1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "poison" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `poison` and fix all the uses later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, poison ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the poison in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Compiler.h" 124 #include "llvm/Support/Debug.h" 125 #include "llvm/Support/ErrorHandling.h" 126 #include "llvm/Support/raw_ostream.h" 127 #include "llvm/Transforms/Scalar.h" 128 #include "llvm/Transforms/Utils/Local.h" 129 #include "llvm/Transforms/Utils/ValueMapper.h" 130 #include <cassert> 131 #include <iterator> 132 #include <limits> 133 #include <utility> 134 #include <vector> 135 136 #define DEBUG_TYPE "infer-address-spaces" 137 138 using namespace llvm; 139 140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 142 cl::desc("The default address space is assumed as the flat address space. " 143 "This is mainly for test purpose.")); 144 145 static const unsigned UninitializedAddressSpace = 146 std::numeric_limits<unsigned>::max(); 147 148 namespace { 149 150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 153 // addrspace is inferred on the *use* of a pointer. This map is introduced to 154 // infer addrspace from the addrspace predicate assumption built from assume 155 // intrinsic. In that scenario, only specific uses (under valid assumption 156 // context) could be inferred with a new addrspace. 157 using PredicatedAddrSpaceMapTy = 158 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 160 161 class InferAddressSpaces : public FunctionPass { 162 unsigned FlatAddrSpace = 0; 163 164 public: 165 static char ID; 166 167 InferAddressSpaces() 168 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) { 169 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 170 } 171 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) { 172 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.setPreservesCFG(); 177 AU.addPreserved<DominatorTreeWrapperPass>(); 178 AU.addRequired<AssumptionCacheTracker>(); 179 AU.addRequired<TargetTransformInfoWrapperPass>(); 180 } 181 182 bool runOnFunction(Function &F) override; 183 }; 184 185 class InferAddressSpacesImpl { 186 AssumptionCache &AC; 187 const DominatorTree *DT = nullptr; 188 const TargetTransformInfo *TTI = nullptr; 189 const DataLayout *DL = nullptr; 190 191 /// Target specific address space which uses of should be replaced if 192 /// possible. 193 unsigned FlatAddrSpace = 0; 194 195 // Try to update the address space of V. If V is updated, returns true and 196 // false otherwise. 197 bool updateAddressSpace(const Value &V, 198 ValueToAddrSpaceMapTy &InferredAddrSpace, 199 PredicatedAddrSpaceMapTy &PredicatedAS) const; 200 201 // Tries to infer the specific address space of each address expression in 202 // Postorder. 203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 204 ValueToAddrSpaceMapTy &InferredAddrSpace, 205 PredicatedAddrSpaceMapTy &PredicatedAS) const; 206 207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 208 209 Value *cloneInstructionWithNewAddressSpace( 210 Instruction *I, unsigned NewAddrSpace, 211 const ValueToValueMapTy &ValueWithNewAddrSpace, 212 const PredicatedAddrSpaceMapTy &PredicatedAS, 213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 214 215 // Changes the flat address expressions in function F to point to specific 216 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 217 // all flat expressions in the use-def graph of function F. 218 bool 219 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 220 const ValueToAddrSpaceMapTy &InferredAddrSpace, 221 const PredicatedAddrSpaceMapTy &PredicatedAS, 222 Function *F) const; 223 224 void appendsFlatAddressExpressionToPostorderStack( 225 Value *V, PostorderStackTy &PostorderStack, 226 DenseSet<Value *> &Visited) const; 227 228 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, 229 Value *NewV) const; 230 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 231 PostorderStackTy &PostorderStack, 232 DenseSet<Value *> &Visited) const; 233 234 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 235 236 Value *cloneValueWithNewAddressSpace( 237 Value *V, unsigned NewAddrSpace, 238 const ValueToValueMapTy &ValueWithNewAddrSpace, 239 const PredicatedAddrSpaceMapTy &PredicatedAS, 240 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 241 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 242 243 unsigned getPredicatedAddrSpace(const Value &V, Value *Opnd) const; 244 245 public: 246 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 247 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 248 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 249 bool run(Function &F); 250 }; 251 252 } // end anonymous namespace 253 254 char InferAddressSpaces::ID = 0; 255 256 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 257 false, false) 258 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 259 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 260 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 261 false, false) 262 263 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { 264 assert(Ty->isPtrOrPtrVectorTy()); 265 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); 266 return Ty->getWithNewType(NPT); 267 } 268 269 // Check whether that's no-op pointer bicast using a pair of 270 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 271 // different address spaces. 272 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 273 const TargetTransformInfo *TTI) { 274 assert(I2P->getOpcode() == Instruction::IntToPtr); 275 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 276 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 277 return false; 278 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 279 // no-op cast. Besides checking both of them are no-op casts, as the 280 // reinterpreted pointer may be used in other pointer arithmetic, we also 281 // need to double-check that through the target-specific hook. That ensures 282 // the underlying target also agrees that's a no-op address space cast and 283 // pointer bits are preserved. 284 // The current IR spec doesn't have clear rules on address space casts, 285 // especially a clear definition for pointer bits in non-default address 286 // spaces. It would be undefined if that pointer is dereferenced after an 287 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 288 // bits in non-default address spaces in the current spec, the pointer 289 // arithmetic may also be undefined after invalid pointer reinterpret cast. 290 // However, as we confirm through the target hooks that it's a no-op 291 // addrspacecast, it doesn't matter since the bits should be the same. 292 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 293 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 294 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 295 I2P->getOperand(0)->getType(), I2P->getType(), 296 DL) && 297 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 298 P2I->getOperand(0)->getType(), P2I->getType(), 299 DL) && 300 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 301 } 302 303 // Returns true if V is an address expression. 304 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 305 // getelementptr operators. 306 static bool isAddressExpression(const Value &V, const DataLayout &DL, 307 const TargetTransformInfo *TTI) { 308 const Operator *Op = dyn_cast<Operator>(&V); 309 if (!Op) 310 return false; 311 312 switch (Op->getOpcode()) { 313 case Instruction::PHI: 314 assert(Op->getType()->isPtrOrPtrVectorTy()); 315 return true; 316 case Instruction::BitCast: 317 case Instruction::AddrSpaceCast: 318 case Instruction::GetElementPtr: 319 return true; 320 case Instruction::Select: 321 return Op->getType()->isPtrOrPtrVectorTy(); 322 case Instruction::Call: { 323 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 324 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 325 } 326 case Instruction::IntToPtr: 327 return isNoopPtrIntCastPair(Op, DL, TTI); 328 default: 329 // That value is an address expression if it has an assumed address space. 330 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 331 } 332 } 333 334 // Returns the pointer operands of V. 335 // 336 // Precondition: V is an address expression. 337 static SmallVector<Value *, 2> 338 getPointerOperands(const Value &V, const DataLayout &DL, 339 const TargetTransformInfo *TTI) { 340 const Operator &Op = cast<Operator>(V); 341 switch (Op.getOpcode()) { 342 case Instruction::PHI: { 343 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 344 return {IncomingValues.begin(), IncomingValues.end()}; 345 } 346 case Instruction::BitCast: 347 case Instruction::AddrSpaceCast: 348 case Instruction::GetElementPtr: 349 return {Op.getOperand(0)}; 350 case Instruction::Select: 351 return {Op.getOperand(1), Op.getOperand(2)}; 352 case Instruction::Call: { 353 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 354 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 355 "unexpected intrinsic call"); 356 return {II.getArgOperand(0)}; 357 } 358 case Instruction::IntToPtr: { 359 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 360 auto *P2I = cast<Operator>(Op.getOperand(0)); 361 return {P2I->getOperand(0)}; 362 } 363 default: 364 llvm_unreachable("Unexpected instruction type."); 365 } 366 } 367 368 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 369 Value *OldV, 370 Value *NewV) const { 371 Module *M = II->getParent()->getParent()->getParent(); 372 Intrinsic::ID IID = II->getIntrinsicID(); 373 switch (IID) { 374 case Intrinsic::objectsize: 375 case Intrinsic::masked_load: { 376 Type *DestTy = II->getType(); 377 Type *SrcTy = NewV->getType(); 378 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {DestTy, SrcTy}); 379 II->setArgOperand(0, NewV); 380 II->setCalledFunction(NewDecl); 381 return true; 382 } 383 case Intrinsic::ptrmask: 384 // This is handled as an address expression, not as a use memory operation. 385 return false; 386 case Intrinsic::masked_gather: { 387 Type *RetTy = II->getType(); 388 Type *NewPtrTy = NewV->getType(); 389 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {RetTy, NewPtrTy}); 390 II->setArgOperand(0, NewV); 391 II->setCalledFunction(NewDecl); 392 return true; 393 } 394 case Intrinsic::masked_store: 395 case Intrinsic::masked_scatter: { 396 Type *ValueTy = II->getOperand(0)->getType(); 397 Type *NewPtrTy = NewV->getType(); 398 Function *NewDecl = 399 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); 400 II->setArgOperand(1, NewV); 401 II->setCalledFunction(NewDecl); 402 return true; 403 } 404 case Intrinsic::prefetch: 405 case Intrinsic::is_constant: { 406 Function *NewDecl = 407 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {NewV->getType()}); 408 II->setArgOperand(0, NewV); 409 II->setCalledFunction(NewDecl); 410 return true; 411 } 412 default: { 413 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 414 if (!Rewrite) 415 return false; 416 if (Rewrite != II) 417 II->replaceAllUsesWith(Rewrite); 418 return true; 419 } 420 } 421 } 422 423 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 424 IntrinsicInst *II, PostorderStackTy &PostorderStack, 425 DenseSet<Value *> &Visited) const { 426 auto IID = II->getIntrinsicID(); 427 switch (IID) { 428 case Intrinsic::ptrmask: 429 case Intrinsic::objectsize: 430 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 431 PostorderStack, Visited); 432 break; 433 case Intrinsic::is_constant: { 434 Value *Ptr = II->getArgOperand(0); 435 if (Ptr->getType()->isPtrOrPtrVectorTy()) { 436 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 437 Visited); 438 } 439 440 break; 441 } 442 case Intrinsic::masked_load: 443 case Intrinsic::masked_gather: 444 case Intrinsic::prefetch: 445 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 446 PostorderStack, Visited); 447 break; 448 case Intrinsic::masked_store: 449 case Intrinsic::masked_scatter: 450 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), 451 PostorderStack, Visited); 452 break; 453 default: 454 SmallVector<int, 2> OpIndexes; 455 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 456 for (int Idx : OpIndexes) { 457 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 458 PostorderStack, Visited); 459 } 460 } 461 break; 462 } 463 } 464 465 // Returns all flat address expressions in function F. The elements are 466 // If V is an unvisited flat address expression, appends V to PostorderStack 467 // and marks it as visited. 468 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 469 Value *V, PostorderStackTy &PostorderStack, 470 DenseSet<Value *> &Visited) const { 471 assert(V->getType()->isPtrOrPtrVectorTy()); 472 473 // Generic addressing expressions may be hidden in nested constant 474 // expressions. 475 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 476 // TODO: Look in non-address parts, like icmp operands. 477 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 478 PostorderStack.emplace_back(CE, false); 479 480 return; 481 } 482 483 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 484 isAddressExpression(*V, *DL, TTI)) { 485 if (Visited.insert(V).second) { 486 PostorderStack.emplace_back(V, false); 487 488 Operator *Op = cast<Operator>(V); 489 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 490 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 491 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 492 PostorderStack.emplace_back(CE, false); 493 } 494 } 495 } 496 } 497 } 498 499 // Returns all flat address expressions in function F. The elements are ordered 500 // in postorder. 501 std::vector<WeakTrackingVH> 502 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 503 // This function implements a non-recursive postorder traversal of a partial 504 // use-def graph of function F. 505 PostorderStackTy PostorderStack; 506 // The set of visited expressions. 507 DenseSet<Value *> Visited; 508 509 auto PushPtrOperand = [&](Value *Ptr) { 510 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); 511 }; 512 513 // Look at operations that may be interesting accelerate by moving to a known 514 // address space. We aim at generating after loads and stores, but pure 515 // addressing calculations may also be faster. 516 for (Instruction &I : instructions(F)) { 517 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 518 PushPtrOperand(GEP->getPointerOperand()); 519 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 520 PushPtrOperand(LI->getPointerOperand()); 521 else if (auto *SI = dyn_cast<StoreInst>(&I)) 522 PushPtrOperand(SI->getPointerOperand()); 523 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 524 PushPtrOperand(RMW->getPointerOperand()); 525 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 526 PushPtrOperand(CmpX->getPointerOperand()); 527 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 528 // For memset/memcpy/memmove, any pointer operand can be replaced. 529 PushPtrOperand(MI->getRawDest()); 530 531 // Handle 2nd operand for memcpy/memmove. 532 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 533 PushPtrOperand(MTI->getRawSource()); 534 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 535 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 536 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 537 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { 538 PushPtrOperand(Cmp->getOperand(0)); 539 PushPtrOperand(Cmp->getOperand(1)); 540 } 541 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 542 PushPtrOperand(ASC->getPointerOperand()); 543 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 544 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 545 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0)); 546 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) { 547 if (auto *RV = RI->getReturnValue(); 548 RV && RV->getType()->isPtrOrPtrVectorTy()) 549 PushPtrOperand(RV); 550 } 551 } 552 553 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 554 while (!PostorderStack.empty()) { 555 Value *TopVal = PostorderStack.back().getPointer(); 556 // If the operands of the expression on the top are already explored, 557 // adds that expression to the resultant postorder. 558 if (PostorderStack.back().getInt()) { 559 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 560 Postorder.push_back(TopVal); 561 PostorderStack.pop_back(); 562 continue; 563 } 564 // Otherwise, adds its operands to the stack and explores them. 565 PostorderStack.back().setInt(true); 566 // Skip values with an assumed address space. 567 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 568 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 569 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 570 Visited); 571 } 572 } 573 } 574 return Postorder; 575 } 576 577 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 578 // of OperandUse.get() in the new address space. If the clone is not ready yet, 579 // returns poison in the new address space as a placeholder. 580 static Value *operandWithNewAddressSpaceOrCreatePoison( 581 const Use &OperandUse, unsigned NewAddrSpace, 582 const ValueToValueMapTy &ValueWithNewAddrSpace, 583 const PredicatedAddrSpaceMapTy &PredicatedAS, 584 SmallVectorImpl<const Use *> *PoisonUsesToFix) { 585 Value *Operand = OperandUse.get(); 586 587 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); 588 589 if (Constant *C = dyn_cast<Constant>(Operand)) 590 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 591 592 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 593 return NewOperand; 594 595 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 596 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 597 if (I != PredicatedAS.end()) { 598 // Insert an addrspacecast on that operand before the user. 599 unsigned NewAS = I->second; 600 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); 601 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 602 NewI->insertBefore(Inst); 603 NewI->setDebugLoc(Inst->getDebugLoc()); 604 return NewI; 605 } 606 607 PoisonUsesToFix->push_back(&OperandUse); 608 return PoisonValue::get(NewPtrTy); 609 } 610 611 // Returns a clone of `I` with its operands converted to those specified in 612 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 613 // operand whose address space needs to be modified might not exist in 614 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and 615 // adds that operand use to PoisonUsesToFix so that caller can fix them later. 616 // 617 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 618 // from a pointer whose type already matches. Therefore, this function returns a 619 // Value* instead of an Instruction*. 620 // 621 // This may also return nullptr in the case the instruction could not be 622 // rewritten. 623 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 624 Instruction *I, unsigned NewAddrSpace, 625 const ValueToValueMapTy &ValueWithNewAddrSpace, 626 const PredicatedAddrSpaceMapTy &PredicatedAS, 627 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 628 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); 629 630 if (I->getOpcode() == Instruction::AddrSpaceCast) { 631 Value *Src = I->getOperand(0); 632 // Because `I` is flat, the source address space must be specific. 633 // Therefore, the inferred address space must be the source space, according 634 // to our algorithm. 635 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 636 if (Src->getType() != NewPtrType) 637 return new BitCastInst(Src, NewPtrType); 638 return Src; 639 } 640 641 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 642 // Technically the intrinsic ID is a pointer typed argument, so specially 643 // handle calls early. 644 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 645 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( 646 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 647 PredicatedAS, PoisonUsesToFix); 648 Value *Rewrite = 649 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 650 if (Rewrite) { 651 assert(Rewrite != II && "cannot modify this pointer operation in place"); 652 return Rewrite; 653 } 654 655 return nullptr; 656 } 657 658 unsigned AS = TTI->getAssumedAddrSpace(I); 659 if (AS != UninitializedAddressSpace) { 660 // For the assumed address space, insert an `addrspacecast` to make that 661 // explicit. 662 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); 663 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 664 NewI->insertAfter(I); 665 NewI->setDebugLoc(I->getDebugLoc()); 666 return NewI; 667 } 668 669 // Computes the converted pointer operands. 670 SmallVector<Value *, 4> NewPointerOperands; 671 for (const Use &OperandUse : I->operands()) { 672 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) 673 NewPointerOperands.push_back(nullptr); 674 else 675 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( 676 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 677 PoisonUsesToFix)); 678 } 679 680 switch (I->getOpcode()) { 681 case Instruction::BitCast: 682 return new BitCastInst(NewPointerOperands[0], NewPtrType); 683 case Instruction::PHI: { 684 assert(I->getType()->isPtrOrPtrVectorTy()); 685 PHINode *PHI = cast<PHINode>(I); 686 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 687 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 688 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 689 NewPHI->addIncoming(NewPointerOperands[OperandNo], 690 PHI->getIncomingBlock(Index)); 691 } 692 return NewPHI; 693 } 694 case Instruction::GetElementPtr: { 695 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 696 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 697 GEP->getSourceElementType(), NewPointerOperands[0], 698 SmallVector<Value *, 4>(GEP->indices())); 699 NewGEP->setIsInBounds(GEP->isInBounds()); 700 return NewGEP; 701 } 702 case Instruction::Select: 703 assert(I->getType()->isPtrOrPtrVectorTy()); 704 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 705 NewPointerOperands[2], "", nullptr, I); 706 case Instruction::IntToPtr: { 707 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 708 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 709 if (Src->getType() == NewPtrType) 710 return Src; 711 712 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 713 // source address space from a generic pointer source need to insert a cast 714 // back. 715 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 716 } 717 default: 718 llvm_unreachable("Unexpected opcode"); 719 } 720 } 721 722 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 723 // constant expression `CE` with its operands replaced as specified in 724 // ValueWithNewAddrSpace. 725 static Value *cloneConstantExprWithNewAddressSpace( 726 ConstantExpr *CE, unsigned NewAddrSpace, 727 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 728 const TargetTransformInfo *TTI) { 729 Type *TargetType = 730 CE->getType()->isPtrOrPtrVectorTy() 731 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) 732 : CE->getType(); 733 734 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 735 // Because CE is flat, the source address space must be specific. 736 // Therefore, the inferred address space must be the source space according 737 // to our algorithm. 738 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 739 NewAddrSpace); 740 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 741 } 742 743 if (CE->getOpcode() == Instruction::BitCast) { 744 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 745 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 746 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 747 } 748 749 if (CE->getOpcode() == Instruction::IntToPtr) { 750 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 751 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 752 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 753 return ConstantExpr::getBitCast(Src, TargetType); 754 } 755 756 // Computes the operands of the new constant expression. 757 bool IsNew = false; 758 SmallVector<Constant *, 4> NewOperands; 759 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 760 Constant *Operand = CE->getOperand(Index); 761 // If the address space of `Operand` needs to be modified, the new operand 762 // with the new address space should already be in ValueWithNewAddrSpace 763 // because (1) the constant expressions we consider (i.e. addrspacecast, 764 // bitcast, and getelementptr) do not incur cycles in the data flow graph 765 // and (2) this function is called on constant expressions in postorder. 766 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 767 IsNew = true; 768 NewOperands.push_back(cast<Constant>(NewOperand)); 769 continue; 770 } 771 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 772 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 773 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 774 IsNew = true; 775 NewOperands.push_back(cast<Constant>(NewOperand)); 776 continue; 777 } 778 // Otherwise, reuses the old operand. 779 NewOperands.push_back(Operand); 780 } 781 782 // If !IsNew, we will replace the Value with itself. However, replaced values 783 // are assumed to wrapped in an addrspacecast cast later so drop it now. 784 if (!IsNew) 785 return nullptr; 786 787 if (CE->getOpcode() == Instruction::GetElementPtr) { 788 // Needs to specify the source type while constructing a getelementptr 789 // constant expression. 790 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 791 cast<GEPOperator>(CE)->getSourceElementType()); 792 } 793 794 return CE->getWithOperands(NewOperands, TargetType); 795 } 796 797 // Returns a clone of the value `V`, with its operands replaced as specified in 798 // ValueWithNewAddrSpace. This function is called on every flat address 799 // expression whose address space needs to be modified, in postorder. 800 // 801 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. 802 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 803 Value *V, unsigned NewAddrSpace, 804 const ValueToValueMapTy &ValueWithNewAddrSpace, 805 const PredicatedAddrSpaceMapTy &PredicatedAS, 806 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 807 // All values in Postorder are flat address expressions. 808 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 809 isAddressExpression(*V, *DL, TTI)); 810 811 if (Instruction *I = dyn_cast<Instruction>(V)) { 812 Value *NewV = cloneInstructionWithNewAddressSpace( 813 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); 814 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 815 if (NewI->getParent() == nullptr) { 816 NewI->insertBefore(I); 817 NewI->takeName(I); 818 NewI->setDebugLoc(I->getDebugLoc()); 819 } 820 } 821 return NewV; 822 } 823 824 return cloneConstantExprWithNewAddressSpace( 825 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 826 } 827 828 // Defines the join operation on the address space lattice (see the file header 829 // comments). 830 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 831 unsigned AS2) const { 832 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 833 return FlatAddrSpace; 834 835 if (AS1 == UninitializedAddressSpace) 836 return AS2; 837 if (AS2 == UninitializedAddressSpace) 838 return AS1; 839 840 // The join of two different specific address spaces is flat. 841 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 842 } 843 844 bool InferAddressSpacesImpl::run(Function &F) { 845 DL = &F.getDataLayout(); 846 847 if (AssumeDefaultIsFlatAddressSpace) 848 FlatAddrSpace = 0; 849 850 if (FlatAddrSpace == UninitializedAddressSpace) { 851 FlatAddrSpace = TTI->getFlatAddressSpace(); 852 if (FlatAddrSpace == UninitializedAddressSpace) 853 return false; 854 } 855 856 // Collects all flat address expressions in postorder. 857 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 858 859 // Runs a data-flow analysis to refine the address spaces of every expression 860 // in Postorder. 861 ValueToAddrSpaceMapTy InferredAddrSpace; 862 PredicatedAddrSpaceMapTy PredicatedAS; 863 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 864 865 // Changes the address spaces of the flat address expressions who are inferred 866 // to point to a specific address space. 867 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS, 868 &F); 869 } 870 871 // Constants need to be tracked through RAUW to handle cases with nested 872 // constant expressions, so wrap values in WeakTrackingVH. 873 void InferAddressSpacesImpl::inferAddressSpaces( 874 ArrayRef<WeakTrackingVH> Postorder, 875 ValueToAddrSpaceMapTy &InferredAddrSpace, 876 PredicatedAddrSpaceMapTy &PredicatedAS) const { 877 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 878 // Initially, all expressions are in the uninitialized address space. 879 for (Value *V : Postorder) 880 InferredAddrSpace[V] = UninitializedAddressSpace; 881 882 while (!Worklist.empty()) { 883 Value *V = Worklist.pop_back_val(); 884 885 // Try to update the address space of the stack top according to the 886 // address spaces of its operands. 887 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 888 continue; 889 890 for (Value *User : V->users()) { 891 // Skip if User is already in the worklist. 892 if (Worklist.count(User)) 893 continue; 894 895 auto Pos = InferredAddrSpace.find(User); 896 // Our algorithm only updates the address spaces of flat address 897 // expressions, which are those in InferredAddrSpace. 898 if (Pos == InferredAddrSpace.end()) 899 continue; 900 901 // Function updateAddressSpace moves the address space down a lattice 902 // path. Therefore, nothing to do if User is already inferred as flat (the 903 // bottom element in the lattice). 904 if (Pos->second == FlatAddrSpace) 905 continue; 906 907 Worklist.insert(User); 908 } 909 } 910 } 911 912 unsigned InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &V, 913 Value *Opnd) const { 914 const Instruction *I = dyn_cast<Instruction>(&V); 915 if (!I) 916 return UninitializedAddressSpace; 917 918 Opnd = Opnd->stripInBoundsOffsets(); 919 for (auto &AssumeVH : AC.assumptionsFor(Opnd)) { 920 if (!AssumeVH) 921 continue; 922 CallInst *CI = cast<CallInst>(AssumeVH); 923 if (!isValidAssumeForContext(CI, I, DT)) 924 continue; 925 926 const Value *Ptr; 927 unsigned AS; 928 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 929 if (Ptr) 930 return AS; 931 } 932 933 return UninitializedAddressSpace; 934 } 935 936 bool InferAddressSpacesImpl::updateAddressSpace( 937 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 938 PredicatedAddrSpaceMapTy &PredicatedAS) const { 939 assert(InferredAddrSpace.count(&V)); 940 941 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 942 943 // The new inferred address space equals the join of the address spaces 944 // of all its pointer operands. 945 unsigned NewAS = UninitializedAddressSpace; 946 947 const Operator &Op = cast<Operator>(V); 948 if (Op.getOpcode() == Instruction::Select) { 949 Value *Src0 = Op.getOperand(1); 950 Value *Src1 = Op.getOperand(2); 951 952 auto I = InferredAddrSpace.find(Src0); 953 unsigned Src0AS = (I != InferredAddrSpace.end()) 954 ? I->second 955 : Src0->getType()->getPointerAddressSpace(); 956 957 auto J = InferredAddrSpace.find(Src1); 958 unsigned Src1AS = (J != InferredAddrSpace.end()) 959 ? J->second 960 : Src1->getType()->getPointerAddressSpace(); 961 962 auto *C0 = dyn_cast<Constant>(Src0); 963 auto *C1 = dyn_cast<Constant>(Src1); 964 965 // If one of the inputs is a constant, we may be able to do a constant 966 // addrspacecast of it. Defer inferring the address space until the input 967 // address space is known. 968 if ((C1 && Src0AS == UninitializedAddressSpace) || 969 (C0 && Src1AS == UninitializedAddressSpace)) 970 return false; 971 972 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 973 NewAS = Src1AS; 974 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 975 NewAS = Src0AS; 976 else 977 NewAS = joinAddressSpaces(Src0AS, Src1AS); 978 } else { 979 unsigned AS = TTI->getAssumedAddrSpace(&V); 980 if (AS != UninitializedAddressSpace) { 981 // Use the assumed address space directly. 982 NewAS = AS; 983 } else { 984 // Otherwise, infer the address space from its pointer operands. 985 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 986 auto I = InferredAddrSpace.find(PtrOperand); 987 unsigned OperandAS; 988 if (I == InferredAddrSpace.end()) { 989 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 990 if (OperandAS == FlatAddrSpace) { 991 // Check AC for assumption dominating V. 992 unsigned AS = getPredicatedAddrSpace(V, PtrOperand); 993 if (AS != UninitializedAddressSpace) { 994 LLVM_DEBUG(dbgs() 995 << " deduce operand AS from the predicate addrspace " 996 << AS << '\n'); 997 OperandAS = AS; 998 // Record this use with the predicated AS. 999 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 1000 } 1001 } 1002 } else 1003 OperandAS = I->second; 1004 1005 // join(flat, *) = flat. So we can break if NewAS is already flat. 1006 NewAS = joinAddressSpaces(NewAS, OperandAS); 1007 if (NewAS == FlatAddrSpace) 1008 break; 1009 } 1010 } 1011 } 1012 1013 unsigned OldAS = InferredAddrSpace.lookup(&V); 1014 assert(OldAS != FlatAddrSpace); 1015 if (OldAS == NewAS) 1016 return false; 1017 1018 // If any updates are made, grabs its users to the worklist because 1019 // their address spaces can also be possibly updated. 1020 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 1021 InferredAddrSpace[&V] = NewAS; 1022 return true; 1023 } 1024 1025 /// \p returns true if \p U is the pointer operand of a memory instruction with 1026 /// a single pointer operand that can have its address space changed by simply 1027 /// mutating the use to a new value. If the memory instruction is volatile, 1028 /// return true only if the target allows the memory instruction to be volatile 1029 /// in the new address space. 1030 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 1031 Use &U, unsigned AddrSpace) { 1032 User *Inst = U.getUser(); 1033 unsigned OpNo = U.getOperandNo(); 1034 1035 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1036 return OpNo == LoadInst::getPointerOperandIndex() && 1037 (!LI->isVolatile() || TTI.hasVolatileVariant(LI, AddrSpace)); 1038 1039 if (auto *SI = dyn_cast<StoreInst>(Inst)) 1040 return OpNo == StoreInst::getPointerOperandIndex() && 1041 (!SI->isVolatile() || TTI.hasVolatileVariant(SI, AddrSpace)); 1042 1043 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1044 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 1045 (!RMW->isVolatile() || TTI.hasVolatileVariant(RMW, AddrSpace)); 1046 1047 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1048 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 1049 (!CmpX->isVolatile() || TTI.hasVolatileVariant(CmpX, AddrSpace)); 1050 1051 return false; 1052 } 1053 1054 /// Update memory intrinsic uses that require more complex processing than 1055 /// simple memory instructions. These require re-mangling and may have multiple 1056 /// pointer operands. 1057 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1058 Value *NewV) { 1059 IRBuilder<> B(MI); 1060 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1061 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1062 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1063 1064 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1065 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1066 false, // isVolatile 1067 TBAA, ScopeMD, NoAliasMD); 1068 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1069 Value *Src = MTI->getRawSource(); 1070 Value *Dest = MTI->getRawDest(); 1071 1072 // Be careful in case this is a self-to-self copy. 1073 if (Src == OldV) 1074 Src = NewV; 1075 1076 if (Dest == OldV) 1077 Dest = NewV; 1078 1079 if (isa<MemCpyInlineInst>(MTI)) { 1080 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1081 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1082 MTI->getSourceAlign(), MTI->getLength(), 1083 false, // isVolatile 1084 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1085 } else if (isa<MemCpyInst>(MTI)) { 1086 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1087 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1088 MTI->getLength(), 1089 false, // isVolatile 1090 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1091 } else { 1092 assert(isa<MemMoveInst>(MTI)); 1093 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1094 MTI->getLength(), 1095 false, // isVolatile 1096 TBAA, ScopeMD, NoAliasMD); 1097 } 1098 } else 1099 llvm_unreachable("unhandled MemIntrinsic"); 1100 1101 MI->eraseFromParent(); 1102 return true; 1103 } 1104 1105 // \p returns true if it is OK to change the address space of constant \p C with 1106 // a ConstantExpr addrspacecast. 1107 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1108 unsigned NewAS) const { 1109 assert(NewAS != UninitializedAddressSpace); 1110 1111 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1112 if (SrcAS == NewAS || isa<UndefValue>(C)) 1113 return true; 1114 1115 // Prevent illegal casts between different non-flat address spaces. 1116 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1117 return false; 1118 1119 if (isa<ConstantPointerNull>(C)) 1120 return true; 1121 1122 if (auto *Op = dyn_cast<Operator>(C)) { 1123 // If we already have a constant addrspacecast, it should be safe to cast it 1124 // off. 1125 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1126 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), 1127 NewAS); 1128 1129 if (Op->getOpcode() == Instruction::IntToPtr && 1130 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1131 return true; 1132 } 1133 1134 return false; 1135 } 1136 1137 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1138 Value::use_iterator End) { 1139 User *CurUser = I->getUser(); 1140 ++I; 1141 1142 while (I != End && I->getUser() == CurUser) 1143 ++I; 1144 1145 return I; 1146 } 1147 1148 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1149 ArrayRef<WeakTrackingVH> Postorder, 1150 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1151 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const { 1152 // For each address expression to be modified, creates a clone of it with its 1153 // pointer operands converted to the new address space. Since the pointer 1154 // operands are converted, the clone is naturally in the new address space by 1155 // construction. 1156 ValueToValueMapTy ValueWithNewAddrSpace; 1157 SmallVector<const Use *, 32> PoisonUsesToFix; 1158 for (Value *V : Postorder) { 1159 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1160 1161 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1162 // not even infer the value to have its original address space. 1163 if (NewAddrSpace == UninitializedAddressSpace) 1164 continue; 1165 1166 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1167 Value *New = 1168 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1169 PredicatedAS, &PoisonUsesToFix); 1170 if (New) 1171 ValueWithNewAddrSpace[V] = New; 1172 } 1173 } 1174 1175 if (ValueWithNewAddrSpace.empty()) 1176 return false; 1177 1178 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. 1179 for (const Use *PoisonUse : PoisonUsesToFix) { 1180 User *V = PoisonUse->getUser(); 1181 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1182 if (!NewV) 1183 continue; 1184 1185 unsigned OperandNo = PoisonUse->getOperandNo(); 1186 assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); 1187 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); 1188 } 1189 1190 SmallVector<Instruction *, 16> DeadInstructions; 1191 ValueToValueMapTy VMap; 1192 ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1193 1194 // Replaces the uses of the old address expressions with the new ones. 1195 for (const WeakTrackingVH &WVH : Postorder) { 1196 assert(WVH && "value was unexpectedly deleted"); 1197 Value *V = WVH; 1198 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1199 if (NewV == nullptr) 1200 continue; 1201 1202 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1203 << *NewV << '\n'); 1204 1205 if (Constant *C = dyn_cast<Constant>(V)) { 1206 Constant *Replace = 1207 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType()); 1208 if (C != Replace) { 1209 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1210 << ": " << *Replace << '\n'); 1211 SmallVector<User *, 16> WorkList; 1212 for (User *U : make_early_inc_range(C->users())) { 1213 if (auto *I = dyn_cast<Instruction>(U)) { 1214 if (I->getFunction() == F) 1215 I->replaceUsesOfWith(C, Replace); 1216 } else { 1217 WorkList.append(U->user_begin(), U->user_end()); 1218 } 1219 } 1220 if (!WorkList.empty()) { 1221 VMap[C] = Replace; 1222 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()}; 1223 while (!WorkList.empty()) { 1224 User *U = WorkList.pop_back_val(); 1225 if (auto *I = dyn_cast<Instruction>(U)) { 1226 if (I->getFunction() == F) 1227 VMapper.remapInstruction(*I); 1228 continue; 1229 } 1230 for (User *U2 : U->users()) 1231 if (Visited.insert(U2).second) 1232 WorkList.push_back(U2); 1233 } 1234 } 1235 V = Replace; 1236 } 1237 } 1238 1239 Value::use_iterator I, E, Next; 1240 for (I = V->use_begin(), E = V->use_end(); I != E;) { 1241 Use &U = *I; 1242 User *CurUser = U.getUser(); 1243 1244 // Some users may see the same pointer operand in multiple operands. Skip 1245 // to the next instruction. 1246 I = skipToNextUser(I, E); 1247 1248 if (isSimplePointerUseValidToReplace( 1249 *TTI, U, V->getType()->getPointerAddressSpace())) { 1250 // If V is used as the pointer operand of a compatible memory operation, 1251 // sets the pointer operand to NewV. This replacement does not change 1252 // the element type, so the resultant load/store is still valid. 1253 U.set(NewV); 1254 continue; 1255 } 1256 1257 // Skip if the current user is the new value itself. 1258 if (CurUser == NewV) 1259 continue; 1260 1261 if (auto *CurUserI = dyn_cast<Instruction>(CurUser); 1262 CurUserI && CurUserI->getFunction() != F) 1263 continue; 1264 1265 // Handle more complex cases like intrinsic that need to be remangled. 1266 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1267 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1268 continue; 1269 } 1270 1271 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1272 if (rewriteIntrinsicOperands(II, V, NewV)) 1273 continue; 1274 } 1275 1276 if (isa<Instruction>(CurUser)) { 1277 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1278 // If we can infer that both pointers are in the same addrspace, 1279 // transform e.g. 1280 // %cmp = icmp eq float* %p, %q 1281 // into 1282 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1283 1284 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1285 int SrcIdx = U.getOperandNo(); 1286 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1287 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1288 1289 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1290 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1291 Cmp->setOperand(OtherIdx, OtherNewV); 1292 Cmp->setOperand(SrcIdx, NewV); 1293 continue; 1294 } 1295 } 1296 1297 // Even if the type mismatches, we can cast the constant. 1298 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1299 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1300 Cmp->setOperand(SrcIdx, NewV); 1301 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast( 1302 KOtherSrc, NewV->getType())); 1303 continue; 1304 } 1305 } 1306 } 1307 1308 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1309 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1310 if (ASC->getDestAddressSpace() == NewAS) { 1311 ASC->replaceAllUsesWith(NewV); 1312 DeadInstructions.push_back(ASC); 1313 continue; 1314 } 1315 } 1316 1317 // Otherwise, replaces the use with flat(NewV). 1318 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1319 // Don't create a copy of the original addrspacecast. 1320 if (U == V && isa<AddrSpaceCastInst>(V)) 1321 continue; 1322 1323 // Insert the addrspacecast after NewV. 1324 BasicBlock::iterator InsertPos; 1325 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1326 InsertPos = std::next(NewVInst->getIterator()); 1327 else 1328 InsertPos = std::next(VInst->getIterator()); 1329 1330 while (isa<PHINode>(InsertPos)) 1331 ++InsertPos; 1332 // This instruction may contain multiple uses of V, update them all. 1333 CurUser->replaceUsesOfWith( 1334 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos)); 1335 } else { 1336 CurUser->replaceUsesOfWith( 1337 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1338 V->getType())); 1339 } 1340 } 1341 } 1342 1343 if (V->use_empty()) { 1344 if (Instruction *I = dyn_cast<Instruction>(V)) 1345 DeadInstructions.push_back(I); 1346 } 1347 } 1348 1349 for (Instruction *I : DeadInstructions) 1350 RecursivelyDeleteTriviallyDeadInstructions(I); 1351 1352 return true; 1353 } 1354 1355 bool InferAddressSpaces::runOnFunction(Function &F) { 1356 if (skipFunction(F)) 1357 return false; 1358 1359 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1360 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1361 return InferAddressSpacesImpl( 1362 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1363 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1364 FlatAddrSpace) 1365 .run(F); 1366 } 1367 1368 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1369 return new InferAddressSpaces(AddressSpace); 1370 } 1371 1372 InferAddressSpacesPass::InferAddressSpacesPass() 1373 : FlatAddrSpace(UninitializedAddressSpace) {} 1374 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1375 : FlatAddrSpace(AddressSpace) {} 1376 1377 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1378 FunctionAnalysisManager &AM) { 1379 bool Changed = 1380 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1381 AM.getCachedResult<DominatorTreeAnalysis>(F), 1382 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1383 .run(F); 1384 if (Changed) { 1385 PreservedAnalyses PA; 1386 PA.preserveSet<CFGAnalyses>(); 1387 PA.preserve<DominatorTreeAnalysis>(); 1388 return PA; 1389 } 1390 return PreservedAnalyses::all(); 1391 } 1392