1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/None.h" 96 #include "llvm/ADT/Optional.h" 97 #include "llvm/ADT/SetVector.h" 98 #include "llvm/ADT/SmallVector.h" 99 #include "llvm/Analysis/TargetTransformInfo.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Function.h" 104 #include "llvm/IR/IRBuilder.h" 105 #include "llvm/IR/InstIterator.h" 106 #include "llvm/IR/Instruction.h" 107 #include "llvm/IR/Instructions.h" 108 #include "llvm/IR/IntrinsicInst.h" 109 #include "llvm/IR/Intrinsics.h" 110 #include "llvm/IR/LLVMContext.h" 111 #include "llvm/IR/Operator.h" 112 #include "llvm/IR/Type.h" 113 #include "llvm/IR/Use.h" 114 #include "llvm/IR/User.h" 115 #include "llvm/IR/Value.h" 116 #include "llvm/IR/ValueHandle.h" 117 #include "llvm/Pass.h" 118 #include "llvm/Support/Casting.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Scalar.h" 124 #include "llvm/Transforms/Utils/Local.h" 125 #include "llvm/Transforms/Utils/ValueMapper.h" 126 #include <cassert> 127 #include <iterator> 128 #include <limits> 129 #include <utility> 130 #include <vector> 131 132 #define DEBUG_TYPE "infer-address-spaces" 133 134 using namespace llvm; 135 136 static const unsigned UninitializedAddressSpace = 137 std::numeric_limits<unsigned>::max(); 138 139 namespace { 140 141 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 142 143 /// \brief InferAddressSpaces 144 class InferAddressSpaces : public FunctionPass { 145 /// Target specific address space which uses of should be replaced if 146 /// possible. 147 unsigned FlatAddrSpace; 148 149 public: 150 static char ID; 151 152 InferAddressSpaces() : FunctionPass(ID) {} 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.setPreservesCFG(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 } 158 159 bool runOnFunction(Function &F) override; 160 161 private: 162 // Returns the new address space of V if updated; otherwise, returns None. 163 Optional<unsigned> 164 updateAddressSpace(const Value &V, 165 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 166 167 // Tries to infer the specific address space of each address expression in 168 // Postorder. 169 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 170 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 171 172 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 173 174 // Changes the flat address expressions in function F to point to specific 175 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 176 // all flat expressions in the use-def graph of function F. 177 bool rewriteWithNewAddressSpaces( 178 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 179 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 180 181 void appendsFlatAddressExpressionToPostorderStack( 182 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 183 DenseSet<Value *> &Visited) const; 184 185 bool rewriteIntrinsicOperands(IntrinsicInst *II, 186 Value *OldV, Value *NewV) const; 187 void collectRewritableIntrinsicOperands( 188 IntrinsicInst *II, 189 std::vector<std::pair<Value *, bool>> &PostorderStack, 190 DenseSet<Value *> &Visited) const; 191 192 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 193 194 Value *cloneValueWithNewAddressSpace( 195 Value *V, unsigned NewAddrSpace, 196 const ValueToValueMapTy &ValueWithNewAddrSpace, 197 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 198 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 199 }; 200 201 } // end anonymous namespace 202 203 char InferAddressSpaces::ID = 0; 204 205 namespace llvm { 206 207 void initializeInferAddressSpacesPass(PassRegistry &); 208 209 } // end namespace llvm 210 211 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 212 false, false) 213 214 // Returns true if V is an address expression. 215 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 216 // getelementptr operators. 217 static bool isAddressExpression(const Value &V) { 218 if (!isa<Operator>(V)) 219 return false; 220 221 switch (cast<Operator>(V).getOpcode()) { 222 case Instruction::PHI: 223 case Instruction::BitCast: 224 case Instruction::AddrSpaceCast: 225 case Instruction::GetElementPtr: 226 case Instruction::Select: 227 return true; 228 default: 229 return false; 230 } 231 } 232 233 // Returns the pointer operands of V. 234 // 235 // Precondition: V is an address expression. 236 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 237 const Operator &Op = cast<Operator>(V); 238 switch (Op.getOpcode()) { 239 case Instruction::PHI: { 240 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 241 return SmallVector<Value *, 2>(IncomingValues.begin(), 242 IncomingValues.end()); 243 } 244 case Instruction::BitCast: 245 case Instruction::AddrSpaceCast: 246 case Instruction::GetElementPtr: 247 return {Op.getOperand(0)}; 248 case Instruction::Select: 249 return {Op.getOperand(1), Op.getOperand(2)}; 250 default: 251 llvm_unreachable("Unexpected instruction type."); 252 } 253 } 254 255 // TODO: Move logic to TTI? 256 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 257 Value *OldV, 258 Value *NewV) const { 259 Module *M = II->getParent()->getParent()->getParent(); 260 261 switch (II->getIntrinsicID()) { 262 case Intrinsic::amdgcn_atomic_inc: 263 case Intrinsic::amdgcn_atomic_dec:{ 264 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 265 if (!IsVolatile || !IsVolatile->isZero()) 266 return false; 267 268 LLVM_FALLTHROUGH; 269 } 270 case Intrinsic::objectsize: { 271 Type *DestTy = II->getType(); 272 Type *SrcTy = NewV->getType(); 273 Function *NewDecl = 274 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 275 II->setArgOperand(0, NewV); 276 II->setCalledFunction(NewDecl); 277 return true; 278 } 279 default: 280 return false; 281 } 282 } 283 284 // TODO: Move logic to TTI? 285 void InferAddressSpaces::collectRewritableIntrinsicOperands( 286 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 287 DenseSet<Value *> &Visited) const { 288 switch (II->getIntrinsicID()) { 289 case Intrinsic::objectsize: 290 case Intrinsic::amdgcn_atomic_inc: 291 case Intrinsic::amdgcn_atomic_dec: 292 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 293 PostorderStack, Visited); 294 break; 295 default: 296 break; 297 } 298 } 299 300 // Returns all flat address expressions in function F. The elements are 301 // If V is an unvisited flat address expression, appends V to PostorderStack 302 // and marks it as visited. 303 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 304 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 305 DenseSet<Value *> &Visited) const { 306 assert(V->getType()->isPointerTy()); 307 308 // Generic addressing expressions may be hidden in nested constant 309 // expressions. 310 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 311 // TODO: Look in non-address parts, like icmp operands. 312 if (isAddressExpression(*CE) && Visited.insert(CE).second) 313 PostorderStack.push_back(std::make_pair(CE, false)); 314 315 return; 316 } 317 318 if (isAddressExpression(*V) && 319 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 320 if (Visited.insert(V).second) { 321 PostorderStack.push_back(std::make_pair(V, false)); 322 323 Operator *Op = cast<Operator>(V); 324 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 325 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 326 if (isAddressExpression(*CE) && Visited.insert(CE).second) 327 PostorderStack.emplace_back(CE, false); 328 } 329 } 330 } 331 } 332 } 333 334 // Returns all flat address expressions in function F. The elements are ordered 335 // ordered in postorder. 336 std::vector<WeakTrackingVH> 337 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 338 // This function implements a non-recursive postorder traversal of a partial 339 // use-def graph of function F. 340 std::vector<std::pair<Value *, bool>> PostorderStack; 341 // The set of visited expressions. 342 DenseSet<Value *> Visited; 343 344 auto PushPtrOperand = [&](Value *Ptr) { 345 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 346 Visited); 347 }; 348 349 // Look at operations that may be interesting accelerate by moving to a known 350 // address space. We aim at generating after loads and stores, but pure 351 // addressing calculations may also be faster. 352 for (Instruction &I : instructions(F)) { 353 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 354 if (!GEP->getType()->isVectorTy()) 355 PushPtrOperand(GEP->getPointerOperand()); 356 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 357 PushPtrOperand(LI->getPointerOperand()); 358 else if (auto *SI = dyn_cast<StoreInst>(&I)) 359 PushPtrOperand(SI->getPointerOperand()); 360 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 361 PushPtrOperand(RMW->getPointerOperand()); 362 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 363 PushPtrOperand(CmpX->getPointerOperand()); 364 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 365 // For memset/memcpy/memmove, any pointer operand can be replaced. 366 PushPtrOperand(MI->getRawDest()); 367 368 // Handle 2nd operand for memcpy/memmove. 369 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 370 PushPtrOperand(MTI->getRawSource()); 371 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 372 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 373 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 374 // FIXME: Handle vectors of pointers 375 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 376 PushPtrOperand(Cmp->getOperand(0)); 377 PushPtrOperand(Cmp->getOperand(1)); 378 } 379 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 380 if (!ASC->getType()->isVectorTy()) 381 PushPtrOperand(ASC->getPointerOperand()); 382 } 383 } 384 385 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 386 while (!PostorderStack.empty()) { 387 Value *TopVal = PostorderStack.back().first; 388 // If the operands of the expression on the top are already explored, 389 // adds that expression to the resultant postorder. 390 if (PostorderStack.back().second) { 391 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 392 Postorder.push_back(TopVal); 393 PostorderStack.pop_back(); 394 continue; 395 } 396 // Otherwise, adds its operands to the stack and explores them. 397 PostorderStack.back().second = true; 398 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 399 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 400 Visited); 401 } 402 } 403 return Postorder; 404 } 405 406 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 407 // of OperandUse.get() in the new address space. If the clone is not ready yet, 408 // returns an undef in the new address space as a placeholder. 409 static Value *operandWithNewAddressSpaceOrCreateUndef( 410 const Use &OperandUse, unsigned NewAddrSpace, 411 const ValueToValueMapTy &ValueWithNewAddrSpace, 412 SmallVectorImpl<const Use *> *UndefUsesToFix) { 413 Value *Operand = OperandUse.get(); 414 415 Type *NewPtrTy = 416 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 417 418 if (Constant *C = dyn_cast<Constant>(Operand)) 419 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 420 421 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 422 return NewOperand; 423 424 UndefUsesToFix->push_back(&OperandUse); 425 return UndefValue::get(NewPtrTy); 426 } 427 428 // Returns a clone of `I` with its operands converted to those specified in 429 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 430 // operand whose address space needs to be modified might not exist in 431 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 432 // adds that operand use to UndefUsesToFix so that caller can fix them later. 433 // 434 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 435 // from a pointer whose type already matches. Therefore, this function returns a 436 // Value* instead of an Instruction*. 437 static Value *cloneInstructionWithNewAddressSpace( 438 Instruction *I, unsigned NewAddrSpace, 439 const ValueToValueMapTy &ValueWithNewAddrSpace, 440 SmallVectorImpl<const Use *> *UndefUsesToFix) { 441 Type *NewPtrType = 442 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 443 444 if (I->getOpcode() == Instruction::AddrSpaceCast) { 445 Value *Src = I->getOperand(0); 446 // Because `I` is flat, the source address space must be specific. 447 // Therefore, the inferred address space must be the source space, according 448 // to our algorithm. 449 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 450 if (Src->getType() != NewPtrType) 451 return new BitCastInst(Src, NewPtrType); 452 return Src; 453 } 454 455 // Computes the converted pointer operands. 456 SmallVector<Value *, 4> NewPointerOperands; 457 for (const Use &OperandUse : I->operands()) { 458 if (!OperandUse.get()->getType()->isPointerTy()) 459 NewPointerOperands.push_back(nullptr); 460 else 461 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 462 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 463 } 464 465 switch (I->getOpcode()) { 466 case Instruction::BitCast: 467 return new BitCastInst(NewPointerOperands[0], NewPtrType); 468 case Instruction::PHI: { 469 assert(I->getType()->isPointerTy()); 470 PHINode *PHI = cast<PHINode>(I); 471 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 472 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 473 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 474 NewPHI->addIncoming(NewPointerOperands[OperandNo], 475 PHI->getIncomingBlock(Index)); 476 } 477 return NewPHI; 478 } 479 case Instruction::GetElementPtr: { 480 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 481 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 482 GEP->getSourceElementType(), NewPointerOperands[0], 483 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 484 NewGEP->setIsInBounds(GEP->isInBounds()); 485 return NewGEP; 486 } 487 case Instruction::Select: 488 assert(I->getType()->isPointerTy()); 489 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 490 NewPointerOperands[2], "", nullptr, I); 491 default: 492 llvm_unreachable("Unexpected opcode"); 493 } 494 } 495 496 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 497 // constant expression `CE` with its operands replaced as specified in 498 // ValueWithNewAddrSpace. 499 static Value *cloneConstantExprWithNewAddressSpace( 500 ConstantExpr *CE, unsigned NewAddrSpace, 501 const ValueToValueMapTy &ValueWithNewAddrSpace) { 502 Type *TargetType = 503 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 504 505 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 506 // Because CE is flat, the source address space must be specific. 507 // Therefore, the inferred address space must be the source space according 508 // to our algorithm. 509 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 510 NewAddrSpace); 511 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 512 } 513 514 if (CE->getOpcode() == Instruction::BitCast) { 515 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 516 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 517 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 518 } 519 520 if (CE->getOpcode() == Instruction::Select) { 521 Constant *Src0 = CE->getOperand(1); 522 Constant *Src1 = CE->getOperand(2); 523 if (Src0->getType()->getPointerAddressSpace() == 524 Src1->getType()->getPointerAddressSpace()) { 525 526 return ConstantExpr::getSelect( 527 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 528 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 529 } 530 } 531 532 // Computes the operands of the new constant expression. 533 bool IsNew = false; 534 SmallVector<Constant *, 4> NewOperands; 535 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 536 Constant *Operand = CE->getOperand(Index); 537 // If the address space of `Operand` needs to be modified, the new operand 538 // with the new address space should already be in ValueWithNewAddrSpace 539 // because (1) the constant expressions we consider (i.e. addrspacecast, 540 // bitcast, and getelementptr) do not incur cycles in the data flow graph 541 // and (2) this function is called on constant expressions in postorder. 542 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 543 IsNew = true; 544 NewOperands.push_back(cast<Constant>(NewOperand)); 545 } else { 546 // Otherwise, reuses the old operand. 547 NewOperands.push_back(Operand); 548 } 549 } 550 551 // If !IsNew, we will replace the Value with itself. However, replaced values 552 // are assumed to wrapped in a addrspace cast later so drop it now. 553 if (!IsNew) 554 return nullptr; 555 556 if (CE->getOpcode() == Instruction::GetElementPtr) { 557 // Needs to specify the source type while constructing a getelementptr 558 // constant expression. 559 return CE->getWithOperands( 560 NewOperands, TargetType, /*OnlyIfReduced=*/false, 561 NewOperands[0]->getType()->getPointerElementType()); 562 } 563 564 return CE->getWithOperands(NewOperands, TargetType); 565 } 566 567 // Returns a clone of the value `V`, with its operands replaced as specified in 568 // ValueWithNewAddrSpace. This function is called on every flat address 569 // expression whose address space needs to be modified, in postorder. 570 // 571 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 572 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 573 Value *V, unsigned NewAddrSpace, 574 const ValueToValueMapTy &ValueWithNewAddrSpace, 575 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 576 // All values in Postorder are flat address expressions. 577 assert(isAddressExpression(*V) && 578 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 579 580 if (Instruction *I = dyn_cast<Instruction>(V)) { 581 Value *NewV = cloneInstructionWithNewAddressSpace( 582 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 583 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 584 if (NewI->getParent() == nullptr) { 585 NewI->insertBefore(I); 586 NewI->takeName(I); 587 } 588 } 589 return NewV; 590 } 591 592 return cloneConstantExprWithNewAddressSpace( 593 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 594 } 595 596 // Defines the join operation on the address space lattice (see the file header 597 // comments). 598 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 599 unsigned AS2) const { 600 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 601 return FlatAddrSpace; 602 603 if (AS1 == UninitializedAddressSpace) 604 return AS2; 605 if (AS2 == UninitializedAddressSpace) 606 return AS1; 607 608 // The join of two different specific address spaces is flat. 609 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 610 } 611 612 bool InferAddressSpaces::runOnFunction(Function &F) { 613 if (skipFunction(F)) 614 return false; 615 616 const TargetTransformInfo &TTI = 617 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 618 FlatAddrSpace = TTI.getFlatAddressSpace(); 619 if (FlatAddrSpace == UninitializedAddressSpace) 620 return false; 621 622 // Collects all flat address expressions in postorder. 623 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 624 625 // Runs a data-flow analysis to refine the address spaces of every expression 626 // in Postorder. 627 ValueToAddrSpaceMapTy InferredAddrSpace; 628 inferAddressSpaces(Postorder, &InferredAddrSpace); 629 630 // Changes the address spaces of the flat address expressions who are inferred 631 // to point to a specific address space. 632 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F); 633 } 634 635 // Constants need to be tracked through RAUW to handle cases with nested 636 // constant expressions, so wrap values in WeakTrackingVH. 637 void InferAddressSpaces::inferAddressSpaces( 638 ArrayRef<WeakTrackingVH> Postorder, 639 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 640 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 641 // Initially, all expressions are in the uninitialized address space. 642 for (Value *V : Postorder) 643 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 644 645 while (!Worklist.empty()) { 646 Value *V = Worklist.pop_back_val(); 647 648 // Tries to update the address space of the stack top according to the 649 // address spaces of its operands. 650 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 651 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 652 if (!NewAS.hasValue()) 653 continue; 654 // If any updates are made, grabs its users to the worklist because 655 // their address spaces can also be possibly updated. 656 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 657 (*InferredAddrSpace)[V] = NewAS.getValue(); 658 659 for (Value *User : V->users()) { 660 // Skip if User is already in the worklist. 661 if (Worklist.count(User)) 662 continue; 663 664 auto Pos = InferredAddrSpace->find(User); 665 // Our algorithm only updates the address spaces of flat address 666 // expressions, which are those in InferredAddrSpace. 667 if (Pos == InferredAddrSpace->end()) 668 continue; 669 670 // Function updateAddressSpace moves the address space down a lattice 671 // path. Therefore, nothing to do if User is already inferred as flat (the 672 // bottom element in the lattice). 673 if (Pos->second == FlatAddrSpace) 674 continue; 675 676 Worklist.insert(User); 677 } 678 } 679 } 680 681 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 682 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 683 assert(InferredAddrSpace.count(&V)); 684 685 // The new inferred address space equals the join of the address spaces 686 // of all its pointer operands. 687 unsigned NewAS = UninitializedAddressSpace; 688 689 const Operator &Op = cast<Operator>(V); 690 if (Op.getOpcode() == Instruction::Select) { 691 Value *Src0 = Op.getOperand(1); 692 Value *Src1 = Op.getOperand(2); 693 694 auto I = InferredAddrSpace.find(Src0); 695 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 696 I->second : Src0->getType()->getPointerAddressSpace(); 697 698 auto J = InferredAddrSpace.find(Src1); 699 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 700 J->second : Src1->getType()->getPointerAddressSpace(); 701 702 auto *C0 = dyn_cast<Constant>(Src0); 703 auto *C1 = dyn_cast<Constant>(Src1); 704 705 // If one of the inputs is a constant, we may be able to do a constant 706 // addrspacecast of it. Defer inferring the address space until the input 707 // address space is known. 708 if ((C1 && Src0AS == UninitializedAddressSpace) || 709 (C0 && Src1AS == UninitializedAddressSpace)) 710 return None; 711 712 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 713 NewAS = Src1AS; 714 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 715 NewAS = Src0AS; 716 else 717 NewAS = joinAddressSpaces(Src0AS, Src1AS); 718 } else { 719 for (Value *PtrOperand : getPointerOperands(V)) { 720 auto I = InferredAddrSpace.find(PtrOperand); 721 unsigned OperandAS = I != InferredAddrSpace.end() ? 722 I->second : PtrOperand->getType()->getPointerAddressSpace(); 723 724 // join(flat, *) = flat. So we can break if NewAS is already flat. 725 NewAS = joinAddressSpaces(NewAS, OperandAS); 726 if (NewAS == FlatAddrSpace) 727 break; 728 } 729 } 730 731 unsigned OldAS = InferredAddrSpace.lookup(&V); 732 assert(OldAS != FlatAddrSpace); 733 if (OldAS == NewAS) 734 return None; 735 return NewAS; 736 } 737 738 /// \p returns true if \p U is the pointer operand of a memory instruction with 739 /// a single pointer operand that can have its address space changed by simply 740 /// mutating the use to a new value. If the memory instruction is volatile, 741 /// return true only if the target allows the memory instruction to be volatile 742 /// in the new address space. 743 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 744 Use &U, unsigned AddrSpace) { 745 User *Inst = U.getUser(); 746 unsigned OpNo = U.getOperandNo(); 747 bool VolatileIsAllowed = false; 748 if (auto *I = dyn_cast<Instruction>(Inst)) 749 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 750 751 if (auto *LI = dyn_cast<LoadInst>(Inst)) 752 return OpNo == LoadInst::getPointerOperandIndex() && 753 (VolatileIsAllowed || !LI->isVolatile()); 754 755 if (auto *SI = dyn_cast<StoreInst>(Inst)) 756 return OpNo == StoreInst::getPointerOperandIndex() && 757 (VolatileIsAllowed || !SI->isVolatile()); 758 759 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 760 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 761 (VolatileIsAllowed || !RMW->isVolatile()); 762 763 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 764 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 765 (VolatileIsAllowed || !CmpX->isVolatile()); 766 767 return false; 768 } 769 770 /// Update memory intrinsic uses that require more complex processing than 771 /// simple memory instructions. Thse require re-mangling and may have multiple 772 /// pointer operands. 773 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 774 Value *NewV) { 775 IRBuilder<> B(MI); 776 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 777 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 778 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 779 780 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 781 B.CreateMemSet(NewV, MSI->getValue(), 782 MSI->getLength(), MSI->getAlignment(), 783 false, // isVolatile 784 TBAA, ScopeMD, NoAliasMD); 785 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 786 Value *Src = MTI->getRawSource(); 787 Value *Dest = MTI->getRawDest(); 788 789 // Be careful in case this is a self-to-self copy. 790 if (Src == OldV) 791 Src = NewV; 792 793 if (Dest == OldV) 794 Dest = NewV; 795 796 if (isa<MemCpyInst>(MTI)) { 797 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 798 B.CreateMemCpy(Dest, Src, MTI->getLength(), 799 MTI->getAlignment(), 800 false, // isVolatile 801 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 802 } else { 803 assert(isa<MemMoveInst>(MTI)); 804 B.CreateMemMove(Dest, Src, MTI->getLength(), 805 MTI->getAlignment(), 806 false, // isVolatile 807 TBAA, ScopeMD, NoAliasMD); 808 } 809 } else 810 llvm_unreachable("unhandled MemIntrinsic"); 811 812 MI->eraseFromParent(); 813 return true; 814 } 815 816 // \p returns true if it is OK to change the address space of constant \p C with 817 // a ConstantExpr addrspacecast. 818 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 819 assert(NewAS != UninitializedAddressSpace); 820 821 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 822 if (SrcAS == NewAS || isa<UndefValue>(C)) 823 return true; 824 825 // Prevent illegal casts between different non-flat address spaces. 826 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 827 return false; 828 829 if (isa<ConstantPointerNull>(C)) 830 return true; 831 832 if (auto *Op = dyn_cast<Operator>(C)) { 833 // If we already have a constant addrspacecast, it should be safe to cast it 834 // off. 835 if (Op->getOpcode() == Instruction::AddrSpaceCast) 836 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 837 838 if (Op->getOpcode() == Instruction::IntToPtr && 839 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 840 return true; 841 } 842 843 return false; 844 } 845 846 static Value::use_iterator skipToNextUser(Value::use_iterator I, 847 Value::use_iterator End) { 848 User *CurUser = I->getUser(); 849 ++I; 850 851 while (I != End && I->getUser() == CurUser) 852 ++I; 853 854 return I; 855 } 856 857 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 858 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 859 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 860 // For each address expression to be modified, creates a clone of it with its 861 // pointer operands converted to the new address space. Since the pointer 862 // operands are converted, the clone is naturally in the new address space by 863 // construction. 864 ValueToValueMapTy ValueWithNewAddrSpace; 865 SmallVector<const Use *, 32> UndefUsesToFix; 866 for (Value* V : Postorder) { 867 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 868 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 869 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 870 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 871 } 872 } 873 874 if (ValueWithNewAddrSpace.empty()) 875 return false; 876 877 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 878 for (const Use *UndefUse : UndefUsesToFix) { 879 User *V = UndefUse->getUser(); 880 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 881 unsigned OperandNo = UndefUse->getOperandNo(); 882 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 883 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 884 } 885 886 SmallVector<Instruction *, 16> DeadInstructions; 887 888 // Replaces the uses of the old address expressions with the new ones. 889 for (const WeakTrackingVH &WVH : Postorder) { 890 assert(WVH && "value was unexpectedly deleted"); 891 Value *V = WVH; 892 Value *NewV = ValueWithNewAddrSpace.lookup(V); 893 if (NewV == nullptr) 894 continue; 895 896 DEBUG(dbgs() << "Replacing the uses of " << *V 897 << "\n with\n " << *NewV << '\n'); 898 899 if (Constant *C = dyn_cast<Constant>(V)) { 900 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 901 C->getType()); 902 if (C != Replace) { 903 DEBUG(dbgs() << "Inserting replacement const cast: " 904 << Replace << ": " << *Replace << '\n'); 905 C->replaceAllUsesWith(Replace); 906 V = Replace; 907 } 908 } 909 910 Value::use_iterator I, E, Next; 911 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 912 Use &U = *I; 913 914 // Some users may see the same pointer operand in multiple operands. Skip 915 // to the next instruction. 916 I = skipToNextUser(I, E); 917 918 if (isSimplePointerUseValidToReplace( 919 TTI, U, V->getType()->getPointerAddressSpace())) { 920 // If V is used as the pointer operand of a compatible memory operation, 921 // sets the pointer operand to NewV. This replacement does not change 922 // the element type, so the resultant load/store is still valid. 923 U.set(NewV); 924 continue; 925 } 926 927 User *CurUser = U.getUser(); 928 // Handle more complex cases like intrinsic that need to be remangled. 929 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 930 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 931 continue; 932 } 933 934 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 935 if (rewriteIntrinsicOperands(II, V, NewV)) 936 continue; 937 } 938 939 if (isa<Instruction>(CurUser)) { 940 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 941 // If we can infer that both pointers are in the same addrspace, 942 // transform e.g. 943 // %cmp = icmp eq float* %p, %q 944 // into 945 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 946 947 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 948 int SrcIdx = U.getOperandNo(); 949 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 950 Value *OtherSrc = Cmp->getOperand(OtherIdx); 951 952 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 953 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 954 Cmp->setOperand(OtherIdx, OtherNewV); 955 Cmp->setOperand(SrcIdx, NewV); 956 continue; 957 } 958 } 959 960 // Even if the type mismatches, we can cast the constant. 961 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 962 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 963 Cmp->setOperand(SrcIdx, NewV); 964 Cmp->setOperand(OtherIdx, 965 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 966 continue; 967 } 968 } 969 } 970 971 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 972 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 973 if (ASC->getDestAddressSpace() == NewAS) { 974 ASC->replaceAllUsesWith(NewV); 975 DeadInstructions.push_back(ASC); 976 continue; 977 } 978 } 979 980 // Otherwise, replaces the use with flat(NewV). 981 if (Instruction *I = dyn_cast<Instruction>(V)) { 982 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 983 while (isa<PHINode>(InsertPos)) 984 ++InsertPos; 985 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 986 } else { 987 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 988 V->getType())); 989 } 990 } 991 } 992 993 if (V->use_empty()) { 994 if (Instruction *I = dyn_cast<Instruction>(V)) 995 DeadInstructions.push_back(I); 996 } 997 } 998 999 for (Instruction *I : DeadInstructions) 1000 RecursivelyDeleteTriviallyDeadInstructions(I); 1001 1002 return true; 1003 } 1004 1005 FunctionPass *llvm::createInferAddressSpacesPass() { 1006 return new InferAddressSpaces(); 1007 } 1008