xref: /llvm-project/llvm/lib/Transforms/Scalar/InferAddressSpaces.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- InferAddressSpace.cpp - --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // CUDA C/C++ includes memory space designation as variable type qualifers (such
10 // as __global__ and __shared__). Knowing the space of a memory access allows
11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from
12 // shared memory can be translated to `ld.shared` which is roughly 10% faster
13 // than a generic `ld` on an NVIDIA Tesla K40c.
14 //
15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA
16 // compilers must infer the memory space of an address expression from
17 // type-qualified variables.
18 //
19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory
20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend
21 // places only type-qualified variables in specific address spaces, and then
22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0)
23 // (so-called the generic address space) for other instructions to use.
24 //
25 // For example, the Clang translates the following CUDA code
26 //   __shared__ float a[10];
27 //   float v = a[i];
28 // to
29 //   %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]*
30 //   %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i
31 //   %v = load float, float* %1 ; emits ld.f32
32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is
33 // redirected to %0 (the generic version of @a).
34 //
35 // The optimization implemented in this file propagates specific address spaces
36 // from type-qualified variable declarations to its users. For example, it
37 // optimizes the above IR to
38 //   %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i
39 //   %v = load float addrspace(3)* %1 ; emits ld.shared.f32
40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX
41 // codegen is able to emit ld.shared.f32 for %v.
42 //
43 // Address space inference works in two steps. First, it uses a data-flow
44 // analysis to infer as many generic pointers as possible to point to only one
45 // specific address space. In the above example, it can prove that %1 only
46 // points to addrspace(3). This algorithm was published in
47 //   CUDA: Compiling and optimizing for a GPU platform
48 //   Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang
49 //   ICCS 2012
50 //
51 // Then, address space inference replaces all refinable generic pointers with
52 // equivalent specific pointers.
53 //
54 // The major challenge of implementing this optimization is handling PHINodes,
55 // which may create loops in the data flow graph. This brings two complications.
56 //
57 // First, the data flow analysis in Step 1 needs to be circular. For example,
58 //     %generic.input = addrspacecast float addrspace(3)* %input to float*
59 //   loop:
60 //     %y = phi [ %generic.input, %y2 ]
61 //     %y2 = getelementptr %y, 1
62 //     %v = load %y2
63 //     br ..., label %loop, ...
64 // proving %y specific requires proving both %generic.input and %y2 specific,
65 // but proving %y2 specific circles back to %y. To address this complication,
66 // the data flow analysis operates on a lattice:
67 //   uninitialized > specific address spaces > generic.
68 // All address expressions (our implementation only considers phi, bitcast,
69 // addrspacecast, and getelementptr) start with the uninitialized address space.
70 // The monotone transfer function moves the address space of a pointer down a
71 // lattice path from uninitialized to specific and then to generic. A join
72 // operation of two different specific address spaces pushes the expression down
73 // to the generic address space. The analysis completes once it reaches a fixed
74 // point.
75 //
76 // Second, IR rewriting in Step 2 also needs to be circular. For example,
77 // converting %y to addrspace(3) requires the compiler to know the converted
78 // %y2, but converting %y2 needs the converted %y. To address this complication,
79 // we break these cycles using "undef" placeholders. When converting an
80 // instruction `I` to a new address space, if its operand `Op` is not converted
81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later.
82 // For instance, our algorithm first converts %y to
83 //   %y' = phi float addrspace(3)* [ %input, undef ]
84 // Then, it converts %y2 to
85 //   %y2' = getelementptr %y', 1
86 // Finally, it fixes the undef in %y' so that
87 //   %y' = phi float addrspace(3)* [ %input, %y2' ]
88 //
89 //===----------------------------------------------------------------------===//
90 
91 #include "llvm/ADT/ArrayRef.h"
92 #include "llvm/ADT/DenseMap.h"
93 #include "llvm/ADT/DenseSet.h"
94 #include "llvm/ADT/None.h"
95 #include "llvm/ADT/Optional.h"
96 #include "llvm/ADT/SetVector.h"
97 #include "llvm/ADT/SmallVector.h"
98 #include "llvm/Analysis/TargetTransformInfo.h"
99 #include "llvm/Transforms/Utils/Local.h"
100 #include "llvm/IR/BasicBlock.h"
101 #include "llvm/IR/Constant.h"
102 #include "llvm/IR/Constants.h"
103 #include "llvm/IR/Function.h"
104 #include "llvm/IR/IRBuilder.h"
105 #include "llvm/IR/InstIterator.h"
106 #include "llvm/IR/Instruction.h"
107 #include "llvm/IR/Instructions.h"
108 #include "llvm/IR/IntrinsicInst.h"
109 #include "llvm/IR/Intrinsics.h"
110 #include "llvm/IR/LLVMContext.h"
111 #include "llvm/IR/Operator.h"
112 #include "llvm/IR/Type.h"
113 #include "llvm/IR/Use.h"
114 #include "llvm/IR/User.h"
115 #include "llvm/IR/Value.h"
116 #include "llvm/IR/ValueHandle.h"
117 #include "llvm/Pass.h"
118 #include "llvm/Support/Casting.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/raw_ostream.h"
123 #include "llvm/Transforms/Scalar.h"
124 #include "llvm/Transforms/Utils/ValueMapper.h"
125 #include <cassert>
126 #include <iterator>
127 #include <limits>
128 #include <utility>
129 #include <vector>
130 
131 #define DEBUG_TYPE "infer-address-spaces"
132 
133 using namespace llvm;
134 
135 static const unsigned UninitializedAddressSpace =
136     std::numeric_limits<unsigned>::max();
137 
138 namespace {
139 
140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>;
141 
142 /// InferAddressSpaces
143 class InferAddressSpaces : public FunctionPass {
144   /// Target specific address space which uses of should be replaced if
145   /// possible.
146   unsigned FlatAddrSpace;
147 
148 public:
149   static char ID;
150 
151   InferAddressSpaces() : FunctionPass(ID) {}
152 
153   void getAnalysisUsage(AnalysisUsage &AU) const override {
154     AU.setPreservesCFG();
155     AU.addRequired<TargetTransformInfoWrapperPass>();
156   }
157 
158   bool runOnFunction(Function &F) override;
159 
160 private:
161   // Returns the new address space of V if updated; otherwise, returns None.
162   Optional<unsigned>
163   updateAddressSpace(const Value &V,
164                      const ValueToAddrSpaceMapTy &InferredAddrSpace) const;
165 
166   // Tries to infer the specific address space of each address expression in
167   // Postorder.
168   void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder,
169                           ValueToAddrSpaceMapTy *InferredAddrSpace) const;
170 
171   bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const;
172 
173   // Changes the flat address expressions in function F to point to specific
174   // address spaces if InferredAddrSpace says so. Postorder is the postorder of
175   // all flat expressions in the use-def graph of function F.
176   bool rewriteWithNewAddressSpaces(
177       const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
178       const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const;
179 
180   void appendsFlatAddressExpressionToPostorderStack(
181     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
182     DenseSet<Value *> &Visited) const;
183 
184   bool rewriteIntrinsicOperands(IntrinsicInst *II,
185                                 Value *OldV, Value *NewV) const;
186   void collectRewritableIntrinsicOperands(
187     IntrinsicInst *II,
188     std::vector<std::pair<Value *, bool>> &PostorderStack,
189     DenseSet<Value *> &Visited) const;
190 
191   std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const;
192 
193   Value *cloneValueWithNewAddressSpace(
194     Value *V, unsigned NewAddrSpace,
195     const ValueToValueMapTy &ValueWithNewAddrSpace,
196     SmallVectorImpl<const Use *> *UndefUsesToFix) const;
197   unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const;
198 };
199 
200 } // end anonymous namespace
201 
202 char InferAddressSpaces::ID = 0;
203 
204 namespace llvm {
205 
206 void initializeInferAddressSpacesPass(PassRegistry &);
207 
208 } // end namespace llvm
209 
210 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces",
211                 false, false)
212 
213 // Returns true if V is an address expression.
214 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and
215 // getelementptr operators.
216 static bool isAddressExpression(const Value &V) {
217   if (!isa<Operator>(V))
218     return false;
219 
220   switch (cast<Operator>(V).getOpcode()) {
221   case Instruction::PHI:
222   case Instruction::BitCast:
223   case Instruction::AddrSpaceCast:
224   case Instruction::GetElementPtr:
225   case Instruction::Select:
226     return true;
227   default:
228     return false;
229   }
230 }
231 
232 // Returns the pointer operands of V.
233 //
234 // Precondition: V is an address expression.
235 static SmallVector<Value *, 2> getPointerOperands(const Value &V) {
236   const Operator &Op = cast<Operator>(V);
237   switch (Op.getOpcode()) {
238   case Instruction::PHI: {
239     auto IncomingValues = cast<PHINode>(Op).incoming_values();
240     return SmallVector<Value *, 2>(IncomingValues.begin(),
241                                    IncomingValues.end());
242   }
243   case Instruction::BitCast:
244   case Instruction::AddrSpaceCast:
245   case Instruction::GetElementPtr:
246     return {Op.getOperand(0)};
247   case Instruction::Select:
248     return {Op.getOperand(1), Op.getOperand(2)};
249   default:
250     llvm_unreachable("Unexpected instruction type.");
251   }
252 }
253 
254 // TODO: Move logic to TTI?
255 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II,
256                                                   Value *OldV,
257                                                   Value *NewV) const {
258   Module *M = II->getParent()->getParent()->getParent();
259 
260   switch (II->getIntrinsicID()) {
261   case Intrinsic::amdgcn_atomic_inc:
262   case Intrinsic::amdgcn_atomic_dec:
263   case Intrinsic::amdgcn_ds_fadd:
264   case Intrinsic::amdgcn_ds_fmin:
265   case Intrinsic::amdgcn_ds_fmax: {
266     const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4));
267     if (!IsVolatile || !IsVolatile->isZero())
268       return false;
269 
270     LLVM_FALLTHROUGH;
271   }
272   case Intrinsic::objectsize: {
273     Type *DestTy = II->getType();
274     Type *SrcTy = NewV->getType();
275     Function *NewDecl =
276         Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
277     II->setArgOperand(0, NewV);
278     II->setCalledFunction(NewDecl);
279     return true;
280   }
281   default:
282     return false;
283   }
284 }
285 
286 // TODO: Move logic to TTI?
287 void InferAddressSpaces::collectRewritableIntrinsicOperands(
288     IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack,
289     DenseSet<Value *> &Visited) const {
290   switch (II->getIntrinsicID()) {
291   case Intrinsic::objectsize:
292   case Intrinsic::amdgcn_atomic_inc:
293   case Intrinsic::amdgcn_atomic_dec:
294   case Intrinsic::amdgcn_ds_fadd:
295   case Intrinsic::amdgcn_ds_fmin:
296   case Intrinsic::amdgcn_ds_fmax:
297     appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0),
298                                                  PostorderStack, Visited);
299     break;
300   default:
301     break;
302   }
303 }
304 
305 // Returns all flat address expressions in function F. The elements are
306 // If V is an unvisited flat address expression, appends V to PostorderStack
307 // and marks it as visited.
308 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack(
309     Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack,
310     DenseSet<Value *> &Visited) const {
311   assert(V->getType()->isPointerTy());
312 
313   // Generic addressing expressions may be hidden in nested constant
314   // expressions.
315   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
316     // TODO: Look in non-address parts, like icmp operands.
317     if (isAddressExpression(*CE) && Visited.insert(CE).second)
318       PostorderStack.push_back(std::make_pair(CE, false));
319 
320     return;
321   }
322 
323   if (isAddressExpression(*V) &&
324       V->getType()->getPointerAddressSpace() == FlatAddrSpace) {
325     if (Visited.insert(V).second) {
326       PostorderStack.push_back(std::make_pair(V, false));
327 
328       Operator *Op = cast<Operator>(V);
329       for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) {
330         if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) {
331           if (isAddressExpression(*CE) && Visited.insert(CE).second)
332             PostorderStack.emplace_back(CE, false);
333         }
334       }
335     }
336   }
337 }
338 
339 // Returns all flat address expressions in function F. The elements are ordered
340 // ordered in postorder.
341 std::vector<WeakTrackingVH>
342 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const {
343   // This function implements a non-recursive postorder traversal of a partial
344   // use-def graph of function F.
345   std::vector<std::pair<Value *, bool>> PostorderStack;
346   // The set of visited expressions.
347   DenseSet<Value *> Visited;
348 
349   auto PushPtrOperand = [&](Value *Ptr) {
350     appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack,
351                                                  Visited);
352   };
353 
354   // Look at operations that may be interesting accelerate by moving to a known
355   // address space. We aim at generating after loads and stores, but pure
356   // addressing calculations may also be faster.
357   for (Instruction &I : instructions(F)) {
358     if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
359       if (!GEP->getType()->isVectorTy())
360         PushPtrOperand(GEP->getPointerOperand());
361     } else if (auto *LI = dyn_cast<LoadInst>(&I))
362       PushPtrOperand(LI->getPointerOperand());
363     else if (auto *SI = dyn_cast<StoreInst>(&I))
364       PushPtrOperand(SI->getPointerOperand());
365     else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I))
366       PushPtrOperand(RMW->getPointerOperand());
367     else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I))
368       PushPtrOperand(CmpX->getPointerOperand());
369     else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) {
370       // For memset/memcpy/memmove, any pointer operand can be replaced.
371       PushPtrOperand(MI->getRawDest());
372 
373       // Handle 2nd operand for memcpy/memmove.
374       if (auto *MTI = dyn_cast<MemTransferInst>(MI))
375         PushPtrOperand(MTI->getRawSource());
376     } else if (auto *II = dyn_cast<IntrinsicInst>(&I))
377       collectRewritableIntrinsicOperands(II, PostorderStack, Visited);
378     else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) {
379       // FIXME: Handle vectors of pointers
380       if (Cmp->getOperand(0)->getType()->isPointerTy()) {
381         PushPtrOperand(Cmp->getOperand(0));
382         PushPtrOperand(Cmp->getOperand(1));
383       }
384     } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) {
385       if (!ASC->getType()->isVectorTy())
386         PushPtrOperand(ASC->getPointerOperand());
387     }
388   }
389 
390   std::vector<WeakTrackingVH> Postorder; // The resultant postorder.
391   while (!PostorderStack.empty()) {
392     Value *TopVal = PostorderStack.back().first;
393     // If the operands of the expression on the top are already explored,
394     // adds that expression to the resultant postorder.
395     if (PostorderStack.back().second) {
396       if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace)
397         Postorder.push_back(TopVal);
398       PostorderStack.pop_back();
399       continue;
400     }
401     // Otherwise, adds its operands to the stack and explores them.
402     PostorderStack.back().second = true;
403     for (Value *PtrOperand : getPointerOperands(*TopVal)) {
404       appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack,
405                                                    Visited);
406     }
407   }
408   return Postorder;
409 }
410 
411 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone
412 // of OperandUse.get() in the new address space. If the clone is not ready yet,
413 // returns an undef in the new address space as a placeholder.
414 static Value *operandWithNewAddressSpaceOrCreateUndef(
415     const Use &OperandUse, unsigned NewAddrSpace,
416     const ValueToValueMapTy &ValueWithNewAddrSpace,
417     SmallVectorImpl<const Use *> *UndefUsesToFix) {
418   Value *Operand = OperandUse.get();
419 
420   Type *NewPtrTy =
421       Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
422 
423   if (Constant *C = dyn_cast<Constant>(Operand))
424     return ConstantExpr::getAddrSpaceCast(C, NewPtrTy);
425 
426   if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand))
427     return NewOperand;
428 
429   UndefUsesToFix->push_back(&OperandUse);
430   return UndefValue::get(NewPtrTy);
431 }
432 
433 // Returns a clone of `I` with its operands converted to those specified in
434 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an
435 // operand whose address space needs to be modified might not exist in
436 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and
437 // adds that operand use to UndefUsesToFix so that caller can fix them later.
438 //
439 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast
440 // from a pointer whose type already matches. Therefore, this function returns a
441 // Value* instead of an Instruction*.
442 static Value *cloneInstructionWithNewAddressSpace(
443     Instruction *I, unsigned NewAddrSpace,
444     const ValueToValueMapTy &ValueWithNewAddrSpace,
445     SmallVectorImpl<const Use *> *UndefUsesToFix) {
446   Type *NewPtrType =
447       I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
448 
449   if (I->getOpcode() == Instruction::AddrSpaceCast) {
450     Value *Src = I->getOperand(0);
451     // Because `I` is flat, the source address space must be specific.
452     // Therefore, the inferred address space must be the source space, according
453     // to our algorithm.
454     assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace);
455     if (Src->getType() != NewPtrType)
456       return new BitCastInst(Src, NewPtrType);
457     return Src;
458   }
459 
460   // Computes the converted pointer operands.
461   SmallVector<Value *, 4> NewPointerOperands;
462   for (const Use &OperandUse : I->operands()) {
463     if (!OperandUse.get()->getType()->isPointerTy())
464       NewPointerOperands.push_back(nullptr);
465     else
466       NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef(
467                                      OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix));
468   }
469 
470   switch (I->getOpcode()) {
471   case Instruction::BitCast:
472     return new BitCastInst(NewPointerOperands[0], NewPtrType);
473   case Instruction::PHI: {
474     assert(I->getType()->isPointerTy());
475     PHINode *PHI = cast<PHINode>(I);
476     PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues());
477     for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) {
478       unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index);
479       NewPHI->addIncoming(NewPointerOperands[OperandNo],
480                           PHI->getIncomingBlock(Index));
481     }
482     return NewPHI;
483   }
484   case Instruction::GetElementPtr: {
485     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
486     GetElementPtrInst *NewGEP = GetElementPtrInst::Create(
487         GEP->getSourceElementType(), NewPointerOperands[0],
488         SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end()));
489     NewGEP->setIsInBounds(GEP->isInBounds());
490     return NewGEP;
491   }
492   case Instruction::Select:
493     assert(I->getType()->isPointerTy());
494     return SelectInst::Create(I->getOperand(0), NewPointerOperands[1],
495                               NewPointerOperands[2], "", nullptr, I);
496   default:
497     llvm_unreachable("Unexpected opcode");
498   }
499 }
500 
501 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the
502 // constant expression `CE` with its operands replaced as specified in
503 // ValueWithNewAddrSpace.
504 static Value *cloneConstantExprWithNewAddressSpace(
505   ConstantExpr *CE, unsigned NewAddrSpace,
506   const ValueToValueMapTy &ValueWithNewAddrSpace) {
507   Type *TargetType =
508     CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace);
509 
510   if (CE->getOpcode() == Instruction::AddrSpaceCast) {
511     // Because CE is flat, the source address space must be specific.
512     // Therefore, the inferred address space must be the source space according
513     // to our algorithm.
514     assert(CE->getOperand(0)->getType()->getPointerAddressSpace() ==
515            NewAddrSpace);
516     return ConstantExpr::getBitCast(CE->getOperand(0), TargetType);
517   }
518 
519   if (CE->getOpcode() == Instruction::BitCast) {
520     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0)))
521       return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType);
522     return ConstantExpr::getAddrSpaceCast(CE, TargetType);
523   }
524 
525   if (CE->getOpcode() == Instruction::Select) {
526     Constant *Src0 = CE->getOperand(1);
527     Constant *Src1 = CE->getOperand(2);
528     if (Src0->getType()->getPointerAddressSpace() ==
529         Src1->getType()->getPointerAddressSpace()) {
530 
531       return ConstantExpr::getSelect(
532           CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType),
533           ConstantExpr::getAddrSpaceCast(Src1, TargetType));
534     }
535   }
536 
537   // Computes the operands of the new constant expression.
538   bool IsNew = false;
539   SmallVector<Constant *, 4> NewOperands;
540   for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) {
541     Constant *Operand = CE->getOperand(Index);
542     // If the address space of `Operand` needs to be modified, the new operand
543     // with the new address space should already be in ValueWithNewAddrSpace
544     // because (1) the constant expressions we consider (i.e. addrspacecast,
545     // bitcast, and getelementptr) do not incur cycles in the data flow graph
546     // and (2) this function is called on constant expressions in postorder.
547     if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) {
548       IsNew = true;
549       NewOperands.push_back(cast<Constant>(NewOperand));
550     } else {
551       // Otherwise, reuses the old operand.
552       NewOperands.push_back(Operand);
553     }
554   }
555 
556   // If !IsNew, we will replace the Value with itself. However, replaced values
557   // are assumed to wrapped in a addrspace cast later so drop it now.
558   if (!IsNew)
559     return nullptr;
560 
561   if (CE->getOpcode() == Instruction::GetElementPtr) {
562     // Needs to specify the source type while constructing a getelementptr
563     // constant expression.
564     return CE->getWithOperands(
565       NewOperands, TargetType, /*OnlyIfReduced=*/false,
566       NewOperands[0]->getType()->getPointerElementType());
567   }
568 
569   return CE->getWithOperands(NewOperands, TargetType);
570 }
571 
572 // Returns a clone of the value `V`, with its operands replaced as specified in
573 // ValueWithNewAddrSpace. This function is called on every flat address
574 // expression whose address space needs to be modified, in postorder.
575 //
576 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix.
577 Value *InferAddressSpaces::cloneValueWithNewAddressSpace(
578   Value *V, unsigned NewAddrSpace,
579   const ValueToValueMapTy &ValueWithNewAddrSpace,
580   SmallVectorImpl<const Use *> *UndefUsesToFix) const {
581   // All values in Postorder are flat address expressions.
582   assert(isAddressExpression(*V) &&
583          V->getType()->getPointerAddressSpace() == FlatAddrSpace);
584 
585   if (Instruction *I = dyn_cast<Instruction>(V)) {
586     Value *NewV = cloneInstructionWithNewAddressSpace(
587       I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix);
588     if (Instruction *NewI = dyn_cast<Instruction>(NewV)) {
589       if (NewI->getParent() == nullptr) {
590         NewI->insertBefore(I);
591         NewI->takeName(I);
592       }
593     }
594     return NewV;
595   }
596 
597   return cloneConstantExprWithNewAddressSpace(
598     cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace);
599 }
600 
601 // Defines the join operation on the address space lattice (see the file header
602 // comments).
603 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1,
604                                                unsigned AS2) const {
605   if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace)
606     return FlatAddrSpace;
607 
608   if (AS1 == UninitializedAddressSpace)
609     return AS2;
610   if (AS2 == UninitializedAddressSpace)
611     return AS1;
612 
613   // The join of two different specific address spaces is flat.
614   return (AS1 == AS2) ? AS1 : FlatAddrSpace;
615 }
616 
617 bool InferAddressSpaces::runOnFunction(Function &F) {
618   if (skipFunction(F))
619     return false;
620 
621   const TargetTransformInfo &TTI =
622       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
623   FlatAddrSpace = TTI.getFlatAddressSpace();
624   if (FlatAddrSpace == UninitializedAddressSpace)
625     return false;
626 
627   // Collects all flat address expressions in postorder.
628   std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F);
629 
630   // Runs a data-flow analysis to refine the address spaces of every expression
631   // in Postorder.
632   ValueToAddrSpaceMapTy InferredAddrSpace;
633   inferAddressSpaces(Postorder, &InferredAddrSpace);
634 
635   // Changes the address spaces of the flat address expressions who are inferred
636   // to point to a specific address space.
637   return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F);
638 }
639 
640 // Constants need to be tracked through RAUW to handle cases with nested
641 // constant expressions, so wrap values in WeakTrackingVH.
642 void InferAddressSpaces::inferAddressSpaces(
643     ArrayRef<WeakTrackingVH> Postorder,
644     ValueToAddrSpaceMapTy *InferredAddrSpace) const {
645   SetVector<Value *> Worklist(Postorder.begin(), Postorder.end());
646   // Initially, all expressions are in the uninitialized address space.
647   for (Value *V : Postorder)
648     (*InferredAddrSpace)[V] = UninitializedAddressSpace;
649 
650   while (!Worklist.empty()) {
651     Value *V = Worklist.pop_back_val();
652 
653     // Tries to update the address space of the stack top according to the
654     // address spaces of its operands.
655     LLVM_DEBUG(dbgs() << "Updating the address space of\n  " << *V << '\n');
656     Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace);
657     if (!NewAS.hasValue())
658       continue;
659     // If any updates are made, grabs its users to the worklist because
660     // their address spaces can also be possibly updated.
661     LLVM_DEBUG(dbgs() << "  to " << NewAS.getValue() << '\n');
662     (*InferredAddrSpace)[V] = NewAS.getValue();
663 
664     for (Value *User : V->users()) {
665       // Skip if User is already in the worklist.
666       if (Worklist.count(User))
667         continue;
668 
669       auto Pos = InferredAddrSpace->find(User);
670       // Our algorithm only updates the address spaces of flat address
671       // expressions, which are those in InferredAddrSpace.
672       if (Pos == InferredAddrSpace->end())
673         continue;
674 
675       // Function updateAddressSpace moves the address space down a lattice
676       // path. Therefore, nothing to do if User is already inferred as flat (the
677       // bottom element in the lattice).
678       if (Pos->second == FlatAddrSpace)
679         continue;
680 
681       Worklist.insert(User);
682     }
683   }
684 }
685 
686 Optional<unsigned> InferAddressSpaces::updateAddressSpace(
687     const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const {
688   assert(InferredAddrSpace.count(&V));
689 
690   // The new inferred address space equals the join of the address spaces
691   // of all its pointer operands.
692   unsigned NewAS = UninitializedAddressSpace;
693 
694   const Operator &Op = cast<Operator>(V);
695   if (Op.getOpcode() == Instruction::Select) {
696     Value *Src0 = Op.getOperand(1);
697     Value *Src1 = Op.getOperand(2);
698 
699     auto I = InferredAddrSpace.find(Src0);
700     unsigned Src0AS = (I != InferredAddrSpace.end()) ?
701       I->second : Src0->getType()->getPointerAddressSpace();
702 
703     auto J = InferredAddrSpace.find(Src1);
704     unsigned Src1AS = (J != InferredAddrSpace.end()) ?
705       J->second : Src1->getType()->getPointerAddressSpace();
706 
707     auto *C0 = dyn_cast<Constant>(Src0);
708     auto *C1 = dyn_cast<Constant>(Src1);
709 
710     // If one of the inputs is a constant, we may be able to do a constant
711     // addrspacecast of it. Defer inferring the address space until the input
712     // address space is known.
713     if ((C1 && Src0AS == UninitializedAddressSpace) ||
714         (C0 && Src1AS == UninitializedAddressSpace))
715       return None;
716 
717     if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS))
718       NewAS = Src1AS;
719     else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS))
720       NewAS = Src0AS;
721     else
722       NewAS = joinAddressSpaces(Src0AS, Src1AS);
723   } else {
724     for (Value *PtrOperand : getPointerOperands(V)) {
725       auto I = InferredAddrSpace.find(PtrOperand);
726       unsigned OperandAS = I != InferredAddrSpace.end() ?
727         I->second : PtrOperand->getType()->getPointerAddressSpace();
728 
729       // join(flat, *) = flat. So we can break if NewAS is already flat.
730       NewAS = joinAddressSpaces(NewAS, OperandAS);
731       if (NewAS == FlatAddrSpace)
732         break;
733     }
734   }
735 
736   unsigned OldAS = InferredAddrSpace.lookup(&V);
737   assert(OldAS != FlatAddrSpace);
738   if (OldAS == NewAS)
739     return None;
740   return NewAS;
741 }
742 
743 /// \p returns true if \p U is the pointer operand of a memory instruction with
744 /// a single pointer operand that can have its address space changed by simply
745 /// mutating the use to a new value. If the memory instruction is volatile,
746 /// return true only if the target allows the memory instruction to be volatile
747 /// in the new address space.
748 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI,
749                                              Use &U, unsigned AddrSpace) {
750   User *Inst = U.getUser();
751   unsigned OpNo = U.getOperandNo();
752   bool VolatileIsAllowed = false;
753   if (auto *I = dyn_cast<Instruction>(Inst))
754     VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace);
755 
756   if (auto *LI = dyn_cast<LoadInst>(Inst))
757     return OpNo == LoadInst::getPointerOperandIndex() &&
758            (VolatileIsAllowed || !LI->isVolatile());
759 
760   if (auto *SI = dyn_cast<StoreInst>(Inst))
761     return OpNo == StoreInst::getPointerOperandIndex() &&
762            (VolatileIsAllowed || !SI->isVolatile());
763 
764   if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst))
765     return OpNo == AtomicRMWInst::getPointerOperandIndex() &&
766            (VolatileIsAllowed || !RMW->isVolatile());
767 
768   if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst))
769     return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() &&
770            (VolatileIsAllowed || !CmpX->isVolatile());
771 
772   return false;
773 }
774 
775 /// Update memory intrinsic uses that require more complex processing than
776 /// simple memory instructions. Thse require re-mangling and may have multiple
777 /// pointer operands.
778 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV,
779                                      Value *NewV) {
780   IRBuilder<> B(MI);
781   MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa);
782   MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope);
783   MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias);
784 
785   if (auto *MSI = dyn_cast<MemSetInst>(MI)) {
786     B.CreateMemSet(NewV, MSI->getValue(),
787                    MSI->getLength(), MSI->getDestAlignment(),
788                    false, // isVolatile
789                    TBAA, ScopeMD, NoAliasMD);
790   } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) {
791     Value *Src = MTI->getRawSource();
792     Value *Dest = MTI->getRawDest();
793 
794     // Be careful in case this is a self-to-self copy.
795     if (Src == OldV)
796       Src = NewV;
797 
798     if (Dest == OldV)
799       Dest = NewV;
800 
801     if (isa<MemCpyInst>(MTI)) {
802       MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct);
803       B.CreateMemCpy(Dest, MTI->getDestAlignment(),
804                      Src, MTI->getSourceAlignment(),
805                      MTI->getLength(),
806                      false, // isVolatile
807                      TBAA, TBAAStruct, ScopeMD, NoAliasMD);
808     } else {
809       assert(isa<MemMoveInst>(MTI));
810       B.CreateMemMove(Dest, MTI->getDestAlignment(),
811                       Src, MTI->getSourceAlignment(),
812                       MTI->getLength(),
813                       false, // isVolatile
814                       TBAA, ScopeMD, NoAliasMD);
815     }
816   } else
817     llvm_unreachable("unhandled MemIntrinsic");
818 
819   MI->eraseFromParent();
820   return true;
821 }
822 
823 // \p returns true if it is OK to change the address space of constant \p C with
824 // a ConstantExpr addrspacecast.
825 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const {
826   assert(NewAS != UninitializedAddressSpace);
827 
828   unsigned SrcAS = C->getType()->getPointerAddressSpace();
829   if (SrcAS == NewAS || isa<UndefValue>(C))
830     return true;
831 
832   // Prevent illegal casts between different non-flat address spaces.
833   if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace)
834     return false;
835 
836   if (isa<ConstantPointerNull>(C))
837     return true;
838 
839   if (auto *Op = dyn_cast<Operator>(C)) {
840     // If we already have a constant addrspacecast, it should be safe to cast it
841     // off.
842     if (Op->getOpcode() == Instruction::AddrSpaceCast)
843       return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS);
844 
845     if (Op->getOpcode() == Instruction::IntToPtr &&
846         Op->getType()->getPointerAddressSpace() == FlatAddrSpace)
847       return true;
848   }
849 
850   return false;
851 }
852 
853 static Value::use_iterator skipToNextUser(Value::use_iterator I,
854                                           Value::use_iterator End) {
855   User *CurUser = I->getUser();
856   ++I;
857 
858   while (I != End && I->getUser() == CurUser)
859     ++I;
860 
861   return I;
862 }
863 
864 bool InferAddressSpaces::rewriteWithNewAddressSpaces(
865     const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder,
866     const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const {
867   // For each address expression to be modified, creates a clone of it with its
868   // pointer operands converted to the new address space. Since the pointer
869   // operands are converted, the clone is naturally in the new address space by
870   // construction.
871   ValueToValueMapTy ValueWithNewAddrSpace;
872   SmallVector<const Use *, 32> UndefUsesToFix;
873   for (Value* V : Postorder) {
874     unsigned NewAddrSpace = InferredAddrSpace.lookup(V);
875     if (V->getType()->getPointerAddressSpace() != NewAddrSpace) {
876       ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace(
877         V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix);
878     }
879   }
880 
881   if (ValueWithNewAddrSpace.empty())
882     return false;
883 
884   // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace.
885   for (const Use *UndefUse : UndefUsesToFix) {
886     User *V = UndefUse->getUser();
887     User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V));
888     unsigned OperandNo = UndefUse->getOperandNo();
889     assert(isa<UndefValue>(NewV->getOperand(OperandNo)));
890     NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get()));
891   }
892 
893   SmallVector<Instruction *, 16> DeadInstructions;
894 
895   // Replaces the uses of the old address expressions with the new ones.
896   for (const WeakTrackingVH &WVH : Postorder) {
897     assert(WVH && "value was unexpectedly deleted");
898     Value *V = WVH;
899     Value *NewV = ValueWithNewAddrSpace.lookup(V);
900     if (NewV == nullptr)
901       continue;
902 
903     LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n  with\n  "
904                       << *NewV << '\n');
905 
906     if (Constant *C = dyn_cast<Constant>(V)) {
907       Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
908                                                          C->getType());
909       if (C != Replace) {
910         LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace
911                           << ": " << *Replace << '\n');
912         C->replaceAllUsesWith(Replace);
913         V = Replace;
914       }
915     }
916 
917     Value::use_iterator I, E, Next;
918     for (I = V->use_begin(), E = V->use_end(); I != E; ) {
919       Use &U = *I;
920 
921       // Some users may see the same pointer operand in multiple operands. Skip
922       // to the next instruction.
923       I = skipToNextUser(I, E);
924 
925       if (isSimplePointerUseValidToReplace(
926               TTI, U, V->getType()->getPointerAddressSpace())) {
927         // If V is used as the pointer operand of a compatible memory operation,
928         // sets the pointer operand to NewV. This replacement does not change
929         // the element type, so the resultant load/store is still valid.
930         U.set(NewV);
931         continue;
932       }
933 
934       User *CurUser = U.getUser();
935       // Handle more complex cases like intrinsic that need to be remangled.
936       if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) {
937         if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV))
938           continue;
939       }
940 
941       if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) {
942         if (rewriteIntrinsicOperands(II, V, NewV))
943           continue;
944       }
945 
946       if (isa<Instruction>(CurUser)) {
947         if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) {
948           // If we can infer that both pointers are in the same addrspace,
949           // transform e.g.
950           //   %cmp = icmp eq float* %p, %q
951           // into
952           //   %cmp = icmp eq float addrspace(3)* %new_p, %new_q
953 
954           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
955           int SrcIdx = U.getOperandNo();
956           int OtherIdx = (SrcIdx == 0) ? 1 : 0;
957           Value *OtherSrc = Cmp->getOperand(OtherIdx);
958 
959           if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) {
960             if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) {
961               Cmp->setOperand(OtherIdx, OtherNewV);
962               Cmp->setOperand(SrcIdx, NewV);
963               continue;
964             }
965           }
966 
967           // Even if the type mismatches, we can cast the constant.
968           if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) {
969             if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) {
970               Cmp->setOperand(SrcIdx, NewV);
971               Cmp->setOperand(OtherIdx,
972                 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType()));
973               continue;
974             }
975           }
976         }
977 
978         if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) {
979           unsigned NewAS = NewV->getType()->getPointerAddressSpace();
980           if (ASC->getDestAddressSpace() == NewAS) {
981             if (ASC->getType()->getPointerElementType() !=
982                 NewV->getType()->getPointerElementType()) {
983               NewV = CastInst::Create(Instruction::BitCast, NewV,
984                                       ASC->getType(), "", ASC);
985             }
986             ASC->replaceAllUsesWith(NewV);
987             DeadInstructions.push_back(ASC);
988             continue;
989           }
990         }
991 
992         // Otherwise, replaces the use with flat(NewV).
993         if (Instruction *I = dyn_cast<Instruction>(V)) {
994           BasicBlock::iterator InsertPos = std::next(I->getIterator());
995           while (isa<PHINode>(InsertPos))
996             ++InsertPos;
997           U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos));
998         } else {
999           U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV),
1000                                                V->getType()));
1001         }
1002       }
1003     }
1004 
1005     if (V->use_empty()) {
1006       if (Instruction *I = dyn_cast<Instruction>(V))
1007         DeadInstructions.push_back(I);
1008     }
1009   }
1010 
1011   for (Instruction *I : DeadInstructions)
1012     RecursivelyDeleteTriviallyDeadInstructions(I);
1013 
1014   return true;
1015 }
1016 
1017 FunctionPass *llvm::createInferAddressSpacesPass() {
1018   return new InferAddressSpaces();
1019 }
1020