1 //===- InferAddressSpace.cpp - --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // CUDA C/C++ includes memory space designation as variable type qualifers (such 10 // as __global__ and __shared__). Knowing the space of a memory access allows 11 // CUDA compilers to emit faster PTX loads and stores. For example, a load from 12 // shared memory can be translated to `ld.shared` which is roughly 10% faster 13 // than a generic `ld` on an NVIDIA Tesla K40c. 14 // 15 // Unfortunately, type qualifiers only apply to variable declarations, so CUDA 16 // compilers must infer the memory space of an address expression from 17 // type-qualified variables. 18 // 19 // LLVM IR uses non-zero (so-called) specific address spaces to represent memory 20 // spaces (e.g. addrspace(3) means shared memory). The Clang frontend 21 // places only type-qualified variables in specific address spaces, and then 22 // conservatively `addrspacecast`s each type-qualified variable to addrspace(0) 23 // (so-called the generic address space) for other instructions to use. 24 // 25 // For example, the Clang translates the following CUDA code 26 // __shared__ float a[10]; 27 // float v = a[i]; 28 // to 29 // %0 = addrspacecast [10 x float] addrspace(3)* @a to [10 x float]* 30 // %1 = gep [10 x float], [10 x float]* %0, i64 0, i64 %i 31 // %v = load float, float* %1 ; emits ld.f32 32 // @a is in addrspace(3) since it's type-qualified, but its use from %1 is 33 // redirected to %0 (the generic version of @a). 34 // 35 // The optimization implemented in this file propagates specific address spaces 36 // from type-qualified variable declarations to its users. For example, it 37 // optimizes the above IR to 38 // %1 = gep [10 x float] addrspace(3)* @a, i64 0, i64 %i 39 // %v = load float addrspace(3)* %1 ; emits ld.shared.f32 40 // propagating the addrspace(3) from @a to %1. As the result, the NVPTX 41 // codegen is able to emit ld.shared.f32 for %v. 42 // 43 // Address space inference works in two steps. First, it uses a data-flow 44 // analysis to infer as many generic pointers as possible to point to only one 45 // specific address space. In the above example, it can prove that %1 only 46 // points to addrspace(3). This algorithm was published in 47 // CUDA: Compiling and optimizing for a GPU platform 48 // Chakrabarti, Grover, Aarts, Kong, Kudlur, Lin, Marathe, Murphy, Wang 49 // ICCS 2012 50 // 51 // Then, address space inference replaces all refinable generic pointers with 52 // equivalent specific pointers. 53 // 54 // The major challenge of implementing this optimization is handling PHINodes, 55 // which may create loops in the data flow graph. This brings two complications. 56 // 57 // First, the data flow analysis in Step 1 needs to be circular. For example, 58 // %generic.input = addrspacecast float addrspace(3)* %input to float* 59 // loop: 60 // %y = phi [ %generic.input, %y2 ] 61 // %y2 = getelementptr %y, 1 62 // %v = load %y2 63 // br ..., label %loop, ... 64 // proving %y specific requires proving both %generic.input and %y2 specific, 65 // but proving %y2 specific circles back to %y. To address this complication, 66 // the data flow analysis operates on a lattice: 67 // uninitialized > specific address spaces > generic. 68 // All address expressions (our implementation only considers phi, bitcast, 69 // addrspacecast, and getelementptr) start with the uninitialized address space. 70 // The monotone transfer function moves the address space of a pointer down a 71 // lattice path from uninitialized to specific and then to generic. A join 72 // operation of two different specific address spaces pushes the expression down 73 // to the generic address space. The analysis completes once it reaches a fixed 74 // point. 75 // 76 // Second, IR rewriting in Step 2 also needs to be circular. For example, 77 // converting %y to addrspace(3) requires the compiler to know the converted 78 // %y2, but converting %y2 needs the converted %y. To address this complication, 79 // we break these cycles using "undef" placeholders. When converting an 80 // instruction `I` to a new address space, if its operand `Op` is not converted 81 // yet, we let `I` temporarily use `undef` and fix all the uses of undef later. 82 // For instance, our algorithm first converts %y to 83 // %y' = phi float addrspace(3)* [ %input, undef ] 84 // Then, it converts %y2 to 85 // %y2' = getelementptr %y', 1 86 // Finally, it fixes the undef in %y' so that 87 // %y' = phi float addrspace(3)* [ %input, %y2' ] 88 // 89 //===----------------------------------------------------------------------===// 90 91 #include "llvm/ADT/ArrayRef.h" 92 #include "llvm/ADT/DenseMap.h" 93 #include "llvm/ADT/DenseSet.h" 94 #include "llvm/ADT/None.h" 95 #include "llvm/ADT/Optional.h" 96 #include "llvm/ADT/SetVector.h" 97 #include "llvm/ADT/SmallVector.h" 98 #include "llvm/Analysis/TargetTransformInfo.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include "llvm/IR/BasicBlock.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/Function.h" 104 #include "llvm/IR/IRBuilder.h" 105 #include "llvm/IR/InstIterator.h" 106 #include "llvm/IR/Instruction.h" 107 #include "llvm/IR/Instructions.h" 108 #include "llvm/IR/IntrinsicInst.h" 109 #include "llvm/IR/Intrinsics.h" 110 #include "llvm/IR/LLVMContext.h" 111 #include "llvm/IR/Operator.h" 112 #include "llvm/IR/Type.h" 113 #include "llvm/IR/Use.h" 114 #include "llvm/IR/User.h" 115 #include "llvm/IR/Value.h" 116 #include "llvm/IR/ValueHandle.h" 117 #include "llvm/Pass.h" 118 #include "llvm/Support/Casting.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/raw_ostream.h" 123 #include "llvm/Transforms/Scalar.h" 124 #include "llvm/Transforms/Utils/ValueMapper.h" 125 #include <cassert> 126 #include <iterator> 127 #include <limits> 128 #include <utility> 129 #include <vector> 130 131 #define DEBUG_TYPE "infer-address-spaces" 132 133 using namespace llvm; 134 135 static const unsigned UninitializedAddressSpace = 136 std::numeric_limits<unsigned>::max(); 137 138 namespace { 139 140 using ValueToAddrSpaceMapTy = DenseMap<const Value *, unsigned>; 141 142 /// InferAddressSpaces 143 class InferAddressSpaces : public FunctionPass { 144 /// Target specific address space which uses of should be replaced if 145 /// possible. 146 unsigned FlatAddrSpace; 147 148 public: 149 static char ID; 150 151 InferAddressSpaces() : 152 FunctionPass(ID), FlatAddrSpace(UninitializedAddressSpace) {} 153 InferAddressSpaces(unsigned AS) : FunctionPass(ID), FlatAddrSpace(AS) {} 154 155 void getAnalysisUsage(AnalysisUsage &AU) const override { 156 AU.setPreservesCFG(); 157 AU.addRequired<TargetTransformInfoWrapperPass>(); 158 } 159 160 bool runOnFunction(Function &F) override; 161 162 private: 163 // Returns the new address space of V if updated; otherwise, returns None. 164 Optional<unsigned> 165 updateAddressSpace(const Value &V, 166 const ValueToAddrSpaceMapTy &InferredAddrSpace) const; 167 168 // Tries to infer the specific address space of each address expression in 169 // Postorder. 170 void inferAddressSpaces(ArrayRef<WeakTrackingVH> Postorder, 171 ValueToAddrSpaceMapTy *InferredAddrSpace) const; 172 173 bool isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const; 174 175 // Changes the flat address expressions in function F to point to specific 176 // address spaces if InferredAddrSpace says so. Postorder is the postorder of 177 // all flat expressions in the use-def graph of function F. 178 bool rewriteWithNewAddressSpaces( 179 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 180 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const; 181 182 void appendsFlatAddressExpressionToPostorderStack( 183 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 184 DenseSet<Value *> &Visited) const; 185 186 bool rewriteIntrinsicOperands(IntrinsicInst *II, 187 Value *OldV, Value *NewV) const; 188 void collectRewritableIntrinsicOperands( 189 IntrinsicInst *II, 190 std::vector<std::pair<Value *, bool>> &PostorderStack, 191 DenseSet<Value *> &Visited) const; 192 193 std::vector<WeakTrackingVH> collectFlatAddressExpressions(Function &F) const; 194 195 Value *cloneValueWithNewAddressSpace( 196 Value *V, unsigned NewAddrSpace, 197 const ValueToValueMapTy &ValueWithNewAddrSpace, 198 SmallVectorImpl<const Use *> *UndefUsesToFix) const; 199 unsigned joinAddressSpaces(unsigned AS1, unsigned AS2) const; 200 }; 201 202 } // end anonymous namespace 203 204 char InferAddressSpaces::ID = 0; 205 206 namespace llvm { 207 208 void initializeInferAddressSpacesPass(PassRegistry &); 209 210 } // end namespace llvm 211 212 INITIALIZE_PASS(InferAddressSpaces, DEBUG_TYPE, "Infer address spaces", 213 false, false) 214 215 // Returns true if V is an address expression. 216 // TODO: Currently, we consider only phi, bitcast, addrspacecast, and 217 // getelementptr operators. 218 static bool isAddressExpression(const Value &V) { 219 if (!isa<Operator>(V)) 220 return false; 221 222 const Operator &Op = cast<Operator>(V); 223 switch (Op.getOpcode()) { 224 case Instruction::PHI: 225 assert(Op.getType()->isPointerTy()); 226 return true; 227 case Instruction::BitCast: 228 case Instruction::AddrSpaceCast: 229 case Instruction::GetElementPtr: 230 return true; 231 case Instruction::Select: 232 return Op.getType()->isPointerTy(); 233 default: 234 return false; 235 } 236 } 237 238 // Returns the pointer operands of V. 239 // 240 // Precondition: V is an address expression. 241 static SmallVector<Value *, 2> getPointerOperands(const Value &V) { 242 const Operator &Op = cast<Operator>(V); 243 switch (Op.getOpcode()) { 244 case Instruction::PHI: { 245 auto IncomingValues = cast<PHINode>(Op).incoming_values(); 246 return SmallVector<Value *, 2>(IncomingValues.begin(), 247 IncomingValues.end()); 248 } 249 case Instruction::BitCast: 250 case Instruction::AddrSpaceCast: 251 case Instruction::GetElementPtr: 252 return {Op.getOperand(0)}; 253 case Instruction::Select: 254 return {Op.getOperand(1), Op.getOperand(2)}; 255 default: 256 llvm_unreachable("Unexpected instruction type."); 257 } 258 } 259 260 // TODO: Move logic to TTI? 261 bool InferAddressSpaces::rewriteIntrinsicOperands(IntrinsicInst *II, 262 Value *OldV, 263 Value *NewV) const { 264 Module *M = II->getParent()->getParent()->getParent(); 265 266 switch (II->getIntrinsicID()) { 267 case Intrinsic::amdgcn_atomic_inc: 268 case Intrinsic::amdgcn_atomic_dec: 269 case Intrinsic::amdgcn_ds_fadd: 270 case Intrinsic::amdgcn_ds_fmin: 271 case Intrinsic::amdgcn_ds_fmax: { 272 const ConstantInt *IsVolatile = dyn_cast<ConstantInt>(II->getArgOperand(4)); 273 if (!IsVolatile || !IsVolatile->isZero()) 274 return false; 275 276 LLVM_FALLTHROUGH; 277 } 278 case Intrinsic::objectsize: { 279 Type *DestTy = II->getType(); 280 Type *SrcTy = NewV->getType(); 281 Function *NewDecl = 282 Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy}); 283 II->setArgOperand(0, NewV); 284 II->setCalledFunction(NewDecl); 285 return true; 286 } 287 default: 288 return false; 289 } 290 } 291 292 // TODO: Move logic to TTI? 293 void InferAddressSpaces::collectRewritableIntrinsicOperands( 294 IntrinsicInst *II, std::vector<std::pair<Value *, bool>> &PostorderStack, 295 DenseSet<Value *> &Visited) const { 296 switch (II->getIntrinsicID()) { 297 case Intrinsic::objectsize: 298 case Intrinsic::amdgcn_atomic_inc: 299 case Intrinsic::amdgcn_atomic_dec: 300 case Intrinsic::amdgcn_ds_fadd: 301 case Intrinsic::amdgcn_ds_fmin: 302 case Intrinsic::amdgcn_ds_fmax: 303 appendsFlatAddressExpressionToPostorderStack(II->getArgOperand(0), 304 PostorderStack, Visited); 305 break; 306 default: 307 break; 308 } 309 } 310 311 // Returns all flat address expressions in function F. The elements are 312 // If V is an unvisited flat address expression, appends V to PostorderStack 313 // and marks it as visited. 314 void InferAddressSpaces::appendsFlatAddressExpressionToPostorderStack( 315 Value *V, std::vector<std::pair<Value *, bool>> &PostorderStack, 316 DenseSet<Value *> &Visited) const { 317 assert(V->getType()->isPointerTy()); 318 319 // Generic addressing expressions may be hidden in nested constant 320 // expressions. 321 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 322 // TODO: Look in non-address parts, like icmp operands. 323 if (isAddressExpression(*CE) && Visited.insert(CE).second) 324 PostorderStack.push_back(std::make_pair(CE, false)); 325 326 return; 327 } 328 329 if (isAddressExpression(*V) && 330 V->getType()->getPointerAddressSpace() == FlatAddrSpace) { 331 if (Visited.insert(V).second) { 332 PostorderStack.push_back(std::make_pair(V, false)); 333 334 Operator *Op = cast<Operator>(V); 335 for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I) { 336 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op->getOperand(I))) { 337 if (isAddressExpression(*CE) && Visited.insert(CE).second) 338 PostorderStack.emplace_back(CE, false); 339 } 340 } 341 } 342 } 343 } 344 345 // Returns all flat address expressions in function F. The elements are ordered 346 // ordered in postorder. 347 std::vector<WeakTrackingVH> 348 InferAddressSpaces::collectFlatAddressExpressions(Function &F) const { 349 // This function implements a non-recursive postorder traversal of a partial 350 // use-def graph of function F. 351 std::vector<std::pair<Value *, bool>> PostorderStack; 352 // The set of visited expressions. 353 DenseSet<Value *> Visited; 354 355 auto PushPtrOperand = [&](Value *Ptr) { 356 appendsFlatAddressExpressionToPostorderStack(Ptr, PostorderStack, 357 Visited); 358 }; 359 360 // Look at operations that may be interesting accelerate by moving to a known 361 // address space. We aim at generating after loads and stores, but pure 362 // addressing calculations may also be faster. 363 for (Instruction &I : instructions(F)) { 364 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 365 if (!GEP->getType()->isVectorTy()) 366 PushPtrOperand(GEP->getPointerOperand()); 367 } else if (auto *LI = dyn_cast<LoadInst>(&I)) 368 PushPtrOperand(LI->getPointerOperand()); 369 else if (auto *SI = dyn_cast<StoreInst>(&I)) 370 PushPtrOperand(SI->getPointerOperand()); 371 else if (auto *RMW = dyn_cast<AtomicRMWInst>(&I)) 372 PushPtrOperand(RMW->getPointerOperand()); 373 else if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(&I)) 374 PushPtrOperand(CmpX->getPointerOperand()); 375 else if (auto *MI = dyn_cast<MemIntrinsic>(&I)) { 376 // For memset/memcpy/memmove, any pointer operand can be replaced. 377 PushPtrOperand(MI->getRawDest()); 378 379 // Handle 2nd operand for memcpy/memmove. 380 if (auto *MTI = dyn_cast<MemTransferInst>(MI)) 381 PushPtrOperand(MTI->getRawSource()); 382 } else if (auto *II = dyn_cast<IntrinsicInst>(&I)) 383 collectRewritableIntrinsicOperands(II, PostorderStack, Visited); 384 else if (ICmpInst *Cmp = dyn_cast<ICmpInst>(&I)) { 385 // FIXME: Handle vectors of pointers 386 if (Cmp->getOperand(0)->getType()->isPointerTy()) { 387 PushPtrOperand(Cmp->getOperand(0)); 388 PushPtrOperand(Cmp->getOperand(1)); 389 } 390 } else if (auto *ASC = dyn_cast<AddrSpaceCastInst>(&I)) { 391 if (!ASC->getType()->isVectorTy()) 392 PushPtrOperand(ASC->getPointerOperand()); 393 } 394 } 395 396 std::vector<WeakTrackingVH> Postorder; // The resultant postorder. 397 while (!PostorderStack.empty()) { 398 Value *TopVal = PostorderStack.back().first; 399 // If the operands of the expression on the top are already explored, 400 // adds that expression to the resultant postorder. 401 if (PostorderStack.back().second) { 402 if (TopVal->getType()->getPointerAddressSpace() == FlatAddrSpace) 403 Postorder.push_back(TopVal); 404 PostorderStack.pop_back(); 405 continue; 406 } 407 // Otherwise, adds its operands to the stack and explores them. 408 PostorderStack.back().second = true; 409 for (Value *PtrOperand : getPointerOperands(*TopVal)) { 410 appendsFlatAddressExpressionToPostorderStack(PtrOperand, PostorderStack, 411 Visited); 412 } 413 } 414 return Postorder; 415 } 416 417 // A helper function for cloneInstructionWithNewAddressSpace. Returns the clone 418 // of OperandUse.get() in the new address space. If the clone is not ready yet, 419 // returns an undef in the new address space as a placeholder. 420 static Value *operandWithNewAddressSpaceOrCreateUndef( 421 const Use &OperandUse, unsigned NewAddrSpace, 422 const ValueToValueMapTy &ValueWithNewAddrSpace, 423 SmallVectorImpl<const Use *> *UndefUsesToFix) { 424 Value *Operand = OperandUse.get(); 425 426 Type *NewPtrTy = 427 Operand->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 428 429 if (Constant *C = dyn_cast<Constant>(Operand)) 430 return ConstantExpr::getAddrSpaceCast(C, NewPtrTy); 431 432 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) 433 return NewOperand; 434 435 UndefUsesToFix->push_back(&OperandUse); 436 return UndefValue::get(NewPtrTy); 437 } 438 439 // Returns a clone of `I` with its operands converted to those specified in 440 // ValueWithNewAddrSpace. Due to potential cycles in the data flow graph, an 441 // operand whose address space needs to be modified might not exist in 442 // ValueWithNewAddrSpace. In that case, uses undef as a placeholder operand and 443 // adds that operand use to UndefUsesToFix so that caller can fix them later. 444 // 445 // Note that we do not necessarily clone `I`, e.g., if it is an addrspacecast 446 // from a pointer whose type already matches. Therefore, this function returns a 447 // Value* instead of an Instruction*. 448 static Value *cloneInstructionWithNewAddressSpace( 449 Instruction *I, unsigned NewAddrSpace, 450 const ValueToValueMapTy &ValueWithNewAddrSpace, 451 SmallVectorImpl<const Use *> *UndefUsesToFix) { 452 Type *NewPtrType = 453 I->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 454 455 if (I->getOpcode() == Instruction::AddrSpaceCast) { 456 Value *Src = I->getOperand(0); 457 // Because `I` is flat, the source address space must be specific. 458 // Therefore, the inferred address space must be the source space, according 459 // to our algorithm. 460 assert(Src->getType()->getPointerAddressSpace() == NewAddrSpace); 461 if (Src->getType() != NewPtrType) 462 return new BitCastInst(Src, NewPtrType); 463 return Src; 464 } 465 466 // Computes the converted pointer operands. 467 SmallVector<Value *, 4> NewPointerOperands; 468 for (const Use &OperandUse : I->operands()) { 469 if (!OperandUse.get()->getType()->isPointerTy()) 470 NewPointerOperands.push_back(nullptr); 471 else 472 NewPointerOperands.push_back(operandWithNewAddressSpaceOrCreateUndef( 473 OperandUse, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix)); 474 } 475 476 switch (I->getOpcode()) { 477 case Instruction::BitCast: 478 return new BitCastInst(NewPointerOperands[0], NewPtrType); 479 case Instruction::PHI: { 480 assert(I->getType()->isPointerTy()); 481 PHINode *PHI = cast<PHINode>(I); 482 PHINode *NewPHI = PHINode::Create(NewPtrType, PHI->getNumIncomingValues()); 483 for (unsigned Index = 0; Index < PHI->getNumIncomingValues(); ++Index) { 484 unsigned OperandNo = PHINode::getOperandNumForIncomingValue(Index); 485 NewPHI->addIncoming(NewPointerOperands[OperandNo], 486 PHI->getIncomingBlock(Index)); 487 } 488 return NewPHI; 489 } 490 case Instruction::GetElementPtr: { 491 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 492 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 493 GEP->getSourceElementType(), NewPointerOperands[0], 494 SmallVector<Value *, 4>(GEP->idx_begin(), GEP->idx_end())); 495 NewGEP->setIsInBounds(GEP->isInBounds()); 496 return NewGEP; 497 } 498 case Instruction::Select: 499 assert(I->getType()->isPointerTy()); 500 return SelectInst::Create(I->getOperand(0), NewPointerOperands[1], 501 NewPointerOperands[2], "", nullptr, I); 502 default: 503 llvm_unreachable("Unexpected opcode"); 504 } 505 } 506 507 // Similar to cloneInstructionWithNewAddressSpace, returns a clone of the 508 // constant expression `CE` with its operands replaced as specified in 509 // ValueWithNewAddrSpace. 510 static Value *cloneConstantExprWithNewAddressSpace( 511 ConstantExpr *CE, unsigned NewAddrSpace, 512 const ValueToValueMapTy &ValueWithNewAddrSpace) { 513 Type *TargetType = 514 CE->getType()->getPointerElementType()->getPointerTo(NewAddrSpace); 515 516 if (CE->getOpcode() == Instruction::AddrSpaceCast) { 517 // Because CE is flat, the source address space must be specific. 518 // Therefore, the inferred address space must be the source space according 519 // to our algorithm. 520 assert(CE->getOperand(0)->getType()->getPointerAddressSpace() == 521 NewAddrSpace); 522 return ConstantExpr::getBitCast(CE->getOperand(0), TargetType); 523 } 524 525 if (CE->getOpcode() == Instruction::BitCast) { 526 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(CE->getOperand(0))) 527 return ConstantExpr::getBitCast(cast<Constant>(NewOperand), TargetType); 528 return ConstantExpr::getAddrSpaceCast(CE, TargetType); 529 } 530 531 if (CE->getOpcode() == Instruction::Select) { 532 Constant *Src0 = CE->getOperand(1); 533 Constant *Src1 = CE->getOperand(2); 534 if (Src0->getType()->getPointerAddressSpace() == 535 Src1->getType()->getPointerAddressSpace()) { 536 537 return ConstantExpr::getSelect( 538 CE->getOperand(0), ConstantExpr::getAddrSpaceCast(Src0, TargetType), 539 ConstantExpr::getAddrSpaceCast(Src1, TargetType)); 540 } 541 } 542 543 // Computes the operands of the new constant expression. 544 bool IsNew = false; 545 SmallVector<Constant *, 4> NewOperands; 546 for (unsigned Index = 0; Index < CE->getNumOperands(); ++Index) { 547 Constant *Operand = CE->getOperand(Index); 548 // If the address space of `Operand` needs to be modified, the new operand 549 // with the new address space should already be in ValueWithNewAddrSpace 550 // because (1) the constant expressions we consider (i.e. addrspacecast, 551 // bitcast, and getelementptr) do not incur cycles in the data flow graph 552 // and (2) this function is called on constant expressions in postorder. 553 if (Value *NewOperand = ValueWithNewAddrSpace.lookup(Operand)) { 554 IsNew = true; 555 NewOperands.push_back(cast<Constant>(NewOperand)); 556 continue; 557 } 558 if (auto CExpr = dyn_cast<ConstantExpr>(Operand)) 559 if (Value *NewOperand = cloneConstantExprWithNewAddressSpace( 560 CExpr, NewAddrSpace, ValueWithNewAddrSpace)) { 561 IsNew = true; 562 NewOperands.push_back(cast<Constant>(NewOperand)); 563 continue; 564 } 565 // Otherwise, reuses the old operand. 566 NewOperands.push_back(Operand); 567 } 568 569 // If !IsNew, we will replace the Value with itself. However, replaced values 570 // are assumed to wrapped in a addrspace cast later so drop it now. 571 if (!IsNew) 572 return nullptr; 573 574 if (CE->getOpcode() == Instruction::GetElementPtr) { 575 // Needs to specify the source type while constructing a getelementptr 576 // constant expression. 577 return CE->getWithOperands( 578 NewOperands, TargetType, /*OnlyIfReduced=*/false, 579 NewOperands[0]->getType()->getPointerElementType()); 580 } 581 582 return CE->getWithOperands(NewOperands, TargetType); 583 } 584 585 // Returns a clone of the value `V`, with its operands replaced as specified in 586 // ValueWithNewAddrSpace. This function is called on every flat address 587 // expression whose address space needs to be modified, in postorder. 588 // 589 // See cloneInstructionWithNewAddressSpace for the meaning of UndefUsesToFix. 590 Value *InferAddressSpaces::cloneValueWithNewAddressSpace( 591 Value *V, unsigned NewAddrSpace, 592 const ValueToValueMapTy &ValueWithNewAddrSpace, 593 SmallVectorImpl<const Use *> *UndefUsesToFix) const { 594 // All values in Postorder are flat address expressions. 595 assert(isAddressExpression(*V) && 596 V->getType()->getPointerAddressSpace() == FlatAddrSpace); 597 598 if (Instruction *I = dyn_cast<Instruction>(V)) { 599 Value *NewV = cloneInstructionWithNewAddressSpace( 600 I, NewAddrSpace, ValueWithNewAddrSpace, UndefUsesToFix); 601 if (Instruction *NewI = dyn_cast<Instruction>(NewV)) { 602 if (NewI->getParent() == nullptr) { 603 NewI->insertBefore(I); 604 NewI->takeName(I); 605 } 606 } 607 return NewV; 608 } 609 610 return cloneConstantExprWithNewAddressSpace( 611 cast<ConstantExpr>(V), NewAddrSpace, ValueWithNewAddrSpace); 612 } 613 614 // Defines the join operation on the address space lattice (see the file header 615 // comments). 616 unsigned InferAddressSpaces::joinAddressSpaces(unsigned AS1, 617 unsigned AS2) const { 618 if (AS1 == FlatAddrSpace || AS2 == FlatAddrSpace) 619 return FlatAddrSpace; 620 621 if (AS1 == UninitializedAddressSpace) 622 return AS2; 623 if (AS2 == UninitializedAddressSpace) 624 return AS1; 625 626 // The join of two different specific address spaces is flat. 627 return (AS1 == AS2) ? AS1 : FlatAddrSpace; 628 } 629 630 bool InferAddressSpaces::runOnFunction(Function &F) { 631 if (skipFunction(F)) 632 return false; 633 634 const TargetTransformInfo &TTI = 635 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 636 637 if (FlatAddrSpace == UninitializedAddressSpace) { 638 FlatAddrSpace = TTI.getFlatAddressSpace(); 639 if (FlatAddrSpace == UninitializedAddressSpace) 640 return false; 641 } 642 643 // Collects all flat address expressions in postorder. 644 std::vector<WeakTrackingVH> Postorder = collectFlatAddressExpressions(F); 645 646 // Runs a data-flow analysis to refine the address spaces of every expression 647 // in Postorder. 648 ValueToAddrSpaceMapTy InferredAddrSpace; 649 inferAddressSpaces(Postorder, &InferredAddrSpace); 650 651 // Changes the address spaces of the flat address expressions who are inferred 652 // to point to a specific address space. 653 return rewriteWithNewAddressSpaces(TTI, Postorder, InferredAddrSpace, &F); 654 } 655 656 // Constants need to be tracked through RAUW to handle cases with nested 657 // constant expressions, so wrap values in WeakTrackingVH. 658 void InferAddressSpaces::inferAddressSpaces( 659 ArrayRef<WeakTrackingVH> Postorder, 660 ValueToAddrSpaceMapTy *InferredAddrSpace) const { 661 SetVector<Value *> Worklist(Postorder.begin(), Postorder.end()); 662 // Initially, all expressions are in the uninitialized address space. 663 for (Value *V : Postorder) 664 (*InferredAddrSpace)[V] = UninitializedAddressSpace; 665 666 while (!Worklist.empty()) { 667 Value *V = Worklist.pop_back_val(); 668 669 // Tries to update the address space of the stack top according to the 670 // address spaces of its operands. 671 LLVM_DEBUG(dbgs() << "Updating the address space of\n " << *V << '\n'); 672 Optional<unsigned> NewAS = updateAddressSpace(*V, *InferredAddrSpace); 673 if (!NewAS.hasValue()) 674 continue; 675 // If any updates are made, grabs its users to the worklist because 676 // their address spaces can also be possibly updated. 677 LLVM_DEBUG(dbgs() << " to " << NewAS.getValue() << '\n'); 678 (*InferredAddrSpace)[V] = NewAS.getValue(); 679 680 for (Value *User : V->users()) { 681 // Skip if User is already in the worklist. 682 if (Worklist.count(User)) 683 continue; 684 685 auto Pos = InferredAddrSpace->find(User); 686 // Our algorithm only updates the address spaces of flat address 687 // expressions, which are those in InferredAddrSpace. 688 if (Pos == InferredAddrSpace->end()) 689 continue; 690 691 // Function updateAddressSpace moves the address space down a lattice 692 // path. Therefore, nothing to do if User is already inferred as flat (the 693 // bottom element in the lattice). 694 if (Pos->second == FlatAddrSpace) 695 continue; 696 697 Worklist.insert(User); 698 } 699 } 700 } 701 702 Optional<unsigned> InferAddressSpaces::updateAddressSpace( 703 const Value &V, const ValueToAddrSpaceMapTy &InferredAddrSpace) const { 704 assert(InferredAddrSpace.count(&V)); 705 706 // The new inferred address space equals the join of the address spaces 707 // of all its pointer operands. 708 unsigned NewAS = UninitializedAddressSpace; 709 710 const Operator &Op = cast<Operator>(V); 711 if (Op.getOpcode() == Instruction::Select) { 712 Value *Src0 = Op.getOperand(1); 713 Value *Src1 = Op.getOperand(2); 714 715 auto I = InferredAddrSpace.find(Src0); 716 unsigned Src0AS = (I != InferredAddrSpace.end()) ? 717 I->second : Src0->getType()->getPointerAddressSpace(); 718 719 auto J = InferredAddrSpace.find(Src1); 720 unsigned Src1AS = (J != InferredAddrSpace.end()) ? 721 J->second : Src1->getType()->getPointerAddressSpace(); 722 723 auto *C0 = dyn_cast<Constant>(Src0); 724 auto *C1 = dyn_cast<Constant>(Src1); 725 726 // If one of the inputs is a constant, we may be able to do a constant 727 // addrspacecast of it. Defer inferring the address space until the input 728 // address space is known. 729 if ((C1 && Src0AS == UninitializedAddressSpace) || 730 (C0 && Src1AS == UninitializedAddressSpace)) 731 return None; 732 733 if (C0 && isSafeToCastConstAddrSpace(C0, Src1AS)) 734 NewAS = Src1AS; 735 else if (C1 && isSafeToCastConstAddrSpace(C1, Src0AS)) 736 NewAS = Src0AS; 737 else 738 NewAS = joinAddressSpaces(Src0AS, Src1AS); 739 } else { 740 for (Value *PtrOperand : getPointerOperands(V)) { 741 auto I = InferredAddrSpace.find(PtrOperand); 742 unsigned OperandAS = I != InferredAddrSpace.end() ? 743 I->second : PtrOperand->getType()->getPointerAddressSpace(); 744 745 // join(flat, *) = flat. So we can break if NewAS is already flat. 746 NewAS = joinAddressSpaces(NewAS, OperandAS); 747 if (NewAS == FlatAddrSpace) 748 break; 749 } 750 } 751 752 unsigned OldAS = InferredAddrSpace.lookup(&V); 753 assert(OldAS != FlatAddrSpace); 754 if (OldAS == NewAS) 755 return None; 756 return NewAS; 757 } 758 759 /// \p returns true if \p U is the pointer operand of a memory instruction with 760 /// a single pointer operand that can have its address space changed by simply 761 /// mutating the use to a new value. If the memory instruction is volatile, 762 /// return true only if the target allows the memory instruction to be volatile 763 /// in the new address space. 764 static bool isSimplePointerUseValidToReplace(const TargetTransformInfo &TTI, 765 Use &U, unsigned AddrSpace) { 766 User *Inst = U.getUser(); 767 unsigned OpNo = U.getOperandNo(); 768 bool VolatileIsAllowed = false; 769 if (auto *I = dyn_cast<Instruction>(Inst)) 770 VolatileIsAllowed = TTI.hasVolatileVariant(I, AddrSpace); 771 772 if (auto *LI = dyn_cast<LoadInst>(Inst)) 773 return OpNo == LoadInst::getPointerOperandIndex() && 774 (VolatileIsAllowed || !LI->isVolatile()); 775 776 if (auto *SI = dyn_cast<StoreInst>(Inst)) 777 return OpNo == StoreInst::getPointerOperandIndex() && 778 (VolatileIsAllowed || !SI->isVolatile()); 779 780 if (auto *RMW = dyn_cast<AtomicRMWInst>(Inst)) 781 return OpNo == AtomicRMWInst::getPointerOperandIndex() && 782 (VolatileIsAllowed || !RMW->isVolatile()); 783 784 if (auto *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) 785 return OpNo == AtomicCmpXchgInst::getPointerOperandIndex() && 786 (VolatileIsAllowed || !CmpX->isVolatile()); 787 788 return false; 789 } 790 791 /// Update memory intrinsic uses that require more complex processing than 792 /// simple memory instructions. Thse require re-mangling and may have multiple 793 /// pointer operands. 794 static bool handleMemIntrinsicPtrUse(MemIntrinsic *MI, Value *OldV, 795 Value *NewV) { 796 IRBuilder<> B(MI); 797 MDNode *TBAA = MI->getMetadata(LLVMContext::MD_tbaa); 798 MDNode *ScopeMD = MI->getMetadata(LLVMContext::MD_alias_scope); 799 MDNode *NoAliasMD = MI->getMetadata(LLVMContext::MD_noalias); 800 801 if (auto *MSI = dyn_cast<MemSetInst>(MI)) { 802 B.CreateMemSet(NewV, MSI->getValue(), 803 MSI->getLength(), MSI->getDestAlignment(), 804 false, // isVolatile 805 TBAA, ScopeMD, NoAliasMD); 806 } else if (auto *MTI = dyn_cast<MemTransferInst>(MI)) { 807 Value *Src = MTI->getRawSource(); 808 Value *Dest = MTI->getRawDest(); 809 810 // Be careful in case this is a self-to-self copy. 811 if (Src == OldV) 812 Src = NewV; 813 814 if (Dest == OldV) 815 Dest = NewV; 816 817 if (isa<MemCpyInst>(MTI)) { 818 MDNode *TBAAStruct = MTI->getMetadata(LLVMContext::MD_tbaa_struct); 819 B.CreateMemCpy(Dest, MTI->getDestAlignment(), 820 Src, MTI->getSourceAlignment(), 821 MTI->getLength(), 822 false, // isVolatile 823 TBAA, TBAAStruct, ScopeMD, NoAliasMD); 824 } else { 825 assert(isa<MemMoveInst>(MTI)); 826 B.CreateMemMove(Dest, MTI->getDestAlignment(), 827 Src, MTI->getSourceAlignment(), 828 MTI->getLength(), 829 false, // isVolatile 830 TBAA, ScopeMD, NoAliasMD); 831 } 832 } else 833 llvm_unreachable("unhandled MemIntrinsic"); 834 835 MI->eraseFromParent(); 836 return true; 837 } 838 839 // \p returns true if it is OK to change the address space of constant \p C with 840 // a ConstantExpr addrspacecast. 841 bool InferAddressSpaces::isSafeToCastConstAddrSpace(Constant *C, unsigned NewAS) const { 842 assert(NewAS != UninitializedAddressSpace); 843 844 unsigned SrcAS = C->getType()->getPointerAddressSpace(); 845 if (SrcAS == NewAS || isa<UndefValue>(C)) 846 return true; 847 848 // Prevent illegal casts between different non-flat address spaces. 849 if (SrcAS != FlatAddrSpace && NewAS != FlatAddrSpace) 850 return false; 851 852 if (isa<ConstantPointerNull>(C)) 853 return true; 854 855 if (auto *Op = dyn_cast<Operator>(C)) { 856 // If we already have a constant addrspacecast, it should be safe to cast it 857 // off. 858 if (Op->getOpcode() == Instruction::AddrSpaceCast) 859 return isSafeToCastConstAddrSpace(cast<Constant>(Op->getOperand(0)), NewAS); 860 861 if (Op->getOpcode() == Instruction::IntToPtr && 862 Op->getType()->getPointerAddressSpace() == FlatAddrSpace) 863 return true; 864 } 865 866 return false; 867 } 868 869 static Value::use_iterator skipToNextUser(Value::use_iterator I, 870 Value::use_iterator End) { 871 User *CurUser = I->getUser(); 872 ++I; 873 874 while (I != End && I->getUser() == CurUser) 875 ++I; 876 877 return I; 878 } 879 880 bool InferAddressSpaces::rewriteWithNewAddressSpaces( 881 const TargetTransformInfo &TTI, ArrayRef<WeakTrackingVH> Postorder, 882 const ValueToAddrSpaceMapTy &InferredAddrSpace, Function *F) const { 883 // For each address expression to be modified, creates a clone of it with its 884 // pointer operands converted to the new address space. Since the pointer 885 // operands are converted, the clone is naturally in the new address space by 886 // construction. 887 ValueToValueMapTy ValueWithNewAddrSpace; 888 SmallVector<const Use *, 32> UndefUsesToFix; 889 for (Value* V : Postorder) { 890 unsigned NewAddrSpace = InferredAddrSpace.lookup(V); 891 if (V->getType()->getPointerAddressSpace() != NewAddrSpace) { 892 ValueWithNewAddrSpace[V] = cloneValueWithNewAddressSpace( 893 V, NewAddrSpace, ValueWithNewAddrSpace, &UndefUsesToFix); 894 } 895 } 896 897 if (ValueWithNewAddrSpace.empty()) 898 return false; 899 900 // Fixes all the undef uses generated by cloneInstructionWithNewAddressSpace. 901 for (const Use *UndefUse : UndefUsesToFix) { 902 User *V = UndefUse->getUser(); 903 User *NewV = cast<User>(ValueWithNewAddrSpace.lookup(V)); 904 unsigned OperandNo = UndefUse->getOperandNo(); 905 assert(isa<UndefValue>(NewV->getOperand(OperandNo))); 906 NewV->setOperand(OperandNo, ValueWithNewAddrSpace.lookup(UndefUse->get())); 907 } 908 909 SmallVector<Instruction *, 16> DeadInstructions; 910 911 // Replaces the uses of the old address expressions with the new ones. 912 for (const WeakTrackingVH &WVH : Postorder) { 913 assert(WVH && "value was unexpectedly deleted"); 914 Value *V = WVH; 915 Value *NewV = ValueWithNewAddrSpace.lookup(V); 916 if (NewV == nullptr) 917 continue; 918 919 LLVM_DEBUG(dbgs() << "Replacing the uses of " << *V << "\n with\n " 920 << *NewV << '\n'); 921 922 if (Constant *C = dyn_cast<Constant>(V)) { 923 Constant *Replace = ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 924 C->getType()); 925 if (C != Replace) { 926 LLVM_DEBUG(dbgs() << "Inserting replacement const cast: " << Replace 927 << ": " << *Replace << '\n'); 928 C->replaceAllUsesWith(Replace); 929 V = Replace; 930 } 931 } 932 933 Value::use_iterator I, E, Next; 934 for (I = V->use_begin(), E = V->use_end(); I != E; ) { 935 Use &U = *I; 936 937 // Some users may see the same pointer operand in multiple operands. Skip 938 // to the next instruction. 939 I = skipToNextUser(I, E); 940 941 if (isSimplePointerUseValidToReplace( 942 TTI, U, V->getType()->getPointerAddressSpace())) { 943 // If V is used as the pointer operand of a compatible memory operation, 944 // sets the pointer operand to NewV. This replacement does not change 945 // the element type, so the resultant load/store is still valid. 946 U.set(NewV); 947 continue; 948 } 949 950 User *CurUser = U.getUser(); 951 // Handle more complex cases like intrinsic that need to be remangled. 952 if (auto *MI = dyn_cast<MemIntrinsic>(CurUser)) { 953 if (!MI->isVolatile() && handleMemIntrinsicPtrUse(MI, V, NewV)) 954 continue; 955 } 956 957 if (auto *II = dyn_cast<IntrinsicInst>(CurUser)) { 958 if (rewriteIntrinsicOperands(II, V, NewV)) 959 continue; 960 } 961 962 if (isa<Instruction>(CurUser)) { 963 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(CurUser)) { 964 // If we can infer that both pointers are in the same addrspace, 965 // transform e.g. 966 // %cmp = icmp eq float* %p, %q 967 // into 968 // %cmp = icmp eq float addrspace(3)* %new_p, %new_q 969 970 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 971 int SrcIdx = U.getOperandNo(); 972 int OtherIdx = (SrcIdx == 0) ? 1 : 0; 973 Value *OtherSrc = Cmp->getOperand(OtherIdx); 974 975 if (Value *OtherNewV = ValueWithNewAddrSpace.lookup(OtherSrc)) { 976 if (OtherNewV->getType()->getPointerAddressSpace() == NewAS) { 977 Cmp->setOperand(OtherIdx, OtherNewV); 978 Cmp->setOperand(SrcIdx, NewV); 979 continue; 980 } 981 } 982 983 // Even if the type mismatches, we can cast the constant. 984 if (auto *KOtherSrc = dyn_cast<Constant>(OtherSrc)) { 985 if (isSafeToCastConstAddrSpace(KOtherSrc, NewAS)) { 986 Cmp->setOperand(SrcIdx, NewV); 987 Cmp->setOperand(OtherIdx, 988 ConstantExpr::getAddrSpaceCast(KOtherSrc, NewV->getType())); 989 continue; 990 } 991 } 992 } 993 994 if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(CurUser)) { 995 unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 996 if (ASC->getDestAddressSpace() == NewAS) { 997 if (ASC->getType()->getPointerElementType() != 998 NewV->getType()->getPointerElementType()) { 999 NewV = CastInst::Create(Instruction::BitCast, NewV, 1000 ASC->getType(), "", ASC); 1001 } 1002 ASC->replaceAllUsesWith(NewV); 1003 DeadInstructions.push_back(ASC); 1004 continue; 1005 } 1006 } 1007 1008 // Otherwise, replaces the use with flat(NewV). 1009 if (Instruction *Inst = dyn_cast<Instruction>(V)) { 1010 // Don't create a copy of the original addrspacecast. 1011 if (U == V && isa<AddrSpaceCastInst>(V)) 1012 continue; 1013 1014 BasicBlock::iterator InsertPos = std::next(Inst->getIterator()); 1015 while (isa<PHINode>(InsertPos)) 1016 ++InsertPos; 1017 U.set(new AddrSpaceCastInst(NewV, V->getType(), "", &*InsertPos)); 1018 } else { 1019 U.set(ConstantExpr::getAddrSpaceCast(cast<Constant>(NewV), 1020 V->getType())); 1021 } 1022 } 1023 } 1024 1025 if (V->use_empty()) { 1026 if (Instruction *I = dyn_cast<Instruction>(V)) 1027 DeadInstructions.push_back(I); 1028 } 1029 } 1030 1031 for (Instruction *I : DeadInstructions) 1032 RecursivelyDeleteTriviallyDeadInstructions(I); 1033 1034 return true; 1035 } 1036 1037 FunctionPass *llvm::createInferAddressSpacesPass(unsigned AddressSpace) { 1038 return new InferAddressSpaces(AddressSpace); 1039 } 1040