1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "poison" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `poison` and fix all the uses later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, poison ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the poison in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 92 #include "llvm/ADT/ArrayRef.h" 93 #include "llvm/ADT/DenseMap.h" 94 #include "llvm/ADT/DenseSet.h" 95 #include "llvm/ADT/SetVector.h" 96 #include "llvm/ADT/SmallVector.h" 97 #include "llvm/Analysis/AssumptionCache.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Analysis/ValueTracking.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Dominators.h" 104 #include "llvm/IR/Function.h" 105 #include "llvm/IR/IRBuilder.h" 106 #include "llvm/IR/InstIterator.h" 107 #include "llvm/IR/Instruction.h" 108 #include "llvm/IR/Instructions.h" 109 #include "llvm/IR/IntrinsicInst.h" 110 #include "llvm/IR/Intrinsics.h" 111 #include "llvm/IR/LLVMContext.h" 112 #include "llvm/IR/Operator.h" 113 #include "llvm/IR/PassManager.h" 114 #include "llvm/IR/Type.h" 115 #include "llvm/IR/Use.h" 116 #include "llvm/IR/User.h" 117 #include "llvm/IR/Value.h" 118 #include "llvm/IR/ValueHandle.h" 119 #include "llvm/InitializePasses.h" 120 #include "llvm/Pass.h" 121 #include "llvm/Support/Casting.h" 122 #include "llvm/Support/CommandLine.h" 123 #include "llvm/Support/Compiler.h" 124 #include "llvm/Support/Debug.h" 125 #include "llvm/Support/ErrorHandling.h" 126 #include "llvm/Support/raw_ostream.h" 127 #include "llvm/Transforms/Scalar.h" 128 #include "llvm/Transforms/Utils/Local.h" 129 #include "llvm/Transforms/Utils/ValueMapper.h" 130 #include <cassert> 131 #include <iterator> 132 #include <limits> 133 #include <utility> 134 #include <vector> 135 136 #define DEBUG_TYPE "infer-address-spaces" 137 138 using namespace llvm; 139 140 static cl::opt<bool> AssumeDefaultIsFlatAddressSpace( 141 "assume-default-is-flat-addrspace", cl::init(false), cl::ReallyHidden, 142 cl::desc("The default address space is assumed as the flat address space. " 143 "This is mainly for test purpose.")); 144 145 static const unsigned UninitializedAddressSpace = 146 std::numeric_limits<unsigned>::max(); 147 148 namespace { 149 150 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 151 // Different from ValueToAddrSpaceMapTy, where a new addrspace is inferred on 152 // the *def* of a value, PredicatedAddrSpaceMapTy is map where a new 153 // addrspace is inferred on the *use* of a pointer. This map is introduced to 154 // infer addrspace from the addrspace predicate assumption built from assume 155 // intrinsic. In that scenario, only specific uses (under valid assumption 156 // context) could be inferred with a new addrspace. 157 using PredicatedAddrSpaceMapTy = 158 DenseMap<std::pair<const Value *, const Value *>, unsigned>; 159 using PostorderStackTy = llvm::SmallVector<PointerIntPair<Value *, 1, bool>, 4>; 160 161 class InferAddressSpaces : public FunctionPass { 162 unsigned FlatAddrSpace = 0; 163 164 public: 165 static char ID; 166 167 InferAddressSpaces() 168 : FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) { 169 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 170 } 171 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) { 172 initializeInferAddressSpacesPass(*PassRegistry::getPassRegistry()); 173 } 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 AU.setPreservesCFG(); 177 AU.addPreserved<DominatorTreeWrapperPass>(); 178 AU.addRequired<AssumptionCacheTracker>(); 179 AU.addRequired<TargetTransformInfoWrapperPass>(); 180 } 181 182 bool runOnFunction(Function &F) override; 183 }; 184 185 class InferAddressSpacesImpl { 186 AssumptionCache &AC; 187 const DominatorTree *DT = nullptr; 188 const TargetTransformInfo *TTI = nullptr; 189 const DataLayout *DL = nullptr; 190 191 /// Target specific address space which uses of should be replaced if 192 /// possible. 193 unsigned FlatAddrSpace = 0; 194 195 // Try to update the address space of V. If V is updated, returns true and 196 // false otherwise. 197 bool updateAddressSpace(const Value &V, 198 ValueToAddrSpaceMapTy &InferredAddrSpace, 199 PredicatedAddrSpaceMapTy &PredicatedAS) const; 200 201 // Tries to infer the specific address space of each address expression in 202 // Postorder. 203 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 204 ValueToAddrSpaceMapTy &InferredAddrSpace, 205 PredicatedAddrSpaceMapTy &PredicatedAS) const; 206 207 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 208 209 Value *cloneInstructionWithNewAddressSpace( 210 Instruction *I, unsigned NewAddrSpace, 211 const ValueToValueMapTy &ValueWithNewAddrSpace, 212 const PredicatedAddrSpaceMapTy &PredicatedAS, 213 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 214 215 // Changes the flat address expressions in function F to point to specific 216 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 217 // all flat expressions in the use-def graph of function F. 218 bool 219 rewriteWithNewAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 220 const ValueToAddrSpaceMapTy &InferredAddrSpace, 221 const PredicatedAddrSpaceMapTy &PredicatedAS, 222 Function *F) const; 223 224 void appendsFlatAddressExpressionToPostorderStack( 225 Value *V, PostorderStackTy &PostorderStack, 226 DenseSet<Value *> &Visited) const; 227 228 bool rewriteIntrinsicOperands(IntrinsicInst *II, Value *OldV, 229 Value *NewV) const; 230 void collectRewritableIntrinsicOperands(IntrinsicInst *II, 231 PostorderStackTy &PostorderStack, 232 DenseSet<Value *> &Visited) const; 233 234 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 235 236 Value *cloneValueWithNewAddressSpace( 237 Value *V, unsigned NewAddrSpace, 238 const ValueToValueMapTy &ValueWithNewAddrSpace, 239 const PredicatedAddrSpaceMapTy &PredicatedAS, 240 SmallVectorImpl<const Use *> *PoisonUsesToFix) const; 241 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 242 243 unsigned getPredicatedAddrSpace(const Value &PtrV, 244 const Value *UserCtx) const; 245 246 public: 247 InferAddressSpacesImpl(AssumptionCache &AC, const DominatorTree *DT, 248 const TargetTransformInfo *TTI, unsigned FlatAddrSpace) 249 : AC(AC), DT(DT), TTI(TTI), FlatAddrSpace(FlatAddrSpace) {} 250 bool run(Function &F); 251 }; 252 253 } // end anonymous namespace 254 255 char InferAddressSpaces::ID = 0; 256 257 INITIALIZE_PASS_BEGIN(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 258 false, false) 259 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 260 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 261 INITIALIZE_PASS_END(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 262 false, false) 263 264 static Type *getPtrOrVecOfPtrsWithNewAS(Type *Ty, unsigned NewAddrSpace) { 265 assert(Ty->isPtrOrPtrVectorTy()); 266 PointerType *NPT = PointerType::get(Ty->getContext(), NewAddrSpace); 267 return Ty->getWithNewType(NPT); 268 } 269 270 // Check whether that's no-op pointer bicast using a pair of 271 // `ptrtoint`/`inttoptr` due to the missing no-op pointer bitcast over 272 // different address spaces. 273 static bool isNoopPtrIntCastPair(const Operator *I2P, const DataLayout &DL, 274 const TargetTransformInfo *TTI) { 275 assert(I2P->getOpcode() == Instruction::IntToPtr); 276 auto *P2I = dyn_cast<Operator>(I2P->getOperand(0)); 277 if (!P2I || P2I->getOpcode() != Instruction::PtrToInt) 278 return false; 279 // Check it's really safe to treat that pair of `ptrtoint`/`inttoptr` as a 280 // no-op cast. Besides checking both of them are no-op casts, as the 281 // reinterpreted pointer may be used in other pointer arithmetic, we also 282 // need to double-check that through the target-specific hook. That ensures 283 // the underlying target also agrees that's a no-op address space cast and 284 // pointer bits are preserved. 285 // The current IR spec doesn't have clear rules on address space casts, 286 // especially a clear definition for pointer bits in non-default address 287 // spaces. It would be undefined if that pointer is dereferenced after an 288 // invalid reinterpret cast. Also, due to the unclearness for the meaning of 289 // bits in non-default address spaces in the current spec, the pointer 290 // arithmetic may also be undefined after invalid pointer reinterpret cast. 291 // However, as we confirm through the target hooks that it's a no-op 292 // addrspacecast, it doesn't matter since the bits should be the same. 293 unsigned P2IOp0AS = P2I->getOperand(0)->getType()->getPointerAddressSpace(); 294 unsigned I2PAS = I2P->getType()->getPointerAddressSpace(); 295 return CastInst::isNoopCast(Instruction::CastOps(I2P->getOpcode()), 296 I2P->getOperand(0)->getType(), I2P->getType(), 297 DL) && 298 CastInst::isNoopCast(Instruction::CastOps(P2I->getOpcode()), 299 P2I->getOperand(0)->getType(), P2I->getType(), 300 DL) && 301 (P2IOp0AS == I2PAS || TTI->isNoopAddrSpaceCast(P2IOp0AS, I2PAS)); 302 } 303 304 // Returns true if V is an address expression. 305 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 306 // getelementptr operators. 307 static bool isAddressExpression(const Value &V, const DataLayout &DL, 308 const TargetTransformInfo *TTI) { 309 const Operator *Op = dyn_cast<Operator>(&V); 310 if (!Op) 311 return false; 312 313 switch (Op->getOpcode()) { 314 case Instruction::PHI: 315 assert(Op->getType()->isPtrOrPtrVectorTy()); 316 return true; 317 case Instruction::BitCast: 318 case Instruction::AddrSpaceCast: 319 case Instruction::GetElementPtr: 320 return true; 321 case Instruction::Select: 322 return Op->getType()->isPtrOrPtrVectorTy(); 323 case Instruction::Call: { 324 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&V); 325 return II && II->getIntrinsicID() == Intrinsic::ptrmask; 326 } 327 case Instruction::IntToPtr: 328 return isNoopPtrIntCastPair(Op, DL, TTI); 329 default: 330 // That value is an address expression if it has an assumed address space. 331 return TTI->getAssumedAddrSpace(&V) != UninitializedAddressSpace; 332 } 333 } 334 335 // Returns the pointer operands of V. 336 // 337 // Precondition: V is an address expression. 338 static SmallVector<Value *, 2> 339 getPointerOperands(const Value &V, const DataLayout &DL, 340 const TargetTransformInfo *TTI) { 341 const Operator &Op = cast<Operator>(V); 342 switch (Op.getOpcode()) { 343 case Instruction::PHI: { 344 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 345 return {IncomingValues.begin(), IncomingValues.end()}; 346 } 347 case Instruction::BitCast: 348 case Instruction::AddrSpaceCast: 349 case Instruction::GetElementPtr: 350 return {Op.getOperand(0)}; 351 case Instruction::Select: 352 return {Op.getOperand(1), Op.getOperand(2)}; 353 case Instruction::Call: { 354 const IntrinsicInst &II = cast<IntrinsicInst>(Op); 355 assert(II.getIntrinsicID() == Intrinsic::ptrmask && 356 "unexpected intrinsic call"); 357 return {II.getArgOperand(0)}; 358 } 359 case Instruction::IntToPtr: { 360 assert(isNoopPtrIntCastPair(&Op, DL, TTI)); 361 auto *P2I = cast<Operator>(Op.getOperand(0)); 362 return {P2I->getOperand(0)}; 363 } 364 default: 365 llvm_unreachable("Unexpected instruction type."); 366 } 367 } 368 369 bool InferAddressSpacesImpl::rewriteIntrinsicOperands(IntrinsicInst *II, 370 Value *OldV, 371 Value *NewV) const { 372 Module *M = II->getParent()->getParent()->getParent(); 373 Intrinsic::ID IID = II->getIntrinsicID(); 374 switch (IID) { 375 case Intrinsic::objectsize: 376 case Intrinsic::masked_load: { 377 Type *DestTy = II->getType(); 378 Type *SrcTy = NewV->getType(); 379 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {DestTy, SrcTy}); 380 II->setArgOperand(0, NewV); 381 II->setCalledFunction(NewDecl); 382 return true; 383 } 384 case Intrinsic::ptrmask: 385 // This is handled as an address expression, not as a use memory operation. 386 return false; 387 case Intrinsic::masked_gather: { 388 Type *RetTy = II->getType(); 389 Type *NewPtrTy = NewV->getType(); 390 Function *NewDecl = Intrinsic::getDeclaration(M, IID, {RetTy, NewPtrTy}); 391 II->setArgOperand(0, NewV); 392 II->setCalledFunction(NewDecl); 393 return true; 394 } 395 case Intrinsic::masked_store: 396 case Intrinsic::masked_scatter: { 397 Type *ValueTy = II->getOperand(0)->getType(); 398 Type *NewPtrTy = NewV->getType(); 399 Function *NewDecl = 400 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {ValueTy, NewPtrTy}); 401 II->setArgOperand(1, NewV); 402 II->setCalledFunction(NewDecl); 403 return true; 404 } 405 case Intrinsic::prefetch: 406 case Intrinsic::is_constant: { 407 Function *NewDecl = 408 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {NewV->getType()}); 409 II->setArgOperand(0, NewV); 410 II->setCalledFunction(NewDecl); 411 return true; 412 } 413 default: { 414 Value *Rewrite = TTI->rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 415 if (!Rewrite) 416 return false; 417 if (Rewrite != II) 418 II->replaceAllUsesWith(Rewrite); 419 return true; 420 } 421 } 422 } 423 424 void InferAddressSpacesImpl::collectRewritableIntrinsicOperands( 425 IntrinsicInst *II, PostorderStackTy &PostorderStack, 426 DenseSet<Value *> &Visited) const { 427 auto IID = II->getIntrinsicID(); 428 switch (IID) { 429 case Intrinsic::ptrmask: 430 case Intrinsic::objectsize: 431 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 432 PostorderStack, Visited); 433 break; 434 case Intrinsic::is_constant: { 435 Value *Ptr = II->getArgOperand(0); 436 if (Ptr->getType()->isPtrOrPtrVectorTy()) { 437 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 438 Visited); 439 } 440 441 break; 442 } 443 case Intrinsic::masked_load: 444 case Intrinsic::masked_gather: 445 case Intrinsic::prefetch: 446 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 447 PostorderStack, Visited); 448 break; 449 case Intrinsic::masked_store: 450 case Intrinsic::masked_scatter: 451 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(1), 452 PostorderStack, Visited); 453 break; 454 default: 455 SmallVector<int, 2> OpIndexes; 456 if (TTI->collectFlatAddressOperands(OpIndexes, IID)) { 457 for (int Idx : OpIndexes) { 458 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(Idx), 459 PostorderStack, Visited); 460 } 461 } 462 break; 463 } 464 } 465 466 // Returns all flat address expressions in function F. The elements are 467 // If V is an unvisited flat address expression, appends V to PostorderStack 468 // and marks it as visited. 469 void InferAddressSpacesImpl::appendsFlatAddressExpressionToPostorderStack( 470 Value *V, PostorderStackTy &PostorderStack, 471 DenseSet<Value *> &Visited) const { 472 assert(V->getType()->isPtrOrPtrVectorTy()); 473 474 // Generic addressing expressions may be hidden in nested constant 475 // expressions. 476 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 477 // TODO: Look in non-address parts, like icmp operands. 478 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 479 PostorderStack.emplace_back(CE, false); 480 481 return; 482 } 483 484 if (V->getType()->getPointerAddressSpace() == FlatAddrSpace && 485 isAddressExpression(*V, *DL, TTI)) { 486 if (Visited.insert(V).second) { 487 PostorderStack.emplace_back(V, false); 488 489 Operator *Op = cast<Operator>(V); 490 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 491 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 492 if (isAddressExpression(*CE, *DL, TTI) && Visited.insert(CE).second) 493 PostorderStack.emplace_back(CE, false); 494 } 495 } 496 } 497 } 498 } 499 500 // Returns all flat address expressions in function F. The elements are ordered 501 // in postorder. 502 std::vector<WeakTrackingVH> 503 InferAddressSpacesImpl::collectFlatAddressExpressions(Function &F) const { 504 // This function implements a non-recursive postorder traversal of a partial 505 // use-def graph of function F. 506 PostorderStackTy PostorderStack; 507 // The set of visited expressions. 508 DenseSet<Value *> Visited; 509 510 auto PushPtrOperand = [&](Value *Ptr) { 511 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, Visited); 512 }; 513 514 // Look at operations that may be interesting accelerate by moving to a known 515 // address space. We aim at generating after loads and stores, but pure 516 // addressing calculations may also be faster. 517 for (Instruction &I : instructions(F)) { 518 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 519 PushPtrOperand(GEP->getPointerOperand()); 520 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 521 PushPtrOperand(LI->getPointerOperand()); 522 else if (auto *SI = dyn_cast<StoreInst>(&I)) 523 PushPtrOperand(SI->getPointerOperand()); 524 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 525 PushPtrOperand(RMW->getPointerOperand()); 526 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 527 PushPtrOperand(CmpX->getPointerOperand()); 528 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 529 // For memset/memcpy/memmove, any pointer operand can be replaced. 530 PushPtrOperand(MI->getRawDest()); 531 532 // Handle 2nd operand for memcpy/memmove. 533 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 534 PushPtrOperand(MTI->getRawSource()); 535 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 536 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 537 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 538 if (Cmp->getOperand(0)->getType()->isPtrOrPtrVectorTy()) { 539 PushPtrOperand(Cmp->getOperand(0)); 540 PushPtrOperand(Cmp->getOperand(1)); 541 } 542 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 543 PushPtrOperand(ASC->getPointerOperand()); 544 } else if (auto *I2P = dyn_cast<IntToPtrInst>(&I)) { 545 if (isNoopPtrIntCastPair(cast<Operator>(I2P), *DL, TTI)) 546 PushPtrOperand(cast<Operator>(I2P->getOperand(0))->getOperand(0)); 547 } else if (auto *RI = dyn_cast<ReturnInst>(&I)) { 548 if (auto *RV = RI->getReturnValue(); 549 RV && RV->getType()->isPtrOrPtrVectorTy()) 550 PushPtrOperand(RV); 551 } 552 } 553 554 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 555 while (!PostorderStack.empty()) { 556 Value *TopVal = PostorderStack.back().getPointer(); 557 // If the operands of the expression on the top are already explored, 558 // adds that expression to the resultant postorder. 559 if (PostorderStack.back().getInt()) { 560 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 561 Postorder.push_back(TopVal); 562 PostorderStack.pop_back(); 563 continue; 564 } 565 // Otherwise, adds its operands to the stack and explores them. 566 PostorderStack.back().setInt(true); 567 // Skip values with an assumed address space. 568 if (TTI->getAssumedAddrSpace(TopVal) == UninitializedAddressSpace) { 569 for (Value *PtrOperand : getPointerOperands(*TopVal, *DL, TTI)) { 570 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 571 Visited); 572 } 573 } 574 } 575 return Postorder; 576 } 577 578 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 579 // of OperandUse.get() in the new address space. If the clone is not ready yet, 580 // returns poison in the new address space as a placeholder. 581 static Value *operandWithNewAddressSpaceOrCreatePoison( 582 const Use &OperandUse, unsigned NewAddrSpace, 583 const ValueToValueMapTy &ValueWithNewAddrSpace, 584 const PredicatedAddrSpaceMapTy &PredicatedAS, 585 SmallVectorImpl<const Use *> *PoisonUsesToFix) { 586 Value *Operand = OperandUse.get(); 587 588 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAddrSpace); 589 590 if (Constant *C = dyn_cast<Constant>(Operand)) 591 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 592 593 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 594 return NewOperand; 595 596 Instruction *Inst = cast<Instruction>(OperandUse.getUser()); 597 auto I = PredicatedAS.find(std::make_pair(Inst, Operand)); 598 if (I != PredicatedAS.end()) { 599 // Insert an addrspacecast on that operand before the user. 600 unsigned NewAS = I->second; 601 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(Operand->getType(), NewAS); 602 auto *NewI = new AddrSpaceCastInst(Operand, NewPtrTy); 603 NewI->insertBefore(Inst); 604 NewI->setDebugLoc(Inst->getDebugLoc()); 605 return NewI; 606 } 607 608 PoisonUsesToFix->push_back(&OperandUse); 609 return PoisonValue::get(NewPtrTy); 610 } 611 612 // Returns a clone of `I` with its operands converted to those specified in 613 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 614 // operand whose address space needs to be modified might not exist in 615 // ValueWithNewAddrSpace. In that case, uses poison as a placeholder operand and 616 // adds that operand use to PoisonUsesToFix so that caller can fix them later. 617 // 618 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 619 // from a pointer whose type already matches. Therefore, this function returns a 620 // Value* instead of an Instruction*. 621 // 622 // This may also return nullptr in the case the instruction could not be 623 // rewritten. 624 Value *InferAddressSpacesImpl::cloneInstructionWithNewAddressSpace( 625 Instruction *I, unsigned NewAddrSpace, 626 const ValueToValueMapTy &ValueWithNewAddrSpace, 627 const PredicatedAddrSpaceMapTy &PredicatedAS, 628 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 629 Type *NewPtrType = getPtrOrVecOfPtrsWithNewAS(I->getType(), NewAddrSpace); 630 631 if (I->getOpcode() == Instruction::AddrSpaceCast) { 632 Value *Src = I->getOperand(0); 633 // Because `I` is flat, the source address space must be specific. 634 // Therefore, the inferred address space must be the source space, according 635 // to our algorithm. 636 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 637 if (Src->getType() != NewPtrType) 638 return new BitCastInst(Src, NewPtrType); 639 return Src; 640 } 641 642 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 643 // Technically the intrinsic ID is a pointer typed argument, so specially 644 // handle calls early. 645 assert(II->getIntrinsicID() == Intrinsic::ptrmask); 646 Value *NewPtr = operandWithNewAddressSpaceOrCreatePoison( 647 II->getArgOperandUse(0), NewAddrSpace, ValueWithNewAddrSpace, 648 PredicatedAS, PoisonUsesToFix); 649 Value *Rewrite = 650 TTI->rewriteIntrinsicWithAddressSpace(II, II->getArgOperand(0), NewPtr); 651 if (Rewrite) { 652 assert(Rewrite != II && "cannot modify this pointer operation in place"); 653 return Rewrite; 654 } 655 656 return nullptr; 657 } 658 659 unsigned AS = TTI->getAssumedAddrSpace(I); 660 if (AS != UninitializedAddressSpace) { 661 // For the assumed address space, insert an `addrspacecast` to make that 662 // explicit. 663 Type *NewPtrTy = getPtrOrVecOfPtrsWithNewAS(I->getType(), AS); 664 auto *NewI = new AddrSpaceCastInst(I, NewPtrTy); 665 NewI->insertAfter(I); 666 NewI->setDebugLoc(I->getDebugLoc()); 667 return NewI; 668 } 669 670 // Computes the converted pointer operands. 671 SmallVector<Value *, 4> NewPointerOperands; 672 for (const Use &OperandUse : I->operands()) { 673 if (!OperandUse.get()->getType()->isPtrOrPtrVectorTy()) 674 NewPointerOperands.push_back(nullptr); 675 else 676 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreatePoison( 677 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, 678 PoisonUsesToFix)); 679 } 680 681 switch (I->getOpcode()) { 682 case Instruction::BitCast: 683 return new BitCastInst(NewPointerOperands[0], NewPtrType); 684 case Instruction::PHI: { 685 assert(I->getType()->isPtrOrPtrVectorTy()); 686 PHINode *PHI = cast<PHINode>(I); 687 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 688 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 689 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 690 NewPHI->addIncoming(NewPointerOperands[OperandNo], 691 PHI->getIncomingBlock(Index)); 692 } 693 return NewPHI; 694 } 695 case Instruction::GetElementPtr: { 696 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 697 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 698 GEP->getSourceElementType(), NewPointerOperands[0], 699 SmallVector<Value *, 4>(GEP->indices())); 700 NewGEP->setIsInBounds(GEP->isInBounds()); 701 return NewGEP; 702 } 703 case Instruction::Select: 704 assert(I->getType()->isPtrOrPtrVectorTy()); 705 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 706 NewPointerOperands[2], "", nullptr, I); 707 case Instruction::IntToPtr: { 708 assert(isNoopPtrIntCastPair(cast<Operator>(I), *DL, TTI)); 709 Value *Src = cast<Operator>(I->getOperand(0))->getOperand(0); 710 if (Src->getType() == NewPtrType) 711 return Src; 712 713 // If we had a no-op inttoptr/ptrtoint pair, we may still have inferred a 714 // source address space from a generic pointer source need to insert a cast 715 // back. 716 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Src, NewPtrType); 717 } 718 default: 719 llvm_unreachable("Unexpected opcode"); 720 } 721 } 722 723 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 724 // constant expression `CE` with its operands replaced as specified in 725 // ValueWithNewAddrSpace. 726 static Value *cloneConstantExprWithNewAddressSpace( 727 ConstantExpr *CE, unsigned NewAddrSpace, 728 const ValueToValueMapTy &ValueWithNewAddrSpace, const DataLayout *DL, 729 const TargetTransformInfo *TTI) { 730 Type *TargetType = 731 CE->getType()->isPtrOrPtrVectorTy() 732 ? getPtrOrVecOfPtrsWithNewAS(CE->getType(), NewAddrSpace) 733 : CE->getType(); 734 735 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 736 // Because CE is flat, the source address space must be specific. 737 // Therefore, the inferred address space must be the source space according 738 // to our algorithm. 739 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 740 NewAddrSpace); 741 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 742 } 743 744 if (CE->getOpcode() == Instruction::BitCast) { 745 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 746 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 747 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 748 } 749 750 if (CE->getOpcode() == Instruction::IntToPtr) { 751 assert(isNoopPtrIntCastPair(cast<Operator>(CE), *DL, TTI)); 752 Constant *Src = cast<ConstantExpr>(CE->getOperand(0))->getOperand(0); 753 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 754 return ConstantExpr::getBitCast(Src, TargetType); 755 } 756 757 // Computes the operands of the new constant expression. 758 bool IsNew = false; 759 SmallVector<Constant *, 4> NewOperands; 760 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 761 Constant *Operand = CE->getOperand(Index); 762 // If the address space of `Operand` needs to be modified, the new operand 763 // with the new address space should already be in ValueWithNewAddrSpace 764 // because (1) the constant expressions we consider (i.e. addrspacecast, 765 // bitcast, and getelementptr) do not incur cycles in the data flow graph 766 // and (2) this function is called on constant expressions in postorder. 767 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 768 IsNew = true; 769 NewOperands.push_back(cast<Constant>(NewOperand)); 770 continue; 771 } 772 if (auto *CExpr = dyn_cast<ConstantExpr>(Operand)) 773 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 774 CExpr, NewAddrSpace, ValueWithNewAddrSpace, DL, TTI)) { 775 IsNew = true; 776 NewOperands.push_back(cast<Constant>(NewOperand)); 777 continue; 778 } 779 // Otherwise, reuses the old operand. 780 NewOperands.push_back(Operand); 781 } 782 783 // If !IsNew, we will replace the Value with itself. However, replaced values 784 // are assumed to wrapped in an addrspacecast cast later so drop it now. 785 if (!IsNew) 786 return nullptr; 787 788 if (CE->getOpcode() == Instruction::GetElementPtr) { 789 // Needs to specify the source type while constructing a getelementptr 790 // constant expression. 791 return CE->getWithOperands(NewOperands, TargetType, /*OnlyIfReduced=*/false, 792 cast<GEPOperator>(CE)->getSourceElementType()); 793 } 794 795 return CE->getWithOperands(NewOperands, TargetType); 796 } 797 798 // Returns a clone of the value `V`, with its operands replaced as specified in 799 // ValueWithNewAddrSpace. This function is called on every flat address 800 // expression whose address space needs to be modified, in postorder. 801 // 802 // See cloneInstructionWithNewAddressSpace for the meaning of PoisonUsesToFix. 803 Value *InferAddressSpacesImpl::cloneValueWithNewAddressSpace( 804 Value *V, unsigned NewAddrSpace, 805 const ValueToValueMapTy &ValueWithNewAddrSpace, 806 const PredicatedAddrSpaceMapTy &PredicatedAS, 807 SmallVectorImpl<const Use *> *PoisonUsesToFix) const { 808 // All values in Postorder are flat address expressions. 809 assert(V->getType()->getPointerAddressSpace() == FlatAddrSpace && 810 isAddressExpression(*V, *DL, TTI)); 811 812 if (Instruction *I = dyn_cast<Instruction>(V)) { 813 Value *NewV = cloneInstructionWithNewAddressSpace( 814 I, NewAddrSpace, ValueWithNewAddrSpace, PredicatedAS, PoisonUsesToFix); 815 if (Instruction *NewI = dyn_cast_or_null<Instruction>(NewV)) { 816 if (NewI->getParent() == nullptr) { 817 NewI->insertBefore(I); 818 NewI->takeName(I); 819 NewI->setDebugLoc(I->getDebugLoc()); 820 } 821 } 822 return NewV; 823 } 824 825 return cloneConstantExprWithNewAddressSpace( 826 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace, DL, TTI); 827 } 828 829 // Defines the join operation on the address space lattice (see the file header 830 // comments). 831 unsigned InferAddressSpacesImpl::joinAddressSpaces(unsigned AS1, 832 unsigned AS2) const { 833 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 834 return FlatAddrSpace; 835 836 if (AS1 == UninitializedAddressSpace) 837 return AS2; 838 if (AS2 == UninitializedAddressSpace) 839 return AS1; 840 841 // The join of two different specific address spaces is flat. 842 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 843 } 844 845 bool InferAddressSpacesImpl::run(Function &F) { 846 DL = &F.getDataLayout(); 847 848 if (AssumeDefaultIsFlatAddressSpace) 849 FlatAddrSpace = 0; 850 851 if (FlatAddrSpace == UninitializedAddressSpace) { 852 FlatAddrSpace = TTI->getFlatAddressSpace(); 853 if (FlatAddrSpace == UninitializedAddressSpace) 854 return false; 855 } 856 857 // Collects all flat address expressions in postorder. 858 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 859 860 // Runs a data-flow analysis to refine the address spaces of every expression 861 // in Postorder. 862 ValueToAddrSpaceMapTy InferredAddrSpace; 863 PredicatedAddrSpaceMapTy PredicatedAS; 864 inferAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS); 865 866 // Changes the address spaces of the flat address expressions who are inferred 867 // to point to a specific address space. 868 return rewriteWithNewAddressSpaces(Postorder, InferredAddrSpace, PredicatedAS, 869 &F); 870 } 871 872 // Constants need to be tracked through RAUW to handle cases with nested 873 // constant expressions, so wrap values in WeakTrackingVH. 874 void InferAddressSpacesImpl::inferAddressSpaces( 875 ArrayRef<WeakTrackingVH> Postorder, 876 ValueToAddrSpaceMapTy &InferredAddrSpace, 877 PredicatedAddrSpaceMapTy &PredicatedAS) const { 878 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 879 // Initially, all expressions are in the uninitialized address space. 880 for (Value *V : Postorder) 881 InferredAddrSpace[V] = UninitializedAddressSpace; 882 883 while (!Worklist.empty()) { 884 Value *V = Worklist.pop_back_val(); 885 886 // Try to update the address space of the stack top according to the 887 // address spaces of its operands. 888 if (!updateAddressSpace(*V, InferredAddrSpace, PredicatedAS)) 889 continue; 890 891 for (Value *User : V->users()) { 892 // Skip if User is already in the worklist. 893 if (Worklist.count(User)) 894 continue; 895 896 auto Pos = InferredAddrSpace.find(User); 897 // Our algorithm only updates the address spaces of flat address 898 // expressions, which are those in InferredAddrSpace. 899 if (Pos == InferredAddrSpace.end()) 900 continue; 901 902 // Function updateAddressSpace moves the address space down a lattice 903 // path. Therefore, nothing to do if User is already inferred as flat (the 904 // bottom element in the lattice). 905 if (Pos->second == FlatAddrSpace) 906 continue; 907 908 Worklist.insert(User); 909 } 910 } 911 } 912 913 unsigned 914 InferAddressSpacesImpl::getPredicatedAddrSpace(const Value &Ptr, 915 const Value *UserCtx) const { 916 const Instruction *UserCtxI = dyn_cast<Instruction>(UserCtx); 917 if (!UserCtxI) 918 return UninitializedAddressSpace; 919 920 const Value *StrippedPtr = Ptr.stripInBoundsOffsets(); 921 for (auto &AssumeVH : AC.assumptionsFor(StrippedPtr)) { 922 if (!AssumeVH) 923 continue; 924 CallInst *CI = cast<CallInst>(AssumeVH); 925 if (!isValidAssumeForContext(CI, UserCtxI, DT)) 926 continue; 927 928 const Value *Ptr; 929 unsigned AS; 930 std::tie(Ptr, AS) = TTI->getPredicatedAddrSpace(CI->getArgOperand(0)); 931 if (Ptr) 932 return AS; 933 } 934 935 return UninitializedAddressSpace; 936 } 937 938 bool InferAddressSpacesImpl::updateAddressSpace( 939 const Value &V, ValueToAddrSpaceMapTy &InferredAddrSpace, 940 PredicatedAddrSpaceMapTy &PredicatedAS) const { 941 assert(InferredAddrSpace.count(&V)); 942 943 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << V << '\n'); 944 945 // The new inferred address space equals the join of the address spaces 946 // of all its pointer operands. 947 unsigned NewAS = UninitializedAddressSpace; 948 949 const Operator &Op = cast<Operator>(V); 950 if (Op.getOpcode() == Instruction::Select) { 951 Value *Src0 = Op.getOperand(1); 952 Value *Src1 = Op.getOperand(2); 953 954 auto I = InferredAddrSpace.find(Src0); 955 unsigned Src0AS = (I != InferredAddrSpace.end()) 956 ? I->second 957 : Src0->getType()->getPointerAddressSpace(); 958 959 auto J = InferredAddrSpace.find(Src1); 960 unsigned Src1AS = (J != InferredAddrSpace.end()) 961 ? J->second 962 : Src1->getType()->getPointerAddressSpace(); 963 964 auto *C0 = dyn_cast<Constant>(Src0); 965 auto *C1 = dyn_cast<Constant>(Src1); 966 967 // If one of the inputs is a constant, we may be able to do a constant 968 // addrspacecast of it. Defer inferring the address space until the input 969 // address space is known. 970 if ((C1 && Src0AS == UninitializedAddressSpace) || 971 (C0 && Src1AS == UninitializedAddressSpace)) 972 return false; 973 974 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 975 NewAS = Src1AS; 976 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 977 NewAS = Src0AS; 978 else 979 NewAS = joinAddressSpaces(Src0AS, Src1AS); 980 } else { 981 unsigned AS = TTI->getAssumedAddrSpace(&V); 982 if (AS != UninitializedAddressSpace) { 983 // Use the assumed address space directly. 984 NewAS = AS; 985 } else { 986 // Otherwise, infer the address space from its pointer operands. 987 for (Value *PtrOperand : getPointerOperands(V, *DL, TTI)) { 988 auto I = InferredAddrSpace.find(PtrOperand); 989 unsigned OperandAS; 990 if (I == InferredAddrSpace.end()) { 991 OperandAS = PtrOperand->getType()->getPointerAddressSpace(); 992 if (OperandAS == FlatAddrSpace) { 993 // Check AC for assumption dominating V. 994 unsigned AS = getPredicatedAddrSpace(*PtrOperand, &V); 995 if (AS != UninitializedAddressSpace) { 996 LLVM_DEBUG(dbgs() 997 << " deduce operand AS from the predicate addrspace " 998 << AS << '\n'); 999 OperandAS = AS; 1000 // Record this use with the predicated AS. 1001 PredicatedAS[std::make_pair(&V, PtrOperand)] = OperandAS; 1002 } 1003 } 1004 } else 1005 OperandAS = I->second; 1006 1007 // join(flat, *) = flat. So we can break if NewAS is already flat. 1008 NewAS = joinAddressSpaces(NewAS, OperandAS); 1009 if (NewAS == FlatAddrSpace) 1010 break; 1011 } 1012 } 1013 } 1014 1015 unsigned OldAS = InferredAddrSpace.lookup(&V); 1016 assert(OldAS != FlatAddrSpace); 1017 if (OldAS == NewAS) 1018 return false; 1019 1020 // If any updates are made, grabs its users to the worklist because 1021 // their address spaces can also be possibly updated. 1022 LLVM_DEBUG(dbgs() << " to " << NewAS << '\n'); 1023 InferredAddrSpace[&V] = NewAS; 1024 return true; 1025 } 1026 1027 /// Replace operand \p OpIdx in \p Inst, if the value is the same as \p OldVal 1028 /// with \p NewVal. 1029 static bool replaceOperandIfSame(Instruction *Inst, unsigned OpIdx, 1030 Value *OldVal, Value *NewVal) { 1031 Use &U = Inst->getOperandUse(OpIdx); 1032 if (U.get() == OldVal) { 1033 U.set(NewVal); 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 template <typename InstrType> 1041 static bool replaceSimplePointerUse(const TargetTransformInfo &TTI, 1042 InstrType *MemInstr, unsigned AddrSpace, 1043 Value *OldV, Value *NewV) { 1044 if (!MemInstr->isVolatile() || TTI.hasVolatileVariant(MemInstr, AddrSpace)) { 1045 return replaceOperandIfSame(MemInstr, InstrType::getPointerOperandIndex(), 1046 OldV, NewV); 1047 } 1048 1049 return false; 1050 } 1051 1052 /// If \p OldV is used as the pointer operand of a compatible memory operation 1053 /// \p Inst, replaces the pointer operand with NewV. 1054 /// 1055 /// This covers memory instructions with a single pointer operand that can have 1056 /// its address space changed by simply mutating the use to a new value. 1057 /// 1058 /// \p returns true the user replacement was made. 1059 static bool replaceIfSimplePointerUse(const TargetTransformInfo &TTI, 1060 User *Inst, unsigned AddrSpace, 1061 Value *OldV, Value *NewV) { 1062 if (auto *LI = dyn_cast<LoadInst>(Inst)) 1063 return replaceSimplePointerUse(TTI, LI, AddrSpace, OldV, NewV); 1064 1065 if (auto *SI = dyn_cast<StoreInst>(Inst)) 1066 return replaceSimplePointerUse(TTI, SI, AddrSpace, OldV, NewV); 1067 1068 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 1069 return replaceSimplePointerUse(TTI, RMW, AddrSpace, OldV, NewV); 1070 1071 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 1072 return replaceSimplePointerUse(TTI, CmpX, AddrSpace, OldV, NewV); 1073 1074 return false; 1075 } 1076 1077 /// Update memory intrinsic uses that require more complex processing than 1078 /// simple memory instructions. These require re-mangling and may have multiple 1079 /// pointer operands. 1080 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 1081 Value *NewV) { 1082 IRBuilder<> B(MI); 1083 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 1084 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 1085 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 1086 1087 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 1088 B.CreateMemSet(NewV, MSI->getValue(), MSI->getLength(), MSI->getDestAlign(), 1089 false, // isVolatile 1090 TBAA, ScopeMD, NoAliasMD); 1091 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 1092 Value *Src = MTI->getRawSource(); 1093 Value *Dest = MTI->getRawDest(); 1094 1095 // Be careful in case this is a self-to-self copy. 1096 if (Src == OldV) 1097 Src = NewV; 1098 1099 if (Dest == OldV) 1100 Dest = NewV; 1101 1102 if (isa<MemCpyInlineInst>(MTI)) { 1103 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1104 B.CreateMemCpyInline(Dest, MTI->getDestAlign(), Src, 1105 MTI->getSourceAlign(), MTI->getLength(), 1106 false, // isVolatile 1107 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1108 } else if (isa<MemCpyInst>(MTI)) { 1109 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 1110 B.CreateMemCpy(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1111 MTI->getLength(), 1112 false, // isVolatile 1113 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 1114 } else { 1115 assert(isa<MemMoveInst>(MTI)); 1116 B.CreateMemMove(Dest, MTI->getDestAlign(), Src, MTI->getSourceAlign(), 1117 MTI->getLength(), 1118 false, // isVolatile 1119 TBAA, ScopeMD, NoAliasMD); 1120 } 1121 } else 1122 llvm_unreachable("unhandled MemIntrinsic"); 1123 1124 MI->eraseFromParent(); 1125 return true; 1126 } 1127 1128 // \p returns true if it is OK to change the address space of constant \p C with 1129 // a ConstantExpr addrspacecast. 1130 bool InferAddressSpacesImpl::isSafeToCastConstAddrSpace(Constant *C, 1131 unsigned NewAS) const { 1132 assert(NewAS != UninitializedAddressSpace); 1133 1134 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 1135 if (SrcAS == NewAS || isa<UndefValue>(C)) 1136 return true; 1137 1138 // Prevent illegal casts between different non-flat address spaces. 1139 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 1140 return false; 1141 1142 if (isa<ConstantPointerNull>(C)) 1143 return true; 1144 1145 if (auto *Op = dyn_cast<Operator>(C)) { 1146 // If we already have a constant addrspacecast, it should be safe to cast it 1147 // off. 1148 if (Op->getOpcode() == Instruction::AddrSpaceCast) 1149 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), 1150 NewAS); 1151 1152 if (Op->getOpcode() == Instruction::IntToPtr && 1153 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 1154 return true; 1155 } 1156 1157 return false; 1158 } 1159 1160 static Value::use_iterator skipToNextUser(Value::use_iterator I, 1161 Value::use_iterator End) { 1162 User *CurUser = I->getUser(); 1163 ++I; 1164 1165 while (I != End && I->getUser() == CurUser) 1166 ++I; 1167 1168 return I; 1169 } 1170 1171 bool InferAddressSpacesImpl::rewriteWithNewAddressSpaces( 1172 ArrayRef<WeakTrackingVH> Postorder, 1173 const ValueToAddrSpaceMapTy &InferredAddrSpace, 1174 const PredicatedAddrSpaceMapTy &PredicatedAS, Function *F) const { 1175 // For each address expression to be modified, creates a clone of it with its 1176 // pointer operands converted to the new address space. Since the pointer 1177 // operands are converted, the clone is naturally in the new address space by 1178 // construction. 1179 ValueToValueMapTy ValueWithNewAddrSpace; 1180 SmallVector<const Use *, 32> PoisonUsesToFix; 1181 for (Value *V : Postorder) { 1182 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 1183 1184 // In some degenerate cases (e.g. invalid IR in unreachable code), we may 1185 // not even infer the value to have its original address space. 1186 if (NewAddrSpace == UninitializedAddressSpace) 1187 continue; 1188 1189 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 1190 Value *New = 1191 cloneValueWithNewAddressSpace(V, NewAddrSpace, ValueWithNewAddrSpace, 1192 PredicatedAS, &PoisonUsesToFix); 1193 if (New) 1194 ValueWithNewAddrSpace[V] = New; 1195 } 1196 } 1197 1198 if (ValueWithNewAddrSpace.empty()) 1199 return false; 1200 1201 // Fixes all the poison uses generated by cloneInstructionWithNewAddressSpace. 1202 for (const Use *PoisonUse : PoisonUsesToFix) { 1203 User *V = PoisonUse->getUser(); 1204 User *NewV = cast_or_null<User>(ValueWithNewAddrSpace.lookup(V)); 1205 if (!NewV) 1206 continue; 1207 1208 unsigned OperandNo = PoisonUse->getOperandNo(); 1209 assert(isa<PoisonValue>(NewV->getOperand(OperandNo))); 1210 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(PoisonUse->get())); 1211 } 1212 1213 SmallVector<Instruction *, 16> DeadInstructions; 1214 ValueToValueMapTy VMap; 1215 ValueMapper VMapper(VMap, RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); 1216 1217 // Replaces the uses of the old address expressions with the new ones. 1218 for (const WeakTrackingVH &WVH : Postorder) { 1219 assert(WVH && "value was unexpectedly deleted"); 1220 Value *V = WVH; 1221 Value *NewV = ValueWithNewAddrSpace.lookup(V); 1222 if (NewV == nullptr) 1223 continue; 1224 1225 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 1226 << *NewV << '\n'); 1227 1228 if (Constant *C = dyn_cast<Constant>(V)) { 1229 Constant *Replace = 1230 ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), C->getType()); 1231 if (C != Replace) { 1232 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 1233 << ": " << *Replace << '\n'); 1234 SmallVector<User *, 16> WorkList; 1235 for (User *U : make_early_inc_range(C->users())) { 1236 if (auto *I = dyn_cast<Instruction>(U)) { 1237 if (I->getFunction() == F) 1238 I->replaceUsesOfWith(C, Replace); 1239 } else { 1240 WorkList.append(U->user_begin(), U->user_end()); 1241 } 1242 } 1243 if (!WorkList.empty()) { 1244 VMap[C] = Replace; 1245 DenseSet<User *> Visited{WorkList.begin(), WorkList.end()}; 1246 while (!WorkList.empty()) { 1247 User *U = WorkList.pop_back_val(); 1248 if (auto *I = dyn_cast<Instruction>(U)) { 1249 if (I->getFunction() == F) 1250 VMapper.remapInstruction(*I); 1251 continue; 1252 } 1253 for (User *U2 : U->users()) 1254 if (Visited.insert(U2).second) 1255 WorkList.push_back(U2); 1256 } 1257 } 1258 V = Replace; 1259 } 1260 } 1261 1262 Value::use_iterator I, E, Next; 1263 for (I = V->use_begin(), E = V->use_end(); I != E;) { 1264 Use &U = *I; 1265 User *CurUser = U.getUser(); 1266 1267 // Some users may see the same pointer operand in multiple operands. Skip 1268 // to the next instruction. 1269 I = skipToNextUser(I, E); 1270 1271 unsigned AddrSpace = V->getType()->getPointerAddressSpace(); 1272 if (replaceIfSimplePointerUse(*TTI, CurUser, AddrSpace, V, NewV)) 1273 continue; 1274 1275 // Skip if the current user is the new value itself. 1276 if (CurUser == NewV) 1277 continue; 1278 1279 if (auto *CurUserI = dyn_cast<Instruction>(CurUser); 1280 CurUserI && CurUserI->getFunction() != F) 1281 continue; 1282 1283 // Handle more complex cases like intrinsic that need to be remangled. 1284 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 1285 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 1286 continue; 1287 } 1288 1289 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 1290 if (rewriteIntrinsicOperands(II, V, NewV)) 1291 continue; 1292 } 1293 1294 if (isa<Instruction>(CurUser)) { 1295 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 1296 // If we can infer that both pointers are in the same addrspace, 1297 // transform e.g. 1298 // %cmp = icmp eq float* %p, %q 1299 // into 1300 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 1301 1302 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1303 int SrcIdx = U.getOperandNo(); 1304 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 1305 Value *OtherSrc = Cmp->getOperand(OtherIdx); 1306 1307 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 1308 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 1309 Cmp->setOperand(OtherIdx, OtherNewV); 1310 Cmp->setOperand(SrcIdx, NewV); 1311 continue; 1312 } 1313 } 1314 1315 // Even if the type mismatches, we can cast the constant. 1316 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 1317 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 1318 Cmp->setOperand(SrcIdx, NewV); 1319 Cmp->setOperand(OtherIdx, ConstantExpr::getAddrSpaceCast( 1320 KOtherSrc, NewV->getType())); 1321 continue; 1322 } 1323 } 1324 } 1325 1326 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 1327 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 1328 if (ASC->getDestAddressSpace() == NewAS) { 1329 ASC->replaceAllUsesWith(NewV); 1330 DeadInstructions.push_back(ASC); 1331 continue; 1332 } 1333 } 1334 1335 // Otherwise, replaces the use with flat(NewV). 1336 if (Instruction *VInst = dyn_cast<Instruction>(V)) { 1337 // Don't create a copy of the original addrspacecast. 1338 if (U == V && isa<AddrSpaceCastInst>(V)) 1339 continue; 1340 1341 // Insert the addrspacecast after NewV. 1342 BasicBlock::iterator InsertPos; 1343 if (Instruction *NewVInst = dyn_cast<Instruction>(NewV)) 1344 InsertPos = std::next(NewVInst->getIterator()); 1345 else 1346 InsertPos = std::next(VInst->getIterator()); 1347 1348 while (isa<PHINode>(InsertPos)) 1349 ++InsertPos; 1350 // This instruction may contain multiple uses of V, update them all. 1351 CurUser->replaceUsesOfWith( 1352 V, new AddrSpaceCastInst(NewV, V->getType(), "", InsertPos)); 1353 } else { 1354 CurUser->replaceUsesOfWith( 1355 V, ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1356 V->getType())); 1357 } 1358 } 1359 } 1360 1361 if (V->use_empty()) { 1362 if (Instruction *I = dyn_cast<Instruction>(V)) 1363 DeadInstructions.push_back(I); 1364 } 1365 } 1366 1367 for (Instruction *I : DeadInstructions) 1368 RecursivelyDeleteTriviallyDeadInstructions(I); 1369 1370 return true; 1371 } 1372 1373 bool InferAddressSpaces::runOnFunction(Function &F) { 1374 if (skipFunction(F)) 1375 return false; 1376 1377 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 1378 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 1379 return InferAddressSpacesImpl( 1380 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), DT, 1381 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F), 1382 FlatAddrSpace) 1383 .run(F); 1384 } 1385 1386 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1387 return new InferAddressSpaces(AddressSpace); 1388 } 1389 1390 InferAddressSpacesPass::InferAddressSpacesPass() 1391 : FlatAddrSpace(UninitializedAddressSpace) {} 1392 InferAddressSpacesPass::InferAddressSpacesPass(unsigned AddressSpace) 1393 : FlatAddrSpace(AddressSpace) {} 1394 1395 PreservedAnalyses InferAddressSpacesPass::run(Function &F, 1396 FunctionAnalysisManager &AM) { 1397 bool Changed = 1398 InferAddressSpacesImpl(AM.getResult<AssumptionAnalysis>(F), 1399 AM.getCachedResult<DominatorTreeAnalysis>(F), 1400 &AM.getResult<TargetIRAnalysis>(F), FlatAddrSpace) 1401 .run(F); 1402 if (Changed) { 1403 PreservedAnalyses PA; 1404 PA.preserveSet<CFGAnalyses>(); 1405 PA.preserve<DominatorTreeAnalysis>(); 1406 return PA; 1407 } 1408 return PreservedAnalyses::all(); 1409 } 1410