1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // CUDA C/C++ includes memory space designation as variable type qualifers (such 11 // as __global__ and __shared__). Knowing the space of a memory access allows 12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 13 // shared memory can be translated to `ld.shared` which is roughly 10% faster 14 // than a generic `ld` on an NVIDIA Tesla K40c. 15 // 16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 17 // compilers must infer the memory space of an address expression from 18 // type-qualified variables. 19 // 20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 22 // places only type-qualified variables in specific address spaces, and then 23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 24 // (so-called the generic address space) for other instructions to use. 25 // 26 // For example, the Clang translates the following CUDA code 27 // __shared__ float a[10]; 28 // float v = a[i]; 29 // to 30 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 31 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 32 // %v = load float, float* %1 ; emits ld.f32 33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 34 // redirected to %0 (the generic version of @a). 35 // 36 // The optimization implemented in this file propagates specific address spaces 37 // from type-qualified variable declarations to its users. For example, it 38 // optimizes the above IR to 39 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 40 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 42 // codegen is able to emit ld.shared.f32 for %v. 43 // 44 // Address space inference works in two steps. First, it uses a data-flow 45 // analysis to infer as many generic pointers as possible to point to only one 46 // specific address space. In the above example, it can prove that %1 only 47 // points to addrspace(3). This algorithm was published in 48 // CUDA: Compiling and optimizing for a GPU platform 49 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 50 // ICCS 2012 51 // 52 // Then, address space inference replaces all refinable generic pointers with 53 // equivalent specific pointers. 54 // 55 // The major challenge of implementing this optimization is handling PHINodes, 56 // which may create loops in the data flow graph. This brings two complications. 57 // 58 // First, the data flow analysis in Step 1 needs to be circular. For example, 59 // %generic.input = addrspacecast float addrspace(3)* %input to float* 60 // loop: 61 // %y = phi [ %generic.input, %y2 ] 62 // %y2 = getelementptr %y, 1 63 // %v = load %y2 64 // br ..., label %loop, ... 65 // proving %y specific requires proving both %generic.input and %y2 specific, 66 // but proving %y2 specific circles back to %y. To address this complication, 67 // the data flow analysis operates on a lattice: 68 // uninitialized > specific address spaces > generic. 69 // All address expressions (our implementation only considers phi, bitcast, 70 // addrspacecast, and getelementptr) start with the uninitialized address space. 71 // The monotone transfer function moves the address space of a pointer down a 72 // lattice path from uninitialized to specific and then to generic. A join 73 // operation of two different specific address spaces pushes the expression down 74 // to the generic address space. The analysis completes once it reaches a fixed 75 // point. 76 // 77 // Second, IR rewriting in Step 2 also needs to be circular. For example, 78 // converting %y to addrspace(3) requires the compiler to know the converted 79 // %y2, but converting %y2 needs the converted %y. To address this complication, 80 // we break these cycles using "undef" placeholders. When converting an 81 // instruction `I` to a new address space, if its operand `Op` is not converted 82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 83 // For instance, our algorithm first converts %y to 84 // %y' = phi float addrspace(3)* [ %input, undef ] 85 // Then, it converts %y2 to 86 // %y2' = getelementptr %y', 1 87 // Finally, it fixes the undef in %y' so that 88 // %y' = phi float addrspace(3)* [ %input, %y2' ] 89 // 90 //===----------------------------------------------------------------------===// 91 92 #include "llvm/Transforms/Scalar.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/Optional.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/IR/Function.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/Instructions.h" 100 #include "llvm/IR/Operator.h" 101 #include "llvm/Support/Debug.h" 102 #include "llvm/Support/raw_ostream.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include "llvm/Transforms/Utils/ValueMapper.h" 105 106 #define DEBUG_TYPE "infer-address-spaces" 107 108 using namespace llvm; 109 110 namespace { 111 static const unsigned UninitializedAddressSpace = ~0u; 112 113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 114 115 /// \brief InferAddressSpaces 116 class InferAddressSpaces : public FunctionPass { 117 /// Target specific address space which uses of should be replaced if 118 /// possible. 119 unsigned FlatAddrSpace; 120 121 public: 122 static char ID; 123 124 InferAddressSpaces() : FunctionPass(ID) {} 125 126 void getAnalysisUsage(AnalysisUsage &AU) const override { 127 AU.setPreservesCFG(); 128 AU.addRequired<TargetTransformInfoWrapperPass>(); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 private: 134 // Returns the new address space of V if updated; otherwise, returns None. 135 Optional<unsigned> 136 updateAddressSpace(const Value &V, 137 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 138 139 // Tries to infer the specific address space of each address expression in 140 // Postorder. 141 void inferAddressSpaces(const std::vector<Value *> &Postorder, 142 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 143 144 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 145 146 // Changes the flat address expressions in function F to point to specific 147 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 148 // all flat expressions in the use-def graph of function F. 149 bool 150 rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder, 151 const ValueToAddrSpaceMapTy &InferredAddrSpace, 152 Function *F) const; 153 154 void appendsFlatAddressExpressionToPostorderStack( 155 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 156 DenseSet<Value *> *Visited) const; 157 158 bool rewriteIntrinsicOperands(IntrinsicInst *II, 159 Value *OldV, Value *NewV) const; 160 void collectRewritableIntrinsicOperands( 161 IntrinsicInst *II, 162 std::vector<std::pair<Value *, bool>> *PostorderStack, 163 DenseSet<Value *> *Visited) const; 164 165 std::vector<Value *> collectFlatAddressExpressions(Function &F) const; 166 167 Value *cloneValueWithNewAddressSpace( 168 Value *V, unsigned NewAddrSpace, 169 const ValueToValueMapTy &ValueWithNewAddrSpace, 170 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 171 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 172 }; 173 } // end anonymous namespace 174 175 char InferAddressSpaces::ID = 0; 176 177 namespace llvm { 178 void initializeInferAddressSpacesPass(PassRegistry &); 179 } 180 181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 182 false, false) 183 184 // Returns true if V is an address expression. 185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 186 // getelementptr operators. 187 static bool isAddressExpression(const Value &V) { 188 if (!isa<Operator>(V)) 189 return false; 190 191 switch (cast<Operator>(V).getOpcode()) { 192 case Instruction::PHI: 193 case Instruction::BitCast: 194 case Instruction::AddrSpaceCast: 195 case Instruction::GetElementPtr: 196 case Instruction::Select: 197 return true; 198 default: 199 return false; 200 } 201 } 202 203 // Returns the pointer operands of V. 204 // 205 // Precondition: V is an address expression. 206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 207 assert(isAddressExpression(V)); 208 const Operator &Op = cast<Operator>(V); 209 switch (Op.getOpcode()) { 210 case Instruction::PHI: { 211 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 212 return SmallVector<Value *, 2>(IncomingValues.begin(), 213 IncomingValues.end()); 214 } 215 case Instruction::BitCast: 216 case Instruction::AddrSpaceCast: 217 case Instruction::GetElementPtr: 218 return {Op.getOperand(0)}; 219 case Instruction::Select: 220 return {Op.getOperand(1), Op.getOperand(2)}; 221 default: 222 llvm_unreachable("Unexpected instruction type."); 223 } 224 } 225 226 // TODO: Move logic to TTI? 227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 228 Value *OldV, 229 Value *NewV) const { 230 Module *M = II->getParent()->getParent()->getParent(); 231 232 switch (II->getIntrinsicID()) { 233 case Intrinsic::objectsize: 234 case Intrinsic::amdgcn_atomic_inc: 235 case Intrinsic::amdgcn_atomic_dec: { 236 Type *DestTy = II->getType(); 237 Type *SrcTy = NewV->getType(); 238 Function *NewDecl = 239 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 240 II->setArgOperand(0, NewV); 241 II->setCalledFunction(NewDecl); 242 return true; 243 } 244 default: 245 return false; 246 } 247 } 248 249 // TODO: Move logic to TTI? 250 void InferAddressSpaces::collectRewritableIntrinsicOperands( 251 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack, 252 DenseSet<Value *> *Visited) const { 253 switch (II->getIntrinsicID()) { 254 case Intrinsic::objectsize: 255 case Intrinsic::amdgcn_atomic_inc: 256 case Intrinsic::amdgcn_atomic_dec: 257 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 258 PostorderStack, Visited); 259 break; 260 default: 261 break; 262 } 263 } 264 265 // Returns all flat address expressions in function F. The elements are 266 // If V is an unvisited flat address expression, appends V to PostorderStack 267 // and marks it as visited. 268 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 269 Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack, 270 DenseSet<Value *> *Visited) const { 271 assert(V->getType()->isPointerTy()); 272 if (isAddressExpression(*V) && 273 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 274 if (Visited->insert(V).second) 275 PostorderStack->push_back(std::make_pair(V, false)); 276 } 277 } 278 279 // Returns all flat address expressions in function F. The elements are ordered 280 // ordered in postorder. 281 std::vector<Value *> 282 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 283 // This function implements a non-recursive postorder traversal of a partial 284 // use-def graph of function F. 285 std::vector<std::pair<Value *, bool>> PostorderStack; 286 // The set of visited expressions. 287 DenseSet<Value *> Visited; 288 289 auto PushPtrOperand = [&](Value *Ptr) { 290 appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack, 291 &Visited); 292 }; 293 294 // We only explore address expressions that are reachable from loads and 295 // stores for now because we aim at generating faster loads and stores. 296 for (Instruction &I : instructions(F)) { 297 if (auto *LI = dyn_cast<LoadInst>(&I)) 298 PushPtrOperand(LI->getPointerOperand()); 299 else if (auto *SI = dyn_cast<StoreInst>(&I)) 300 PushPtrOperand(SI->getPointerOperand()); 301 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 302 PushPtrOperand(RMW->getPointerOperand()); 303 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 304 PushPtrOperand(CmpX->getPointerOperand()); 305 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 306 // For memset/memcpy/memmove, any pointer operand can be replaced. 307 PushPtrOperand(MI->getRawDest()); 308 309 // Handle 2nd operand for memcpy/memmove. 310 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 311 PushPtrOperand(MTI->getRawSource()); 312 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 313 collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited); 314 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 315 // FIXME: Handle vectors of pointers 316 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 317 PushPtrOperand(Cmp->getOperand(0)); 318 PushPtrOperand(Cmp->getOperand(1)); 319 } 320 } 321 } 322 323 std::vector<Value *> Postorder; // The resultant postorder. 324 while (!PostorderStack.empty()) { 325 // If the operands of the expression on the top are already explored, 326 // adds that expression to the resultant postorder. 327 if (PostorderStack.back().second) { 328 Postorder.push_back(PostorderStack.back().first); 329 PostorderStack.pop_back(); 330 continue; 331 } 332 // Otherwise, adds its operands to the stack and explores them. 333 PostorderStack.back().second = true; 334 for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) { 335 appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack, 336 &Visited); 337 } 338 } 339 return Postorder; 340 } 341 342 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 343 // of OperandUse.get() in the new address space. If the clone is not ready yet, 344 // returns an undef in the new address space as a placeholder. 345 static Value *operandWithNewAddressSpaceOrCreateUndef( 346 const Use &OperandUse, unsigned NewAddrSpace, 347 const ValueToValueMapTy &ValueWithNewAddrSpace, 348 SmallVectorImpl<const Use *> *UndefUsesToFix) { 349 Value *Operand = OperandUse.get(); 350 351 Type *NewPtrTy = 352 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 353 354 if (Constant *C = dyn_cast<Constant>(Operand)) 355 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 356 357 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 358 return NewOperand; 359 360 UndefUsesToFix->push_back(&OperandUse); 361 return UndefValue::get(NewPtrTy); 362 } 363 364 // Returns a clone of `I` with its operands converted to those specified in 365 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 366 // operand whose address space needs to be modified might not exist in 367 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 368 // adds that operand use to UndefUsesToFix so that caller can fix them later. 369 // 370 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 371 // from a pointer whose type already matches. Therefore, this function returns a 372 // Value* instead of an Instruction*. 373 static Value *cloneInstructionWithNewAddressSpace( 374 Instruction *I, unsigned NewAddrSpace, 375 const ValueToValueMapTy &ValueWithNewAddrSpace, 376 SmallVectorImpl<const Use *> *UndefUsesToFix) { 377 Type *NewPtrType = 378 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 379 380 if (I->getOpcode() == Instruction::AddrSpaceCast) { 381 Value *Src = I->getOperand(0); 382 // Because `I` is flat, the source address space must be specific. 383 // Therefore, the inferred address space must be the source space, according 384 // to our algorithm. 385 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 386 if (Src->getType() != NewPtrType) 387 return new BitCastInst(Src, NewPtrType); 388 return Src; 389 } 390 391 // Computes the converted pointer operands. 392 SmallVector<Value *, 4> NewPointerOperands; 393 for (const Use &OperandUse : I->operands()) { 394 if (!OperandUse.get()->getType()->isPointerTy()) 395 NewPointerOperands.push_back(nullptr); 396 else 397 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 398 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 399 } 400 401 switch (I->getOpcode()) { 402 case Instruction::BitCast: 403 return new BitCastInst(NewPointerOperands[0], NewPtrType); 404 case Instruction::PHI: { 405 assert(I->getType()->isPointerTy()); 406 PHINode *PHI = cast<PHINode>(I); 407 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 408 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 409 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 410 NewPHI->addIncoming(NewPointerOperands[OperandNo], 411 PHI->getIncomingBlock(Index)); 412 } 413 return NewPHI; 414 } 415 case Instruction::GetElementPtr: { 416 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 417 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 418 GEP->getSourceElementType(), NewPointerOperands[0], 419 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 420 NewGEP->setIsInBounds(GEP->isInBounds()); 421 return NewGEP; 422 } 423 case Instruction::Select: { 424 assert(I->getType()->isPointerTy()); 425 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 426 NewPointerOperands[2], "", nullptr, I); 427 } 428 default: 429 llvm_unreachable("Unexpected opcode"); 430 } 431 } 432 433 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 434 // constant expression `CE` with its operands replaced as specified in 435 // ValueWithNewAddrSpace. 436 static Value *cloneConstantExprWithNewAddressSpace( 437 ConstantExpr *CE, unsigned NewAddrSpace, 438 const ValueToValueMapTy &ValueWithNewAddrSpace) { 439 Type *TargetType = 440 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 441 442 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 443 // Because CE is flat, the source address space must be specific. 444 // Therefore, the inferred address space must be the source space according 445 // to our algorithm. 446 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 447 NewAddrSpace); 448 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 449 } 450 451 if (CE->getOpcode() == Instruction::Select) { 452 Constant *Src0 = CE->getOperand(1); 453 Constant *Src1 = CE->getOperand(2); 454 if (Src0->getType()->getPointerAddressSpace() == 455 Src1->getType()->getPointerAddressSpace()) { 456 457 return ConstantExpr::getSelect( 458 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 459 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 460 } 461 } 462 463 // Computes the operands of the new constant expression. 464 SmallVector<Constant *, 4> NewOperands; 465 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 466 Constant *Operand = CE->getOperand(Index); 467 // If the address space of `Operand` needs to be modified, the new operand 468 // with the new address space should already be in ValueWithNewAddrSpace 469 // because (1) the constant expressions we consider (i.e. addrspacecast, 470 // bitcast, and getelementptr) do not incur cycles in the data flow graph 471 // and (2) this function is called on constant expressions in postorder. 472 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 473 NewOperands.push_back(cast<Constant>(NewOperand)); 474 } else { 475 // Otherwise, reuses the old operand. 476 NewOperands.push_back(Operand); 477 } 478 } 479 480 if (CE->getOpcode() == Instruction::GetElementPtr) { 481 // Needs to specify the source type while constructing a getelementptr 482 // constant expression. 483 return CE->getWithOperands( 484 NewOperands, TargetType, /*OnlyIfReduced=*/false, 485 NewOperands[0]->getType()->getPointerElementType()); 486 } 487 488 return CE->getWithOperands(NewOperands, TargetType); 489 } 490 491 // Returns a clone of the value `V`, with its operands replaced as specified in 492 // ValueWithNewAddrSpace. This function is called on every flat address 493 // expression whose address space needs to be modified, in postorder. 494 // 495 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 496 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 497 Value *V, unsigned NewAddrSpace, 498 const ValueToValueMapTy &ValueWithNewAddrSpace, 499 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 500 // All values in Postorder are flat address expressions. 501 assert(isAddressExpression(*V) && 502 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 503 504 if (Instruction *I = dyn_cast<Instruction>(V)) { 505 Value *NewV = cloneInstructionWithNewAddressSpace( 506 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 507 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 508 if (NewI->getParent() == nullptr) { 509 NewI->insertBefore(I); 510 NewI->takeName(I); 511 } 512 } 513 return NewV; 514 } 515 516 return cloneConstantExprWithNewAddressSpace( 517 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 518 } 519 520 // Defines the join operation on the address space lattice (see the file header 521 // comments). 522 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 523 unsigned AS2) const { 524 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 525 return FlatAddrSpace; 526 527 if (AS1 == UninitializedAddressSpace) 528 return AS2; 529 if (AS2 == UninitializedAddressSpace) 530 return AS1; 531 532 // The join of two different specific address spaces is flat. 533 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 534 } 535 536 bool InferAddressSpaces::runOnFunction(Function &F) { 537 if (skipFunction(F)) 538 return false; 539 540 const TargetTransformInfo &TTI = 541 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 542 FlatAddrSpace = TTI.getFlatAddressSpace(); 543 if (FlatAddrSpace == UninitializedAddressSpace) 544 return false; 545 546 // Collects all flat address expressions in postorder. 547 std::vector<Value *> Postorder = collectFlatAddressExpressions(F); 548 549 // Runs a data-flow analysis to refine the address spaces of every expression 550 // in Postorder. 551 ValueToAddrSpaceMapTy InferredAddrSpace; 552 inferAddressSpaces(Postorder, &InferredAddrSpace); 553 554 // Changes the address spaces of the flat address expressions who are inferred 555 // to point to a specific address space. 556 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F); 557 } 558 559 void InferAddressSpaces::inferAddressSpaces( 560 const std::vector<Value *> &Postorder, 561 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 562 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 563 // Initially, all expressions are in the uninitialized address space. 564 for (Value *V : Postorder) 565 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 566 567 while (!Worklist.empty()) { 568 Value *V = Worklist.pop_back_val(); 569 570 // Tries to update the address space of the stack top according to the 571 // address spaces of its operands. 572 DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 573 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 574 if (!NewAS.hasValue()) 575 continue; 576 // If any updates are made, grabs its users to the worklist because 577 // their address spaces can also be possibly updated. 578 DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 579 (*InferredAddrSpace)[V] = NewAS.getValue(); 580 581 for (Value *User : V->users()) { 582 // Skip if User is already in the worklist. 583 if (Worklist.count(User)) 584 continue; 585 586 auto Pos = InferredAddrSpace->find(User); 587 // Our algorithm only updates the address spaces of flat address 588 // expressions, which are those in InferredAddrSpace. 589 if (Pos == InferredAddrSpace->end()) 590 continue; 591 592 // Function updateAddressSpace moves the address space down a lattice 593 // path. Therefore, nothing to do if User is already inferred as flat (the 594 // bottom element in the lattice). 595 if (Pos->second == FlatAddrSpace) 596 continue; 597 598 Worklist.insert(User); 599 } 600 } 601 } 602 603 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 604 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 605 assert(InferredAddrSpace.count(&V)); 606 607 // The new inferred address space equals the join of the address spaces 608 // of all its pointer operands. 609 unsigned NewAS = UninitializedAddressSpace; 610 611 const Operator &Op = cast<Operator>(V); 612 if (Op.getOpcode() == Instruction::Select) { 613 Value *Src0 = Op.getOperand(1); 614 Value *Src1 = Op.getOperand(2); 615 616 auto I = InferredAddrSpace.find(Src0); 617 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 618 I->second : Src0->getType()->getPointerAddressSpace(); 619 620 auto J = InferredAddrSpace.find(Src1); 621 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 622 J->second : Src1->getType()->getPointerAddressSpace(); 623 624 auto *C0 = dyn_cast<Constant>(Src0); 625 auto *C1 = dyn_cast<Constant>(Src1); 626 627 // If one of the inputs is a constant, we may be able to do a constant 628 // addrspacecast of it. Defer inferring the address space until the input 629 // address space is known. 630 if ((C1 && Src0AS == UninitializedAddressSpace) || 631 (C0 && Src1AS == UninitializedAddressSpace)) 632 return None; 633 634 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 635 NewAS = Src1AS; 636 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 637 NewAS = Src0AS; 638 else 639 NewAS = joinAddressSpaces(Src0AS, Src1AS); 640 } else { 641 for (Value *PtrOperand : getPointerOperands(V)) { 642 auto I = InferredAddrSpace.find(PtrOperand); 643 unsigned OperandAS = I != InferredAddrSpace.end() ? 644 I->second : PtrOperand->getType()->getPointerAddressSpace(); 645 646 // join(flat, *) = flat. So we can break if NewAS is already flat. 647 NewAS = joinAddressSpaces(NewAS, OperandAS); 648 if (NewAS == FlatAddrSpace) 649 break; 650 } 651 } 652 653 unsigned OldAS = InferredAddrSpace.lookup(&V); 654 assert(OldAS != FlatAddrSpace); 655 if (OldAS == NewAS) 656 return None; 657 return NewAS; 658 } 659 660 /// \p returns true if \p U is the pointer operand of a memory instruction with 661 /// a single pointer operand that can have its address space changed by simply 662 /// mutating the use to a new value. 663 static bool isSimplePointerUseValidToReplace(Use &U) { 664 User *Inst = U.getUser(); 665 unsigned OpNo = U.getOperandNo(); 666 667 if (auto *LI = dyn_cast<LoadInst>(Inst)) 668 return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile(); 669 670 if (auto *SI = dyn_cast<StoreInst>(Inst)) 671 return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile(); 672 673 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 674 return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile(); 675 676 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 677 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 678 !CmpX->isVolatile(); 679 } 680 681 return false; 682 } 683 684 /// Update memory intrinsic uses that require more complex processing than 685 /// simple memory instructions. Thse require re-mangling and may have multiple 686 /// pointer operands. 687 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 688 Value *NewV) { 689 IRBuilder<> B(MI); 690 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 691 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 692 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 693 694 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 695 B.CreateMemSet(NewV, MSI->getValue(), 696 MSI->getLength(), MSI->getAlignment(), 697 false, // isVolatile 698 TBAA, ScopeMD, NoAliasMD); 699 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 700 Value *Src = MTI->getRawSource(); 701 Value *Dest = MTI->getRawDest(); 702 703 // Be careful in case this is a self-to-self copy. 704 if (Src == OldV) 705 Src = NewV; 706 707 if (Dest == OldV) 708 Dest = NewV; 709 710 if (isa<MemCpyInst>(MTI)) { 711 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 712 B.CreateMemCpy(Dest, Src, MTI->getLength(), 713 MTI->getAlignment(), 714 false, // isVolatile 715 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 716 } else { 717 assert(isa<MemMoveInst>(MTI)); 718 B.CreateMemMove(Dest, Src, MTI->getLength(), 719 MTI->getAlignment(), 720 false, // isVolatile 721 TBAA, ScopeMD, NoAliasMD); 722 } 723 } else 724 llvm_unreachable("unhandled MemIntrinsic"); 725 726 MI->eraseFromParent(); 727 return true; 728 } 729 730 // \p returns true if it is OK to change the address space of constant \p C with 731 // a ConstantExpr addrspacecast. 732 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 733 assert(NewAS != UninitializedAddressSpace); 734 735 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 736 if (SrcAS == NewAS || isa<UndefValue>(C)) 737 return true; 738 739 // Prevent illegal casts between different non-flat address spaces. 740 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 741 return false; 742 743 if (isa<ConstantPointerNull>(C)) 744 return true; 745 746 if (auto *Op = dyn_cast<Operator>(C)) { 747 // If we already have a constant addrspacecast, it should be safe to cast it 748 // off. 749 if (Op->getOpcode() == Instruction::AddrSpaceCast) 750 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 751 752 if (Op->getOpcode() == Instruction::IntToPtr && 753 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 754 return true; 755 } 756 757 return false; 758 } 759 760 static Value::use_iterator skipToNextUser(Value::use_iterator I, 761 Value::use_iterator End) { 762 User *CurUser = I->getUser(); 763 ++I; 764 765 while (I != End && I->getUser() == CurUser) 766 ++I; 767 768 return I; 769 } 770 771 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 772 const std::vector<Value *> &Postorder, 773 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 774 // For each address expression to be modified, creates a clone of it with its 775 // pointer operands converted to the new address space. Since the pointer 776 // operands are converted, the clone is naturally in the new address space by 777 // construction. 778 ValueToValueMapTy ValueWithNewAddrSpace; 779 SmallVector<const Use *, 32> UndefUsesToFix; 780 for (Value* V : Postorder) { 781 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 782 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 783 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 784 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 785 } 786 } 787 788 if (ValueWithNewAddrSpace.empty()) 789 return false; 790 791 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 792 for (const Use *UndefUse : UndefUsesToFix) { 793 User *V = UndefUse->getUser(); 794 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 795 unsigned OperandNo = UndefUse->getOperandNo(); 796 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 797 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 798 } 799 800 // Replaces the uses of the old address expressions with the new ones. 801 for (Value *V : Postorder) { 802 Value *NewV = ValueWithNewAddrSpace.lookup(V); 803 if (NewV == nullptr) 804 continue; 805 806 DEBUG(dbgs() << "Replacing the uses of " << *V 807 << "\n with\n " << *NewV << '\n'); 808 809 Value::use_iterator I, E, Next; 810 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 811 Use &U = *I; 812 813 // Some users may see the same pointer operand in multiple operands. Skip 814 // to the next instruction. 815 I = skipToNextUser(I, E); 816 817 if (isSimplePointerUseValidToReplace(U)) { 818 // If V is used as the pointer operand of a compatible memory operation, 819 // sets the pointer operand to NewV. This replacement does not change 820 // the element type, so the resultant load/store is still valid. 821 U.set(NewV); 822 continue; 823 } 824 825 User *CurUser = U.getUser(); 826 // Handle more complex cases like intrinsic that need to be remangled. 827 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 828 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 829 continue; 830 } 831 832 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 833 if (rewriteIntrinsicOperands(II, V, NewV)) 834 continue; 835 } 836 837 if (isa<Instruction>(CurUser)) { 838 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 839 // If we can infer that both pointers are in the same addrspace, 840 // transform e.g. 841 // %cmp = icmp eq float* %p, %q 842 // into 843 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 844 845 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 846 int SrcIdx = U.getOperandNo(); 847 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 848 Value *OtherSrc = Cmp->getOperand(OtherIdx); 849 850 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 851 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 852 Cmp->setOperand(OtherIdx, OtherNewV); 853 Cmp->setOperand(SrcIdx, NewV); 854 continue; 855 } 856 } 857 858 // Even if the type mismatches, we can cast the constant. 859 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 860 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 861 Cmp->setOperand(SrcIdx, NewV); 862 Cmp->setOperand(OtherIdx, 863 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 864 continue; 865 } 866 } 867 } 868 869 // Otherwise, replaces the use with flat(NewV). 870 if (Instruction *I = dyn_cast<Instruction>(V)) { 871 BasicBlock::iterator InsertPos = std::next(I->getIterator()); 872 while (isa<PHINode>(InsertPos)) 873 ++InsertPos; 874 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 875 } else { 876 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 877 V->getType())); 878 } 879 } 880 } 881 882 if (V->use_empty()) 883 RecursivelyDeleteTriviallyDeadInstructions(V); 884 } 885 886 return true; 887 } 888 889 FunctionPass *llvm::createInferAddressSpacesPass() { 890 return new InferAddressSpaces(); 891 } 892