant *Src0 = CE->getOperand(1); 465 Constant *Src1 = CE->getOperand(2); 466 if (Src0->getType()->getPointerAddressSpace() == 467 Src1->getType()->getPointerAddressSpace()) { 468 469 return ConstantExpr::getSelect( 470 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 471 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 472 } 473 } 474 475 // Computes the operands of the new constant expression. 476 SmallVector<Constant *, 4> NewOperands; 477 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 478 Constant *Operand = CE->getOperand(Index); 479 // If the address space of `Operand` needs to be modified, the new operand 480 // with the new address space should already be in ValueWithNewAddrSpace 481 // because (1) the constant expressions we consider (i.e. addrspacecast, 482 // bitcast, and getelementptr) do not incur cycles in the data flow graph 483 // and (2) this function is called on constant expressions in postorder. 484 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 485 NewOperands.push_back(cast<Constant>(NewOperand)); 486 } else { 487 // Otherwise, reuses the old operand. 488 NewOperands.push_back(Operand); 489 } 490 } 491 492 if (CE->getOpcode() == Instruction::GetElementPtr) { 493 // Needs to specify the source type while constructing a getelementptr 494 // constant expression. 495 return CE->getWithOperands( 496 NewOperands, TargetType, /*OnlyIfReduced=*/false, 497 NewOperands[0]->getType()->getPointerElementType()); 498 } 499 500 return CE->getWithOperands(NewOperands, TargetType); 501 } 502 503 // Returns a clone of the value `V`, with its operands replaced as specified in 504 // ValueWithNewAddrSpace. This function is called on every flat address 505 // expression whose address space needs to be modified, in postorder. 506 // 507 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 508 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 509 Value *V, unsigned NewAddrSpace, 510 const ValueToValueMapTy &ValueWithNewAddrSpace, 511 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 512 // All values in Postorder are flat address expressions. 513 assert(isAddressExpression(*V) && 514 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 515 516 if (Instruction *I = dyn_cast<Instruction>(V)) { 517 Value *NewV = cloneInstructionWithNewAddressSpace( 518 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 519 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 520 if (NewI->getParent() == nullptr) { 521 NewI->insertBefore(I); 522 NewI->takeName(I); 523 } 524 } 525 return NewV; 526 } 527 528 return cloneConstantExprWithNewAddressSpace( 529 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 530 } 531 532 // Defines the join operation on the address space lattice (see the file header 533 // comments). 534 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 535 unsigned AS2) const { 536 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 537 return FlatAddrSpace; 538 539 if (AS1 == UninitializedAddressSpace) 540 return AS2; 541 if (AS2 == UninitializedAddressSpace) 542 return AS1; 543 544 // The join of two different specific address spaces is flat. 545 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 546 } 547 548 bool InferAddressSpaces::runOnFunction(Function &F) { 549 if (skipFunction(F)) 550 return false; 551 552 const TargetTransformInfo &TTI = 553 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 554 FlatAddrSpace = TTI.getFlatAddressSpace(); 555 if (FlatAddrSpace == UninitializedAddressSpace) 556 return false; 557 558 // Collects all flat address expressions in postorder. 559 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 560 561 // Runs a data-flow analysis to refine the address spaces of every expression 562 // in Postorder. 563 ValueToAddrSpaceMapTy InferredAddrSpace; 564 inferAddressSpaces(Postorder, &InferredAddrSpace); 565 566 // Changes the address spaces of the flat address expressions who are inferred 567 // to point to a specific address space. 568 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 569 } 570 571 void InferAddressSpaces::inferAddressSpaces( 572 const std::vector<Value *> &Postorder, 573 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 574 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 575 // Initially, all expressions are in the uninitialized address space. 576 for (Value *V : Postorder) 577 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 578 579 while (!Worklist.empty()) { 580 Value *V = Worklist.pop_back_val(); 581 582 // Tries to update the address space of the stack top according to the 583 // address spaces of its operands. 584 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 585 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 586 if (!NewAS.hasValue()) 587 continue; 588 // If any updates are made, grabs its users to the worklist because 589 // their address spaces can also be possibly updated. 590 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 591 (*InferredAddrSpace)[V] = NewAS.getValue(); 592 593 for (Value *User : V->users()) { 594 // Skip if User is already in the worklist. 595 if (Worklist.count(User)) 596 continue; 597 598 auto Pos = InferredAddrSpace->find(User); 599 // Our algorithm only updates the address spaces of flat address 600 // expressions, which are those in InferredAddrSpace. 601 if (Pos == InferredAddrSpace->end()) 602 continue; 603 604 // Function updateAddressSpace moves the address space down a lattice 605 // path. Therefore, nothing to do if User is already inferred as flat (the 606 // bottom element in the lattice). 607 if (Pos->second == FlatAddrSpace) 608 continue; 609 610 Worklist.insert(User); 611 } 612 } 613 } 614 615 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 616 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 617 assert(InferredAddrSpace.count(&V)); 618 619 // The new inferred address space equals the join of the address spaces 620 // of all its pointer operands. 621 unsigned NewAS = UninitializedAddressSpace; 622 623 const Operator &Op = cast<Operator>(V); 624 if (Op.getOpcode() == Instruction::Select) { 625 Value *Src0 = Op.getOperand(1); 626 Value *Src1 = Op.getOperand(2); 627 628 auto I = InferredAddrSpace.find(Src0); 629 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 630 I->second : Src0->getType()->getPointerAddressSpace(); 631 632 auto J = InferredAddrSpace.find(Src1); 633 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 634 J->second : Src1->getType()->getPointerAddressSpace(); 635 636 auto *C0 = dyn_cast<Constant>(Src0); 637 auto *C1 = dyn_cast<Constant>(Src1); 638 639 // If one of the inputs is a constant, we may be able to do a constant 640 // addrspacecast of it. Defer inferring the address space until the input 641 // address space is known. 642 if ((C1 && Src0AS == UninitializedAddressSpace) || 643 (C0 && Src1AS == UninitializedAddressSpace)) 644 return None; 645 646 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 647 NewAS = Src1AS; 648 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 649 NewAS = Src0AS; 650 else 651 NewAS = joinAddressSpaces(Src0AS, Src1AS); 652 } else { 653 for (Value *PtrOperand : getPointerOperands(V)) { 654 auto I = InferredAddrSpace.find(PtrOperand); 655 unsigned OperandAS = I != InferredAddrSpace.end() ? 656 I->second : PtrOperand->getType()->getPointerAddressSpace(); 657 658 // join(flat, *) = flat. So we can break if NewAS is already flat. 659 NewAS = joinAddressSpaces(NewAS, OperandAS); 660 if (NewAS == FlatAddrSpace) 661 break; 662 } 663 } 664 665 unsigned OldAS = InferredAddrSpace.lookup(&V); 666 assert(OldAS != FlatAddrSpace); 667 if (OldAS == NewAS) 668 return None; 669 return NewAS; 670 } 671 672 /// \p returns true if \p U is the pointer operand of a memory instruction with 673 /// a single pointer operand that can have its address space changed by simply 674 /// mutating the use to a new value. 675 static bool isSimplePointerUseValidToReplace(Use &U) { 676 User *Inst = U.getUser(); 677 unsigned OpNo = U.getOperandNo(); 678 679 if (auto *LI = dyn_cast<LoadInst>(Inst)) 680 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 681 682 if (auto *SI = dyn_cast<StoreInst>(Inst)) 683 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 684 685 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 686 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 687 688 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 689 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 690 !CmpX->isVolatile(); 691 } 692 693 return false; 694 } 695 696 /// Update memory intrinsic uses that require more complex processing than 697 /// simple memory instructions. Thse require re-mangling and may have multiple 698 /// pointer operands. 699 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 700 Value *NewV) { 701 IRBuilder<> B(MI); 702 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 703 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 704 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 705 706 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 707 B.CreateMemSet(NewV, MSI->getValue(), 708 MSI->getLength(), MSI->getAlignment(), 709 false, // isVolatile 710 TBAA, ScopeMD, NoAliasMD); 711 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 712 Value *Src = MTI->getRawSource(); 713 Value *Dest = MTI->getRawDest(); 714 715 // Be careful in case this is a self-to-self copy. 716 if (Src == OldV) 717 Src = NewV; 718 719 if (Dest == OldV) 720 Dest = NewV; 721 722 if (isa<MemCpyInst>(MTI)) { 723 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 724 B.CreateMemCpy(Dest, Src, MTI->getLength(), 725 MTI->getAlignment(), 726 false, // isVolatile 727 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 728 } else { 729 assert(isa<MemMoveInst>(MTI)); 730 B.CreateMemMove(Dest, Src, MTI->getLength(), 731 MTI->getAlignment(), 732 false, // isVolatile 733 TBAA, ScopeMD, NoAliasMD); 734 } 735 } else 736 llvm_unreachable("unhandled MemIntrinsic"); 737 738 MI->eraseFromParent(); 739 return true; 740 } 741 742 // \p returns true if it is OK to change the address space of constant \p C with 743 // a ConstantExpr addrspacecast. 744 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 745 assert(NewAS != UninitializedAddressSpace); 746 747 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 748 if (SrcAS == NewAS || isa<UndefValue>(C)) 749 return true; 750 751 // Prevent illegal casts between different non-flat address spaces. 752 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 753 return false; 754 755 if (isa<ConstantPointerNull>(C)) 756 return true; 757 758 if (auto *Op = dyn_cast<Operator>(C)) { 759 // If we already have a constant addrspacecast, it should be safe to cast it 760 // off. 761 if (Op->getOpcode() == Instruction::AddrSpaceCast) 762 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 763 764 if (Op->getOpcode() == Instruction::IntToPtr && 765 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 766 return true; 767 } 768 769 return false; 770 } 771 772 static Value::use_iterator skipToNextUser(Value::use_iterator I, 773 Value::use_iterator End) { 774 User *CurUser = I->getUser(); 775 ++I; 776 777 while (I != End && I->getUser() == CurUser) 778 ++I; 779 780 return I; 781 } 782 783 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 784 const std::vector<Value *> &Postorder, 785 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 786 // For each address expression to be modified, creates a clone of it with its 787 // pointer operands converted to the new address space. Since the pointer 788 // operands are converted, the clone is naturally in the new address space by 789 // construction. 790 ValueToValueMapTy ValueWithNewAddrSpace; 791 SmallVector<const Use *, 32> UndefUsesToFix; 792 for (Value* V : Postorder) { 793 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 794 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 795 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 796 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 797 } 798 } 799 800 if (ValueWithNewAddrSpace.empty()) 801 return false; 802 803 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 804 for (const Use *UndefUse : UndefUsesToFix) { 805 User *V = UndefUse->getUser(); 806 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 807 unsigned OperandNo = UndefUse->getOperandNo(); 808 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 809 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 810 } 811 812 // Replaces the uses of the old address expressions with the new ones. 813 for (Value *V : Postorder) { 814 Value *NewV = ValueWithNewAddrSpace.lookup(V); 815 if (NewV == nullptr) 816 continue; 817 818 DEBUG(dbgs() << "Replacing the uses of " << *V 819 << "\n with\n " << *NewV << '\n'); 820 821 Value::use_iterator I, E, Next; 822 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 823 Use &U = *I; 824 825 // Some users may see the same pointer operand in multiple operands. Skip 826 // to the next instruction. 827 I = skipToNextUser(I, E); 828 829 if (isSimplePointerUseValidToReplace(U)) { 830 // If V is used as the pointer operand of a compatible memory operation, 831 // sets the pointer operand to NewV. This replacement does not change 832 // the element type, so the resultant load/store is still valid. 833 U.set(NewV); 834 continue; 835 } 836 837 User *CurUser = U.getUser(); 838 // Handle more complex cases like intrinsic that need to be remangled. 839 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 840 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 841 continue; 842 } 843 844 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 845 if (rewriteIntrinsicOperands(II, V, NewV)) 846 continue; 847 } 848 849 if (isa<Instruction>(CurUser)) { 850 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 851 // If we can infer that both pointers are in the same addrspace, 852 // transform e.g. 853 // %cmp = icmp eq float* %p, %q 854 // into 855 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 856 857 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 858 int SrcIdx = U.getOperandNo(); 859 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 860 Value *OtherSrc = Cmp->getOperand(OtherIdx); 861 862 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 863 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 864 Cmp->setOperand(OtherIdx, OtherNewV); 865 Cmp->setOperand(SrcIdx, NewV); 866 continue; 867 } 868 } 869 870 // Even if the type mismatches, we can cast the constant. 871 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 872 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 873 Cmp->setOperand(SrcIdx, NewV); 874 Cmp->setOperand(OtherIdx, 875 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 876 continue; 877 } 878 } 879 } 880 881 // Otherwise, replaces the use with flat(NewV). 882 if (Instruction *I = dyn_cast<Instruction>(V)) { 883 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 884 while (isa<PHINode>(InsertPos)) 885 ++InsertPos; 886 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 887 } else { 888 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 889 V->getType())); 890 } 891 } 892 } 893 894 if (V->use_empty()) 895 RecursivelyDeleteTriviallyDeadInstructions(V); 896 } 897 898 return true; 899 } 900 901 FunctionPass *llvm::createInferAddressSpacesPass() { 902 return new InferAddressSpaces(); 903 } 904