xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 300836098f6cffdeadef2d77caae0b59ed191b5d)
1 //===-- NVPTXInferAddressSpace.cpp - ---------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // CUDA C/C++ includes memory space designation as variable type qualifers (such
11 // as __global__ and __shared__). Knowing the space of a memory access allows
12 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
13 // shared memory can be translated to `ld.shared` which is roughly 10% faster
14 // than a generic `ld` on an NVIDIA Tesla K40c.
15 //
16 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
17 // compilers must infer the memory space of an address expression from
18 // type-qualified variables.
19 //
20 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
21 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
22 // places only type-qualified variables in specific address spaces, and then
23 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
24 // (so-called the generic address space) for other instructions to use.
25 //
26 // For example, the Clang translates the following CUDA code
27 //   __shared__ float a[10];
28 //   float v = a[i];
29 // to
30 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
31 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
32 //   %v = load float, float* %1 ; emits ld.f32
33 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
34 // redirected to %0 (the generic version of @a).
35 //
36 // The optimization implemented in this file propagates specific address spaces
37 // from type-qualified variable declarations to its users. For example, it
38 // optimizes the above IR to
39 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
40 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
41 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
42 // codegen is able to emit ld.shared.f32 for %v.
43 //
44 // Address space inference works in two steps. First, it uses a data-flow
45 // analysis to infer as many generic pointers as possible to point to only one
46 // specific address space. In the above example, it can prove that %1 only
47 // points to addrspace(3). This algorithm was published in
48 //   CUDA: Compiling and optimizing for a GPU platform
49 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
50 //   ICCS 2012
51 //
52 // Then, address space inference replaces all refinable generic pointers with
53 // equivalent specific pointers.
54 //
55 // The major challenge of implementing this optimization is handling PHINodes,
56 // which may create loops in the data flow graph. This brings two complications.
57 //
58 // First, the data flow analysis in Step 1 needs to be circular. For example,
59 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
60 //   loop:
61 //     %y = phi [ %generic.input, %y2 ]
62 //     %y2 = getelementptr %y, 1
63 //     %v = load %y2
64 //     br ..., label %loop, ...
65 // proving %y specific requires proving both %generic.input and %y2 specific,
66 // but proving %y2 specific circles back to %y. To address this complication,
67 // the data flow analysis operates on a lattice:
68 //   uninitialized > specific address spaces > generic.
69 // All address expressions (our implementation only considers phi, bitcast,
70 // addrspacecast, and getelementptr) start with the uninitialized address space.
71 // The monotone transfer function moves the address space of a pointer down a
72 // lattice path from uninitialized to specific and then to generic. A join
73 // operation of two different specific address spaces pushes the expression down
74 // to the generic address space. The analysis completes once it reaches a fixed
75 // point.
76 //
77 // Second, IR rewriting in Step 2 also needs to be circular. For example,
78 // converting %y to addrspace(3) requires the compiler to know the converted
79 // %y2, but converting %y2 needs the converted %y. To address this complication,
80 // we break these cycles using "undef" placeholders. When converting an
81 // instruction `I` to a new address space, if its operand `Op` is not converted
82 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
83 // For instance, our algorithm first converts %y to
84 //   %y' = phi float addrspace(3)* [ %input, undef ]
85 // Then, it converts %y2 to
86 //   %y2' = getelementptr %y', 1
87 // Finally, it fixes the undef in %y' so that
88 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
89 //
90 //===----------------------------------------------------------------------===//
91 
92 #include "llvm/Transforms/Scalar.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/Optional.h"
95 #include "llvm/ADT/SetVector.h"
96 #include "llvm/Analysis/TargetTransformInfo.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/InstIterator.h"
99 #include "llvm/IR/Instructions.h"
100 #include "llvm/IR/Operator.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include "llvm/Transforms/Utils/ValueMapper.h"
105 
106 #define DEBUG_TYPE "infer-address-spaces"
107 
108 using namespace llvm;
109 
110 namespace {
111 static const unsigned UninitializedAddressSpace = ~0u;
112 
113 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
114 
115 /// \brief InferAddressSpaces
116 class InferAddressSpaces : public FunctionPass {
117   /// Target specific address space which uses of should be replaced if
118   /// possible.
119   unsigned FlatAddrSpace;
120 
121 public:
122   static char ID;
123 
124   InferAddressSpaces() : FunctionPass(ID) {}
125 
126   void getAnalysisUsage(AnalysisUsage &AU) const override {
127     AU.setPreservesCFG();
128     AU.addRequired<TargetTransformInfoWrapperPass>();
129   }
130 
131   bool runOnFunction(Function &F) override;
132 
133 private:
134   // Returns the new address space of V if updated; otherwise, returns None.
135   Optional<unsigned>
136   updateAddressSpace(const Value &V,
137                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
138 
139   // Tries to infer the specific address space of each address expression in
140   // Postorder.
141   void inferAddressSpaces(const std::vector<Value *> &Postorder,
142                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
143 
144   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
145 
146   // Changes the flat address expressions in function F to point to specific
147   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
148   // all flat expressions in the use-def graph of function F.
149   bool
150   rewriteWithNewAddressSpaces(const std::vector<Value *> &Postorder,
151                               const ValueToAddrSpaceMapTy &InferredAddrSpace,
152                               Function *F) const;
153 
154   void appendsFlatAddressExpressionToPostorderStack(
155     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
156     DenseSet<Value *> *Visited) const;
157 
158   bool rewriteIntrinsicOperands(IntrinsicInst *II,
159                                 Value *OldV, Value *NewV) const;
160   void collectRewritableIntrinsicOperands(
161     IntrinsicInst *II,
162     std::vector<std::pair<Value *, bool>> *PostorderStack,
163     DenseSet<Value *> *Visited) const;
164 
165   std::vector<Value *> collectFlatAddressExpressions(Function &F) const;
166 
167   Value *cloneValueWithNewAddressSpace(
168     Value *V, unsigned NewAddrSpace,
169     const ValueToValueMapTy &ValueWithNewAddrSpace,
170     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
171   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
172 };
173 } // end anonymous namespace
174 
175 char InferAddressSpaces::ID = 0;
176 
177 namespace llvm {
178 void initializeInferAddressSpacesPass(PassRegistry &);
179 }
180 
181 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
182                 false, false)
183 
184 // Returns true if V is an address expression.
185 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
186 // getelementptr operators.
187 static bool isAddressExpression(const Value &V) {
188   if (!isa<Operator>(V))
189     return false;
190 
191   switch (cast<Operator>(V).getOpcode()) {
192   case Instruction::PHI:
193   case Instruction::BitCast:
194   case Instruction::AddrSpaceCast:
195   case Instruction::GetElementPtr:
196   case Instruction::Select:
197     return true;
198   default:
199     return false;
200   }
201 }
202 
203 // Returns the pointer operands of V.
204 //
205 // Precondition: V is an address expression.
206 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
207   assert(isAddressExpression(V));
208   const Operator &Op = cast<Operator>(V);
209   switch (Op.getOpcode()) {
210   case Instruction::PHI: {
211     auto IncomingValues = cast<PHINode>(Op).incoming_values();
212     return SmallVector<Value *, 2>(IncomingValues.begin(),
213                                    IncomingValues.end());
214   }
215   case Instruction::BitCast:
216   case Instruction::AddrSpaceCast:
217   case Instruction::GetElementPtr:
218     return {Op.getOperand(0)};
219   case Instruction::Select:
220     return {Op.getOperand(1), Op.getOperand(2)};
221   default:
222     llvm_unreachable("Unexpected instruction type.");
223   }
224 }
225 
226 // TODO: Move logic to TTI?
227 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
228                                                   Value *OldV,
229                                                   Value *NewV) const {
230   Module *M = II->getParent()->getParent()->getParent();
231 
232   switch (II->getIntrinsicID()) {
233   case Intrinsic::objectsize:
234   case Intrinsic::amdgcn_atomic_inc:
235   case Intrinsic::amdgcn_atomic_dec: {
236     Type *DestTy = II->getType();
237     Type *SrcTy = NewV->getType();
238     Function *NewDecl =
239         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
240     II->setArgOperand(0, NewV);
241     II->setCalledFunction(NewDecl);
242     return true;
243   }
244   default:
245     return false;
246   }
247 }
248 
249 // TODO: Move logic to TTI?
250 void InferAddressSpaces::collectRewritableIntrinsicOperands(
251     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> *PostorderStack,
252     DenseSet<Value *> *Visited) const {
253   switch (II->getIntrinsicID()) {
254   case Intrinsic::objectsize:
255   case Intrinsic::amdgcn_atomic_inc:
256   case Intrinsic::amdgcn_atomic_dec:
257     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
258                                                  PostorderStack, Visited);
259     break;
260   default:
261     break;
262   }
263 }
264 
265 // Returns all flat address expressions in function F. The elements are
266 // If V is an unvisited flat address expression, appends V to PostorderStack
267 // and marks it as visited.
268 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
269     Value *V, std::vector<std::pair<Value *, bool>> *PostorderStack,
270     DenseSet<Value *> *Visited) const {
271   assert(V->getType()->isPointerTy());
272   if (isAddressExpression(*V) &&
273       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
274     if (Visited->insert(V).second)
275       PostorderStack->push_back(std::make_pair(V, false));
276   }
277 }
278 
279 // Returns all flat address expressions in function F. The elements are ordered
280 // ordered in postorder.
281 std::vector<Value *>
282 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
283   // This function implements a non-recursive postorder traversal of a partial
284   // use-def graph of function F.
285   std::vector<std::pair<Value *, bool>> PostorderStack;
286   // The set of visited expressions.
287   DenseSet<Value *> Visited;
288 
289   auto PushPtrOperand = [&](Value *Ptr) {
290     appendsFlatAddressExpressionToPostorderStack(Ptr, &PostorderStack,
291                                                  &Visited);
292   };
293 
294   // We only explore address expressions that are reachable from loads and
295   // stores for now because we aim at generating faster loads and stores.
296   for (Instruction &I : instructions(F)) {
297     if (auto *LI = dyn_cast<LoadInst>(&I))
298       PushPtrOperand(LI->getPointerOperand());
299     else if (auto *SI = dyn_cast<StoreInst>(&I))
300       PushPtrOperand(SI->getPointerOperand());
301     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
302       PushPtrOperand(RMW->getPointerOperand());
303     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
304       PushPtrOperand(CmpX->getPointerOperand());
305     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
306       // For memset/memcpy/memmove, any pointer operand can be replaced.
307       PushPtrOperand(MI->getRawDest());
308 
309       // Handle 2nd operand for memcpy/memmove.
310       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
311         PushPtrOperand(MTI->getRawSource());
312     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
313       collectRewritableIntrinsicOperands(II, &PostorderStack, &Visited);
314     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
315       // FIXME: Handle vectors of pointers
316       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
317         PushPtrOperand(Cmp->getOperand(0));
318         PushPtrOperand(Cmp->getOperand(1));
319       }
320     }
321   }
322 
323   std::vector<Value *> Postorder; // The resultant postorder.
324   while (!PostorderStack.empty()) {
325     // If the operands of the expression on the top are already explored,
326     // adds that expression to the resultant postorder.
327     if (PostorderStack.back().second) {
328       Postorder.push_back(PostorderStack.back().first);
329       PostorderStack.pop_back();
330       continue;
331     }
332     // Otherwise, adds its operands to the stack and explores them.
333     PostorderStack.back().second = true;
334     for (Value *PtrOperand : getPointerOperands(*PostorderStack.back().first)) {
335       appendsFlatAddressExpressionToPostorderStack(PtrOperand, &PostorderStack,
336                                                    &Visited);
337     }
338   }
339   return Postorder;
340 }
341 
342 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
343 // of OperandUse.get() in the new address space. If the clone is not ready yet,
344 // returns an undef in the new address space as a placeholder.
345 static Value *operandWithNewAddressSpaceOrCreateUndef(
346     const Use &OperandUse, unsigned NewAddrSpace,
347     const ValueToValueMapTy &ValueWithNewAddrSpace,
348     SmallVectorImpl<const Use *> *UndefUsesToFix) {
349   Value *Operand = OperandUse.get();
350 
351   Type *NewPtrTy =
352       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
353 
354   if (Constant *C = dyn_cast<Constant>(Operand))
355     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
356 
357   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
358     return NewOperand;
359 
360   UndefUsesToFix->push_back(&OperandUse);
361   return UndefValue::get(NewPtrTy);
362 }
363 
364 // Returns a clone of `I` with its operands converted to those specified in
365 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
366 // operand whose address space needs to be modified might not exist in
367 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
368 // adds that operand use to UndefUsesToFix so that caller can fix them later.
369 //
370 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
371 // from a pointer whose type already matches. Therefore, this function returns a
372 // Value* instead of an Instruction*.
373 static Value *cloneInstructionWithNewAddressSpace(
374     Instruction *I, unsigned NewAddrSpace,
375     const ValueToValueMapTy &ValueWithNewAddrSpace,
376     SmallVectorImpl<const Use *> *UndefUsesToFix) {
377   Type *NewPtrType =
378       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
379 
380   if (I->getOpcode() == Instruction::AddrSpaceCast) {
381     Value *Src = I->getOperand(0);
382     // Because `I` is flat, the source address space must be specific.
383     // Therefore, the inferred address space must be the source space, according
384     // to our algorithm.
385     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
386     if (Src->getType() != NewPtrType)
387       return new BitCastInst(Src, NewPtrType);
388     return Src;
389   }
390 
391   // Computes the converted pointer operands.
392   SmallVector<Value *, 4> NewPointerOperands;
393   for (const Use &OperandUse : I->operands()) {
394     if (!OperandUse.get()->getType()->isPointerTy())
395       NewPointerOperands.push_back(nullptr);
396     else
397       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
398                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
399   }
400 
401   switch (I->getOpcode()) {
402   case Instruction::BitCast:
403     return new BitCastInst(NewPointerOperands[0], NewPtrType);
404   case Instruction::PHI: {
405     assert(I->getType()->isPointerTy());
406     PHINode *PHI = cast<PHINode>(I);
407     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
408     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
409       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
410       NewPHI->addIncoming(NewPointerOperands[OperandNo],
411                           PHI->getIncomingBlock(Index));
412     }
413     return NewPHI;
414   }
415   case Instruction::GetElementPtr: {
416     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
417     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
418         GEP->getSourceElementType(), NewPointerOperands[0],
419         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
420     NewGEP->setIsInBounds(GEP->isInBounds());
421     return NewGEP;
422   }
423   case Instruction::Select: {
424     assert(I->getType()->isPointerTy());
425     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
426                               NewPointerOperands[2], "", nullptr, I);
427   }
428   default:
429     llvm_unreachable("Unexpected opcode");
430   }
431 }
432 
433 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
434 // constant expression `CE` with its operands replaced as specified in
435 // ValueWithNewAddrSpace.
436 static Value *cloneConstantExprWithNewAddressSpace(
437   ConstantExpr *CE, unsigned NewAddrSpace,
438   const ValueToValueMapTy &ValueWithNewAddrSpace) {
439   Type *TargetType =
440     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
441 
442   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
443     // Because CE is flat, the source address space must be specific.
444     // Therefore, the inferred address space must be the source space according
445     // to our algorithm.
446     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
447            NewAddrSpace);
448     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
449   }
450 
451   if (CE->getOpcode() == Instruction::Select) {
452     Constant *Src0 = CE->getOperand(1);
453     Constant *Src1 = CE->getOperand(2);
454     if (Src0->getType()->getPointerAddressSpace() ==
455         Src1->getType()->getPointerAddressSpace()) {
456 
457       return ConstantExpr::getSelect(
458           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
459           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
460     }
461   }
462 
463   // Computes the operands of the new constant expression.
464   SmallVector<Constant *, 4> NewOperands;
465   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
466     Constant *Operand = CE->getOperand(Index);
467     // If the address space of `Operand` needs to be modified, the new operand
468     // with the new address space should already be in ValueWithNewAddrSpace
469     // because (1) the constant expressions we consider (i.e. addrspacecast,
470     // bitcast, and getelementptr) do not incur cycles in the data flow graph
471     // and (2) this function is called on constant expressions in postorder.
472     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
473       NewOperands.push_back(cast<Constant>(NewOperand));
474     } else {
475       // Otherwise, reuses the old operand.
476       NewOperands.push_back(Operand);
477     }
478   }
479 
480   if (CE->getOpcode() == Instruction::GetElementPtr) {
481     // Needs to specify the source type while constructing a getelementptr
482     // constant expression.
483     return CE->getWithOperands(
484       NewOperands, TargetType, /*OnlyIfReduced=*/false,
485       NewOperands[0]->getType()->getPointerElementType());
486   }
487 
488   return CE->getWithOperands(NewOperands, TargetType);
489 }
490 
491 // Returns a clone of the value `V`, with its operands replaced as specified in
492 // ValueWithNewAddrSpace. This function is called on every flat address
493 // expression whose address space needs to be modified, in postorder.
494 //
495 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
496 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
497   Value *V, unsigned NewAddrSpace,
498   const ValueToValueMapTy &ValueWithNewAddrSpace,
499   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
500   // All values in Postorder are flat address expressions.
501   assert(isAddressExpression(*V) &&
502          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
503 
504   if (Instruction *I = dyn_cast<Instruction>(V)) {
505     Value *NewV = cloneInstructionWithNewAddressSpace(
506       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
507     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
508       if (NewI->getParent() == nullptr) {
509         NewI->insertBefore(I);
510         NewI->takeName(I);
511       }
512     }
513     return NewV;
514   }
515 
516   return cloneConstantExprWithNewAddressSpace(
517     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
518 }
519 
520 // Defines the join operation on the address space lattice (see the file header
521 // comments).
522 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
523                                                unsigned AS2) const {
524   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
525     return FlatAddrSpace;
526 
527   if (AS1 == UninitializedAddressSpace)
528     return AS2;
529   if (AS2 == UninitializedAddressSpace)
530     return AS1;
531 
532   // The join of two different specific address spaces is flat.
533   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
534 }
535 
536 bool InferAddressSpaces::runOnFunction(Function &F) {
537   if (skipFunction(F))
538     return false;
539 
540   const TargetTransformInfo &TTI =
541       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
542   FlatAddrSpace = TTI.getFlatAddressSpace();
543   if (FlatAddrSpace == UninitializedAddressSpace)
544     return false;
545 
546   // Collects all flat address expressions in postorder.
547   std::vector<Value *> Postorder = collectFlatAddressExpressions(F);
548 
549   // Runs a data-flow analysis to refine the address spaces of every expression
550   // in Postorder.
551   ValueToAddrSpaceMapTy InferredAddrSpace;
552   inferAddressSpaces(Postorder, &InferredAddrSpace);
553 
554   // Changes the address spaces of the flat address expressions who are inferred
555   // to point to a specific address space.
556   return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, &F);
557 }
558 
559 void InferAddressSpaces::inferAddressSpaces(
560     const std::vector<Value *> &Postorder,
561     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
562   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
563   // Initially, all expressions are in the uninitialized address space.
564   for (Value *V : Postorder)
565     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
566 
567   while (!Worklist.empty()) {
568     Value *V = Worklist.pop_back_val();
569 
570     // Tries to update the address space of the stack top according to the
571     // address spaces of its operands.
572     DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
573     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
574     if (!NewAS.hasValue())
575       continue;
576     // If any updates are made, grabs its users to the worklist because
577     // their address spaces can also be possibly updated.
578     DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
579     (*InferredAddrSpace)[V] = NewAS.getValue();
580 
581     for (Value *User : V->users()) {
582       // Skip if User is already in the worklist.
583       if (Worklist.count(User))
584         continue;
585 
586       auto Pos = InferredAddrSpace->find(User);
587       // Our algorithm only updates the address spaces of flat address
588       // expressions, which are those in InferredAddrSpace.
589       if (Pos == InferredAddrSpace->end())
590         continue;
591 
592       // Function updateAddressSpace moves the address space down a lattice
593       // path. Therefore, nothing to do if User is already inferred as flat (the
594       // bottom element in the lattice).
595       if (Pos->second == FlatAddrSpace)
596         continue;
597 
598       Worklist.insert(User);
599     }
600   }
601 }
602 
603 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
604     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
605   assert(InferredAddrSpace.count(&V));
606 
607   // The new inferred address space equals the join of the address spaces
608   // of all its pointer operands.
609   unsigned NewAS = UninitializedAddressSpace;
610 
611   const Operator &Op = cast<Operator>(V);
612   if (Op.getOpcode() == Instruction::Select) {
613     Value *Src0 = Op.getOperand(1);
614     Value *Src1 = Op.getOperand(2);
615 
616     auto I = InferredAddrSpace.find(Src0);
617     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
618       I->second : Src0->getType()->getPointerAddressSpace();
619 
620     auto J = InferredAddrSpace.find(Src1);
621     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
622       J->second : Src1->getType()->getPointerAddressSpace();
623 
624     auto *C0 = dyn_cast<Constant>(Src0);
625     auto *C1 = dyn_cast<Constant>(Src1);
626 
627     // If one of the inputs is a constant, we may be able to do a constant
628     // addrspacecast of it. Defer inferring the address space until the input
629     // address space is known.
630     if ((C1 && Src0AS == UninitializedAddressSpace) ||
631         (C0 && Src1AS == UninitializedAddressSpace))
632       return None;
633 
634     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
635       NewAS = Src1AS;
636     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
637       NewAS = Src0AS;
638     else
639       NewAS = joinAddressSpaces(Src0AS, Src1AS);
640   } else {
641     for (Value *PtrOperand : getPointerOperands(V)) {
642       auto I = InferredAddrSpace.find(PtrOperand);
643       unsigned OperandAS = I != InferredAddrSpace.end() ?
644         I->second : PtrOperand->getType()->getPointerAddressSpace();
645 
646       // join(flat, *) = flat. So we can break if NewAS is already flat.
647       NewAS = joinAddressSpaces(NewAS, OperandAS);
648       if (NewAS == FlatAddrSpace)
649         break;
650     }
651   }
652 
653   unsigned OldAS = InferredAddrSpace.lookup(&V);
654   assert(OldAS != FlatAddrSpace);
655   if (OldAS == NewAS)
656     return None;
657   return NewAS;
658 }
659 
660 /// \p returns true if \p U is the pointer operand of a memory instruction with
661 /// a single pointer operand that can have its address space changed by simply
662 /// mutating the use to a new value.
663 static bool isSimplePointerUseValidToReplace(Use &U) {
664   User *Inst = U.getUser();
665   unsigned OpNo = U.getOperandNo();
666 
667   if (auto *LI = dyn_cast<LoadInst>(Inst))
668     return OpNo == LoadInst::getPointerOperandIndex() && !LI->isVolatile();
669 
670   if (auto *SI = dyn_cast<StoreInst>(Inst))
671     return OpNo == StoreInst::getPointerOperandIndex() && !SI->isVolatile();
672 
673   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
674     return OpNo == AtomicRMWInst::getPointerOperandIndex() && !RMW->isVolatile();
675 
676   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
677     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
678            !CmpX->isVolatile();
679   }
680 
681   return false;
682 }
683 
684 /// Update memory intrinsic uses that require more complex processing than
685 /// simple memory instructions. Thse require re-mangling and may have multiple
686 /// pointer operands.
687 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
688                                      Value *NewV) {
689   IRBuilder<> B(MI);
690   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
691   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
692   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
693 
694   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
695     B.CreateMemSet(NewV, MSI->getValue(),
696                    MSI->getLength(), MSI->getAlignment(),
697                    false, // isVolatile
698                    TBAA, ScopeMD, NoAliasMD);
699   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
700     Value *Src = MTI->getRawSource();
701     Value *Dest = MTI->getRawDest();
702 
703     // Be careful in case this is a self-to-self copy.
704     if (Src == OldV)
705       Src = NewV;
706 
707     if (Dest == OldV)
708       Dest = NewV;
709 
710     if (isa<MemCpyInst>(MTI)) {
711       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
712       B.CreateMemCpy(Dest, Src, MTI->getLength(),
713                      MTI->getAlignment(),
714                      false, // isVolatile
715                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
716     } else {
717       assert(isa<MemMoveInst>(MTI));
718       B.CreateMemMove(Dest, Src, MTI->getLength(),
719                       MTI->getAlignment(),
720                       false, // isVolatile
721                       TBAA, ScopeMD, NoAliasMD);
722     }
723   } else
724     llvm_unreachable("unhandled MemIntrinsic");
725 
726   MI->eraseFromParent();
727   return true;
728 }
729 
730 // \p returns true if it is OK to change the address space of constant \p C with
731 // a ConstantExpr addrspacecast.
732 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
733   assert(NewAS != UninitializedAddressSpace);
734 
735   unsigned SrcAS = C->getType()->getPointerAddressSpace();
736   if (SrcAS == NewAS || isa<UndefValue>(C))
737     return true;
738 
739   // Prevent illegal casts between different non-flat address spaces.
740   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
741     return false;
742 
743   if (isa<ConstantPointerNull>(C))
744     return true;
745 
746   if (auto *Op = dyn_cast<Operator>(C)) {
747     // If we already have a constant addrspacecast, it should be safe to cast it
748     // off.
749     if (Op->getOpcode() == Instruction::AddrSpaceCast)
750       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
751 
752     if (Op->getOpcode() == Instruction::IntToPtr &&
753         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
754       return true;
755   }
756 
757   return false;
758 }
759 
760 static Value::use_iterator skipToNextUser(Value::use_iterator I,
761                                           Value::use_iterator End) {
762   User *CurUser = I->getUser();
763   ++I;
764 
765   while (I != End && I->getUser() == CurUser)
766     ++I;
767 
768   return I;
769 }
770 
771 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
772   const std::vector<Value *> &Postorder,
773   const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
774   // For each address expression to be modified, creates a clone of it with its
775   // pointer operands converted to the new address space. Since the pointer
776   // operands are converted, the clone is naturally in the new address space by
777   // construction.
778   ValueToValueMapTy ValueWithNewAddrSpace;
779   SmallVector<const Use *, 32> UndefUsesToFix;
780   for (Value* V : Postorder) {
781     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
782     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
783       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
784         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
785     }
786   }
787 
788   if (ValueWithNewAddrSpace.empty())
789     return false;
790 
791   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
792   for (const Use *UndefUse : UndefUsesToFix) {
793     User *V = UndefUse->getUser();
794     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
795     unsigned OperandNo = UndefUse->getOperandNo();
796     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
797     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
798   }
799 
800   // Replaces the uses of the old address expressions with the new ones.
801   for (Value *V : Postorder) {
802     Value *NewV = ValueWithNewAddrSpace.lookup(V);
803     if (NewV == nullptr)
804       continue;
805 
806     DEBUG(dbgs() << "Replacing the uses of " << *V
807                  << "\n  with\n  " << *NewV << '\n');
808 
809     Value::use_iterator I, E, Next;
810     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
811       Use &U = *I;
812 
813       // Some users may see the same pointer operand in multiple operands. Skip
814       // to the next instruction.
815       I = skipToNextUser(I, E);
816 
817       if (isSimplePointerUseValidToReplace(U)) {
818         // If V is used as the pointer operand of a compatible memory operation,
819         // sets the pointer operand to NewV. This replacement does not change
820         // the element type, so the resultant load/store is still valid.
821         U.set(NewV);
822         continue;
823       }
824 
825       User *CurUser = U.getUser();
826       // Handle more complex cases like intrinsic that need to be remangled.
827       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
828         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
829           continue;
830       }
831 
832       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
833         if (rewriteIntrinsicOperands(II, V, NewV))
834           continue;
835       }
836 
837       if (isa<Instruction>(CurUser)) {
838         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
839           // If we can infer that both pointers are in the same addrspace,
840           // transform e.g.
841           //   %cmp = icmp eq float* %p, %q
842           // into
843           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
844 
845           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
846           int SrcIdx = U.getOperandNo();
847           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
848           Value *OtherSrc = Cmp->getOperand(OtherIdx);
849 
850           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
851             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
852               Cmp->setOperand(OtherIdx, OtherNewV);
853               Cmp->setOperand(SrcIdx, NewV);
854               continue;
855             }
856           }
857 
858           // Even if the type mismatches, we can cast the constant.
859           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
860             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
861               Cmp->setOperand(SrcIdx, NewV);
862               Cmp->setOperand(OtherIdx,
863                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
864               continue;
865             }
866           }
867         }
868 
869         // Otherwise, replaces the use with flat(NewV).
870         if (Instruction *I = dyn_cast<Instruction>(V)) {
871           BasicBlock::iterator InsertPos = std::next(I->getIterator());
872           while (isa<PHINode>(InsertPos))
873             ++InsertPos;
874           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
875         } else {
876           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
877                                                V->getType()));
878         }
879       }
880     }
881 
882     if (V->use_empty())
883       RecursivelyDeleteTriviallyDeadInstructions(V);
884   }
885 
886   return true;
887 }
888 
889 FunctionPass *llvm::createInferAddressSpacesPass() {
890   return new InferAddressSpaces();
891 }
892