1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/ADT/ArrayRef.h" 92 #include "llvm/ADT/DenseMap.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/None.h" 95 #include "llvm/ADT/Optional.h" 96 #include "llvm/ADT/SetVector.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/Constant.h" 101 #include "llvm/IR/Constants.h" 102 #include "llvm/IR/Function.h" 103 #include "llvm/IR/IRBuilder.h" 104 #include "llvm/IR/InstIterator.h" 105 #include "llvm/IR/Instruction.h" 106 #include "llvm/IR/Instructions.h" 107 #include "llvm/IR/IntrinsicInst.h" 108 #include "llvm/IR/Intrinsics.h" 109 #include "llvm/IR/LLVMContext.h" 110 #include "llvm/IR/Operator.h" 111 #include "llvm/IR/Type.h" 112 #include "llvm/IR/Use.h" 113 #include "llvm/IR/User.h" 114 #include "llvm/IR/Value.h" 115 #include "llvm/IR/ValueHandle.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Scalar.h" 124 #include "llvm/Transforms/Utils/Local.h" 125 #include "llvm/Transforms/Utils/ValueMapper.h" 126 #include <cassert> 127 #include <iterator> 128 #include <limits> 129 #include <utility> 130 #include <vector> 131 132 #define DEBUG_TYPE "infer-address-spaces" 133 134 using namespace llvm; 135 136 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 137 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 138 cl::desc("The default address space is assumed as the flat address space. " 139 "This is mainly for test purpose.")); 140 141 static const unsigned UninitializedAddressSpace = 142 std::numeric_limits<unsigned>::max(); 143 144 namespace { 145 146 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 147 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 148 149 /// InferAddressSpaces 150 class InferAddressSpaces : public FunctionPass { 151 const TargetTransformInfo *TTI = nullptr; 152 const DataLayout *DL = nullptr; 153 154 /// Target specific address space which uses of should be replaced if 155 /// possible. 156 unsigned FlatAddrSpace = 0; 157 158 public: 159 static char ID; 160 161 InferAddressSpaces() : 162 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 163 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 AU.addRequired<TargetTransformInfoWrapperPass>(); 168 } 169 170 bool runOnFunction(Function &F) override; 171 172 private: 173 // Returns the new address space of V if updated; otherwise, returns None. 174 Optional<unsigned> 175 updateAddressSpace(const Value &V, 176 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 177 178 // Tries to infer the specific address space of each address expression in 179 // Postorder. 180 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 181 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 182 183 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 184 185 Value *cloneInstructionWithNewAddressSpace( 186 Instruction *I, unsigned NewAddrSpace, 187 const ValueToValueMapTy &ValueWithNewAddrSpace, 188 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 189 190 // Changes the flat address expressions in function F to point to specific 191 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 192 // all flat expressions in the use-def graph of function F. 193 bool rewriteWithNewAddressSpaces( 194 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 195 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 196 197 void appendsFlatAddressExpressionToPostorderStack( 198 Value *V, PostorderStackTy &PostorderStack, 199 DenseSet<Value *> &Visited) const; 200 201 bool rewriteIntrinsicOperands(IntrinsicInst *II, 202 Value *OldV, Value *NewV) const; 203 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 204 PostorderStackTy &PostorderStack, 205 DenseSet<Value *> &Visited) const; 206 207 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 208 209 Value *cloneValueWithNewAddressSpace( 210 Value *V, unsigned NewAddrSpace, 211 const ValueToValueMapTy &ValueWithNewAddrSpace, 212 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 213 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 214 }; 215 216 } // end anonymous namespace 217 218 char InferAddressSpaces::ID = 0; 219 220 namespace llvm { 221 222 void initializeInferAddressSpacesPass(PassRegistry &); 223 224 } // end namespace llvm 225 226 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 227 false, false) 228 229 // Check whether that's no-op pointer bicast using a pair of 230 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 231 // different address spaces. 232 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 233 const TargetTransformInfo *TTI) { 234 assert(I2P->getOpcode() == Instruction::IntToPtr); 235 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 236 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 237 return false; 238 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 239 // no-op cast. Besides checking both of them are no-op casts, as the 240 // reinterpreted pointer may be used in other pointer arithmetic, we also 241 // need to double-check that through the target-specific hook. That ensures 242 // the underlying target also agrees that's a no-op address space cast and 243 // pointer bits are preserved. 244 // The current IR spec doesn't have clear rules on address space casts, 245 // especially a clear definition for pointer bits in non-default address 246 // spaces. It would be undefined if that pointer is dereferenced after an 247 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 248 // bits in non-default address spaces in the current spec, the pointer 249 // arithmetic may also be undefined after invalid pointer reinterpret cast. 250 // However, as we confirm through the target hooks that it's a no-op 251 // addrspacecast, it doesn't matter since the bits should be the same. 252 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 253 I2P->getOperand(0)->getType(), I2P->getType(), 254 DL) && 255 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 256 P2I->getOperand(0)->getType(), P2I->getType(), 257 DL) && 258 TTI->isNoopAddrSpaceCast( 259 P2I->getOperand(0)->getType()->getPointerAddressSpace(), 260 I2P->getType()->getPointerAddressSpace()); 261 } 262 263 // Returns true if V is an address expression. 264 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 265 // getelementptr operators. 266 static bool isAddressExpression(const Value &V, const DataLayout &DL, 267 const TargetTransformInfo *TTI) { 268 const Operator *Op = dyn_cast<Operator>(&V); 269 if (!Op) 270 return false; 271 272 switch (Op->getOpcode()) { 273 case Instruction::PHI: 274 assert(Op->getType()->isPointerTy()); 275 return true; 276 case Instruction::BitCast: 277 case Instruction::AddrSpaceCast: 278 case Instruction::GetElementPtr: 279 return true; 280 case Instruction::Select: 281 return Op->getType()->isPointerTy(); 282 case Instruction::Call: { 283 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 284 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 285 } 286 case Instruction::IntToPtr: 287 return isNoopPtrIntCastPair(Op, DL, TTI); 288 default: 289 // That value is an address expression if it has an assumed address space. 290 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 291 } 292 } 293 294 // Returns the pointer operands of V. 295 // 296 // Precondition: V is an address expression. 297 static SmallVector<Value *, 2> 298 getPointerOperands(const Value &V, const DataLayout &DL, 299 const TargetTransformInfo *TTI) { 300 const Operator &Op = cast<Operator>(V); 301 switch (Op.getOpcode()) { 302 case Instruction::PHI: { 303 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 304 return SmallVector<Value *, 2>(IncomingValues.begin(), 305 IncomingValues.end()); 306 } 307 case Instruction::BitCast: 308 case Instruction::AddrSpaceCast: 309 case Instruction::GetElementPtr: 310 return {Op.getOperand(0)}; 311 case Instruction::Select: 312 return {Op.getOperand(1), Op.getOperand(2)}; 313 case Instruction::Call: { 314 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 315 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 316 "unexpected intrinsic call"); 317 return {II.getArgOperand(0)}; 318 } 319 case Instruction::IntToPtr: { 320 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 321 auto *P2I = cast<Operator>(Op.getOperand(0)); 322 return {P2I->getOperand(0)}; 323 } 324 default: 325 llvm_unreachable("Unexpected instruction type."); 326 } 327 } 328 329 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 330 Value *OldV, 331 Value *NewV) const { 332 Module *M = II->getParent()->getParent()->getParent(); 333 334 switch (II->getIntrinsicID()) { 335 case Intrinsic::objectsize: { 336 Type *DestTy = II->getType(); 337 Type *SrcTy = NewV->getType(); 338 Function *NewDecl = 339 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 340 II->setArgOperand(0, NewV); 341 II->setCalledFunction(NewDecl); 342 return true; 343 } 344 case Intrinsic::ptrmask: 345 // This is handled as an address expression, not as a use memory operation. 346 return false; 347 default: { 348 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 349 if (!Rewrite) 350 return false; 351 if (Rewrite != II) 352 II->replaceAllUsesWith(Rewrite); 353 return true; 354 } 355 } 356 } 357 358 void InferAddressSpaces::collectRewritableIntrinsicOperands( 359 IntrinsicInst *II, PostorderStackTy &PostorderStack, 360 DenseSet<Value *> &Visited) const { 361 auto IID = II->getIntrinsicID(); 362 switch (IID) { 363 case Intrinsic::ptrmask: 364 case Intrinsic::objectsize: 365 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 366 PostorderStack, Visited); 367 break; 368 default: 369 SmallVector<int, 2> OpIndexes; 370 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 371 for (int Idx : OpIndexes) { 372 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 373 PostorderStack, Visited); 374 } 375 } 376 break; 377 } 378 } 379 380 // Returns all flat address expressions in function F. The elements are 381 // If V is an unvisited flat address expression, appends V to PostorderStack 382 // and marks it as visited. 383 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 384 Value *V, PostorderStackTy &PostorderStack, 385 DenseSet<Value *> &Visited) const { 386 assert(V->getType()->isPointerTy()); 387 388 // Generic addressing expressions may be hidden in nested constant 389 // expressions. 390 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 391 // TODO: Look in non-address parts, like icmp operands. 392 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 393 PostorderStack.emplace_back(CE, false); 394 395 return; 396 } 397 398 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 399 isAddressExpression(*V, *DL, TTI)) { 400 if (Visited.insert(V).second) { 401 PostorderStack.emplace_back(V, false); 402 403 Operator *Op = cast<Operator>(V); 404 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 405 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 406 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 407 PostorderStack.emplace_back(CE, false); 408 } 409 } 410 } 411 } 412 } 413 414 // Returns all flat address expressions in function F. The elements are ordered 415 // ordered in postorder. 416 std::vector<WeakTrackingVH> 417 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 418 // This function implements a non-recursive postorder traversal of a partial 419 // use-def graph of function F. 420 PostorderStackTy PostorderStack; 421 // The set of visited expressions. 422 DenseSet<Value *> Visited; 423 424 auto PushPtrOperand = [&](Value *Ptr) { 425 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 426 Visited); 427 }; 428 429 // Look at operations that may be interesting accelerate by moving to a known 430 // address space. We aim at generating after loads and stores, but pure 431 // addressing calculations may also be faster. 432 for (Instruction &I : instructions(F)) { 433 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 434 if (!GEP->getType()->isVectorTy()) 435 PushPtrOperand(GEP->getPointerOperand()); 436 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 437 PushPtrOperand(LI->getPointerOperand()); 438 else if (auto *SI = dyn_cast<StoreInst>(&I)) 439 PushPtrOperand(SI->getPointerOperand()); 440 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 441 PushPtrOperand(RMW->getPointerOperand()); 442 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 443 PushPtrOperand(CmpX->getPointerOperand()); 444 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 445 // For memset/memcpy/memmove, any pointer operand can be replaced. 446 PushPtrOperand(MI->getRawDest()); 447 448 // Handle 2nd operand for memcpy/memmove. 449 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 450 PushPtrOperand(MTI->getRawSource()); 451 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 452 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 453 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 454 // FIXME: Handle vectors of pointers 455 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 456 PushPtrOperand(Cmp->getOperand(0)); 457 PushPtrOperand(Cmp->getOperand(1)); 458 } 459 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 460 if (!ASC->getType()->isVectorTy()) 461 PushPtrOperand(ASC->getPointerOperand()); 462 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 463 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 464 PushPtrOperand( 465 cast<PtrToIntInst>(I2P->getOperand(0))->getPointerOperand()); 466 } 467 } 468 469 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 470 while (!PostorderStack.empty()) { 471 Value *TopVal = PostorderStack.back().getPointer(); 472 // If the operands of the expression on the top are already explored, 473 // adds that expression to the resultant postorder. 474 if (PostorderStack.back().getInt()) { 475 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 476 Postorder.push_back(TopVal); 477 PostorderStack.pop_back(); 478 continue; 479 } 480 // Otherwise, adds its operands to the stack and explores them. 481 PostorderStack.back().setInt(true); 482 // Skip values with an assumed address space. 483 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 484 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 485 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 486 Visited); 487 } 488 } 489 } 490 return Postorder; 491 } 492 493 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 494 // of OperandUse.get() in the new address space. If the clone is not ready yet, 495 // returns an undef in the new address space as a placeholder. 496 static Value *operandWithNewAddressSpaceOrCreateUndef( 497 const Use &OperandUse, unsigned NewAddrSpace, 498 const ValueToValueMapTy &ValueWithNewAddrSpace, 499 SmallVectorImpl<const Use *> *UndefUsesToFix) { 500 Value *Operand = OperandUse.get(); 501 502 Type *NewPtrTy = 503 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 504 505 if (Constant *C = dyn_cast<Constant>(Operand)) 506 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 507 508 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 509 return NewOperand; 510 511 UndefUsesToFix->push_back(&OperandUse); 512 return UndefValue::get(NewPtrTy); 513 } 514 515 // Returns a clone of `I` with its operands converted to those specified in 516 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 517 // operand whose address space needs to be modified might not exist in 518 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 519 // adds that operand use to UndefUsesToFix so that caller can fix them later. 520 // 521 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 522 // from a pointer whose type already matches. Therefore, this function returns a 523 // Value* instead of an Instruction*. 524 // 525 // This may also return nullptr in the case the instruction could not be 526 // rewritten. 527 Value *InferAddressSpaces::cloneInstructionWithNewAddressSpace( 528 Instruction *I, unsigned NewAddrSpace, 529 const ValueToValueMapTy &ValueWithNewAddrSpace, 530 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 531 Type *NewPtrType = 532 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 533 534 if (I->getOpcode() == Instruction::AddrSpaceCast) { 535 Value *Src = I->getOperand(0); 536 // Because `I` is flat, the source address space must be specific. 537 // Therefore, the inferred address space must be the source space, according 538 // to our algorithm. 539 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 540 if (Src->getType() != NewPtrType) 541 return new BitCastInst(Src, NewPtrType); 542 return Src; 543 } 544 545 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 546 // Technically the intrinsic ID is a pointer typed argument, so specially 547 // handle calls early. 548 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 549 Value *NewPtr = operandWithNewAddressSpaceOrCreateUndef( 550 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 551 UndefUsesToFix); 552 Value *Rewrite = 553 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 554 if (Rewrite) { 555 assert(Rewrite != II && "cannot modify this pointer operation in place"); 556 return Rewrite; 557 } 558 559 return nullptr; 560 } 561 562 unsigned AS = TTI->getAssumedAddrSpace(I); 563 if (AS != UninitializedAddressSpace) { 564 // For the assumed address space, insert an `addrspacecast` to make that 565 // explicit. 566 auto *NewPtrTy = I->getType()->getPointerElementType()->getPointerTo(AS); 567 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 568 NewI->insertAfter(I); 569 return NewI; 570 } 571 572 // Computes the converted pointer operands. 573 SmallVector<Value *, 4> NewPointerOperands; 574 for (const Use &OperandUse : I->operands()) { 575 if (!OperandUse.get()->getType()->isPointerTy()) 576 NewPointerOperands.push_back(nullptr); 577 else 578 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 579 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 580 } 581 582 switch (I->getOpcode()) { 583 case Instruction::BitCast: 584 return new BitCastInst(NewPointerOperands[0], NewPtrType); 585 case Instruction::PHI: { 586 assert(I->getType()->isPointerTy()); 587 PHINode *PHI = cast<PHINode>(I); 588 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 589 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 590 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 591 NewPHI->addIncoming(NewPointerOperands[OperandNo], 592 PHI->getIncomingBlock(Index)); 593 } 594 return NewPHI; 595 } 596 case Instruction::GetElementPtr: { 597 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 598 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 599 GEP->getSourceElementType(), NewPointerOperands[0], 600 SmallVector<Value *, 4>(GEP->indices())); 601 NewGEP->setIsInBounds(GEP->isInBounds()); 602 return NewGEP; 603 } 604 case Instruction::Select: 605 assert(I->getType()->isPointerTy()); 606 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 607 NewPointerOperands[2], "", nullptr, I); 608 case Instruction::IntToPtr: { 609 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 610 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 611 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 612 if (Src->getType() != NewPtrType) 613 return new BitCastInst(Src, NewPtrType); 614 return Src; 615 } 616 default: 617 llvm_unreachable("Unexpected opcode"); 618 } 619 } 620 621 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 622 // constant expression `CE` with its operands replaced as specified in 623 // ValueWithNewAddrSpace. 624 static Value *cloneConstantExprWithNewAddressSpace( 625 ConstantExpr *CE, unsigned NewAddrSpace, 626 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 627 const TargetTransformInfo *TTI) { 628 Type *TargetType = 629 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 630 631 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 632 // Because CE is flat, the source address space must be specific. 633 // Therefore, the inferred address space must be the source space according 634 // to our algorithm. 635 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 636 NewAddrSpace); 637 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 638 } 639 640 if (CE->getOpcode() == Instruction::BitCast) { 641 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 642 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 643 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 644 } 645 646 if (CE->getOpcode() == Instruction::Select) { 647 Constant *Src0 = CE->getOperand(1); 648 Constant *Src1 = CE->getOperand(2); 649 if (Src0->getType()->getPointerAddressSpace() == 650 Src1->getType()->getPointerAddressSpace()) { 651 652 return ConstantExpr::getSelect( 653 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 654 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 655 } 656 } 657 658 if (CE->getOpcode() == Instruction::IntToPtr) { 659 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 660 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 661 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 662 return ConstantExpr::getBitCast(Src, TargetType); 663 } 664 665 // Computes the operands of the new constant expression. 666 bool IsNew = false; 667 SmallVector<Constant *, 4> NewOperands; 668 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 669 Constant *Operand = CE->getOperand(Index); 670 // If the address space of `Operand` needs to be modified, the new operand 671 // with the new address space should already be in ValueWithNewAddrSpace 672 // because (1) the constant expressions we consider (i.e. addrspacecast, 673 // bitcast, and getelementptr) do not incur cycles in the data flow graph 674 // and (2) this function is called on constant expressions in postorder. 675 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 676 IsNew = true; 677 NewOperands.push_back(cast<Constant>(NewOperand)); 678 continue; 679 } 680 if (auto CExpr = dyn_cast<ConstantExpr>(Operand)) 681 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 682 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 683 IsNew = true; 684 NewOperands.push_back(cast<Constant>(NewOperand)); 685 continue; 686 } 687 // Otherwise, reuses the old operand. 688 NewOperands.push_back(Operand); 689 } 690 691 // If !IsNew, we will replace the Value with itself. However, replaced values 692 // are assumed to wrapped in a addrspace cast later so drop it now. 693 if (!IsNew) 694 return nullptr; 695 696 if (CE->getOpcode() == Instruction::GetElementPtr) { 697 // Needs to specify the source type while constructing a getelementptr 698 // constant expression. 699 return CE->getWithOperands( 700 NewOperands, TargetType, /*OnlyIfReduced=*/false, 701 NewOperands[0]->getType()->getPointerElementType()); 702 } 703 704 return CE->getWithOperands(NewOperands, TargetType); 705 } 706 707 // Returns a clone of the value `V`, with its operands replaced as specified in 708 // ValueWithNewAddrSpace. This function is called on every flat address 709 // expression whose address space needs to be modified, in postorder. 710 // 711 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 712 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 713 Value *V, unsigned NewAddrSpace, 714 const ValueToValueMapTy &ValueWithNewAddrSpace, 715 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 716 // All values in Postorder are flat address expressions. 717 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 718 isAddressExpression(*V, *DL, TTI)); 719 720 if (Instruction *I = dyn_cast<Instruction>(V)) { 721 Value *NewV = cloneInstructionWithNewAddressSpace( 722 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 723 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 724 if (NewI->getParent() == nullptr) { 725 NewI->insertBefore(I); 726 NewI->takeName(I); 727 } 728 } 729 return NewV; 730 } 731 732 return cloneConstantExprWithNewAddressSpace( 733 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 734 } 735 736 // Defines the join operation on the address space lattice (see the file header 737 // comments). 738 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 739 unsigned AS2) const { 740 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 741 return FlatAddrSpace; 742 743 if (AS1 == UninitializedAddressSpace) 744 return AS2; 745 if (AS2 == UninitializedAddressSpace) 746 return AS1; 747 748 // The join of two different specific address spaces is flat. 749 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 750 } 751 752 bool InferAddressSpaces::runOnFunction(Function &F) { 753 if (skipFunction(F)) 754 return false; 755 756 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 757 DL = &F.getParent()->getDataLayout(); 758 759 if (AssumeDefaultIsFlatAddressSpace) 760 FlatAddrSpace = 0; 761 762 if (FlatAddrSpace == UninitializedAddressSpace) { 763 FlatAddrSpace = TTI->getFlatAddressSpace(); 764 if (FlatAddrSpace == UninitializedAddressSpace) 765 return false; 766 } 767 768 // Collects all flat address expressions in postorder. 769 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 770 771 // Runs a data-flow analysis to refine the address spaces of every expression 772 // in Postorder. 773 ValueToAddrSpaceMapTy InferredAddrSpace; 774 inferAddressSpaces(Postorder, &InferredAddrSpace); 775 776 // Changes the address spaces of the flat address expressions who are inferred 777 // to point to a specific address space. 778 return rewriteWithNewAddressSpaces(*TTI, Postorder, InferredAddrSpace, &F); 779 } 780 781 // Constants need to be tracked through RAUW to handle cases with nested 782 // constant expressions, so wrap values in WeakTrackingVH. 783 void InferAddressSpaces::inferAddressSpaces( 784 ArrayRef<WeakTrackingVH> Postorder, 785 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 786 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 787 // Initially, all expressions are in the uninitialized address space. 788 for (Value *V : Postorder) 789 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 790 791 while (!Worklist.empty()) { 792 Value *V = Worklist.pop_back_val(); 793 794 // Tries to update the address space of the stack top according to the 795 // address spaces of its operands. 796 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 797 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 798 if (!NewAS.hasValue()) 799 continue; 800 // If any updates are made, grabs its users to the worklist because 801 // their address spaces can also be possibly updated. 802 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 803 (*InferredAddrSpace)[V] = NewAS.getValue(); 804 805 for (Value *User : V->users()) { 806 // Skip if User is already in the worklist. 807 if (Worklist.count(User)) 808 continue; 809 810 auto Pos = InferredAddrSpace->find(User); 811 // Our algorithm only updates the address spaces of flat address 812 // expressions, which are those in InferredAddrSpace. 813 if (Pos == InferredAddrSpace->end()) 814 continue; 815 816 // Function updateAddressSpace moves the address space down a lattice 817 // path. Therefore, nothing to do if User is already inferred as flat (the 818 // bottom element in the lattice). 819 if (Pos->second == FlatAddrSpace) 820 continue; 821 822 Worklist.insert(User); 823 } 824 } 825 } 826 827 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 828 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 829 assert(InferredAddrSpace.count(&V)); 830 831 // The new inferred address space equals the join of the address spaces 832 // of all its pointer operands. 833 unsigned NewAS = UninitializedAddressSpace; 834 835 const Operator &Op = cast<Operator>(V); 836 if (Op.getOpcode() == Instruction::Select) { 837 Value *Src0 = Op.getOperand(1); 838 Value *Src1 = Op.getOperand(2); 839 840 auto I = InferredAddrSpace.find(Src0); 841 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 842 I->second : Src0->getType()->getPointerAddressSpace(); 843 844 auto J = InferredAddrSpace.find(Src1); 845 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 846 J->second : Src1->getType()->getPointerAddressSpace(); 847 848 auto *C0 = dyn_cast<Constant>(Src0); 849 auto *C1 = dyn_cast<Constant>(Src1); 850 851 // If one of the inputs is a constant, we may be able to do a constant 852 // addrspacecast of it. Defer inferring the address space until the input 853 // address space is known. 854 if ((C1 && Src0AS == UninitializedAddressSpace) || 855 (C0 && Src1AS == UninitializedAddressSpace)) 856 return None; 857 858 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 859 NewAS = Src1AS; 860 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 861 NewAS = Src0AS; 862 else 863 NewAS = joinAddressSpaces(Src0AS, Src1AS); 864 } else { 865 unsigned AS = TTI->getAssumedAddrSpace(&V); 866 if (AS != UninitializedAddressSpace) { 867 // Use the assumed address space directly. 868 NewAS = AS; 869 } else { 870 // Otherwise, infer the address space from its pointer operands. 871 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 872 auto I = InferredAddrSpace.find(PtrOperand); 873 unsigned OperandAS = 874 I != InferredAddrSpace.end() 875 ? I->second 876 : PtrOperand->getType()->getPointerAddressSpace(); 877 878 // join(flat, *) = flat. So we can break if NewAS is already flat. 879 NewAS = joinAddressSpaces(NewAS, OperandAS); 880 if (NewAS == FlatAddrSpace) 881 break; 882 } 883 } 884 } 885 886 unsigned OldAS = InferredAddrSpace.lookup(&V); 887 assert(OldAS != FlatAddrSpace); 888 if (OldAS == NewAS) 889 return None; 890 return NewAS; 891 } 892 893 /// \p returns true if \p U is the pointer operand of a memory instruction with 894 /// a single pointer operand that can have its address space changed by simply 895 /// mutating the use to a new value. If the memory instruction is volatile, 896 /// return true only if the target allows the memory instruction to be volatile 897 /// in the new address space. 898 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 899 Use &U, unsigned AddrSpace) { 900 User *Inst = U.getUser(); 901 unsigned OpNo = U.getOperandNo(); 902 bool VolatileIsAllowed = false; 903 if (auto *I = dyn_cast<Instruction>(Inst)) 904 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 905 906 if (auto *LI = dyn_cast<LoadInst>(Inst)) 907 return OpNo == LoadInst::getPointerOperandIndex() && 908 (VolatileIsAllowed || !LI->isVolatile()); 909 910 if (auto *SI = dyn_cast<StoreInst>(Inst)) 911 return OpNo == StoreInst::getPointerOperandIndex() && 912 (VolatileIsAllowed || !SI->isVolatile()); 913 914 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 915 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 916 (VolatileIsAllowed || !RMW->isVolatile()); 917 918 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 919 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 920 (VolatileIsAllowed || !CmpX->isVolatile()); 921 922 return false; 923 } 924 925 /// Update memory intrinsic uses that require more complex processing than 926 /// simple memory instructions. Thse require re-mangling and may have multiple 927 /// pointer operands. 928 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 929 Value *NewV) { 930 IRBuilder<> B(MI); 931 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 932 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 933 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 934 935 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 936 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), 937 MaybeAlign(MSI->getDestAlignment()), 938 false, // isVolatile 939 TBAA, ScopeMD, NoAliasMD); 940 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 941 Value *Src = MTI->getRawSource(); 942 Value *Dest = MTI->getRawDest(); 943 944 // Be careful in case this is a self-to-self copy. 945 if (Src == OldV) 946 Src = NewV; 947 948 if (Dest == OldV) 949 Dest = NewV; 950 951 if (isa<MemCpyInst>(MTI)) { 952 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 953 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 954 MTI->getLength(), 955 false, // isVolatile 956 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 957 } else { 958 assert(isa<MemMoveInst>(MTI)); 959 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 960 MTI->getLength(), 961 false, // isVolatile 962 TBAA, ScopeMD, NoAliasMD); 963 } 964 } else 965 llvm_unreachable("unhandled MemIntrinsic"); 966 967 MI->eraseFromParent(); 968 return true; 969 } 970 971 // \p returns true if it is OK to change the address space of constant \p C with 972 // a ConstantExpr addrspacecast. 973 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 974 assert(NewAS != UninitializedAddressSpace); 975 976 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 977 if (SrcAS == NewAS || isa<UndefValue>(C)) 978 return true; 979 980 // Prevent illegal casts between different non-flat address spaces. 981 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 982 return false; 983 984 if (isa<ConstantPointerNull>(C)) 985 return true; 986 987 if (auto *Op = dyn_cast<Operator>(C)) { 988 // If we already have a constant addrspacecast, it should be safe to cast it 989 // off. 990 if (Op->getOpcode() == Instruction::AddrSpaceCast) 991 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 992 993 if (Op->getOpcode() == Instruction::IntToPtr && 994 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 995 return true; 996 } 997 998 return false; 999 } 1000 1001 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1002 Value::use_iterator End) { 1003 User *CurUser = I->getUser(); 1004 ++I; 1005 1006 while (I != End && I->getUser() == CurUser) 1007 ++I; 1008 1009 return I; 1010 } 1011 1012 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 1013 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 1014 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 1015 // For each address expression to be modified, creates a clone of it with its 1016 // pointer operands converted to the new address space. Since the pointer 1017 // operands are converted, the clone is naturally in the new address space by 1018 // construction. 1019 ValueToValueMapTy ValueWithNewAddrSpace; 1020 SmallVector<const Use *, 32> UndefUsesToFix; 1021 for (Value* V : Postorder) { 1022 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1023 1024 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1025 // not even infer the value to have its original address space. 1026 if (NewAddrSpace == UninitializedAddressSpace) 1027 continue; 1028 1029 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1030 Value *New = cloneValueWithNewAddressSpace( 1031 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 1032 if (New) 1033 ValueWithNewAddrSpace[V] = New; 1034 } 1035 } 1036 1037 if (ValueWithNewAddrSpace.empty()) 1038 return false; 1039 1040 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 1041 for (const Use *UndefUse : UndefUsesToFix) { 1042 User *V = UndefUse->getUser(); 1043 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1044 if (!NewV) 1045 continue; 1046 1047 unsigned OperandNo = UndefUse->getOperandNo(); 1048 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 1049 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 1050 } 1051 1052 SmallVector<Instruction *, 16> DeadInstructions; 1053 1054 // Replaces the uses of the old address expressions with the new ones. 1055 for (const WeakTrackingVH &WVH : Postorder) { 1056 assert(WVH && "value was unexpectedly deleted"); 1057 Value *V = WVH; 1058 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1059 if (NewV == nullptr) 1060 continue; 1061 1062 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1063 << *NewV << '\n'); 1064 1065 if (Constant *C = dyn_cast<Constant>(V)) { 1066 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1067 C->getType()); 1068 if (C != Replace) { 1069 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1070 << ": " << *Replace << '\n'); 1071 C->replaceAllUsesWith(Replace); 1072 V = Replace; 1073 } 1074 } 1075 1076 Value::use_iterator I, E, Next; 1077 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 1078 Use &U = *I; 1079 1080 // Some users may see the same pointer operand in multiple operands. Skip 1081 // to the next instruction. 1082 I = skipToNextUser(I, E); 1083 1084 if (isSimplePointerUseValidToReplace( 1085 TTI, U, V->getType()->getPointerAddressSpace())) { 1086 // If V is used as the pointer operand of a compatible memory operation, 1087 // sets the pointer operand to NewV. This replacement does not change 1088 // the element type, so the resultant load/store is still valid. 1089 U.set(NewV); 1090 continue; 1091 } 1092 1093 User *CurUser = U.getUser(); 1094 // Skip if the current user is the new value itself. 1095 if (CurUser == NewV) 1096 continue; 1097 // Handle more complex cases like intrinsic that need to be remangled. 1098 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1099 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1100 continue; 1101 } 1102 1103 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1104 if (rewriteIntrinsicOperands(II, V, NewV)) 1105 continue; 1106 } 1107 1108 if (isa<Instruction>(CurUser)) { 1109 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1110 // If we can infer that both pointers are in the same addrspace, 1111 // transform e.g. 1112 // %cmp = icmp eq float* %p, %q 1113 // into 1114 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1115 1116 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1117 int SrcIdx = U.getOperandNo(); 1118 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1119 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1120 1121 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1122 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1123 Cmp->setOperand(OtherIdx, OtherNewV); 1124 Cmp->setOperand(SrcIdx, NewV); 1125 continue; 1126 } 1127 } 1128 1129 // Even if the type mismatches, we can cast the constant. 1130 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1131 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1132 Cmp->setOperand(SrcIdx, NewV); 1133 Cmp->setOperand(OtherIdx, 1134 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 1135 continue; 1136 } 1137 } 1138 } 1139 1140 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1141 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1142 if (ASC->getDestAddressSpace() == NewAS) { 1143 if (ASC->getType()->getPointerElementType() != 1144 NewV->getType()->getPointerElementType()) { 1145 NewV = CastInst::Create(Instruction::BitCast, NewV, 1146 ASC->getType(), "", ASC); 1147 } 1148 ASC->replaceAllUsesWith(NewV); 1149 DeadInstructions.push_back(ASC); 1150 continue; 1151 } 1152 } 1153 1154 // Otherwise, replaces the use with flat(NewV). 1155 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 1156 // Don't create a copy of the original addrspacecast. 1157 if (U == V && isa<AddrSpaceCastInst>(V)) 1158 continue; 1159 1160 BasicBlock::iterator InsertPos = std::next(Inst->getIterator()); 1161 while (isa<PHINode>(InsertPos)) 1162 ++InsertPos; 1163 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1164 } else { 1165 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1166 V->getType())); 1167 } 1168 } 1169 } 1170 1171 if (V->use_empty()) { 1172 if (Instruction *I = dyn_cast<Instruction>(V)) 1173 DeadInstructions.push_back(I); 1174 } 1175 } 1176 1177 for (Instruction *I : DeadInstructions) 1178 RecursivelyDeleteTriviallyDeadInstructions(I); 1179 1180 return true; 1181 } 1182 1183 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1184 return new InferAddressSpaces(AddressSpace); 1185 } 1186