xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision fbb6fbf709fbf22bd516c99ef17810c579014d11)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfoMetadata.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/IR/ValueHandle.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/LoopPassManager.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <utility>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "indvars"
91 
92 STATISTIC(NumWidened     , "Number of indvars widened");
93 STATISTIC(NumReplaced    , "Number of exit values replaced");
94 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
95 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
96 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
97 
98 // Trip count verification can be enabled by default under NDEBUG if we
99 // implement a strong expression equivalence checker in SCEV. Until then, we
100 // use the verify-indvars flag, which may assert in some cases.
101 static cl::opt<bool> VerifyIndvars(
102   "verify-indvars", cl::Hidden,
103   cl::desc("Verify the ScalarEvolution result after running indvars"));
104 
105 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
106 
107 static cl::opt<ReplaceExitVal> ReplaceExitValue(
108     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
109     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
110     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
111                clEnumValN(OnlyCheapRepl, "cheap",
112                           "only replace exit value when the cost is cheap"),
113                clEnumValN(AlwaysRepl, "always",
114                           "always replace exit value whenever possible")));
115 
116 static cl::opt<bool> UsePostIncrementRanges(
117   "indvars-post-increment-ranges", cl::Hidden,
118   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
119   cl::init(true));
120 
121 static cl::opt<bool>
122 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
123             cl::desc("Disable Linear Function Test Replace optimization"));
124 
125 namespace {
126 
127 struct RewritePhi;
128 
129 class IndVarSimplify {
130   LoopInfo *LI;
131   ScalarEvolution *SE;
132   DominatorTree *DT;
133   const DataLayout &DL;
134   TargetLibraryInfo *TLI;
135   const TargetTransformInfo *TTI;
136 
137   SmallVector<WeakTrackingVH, 16> DeadInsts;
138   bool Changed = false;
139 
140   bool isValidRewrite(Value *FromVal, Value *ToVal);
141 
142   void handleFloatingPointIV(Loop *L, PHINode *PH);
143   void rewriteNonIntegerIVs(Loop *L);
144 
145   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
146 
147   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
148   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
149   void rewriteFirstIterationLoopExitValues(Loop *L);
150 
151   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
152                                    PHINode *IndVar, SCEVExpander &Rewriter);
153 
154   void sinkUnusedInvariants(Loop *L);
155 
156   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
157                             Instruction *InsertPt, Type *Ty);
158 
159 public:
160   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
161                  const DataLayout &DL, TargetLibraryInfo *TLI,
162                  TargetTransformInfo *TTI)
163       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
164 
165   bool run(Loop *L);
166 };
167 
168 } // end anonymous namespace
169 
170 /// Return true if the SCEV expansion generated by the rewriter can replace the
171 /// original value. SCEV guarantees that it produces the same value, but the way
172 /// it is produced may be illegal IR.  Ideally, this function will only be
173 /// called for verification.
174 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
175   // If an SCEV expression subsumed multiple pointers, its expansion could
176   // reassociate the GEP changing the base pointer. This is illegal because the
177   // final address produced by a GEP chain must be inbounds relative to its
178   // underlying object. Otherwise basic alias analysis, among other things,
179   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
180   // producing an expression involving multiple pointers. Until then, we must
181   // bail out here.
182   //
183   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
184   // because it understands lcssa phis while SCEV does not.
185   Value *FromPtr = FromVal;
186   Value *ToPtr = ToVal;
187   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
188     FromPtr = GEP->getPointerOperand();
189   }
190   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
191     ToPtr = GEP->getPointerOperand();
192   }
193   if (FromPtr != FromVal || ToPtr != ToVal) {
194     // Quickly check the common case
195     if (FromPtr == ToPtr)
196       return true;
197 
198     // SCEV may have rewritten an expression that produces the GEP's pointer
199     // operand. That's ok as long as the pointer operand has the same base
200     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
201     // base of a recurrence. This handles the case in which SCEV expansion
202     // converts a pointer type recurrence into a nonrecurrent pointer base
203     // indexed by an integer recurrence.
204 
205     // If the GEP base pointer is a vector of pointers, abort.
206     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
207       return false;
208 
209     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
210     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
211     if (FromBase == ToBase)
212       return true;
213 
214     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
215           << *FromBase << " != " << *ToBase << "\n");
216 
217     return false;
218   }
219   return true;
220 }
221 
222 /// Determine the insertion point for this user. By default, insert immediately
223 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
224 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
225 /// common dominator for the incoming blocks.
226 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
227                                           DominatorTree *DT, LoopInfo *LI) {
228   PHINode *PHI = dyn_cast<PHINode>(User);
229   if (!PHI)
230     return User;
231 
232   Instruction *InsertPt = nullptr;
233   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
234     if (PHI->getIncomingValue(i) != Def)
235       continue;
236 
237     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
238     if (!InsertPt) {
239       InsertPt = InsertBB->getTerminator();
240       continue;
241     }
242     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
243     InsertPt = InsertBB->getTerminator();
244   }
245   assert(InsertPt && "Missing phi operand");
246 
247   auto *DefI = dyn_cast<Instruction>(Def);
248   if (!DefI)
249     return InsertPt;
250 
251   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
252 
253   auto *L = LI->getLoopFor(DefI->getParent());
254   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
255 
256   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
257     if (LI->getLoopFor(DTN->getBlock()) == L)
258       return DTN->getBlock()->getTerminator();
259 
260   llvm_unreachable("DefI dominates InsertPt!");
261 }
262 
263 //===----------------------------------------------------------------------===//
264 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
265 //===----------------------------------------------------------------------===//
266 
267 /// Convert APF to an integer, if possible.
268 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
269   bool isExact = false;
270   // See if we can convert this to an int64_t
271   uint64_t UIntVal;
272   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
273                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
274       !isExact)
275     return false;
276   IntVal = UIntVal;
277   return true;
278 }
279 
280 /// If the loop has floating induction variable then insert corresponding
281 /// integer induction variable if possible.
282 /// For example,
283 /// for(double i = 0; i < 10000; ++i)
284 ///   bar(i)
285 /// is converted into
286 /// for(int i = 0; i < 10000; ++i)
287 ///   bar((double)i);
288 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
289   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
290   unsigned BackEdge     = IncomingEdge^1;
291 
292   // Check incoming value.
293   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
294 
295   int64_t InitValue;
296   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
297     return;
298 
299   // Check IV increment. Reject this PN if increment operation is not
300   // an add or increment value can not be represented by an integer.
301   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
302   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
303 
304   // If this is not an add of the PHI with a constantfp, or if the constant fp
305   // is not an integer, bail out.
306   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
307   int64_t IncValue;
308   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
309       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
310     return;
311 
312   // Check Incr uses. One user is PN and the other user is an exit condition
313   // used by the conditional terminator.
314   Value::user_iterator IncrUse = Incr->user_begin();
315   Instruction *U1 = cast<Instruction>(*IncrUse++);
316   if (IncrUse == Incr->user_end()) return;
317   Instruction *U2 = cast<Instruction>(*IncrUse++);
318   if (IncrUse != Incr->user_end()) return;
319 
320   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
321   // only used by a branch, we can't transform it.
322   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
323   if (!Compare)
324     Compare = dyn_cast<FCmpInst>(U2);
325   if (!Compare || !Compare->hasOneUse() ||
326       !isa<BranchInst>(Compare->user_back()))
327     return;
328 
329   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
330 
331   // We need to verify that the branch actually controls the iteration count
332   // of the loop.  If not, the new IV can overflow and no one will notice.
333   // The branch block must be in the loop and one of the successors must be out
334   // of the loop.
335   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
336   if (!L->contains(TheBr->getParent()) ||
337       (L->contains(TheBr->getSuccessor(0)) &&
338        L->contains(TheBr->getSuccessor(1))))
339     return;
340 
341   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
342   // transform it.
343   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
344   int64_t ExitValue;
345   if (ExitValueVal == nullptr ||
346       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
347     return;
348 
349   // Find new predicate for integer comparison.
350   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
351   switch (Compare->getPredicate()) {
352   default: return;  // Unknown comparison.
353   case CmpInst::FCMP_OEQ:
354   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
355   case CmpInst::FCMP_ONE:
356   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
357   case CmpInst::FCMP_OGT:
358   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
359   case CmpInst::FCMP_OGE:
360   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
361   case CmpInst::FCMP_OLT:
362   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
363   case CmpInst::FCMP_OLE:
364   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
365   }
366 
367   // We convert the floating point induction variable to a signed i32 value if
368   // we can.  This is only safe if the comparison will not overflow in a way
369   // that won't be trapped by the integer equivalent operations.  Check for this
370   // now.
371   // TODO: We could use i64 if it is native and the range requires it.
372 
373   // The start/stride/exit values must all fit in signed i32.
374   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
375     return;
376 
377   // If not actually striding (add x, 0.0), avoid touching the code.
378   if (IncValue == 0)
379     return;
380 
381   // Positive and negative strides have different safety conditions.
382   if (IncValue > 0) {
383     // If we have a positive stride, we require the init to be less than the
384     // exit value.
385     if (InitValue >= ExitValue)
386       return;
387 
388     uint32_t Range = uint32_t(ExitValue-InitValue);
389     // Check for infinite loop, either:
390     // while (i <= Exit) or until (i > Exit)
391     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
392       if (++Range == 0) return;  // Range overflows.
393     }
394 
395     unsigned Leftover = Range % uint32_t(IncValue);
396 
397     // If this is an equality comparison, we require that the strided value
398     // exactly land on the exit value, otherwise the IV condition will wrap
399     // around and do things the fp IV wouldn't.
400     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
401         Leftover != 0)
402       return;
403 
404     // If the stride would wrap around the i32 before exiting, we can't
405     // transform the IV.
406     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
407       return;
408   } else {
409     // If we have a negative stride, we require the init to be greater than the
410     // exit value.
411     if (InitValue <= ExitValue)
412       return;
413 
414     uint32_t Range = uint32_t(InitValue-ExitValue);
415     // Check for infinite loop, either:
416     // while (i >= Exit) or until (i < Exit)
417     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
418       if (++Range == 0) return;  // Range overflows.
419     }
420 
421     unsigned Leftover = Range % uint32_t(-IncValue);
422 
423     // If this is an equality comparison, we require that the strided value
424     // exactly land on the exit value, otherwise the IV condition will wrap
425     // around and do things the fp IV wouldn't.
426     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
427         Leftover != 0)
428       return;
429 
430     // If the stride would wrap around the i32 before exiting, we can't
431     // transform the IV.
432     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
433       return;
434   }
435 
436   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
437 
438   // Insert new integer induction variable.
439   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
440   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
441                       PN->getIncomingBlock(IncomingEdge));
442 
443   Value *NewAdd =
444     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
445                               Incr->getName()+".int", Incr);
446   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
447 
448   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
449                                       ConstantInt::get(Int32Ty, ExitValue),
450                                       Compare->getName());
451 
452   // In the following deletions, PN may become dead and may be deleted.
453   // Use a WeakTrackingVH to observe whether this happens.
454   WeakTrackingVH WeakPH = PN;
455 
456   // Delete the old floating point exit comparison.  The branch starts using the
457   // new comparison.
458   NewCompare->takeName(Compare);
459   Compare->replaceAllUsesWith(NewCompare);
460   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
461 
462   // Delete the old floating point increment.
463   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
464   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
465 
466   // If the FP induction variable still has uses, this is because something else
467   // in the loop uses its value.  In order to canonicalize the induction
468   // variable, we chose to eliminate the IV and rewrite it in terms of an
469   // int->fp cast.
470   //
471   // We give preference to sitofp over uitofp because it is faster on most
472   // platforms.
473   if (WeakPH) {
474     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
475                                  &*PN->getParent()->getFirstInsertionPt());
476     PN->replaceAllUsesWith(Conv);
477     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
478   }
479   Changed = true;
480 }
481 
482 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
483   // First step.  Check to see if there are any floating-point recurrences.
484   // If there are, change them into integer recurrences, permitting analysis by
485   // the SCEV routines.
486   BasicBlock *Header = L->getHeader();
487 
488   SmallVector<WeakTrackingVH, 8> PHIs;
489   for (BasicBlock::iterator I = Header->begin();
490        PHINode *PN = dyn_cast<PHINode>(I); ++I)
491     PHIs.push_back(PN);
492 
493   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
494     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
495       handleFloatingPointIV(L, PN);
496 
497   // If the loop previously had floating-point IV, ScalarEvolution
498   // may not have been able to compute a trip count. Now that we've done some
499   // re-writing, the trip count may be computable.
500   if (Changed)
501     SE->forgetLoop(L);
502 }
503 
504 namespace {
505 
506 // Collect information about PHI nodes which can be transformed in
507 // rewriteLoopExitValues.
508 struct RewritePhi {
509   PHINode *PN;
510 
511   // Ith incoming value.
512   unsigned Ith;
513 
514   // Exit value after expansion.
515   Value *Val;
516 
517   // High Cost when expansion.
518   bool HighCost;
519 
520   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
521       : PN(P), Ith(I), Val(V), HighCost(H) {}
522 };
523 
524 } // end anonymous namespace
525 
526 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
527                                           Loop *L, Instruction *InsertPt,
528                                           Type *ResultTy) {
529   // Before expanding S into an expensive LLVM expression, see if we can use an
530   // already existing value as the expansion for S.
531   if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L))
532     if (ExistingValue->getType() == ResultTy)
533       return ExistingValue;
534 
535   // We didn't find anything, fall back to using SCEVExpander.
536   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
537 }
538 
539 //===----------------------------------------------------------------------===//
540 // rewriteLoopExitValues - Optimize IV users outside the loop.
541 // As a side effect, reduces the amount of IV processing within the loop.
542 //===----------------------------------------------------------------------===//
543 
544 /// Check to see if this loop has a computable loop-invariant execution count.
545 /// If so, this means that we can compute the final value of any expressions
546 /// that are recurrent in the loop, and substitute the exit values from the loop
547 /// into any instructions outside of the loop that use the final values of the
548 /// current expressions.
549 ///
550 /// This is mostly redundant with the regular IndVarSimplify activities that
551 /// happen later, except that it's more powerful in some cases, because it's
552 /// able to brute-force evaluate arbitrary instructions as long as they have
553 /// constant operands at the beginning of the loop.
554 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
555   // Check a pre-condition.
556   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
557          "Indvars did not preserve LCSSA!");
558 
559   SmallVector<BasicBlock*, 8> ExitBlocks;
560   L->getUniqueExitBlocks(ExitBlocks);
561 
562   SmallVector<RewritePhi, 8> RewritePhiSet;
563   // Find all values that are computed inside the loop, but used outside of it.
564   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
565   // the exit blocks of the loop to find them.
566   for (BasicBlock *ExitBB : ExitBlocks) {
567     // If there are no PHI nodes in this exit block, then no values defined
568     // inside the loop are used on this path, skip it.
569     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
570     if (!PN) continue;
571 
572     unsigned NumPreds = PN->getNumIncomingValues();
573 
574     // Iterate over all of the PHI nodes.
575     BasicBlock::iterator BBI = ExitBB->begin();
576     while ((PN = dyn_cast<PHINode>(BBI++))) {
577       if (PN->use_empty())
578         continue; // dead use, don't replace it
579 
580       if (!SE->isSCEVable(PN->getType()))
581         continue;
582 
583       // It's necessary to tell ScalarEvolution about this explicitly so that
584       // it can walk the def-use list and forget all SCEVs, as it may not be
585       // watching the PHI itself. Once the new exit value is in place, there
586       // may not be a def-use connection between the loop and every instruction
587       // which got a SCEVAddRecExpr for that loop.
588       SE->forgetValue(PN);
589 
590       // Iterate over all of the values in all the PHI nodes.
591       for (unsigned i = 0; i != NumPreds; ++i) {
592         // If the value being merged in is not integer or is not defined
593         // in the loop, skip it.
594         Value *InVal = PN->getIncomingValue(i);
595         if (!isa<Instruction>(InVal))
596           continue;
597 
598         // If this pred is for a subloop, not L itself, skip it.
599         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
600           continue; // The Block is in a subloop, skip it.
601 
602         // Check that InVal is defined in the loop.
603         Instruction *Inst = cast<Instruction>(InVal);
604         if (!L->contains(Inst))
605           continue;
606 
607         // Okay, this instruction has a user outside of the current loop
608         // and varies predictably *inside* the loop.  Evaluate the value it
609         // contains when the loop exits, if possible.
610         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
611         if (!SE->isLoopInvariant(ExitValue, L) ||
612             !isSafeToExpand(ExitValue, *SE))
613           continue;
614 
615         // Computing the value outside of the loop brings no benefit if :
616         //  - it is definitely used inside the loop in a way which can not be
617         //    optimized away.
618         //  - no use outside of the loop can take advantage of hoisting the
619         //    computation out of the loop
620         if (ExitValue->getSCEVType()>=scMulExpr) {
621           unsigned NumHardInternalUses = 0;
622           unsigned NumSoftExternalUses = 0;
623           unsigned NumUses = 0;
624           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
625                IB != IE && NumUses <= 6; ++IB) {
626             Instruction *UseInstr = cast<Instruction>(*IB);
627             unsigned Opc = UseInstr->getOpcode();
628             NumUses++;
629             if (L->contains(UseInstr)) {
630               if (Opc == Instruction::Call || Opc == Instruction::Ret)
631                 NumHardInternalUses++;
632             } else {
633               if (Opc == Instruction::PHI) {
634                 // Do not count the Phi as a use. LCSSA may have inserted
635                 // plenty of trivial ones.
636                 NumUses--;
637                 for (auto PB = UseInstr->user_begin(),
638                           PE = UseInstr->user_end();
639                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
640                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
641                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
642                     NumSoftExternalUses++;
643                 }
644                 continue;
645               }
646               if (Opc != Instruction::Call && Opc != Instruction::Ret)
647                 NumSoftExternalUses++;
648             }
649           }
650           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
651             continue;
652         }
653 
654         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
655         Value *ExitVal =
656             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
657 
658         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
659                      << "  LoopVal = " << *Inst << "\n");
660 
661         if (!isValidRewrite(Inst, ExitVal)) {
662           DeadInsts.push_back(ExitVal);
663           continue;
664         }
665 
666         // Collect all the candidate PHINodes to be rewritten.
667         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
668       }
669     }
670   }
671 
672   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
673 
674   // Transformation.
675   for (const RewritePhi &Phi : RewritePhiSet) {
676     PHINode *PN = Phi.PN;
677     Value *ExitVal = Phi.Val;
678 
679     // Only do the rewrite when the ExitValue can be expanded cheaply.
680     // If LoopCanBeDel is true, rewrite exit value aggressively.
681     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
682       DeadInsts.push_back(ExitVal);
683       continue;
684     }
685 
686     Changed = true;
687     ++NumReplaced;
688     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
689     PN->setIncomingValue(Phi.Ith, ExitVal);
690 
691     // If this instruction is dead now, delete it. Don't do it now to avoid
692     // invalidating iterators.
693     if (isInstructionTriviallyDead(Inst, TLI))
694       DeadInsts.push_back(Inst);
695 
696     // Replace PN with ExitVal if that is legal and does not break LCSSA.
697     if (PN->getNumIncomingValues() == 1 &&
698         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
699       PN->replaceAllUsesWith(ExitVal);
700       PN->eraseFromParent();
701     }
702   }
703 
704   // The insertion point instruction may have been deleted; clear it out
705   // so that the rewriter doesn't trip over it later.
706   Rewriter.clearInsertPoint();
707 }
708 
709 //===---------------------------------------------------------------------===//
710 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
711 // they will exit at the first iteration.
712 //===---------------------------------------------------------------------===//
713 
714 /// Check to see if this loop has loop invariant conditions which lead to loop
715 /// exits. If so, we know that if the exit path is taken, it is at the first
716 /// loop iteration. This lets us predict exit values of PHI nodes that live in
717 /// loop header.
718 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
719   // Verify the input to the pass is already in LCSSA form.
720   assert(L->isLCSSAForm(*DT));
721 
722   SmallVector<BasicBlock *, 8> ExitBlocks;
723   L->getUniqueExitBlocks(ExitBlocks);
724   auto *LoopHeader = L->getHeader();
725   assert(LoopHeader && "Invalid loop");
726 
727   for (auto *ExitBB : ExitBlocks) {
728     BasicBlock::iterator BBI = ExitBB->begin();
729     // If there are no more PHI nodes in this exit block, then no more
730     // values defined inside the loop are used on this path.
731     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
732       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
733           IncomingValIdx != E; ++IncomingValIdx) {
734         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
735 
736         // We currently only support loop exits from loop header. If the
737         // incoming block is not loop header, we need to recursively check
738         // all conditions starting from loop header are loop invariants.
739         // Additional support might be added in the future.
740         if (IncomingBB != LoopHeader)
741           continue;
742 
743         // Get condition that leads to the exit path.
744         auto *TermInst = IncomingBB->getTerminator();
745 
746         Value *Cond = nullptr;
747         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
748           // Must be a conditional branch, otherwise the block
749           // should not be in the loop.
750           Cond = BI->getCondition();
751         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
752           Cond = SI->getCondition();
753         else
754           continue;
755 
756         if (!L->isLoopInvariant(Cond))
757           continue;
758 
759         auto *ExitVal =
760             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
761 
762         // Only deal with PHIs.
763         if (!ExitVal)
764           continue;
765 
766         // If ExitVal is a PHI on the loop header, then we know its
767         // value along this exit because the exit can only be taken
768         // on the first iteration.
769         auto *LoopPreheader = L->getLoopPreheader();
770         assert(LoopPreheader && "Invalid loop");
771         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
772         if (PreheaderIdx != -1) {
773           assert(ExitVal->getParent() == LoopHeader &&
774                  "ExitVal must be in loop header");
775           PN->setIncomingValue(IncomingValIdx,
776               ExitVal->getIncomingValue(PreheaderIdx));
777         }
778       }
779     }
780   }
781 }
782 
783 /// Check whether it is possible to delete the loop after rewriting exit
784 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
785 /// aggressively.
786 bool IndVarSimplify::canLoopBeDeleted(
787     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
788   BasicBlock *Preheader = L->getLoopPreheader();
789   // If there is no preheader, the loop will not be deleted.
790   if (!Preheader)
791     return false;
792 
793   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
794   // We obviate multiple ExitingBlocks case for simplicity.
795   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
796   // after exit value rewriting, we can enhance the logic here.
797   SmallVector<BasicBlock *, 4> ExitingBlocks;
798   L->getExitingBlocks(ExitingBlocks);
799   SmallVector<BasicBlock *, 8> ExitBlocks;
800   L->getUniqueExitBlocks(ExitBlocks);
801   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
802     return false;
803 
804   BasicBlock *ExitBlock = ExitBlocks[0];
805   BasicBlock::iterator BI = ExitBlock->begin();
806   while (PHINode *P = dyn_cast<PHINode>(BI)) {
807     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
808 
809     // If the Incoming value of P is found in RewritePhiSet, we know it
810     // could be rewritten to use a loop invariant value in transformation
811     // phase later. Skip it in the loop invariant check below.
812     bool found = false;
813     for (const RewritePhi &Phi : RewritePhiSet) {
814       unsigned i = Phi.Ith;
815       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
816         found = true;
817         break;
818       }
819     }
820 
821     Instruction *I;
822     if (!found && (I = dyn_cast<Instruction>(Incoming)))
823       if (!L->hasLoopInvariantOperands(I))
824         return false;
825 
826     ++BI;
827   }
828 
829   for (auto *BB : L->blocks())
830     if (llvm::any_of(*BB, [](Instruction &I) {
831           return I.mayHaveSideEffects();
832         }))
833       return false;
834 
835   return true;
836 }
837 
838 //===----------------------------------------------------------------------===//
839 //  IV Widening - Extend the width of an IV to cover its widest uses.
840 //===----------------------------------------------------------------------===//
841 
842 namespace {
843 
844 // Collect information about induction variables that are used by sign/zero
845 // extend operations. This information is recorded by CollectExtend and provides
846 // the input to WidenIV.
847 struct WideIVInfo {
848   PHINode *NarrowIV = nullptr;
849 
850   // Widest integer type created [sz]ext
851   Type *WidestNativeType = nullptr;
852 
853   // Was a sext user seen before a zext?
854   bool IsSigned = false;
855 };
856 
857 } // end anonymous namespace
858 
859 /// Update information about the induction variable that is extended by this
860 /// sign or zero extend operation. This is used to determine the final width of
861 /// the IV before actually widening it.
862 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
863                         const TargetTransformInfo *TTI) {
864   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
865   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
866     return;
867 
868   Type *Ty = Cast->getType();
869   uint64_t Width = SE->getTypeSizeInBits(Ty);
870   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
871     return;
872 
873   // Check that `Cast` actually extends the induction variable (we rely on this
874   // later).  This takes care of cases where `Cast` is extending a truncation of
875   // the narrow induction variable, and thus can end up being narrower than the
876   // "narrow" induction variable.
877   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
878   if (NarrowIVWidth >= Width)
879     return;
880 
881   // Cast is either an sext or zext up to this point.
882   // We should not widen an indvar if arithmetics on the wider indvar are more
883   // expensive than those on the narrower indvar. We check only the cost of ADD
884   // because at least an ADD is required to increment the induction variable. We
885   // could compute more comprehensively the cost of all instructions on the
886   // induction variable when necessary.
887   if (TTI &&
888       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
889           TTI->getArithmeticInstrCost(Instruction::Add,
890                                       Cast->getOperand(0)->getType())) {
891     return;
892   }
893 
894   if (!WI.WidestNativeType) {
895     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
896     WI.IsSigned = IsSigned;
897     return;
898   }
899 
900   // We extend the IV to satisfy the sign of its first user, arbitrarily.
901   if (WI.IsSigned != IsSigned)
902     return;
903 
904   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
905     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
906 }
907 
908 namespace {
909 
910 /// Record a link in the Narrow IV def-use chain along with the WideIV that
911 /// computes the same value as the Narrow IV def.  This avoids caching Use*
912 /// pointers.
913 struct NarrowIVDefUse {
914   Instruction *NarrowDef = nullptr;
915   Instruction *NarrowUse = nullptr;
916   Instruction *WideDef = nullptr;
917 
918   // True if the narrow def is never negative.  Tracking this information lets
919   // us use a sign extension instead of a zero extension or vice versa, when
920   // profitable and legal.
921   bool NeverNegative = false;
922 
923   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
924                  bool NeverNegative)
925       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
926         NeverNegative(NeverNegative) {}
927 };
928 
929 /// The goal of this transform is to remove sign and zero extends without
930 /// creating any new induction variables. To do this, it creates a new phi of
931 /// the wider type and redirects all users, either removing extends or inserting
932 /// truncs whenever we stop propagating the type.
933 class WidenIV {
934   // Parameters
935   PHINode *OrigPhi;
936   Type *WideType;
937 
938   // Context
939   LoopInfo        *LI;
940   Loop            *L;
941   ScalarEvolution *SE;
942   DominatorTree   *DT;
943 
944   // Does the module have any calls to the llvm.experimental.guard intrinsic
945   // at all? If not we can avoid scanning instructions looking for guards.
946   bool HasGuards;
947 
948   // Result
949   PHINode *WidePhi = nullptr;
950   Instruction *WideInc = nullptr;
951   const SCEV *WideIncExpr = nullptr;
952   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
953 
954   SmallPtrSet<Instruction *,16> Widened;
955   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
956 
957   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
958 
959   // A map tracking the kind of extension used to widen each narrow IV
960   // and narrow IV user.
961   // Key: pointer to a narrow IV or IV user.
962   // Value: the kind of extension used to widen this Instruction.
963   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
964 
965   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
966 
967   // A map with control-dependent ranges for post increment IV uses. The key is
968   // a pair of IV def and a use of this def denoting the context. The value is
969   // a ConstantRange representing possible values of the def at the given
970   // context.
971   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
972 
973   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
974                                               Instruction *UseI) {
975     DefUserPair Key(Def, UseI);
976     auto It = PostIncRangeInfos.find(Key);
977     return It == PostIncRangeInfos.end()
978                ? Optional<ConstantRange>(None)
979                : Optional<ConstantRange>(It->second);
980   }
981 
982   void calculatePostIncRanges(PHINode *OrigPhi);
983   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
984 
985   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
986     DefUserPair Key(Def, UseI);
987     auto It = PostIncRangeInfos.find(Key);
988     if (It == PostIncRangeInfos.end())
989       PostIncRangeInfos.insert({Key, R});
990     else
991       It->second = R.intersectWith(It->second);
992   }
993 
994 public:
995   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
996           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
997           bool HasGuards)
998       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
999         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1000         HasGuards(HasGuards), DeadInsts(DI) {
1001     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1002     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1003   }
1004 
1005   PHINode *createWideIV(SCEVExpander &Rewriter);
1006 
1007 protected:
1008   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1009                           Instruction *Use);
1010 
1011   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1012   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1013                                      const SCEVAddRecExpr *WideAR);
1014   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1015 
1016   ExtendKind getExtendKind(Instruction *I);
1017 
1018   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1019 
1020   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1021 
1022   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1023 
1024   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1025                               unsigned OpCode) const;
1026 
1027   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1028 
1029   bool widenLoopCompare(NarrowIVDefUse DU);
1030 
1031   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1032 };
1033 
1034 } // end anonymous namespace
1035 
1036 /// Perform a quick domtree based check for loop invariance assuming that V is
1037 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1038 /// purpose.
1039 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1040   Instruction *Inst = dyn_cast<Instruction>(V);
1041   if (!Inst)
1042     return true;
1043 
1044   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1045 }
1046 
1047 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1048                                  bool IsSigned, Instruction *Use) {
1049   // Set the debug location and conservative insertion point.
1050   IRBuilder<> Builder(Use);
1051   // Hoist the insertion point into loop preheaders as far as possible.
1052   for (const Loop *L = LI->getLoopFor(Use->getParent());
1053        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1054        L = L->getParentLoop())
1055     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1056 
1057   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1058                     Builder.CreateZExt(NarrowOper, WideType);
1059 }
1060 
1061 /// Instantiate a wide operation to replace a narrow operation. This only needs
1062 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1063 /// 0 for any operation we decide not to clone.
1064 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1065                                   const SCEVAddRecExpr *WideAR) {
1066   unsigned Opcode = DU.NarrowUse->getOpcode();
1067   switch (Opcode) {
1068   default:
1069     return nullptr;
1070   case Instruction::Add:
1071   case Instruction::Mul:
1072   case Instruction::UDiv:
1073   case Instruction::Sub:
1074     return cloneArithmeticIVUser(DU, WideAR);
1075 
1076   case Instruction::And:
1077   case Instruction::Or:
1078   case Instruction::Xor:
1079   case Instruction::Shl:
1080   case Instruction::LShr:
1081   case Instruction::AShr:
1082     return cloneBitwiseIVUser(DU);
1083   }
1084 }
1085 
1086 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1087   Instruction *NarrowUse = DU.NarrowUse;
1088   Instruction *NarrowDef = DU.NarrowDef;
1089   Instruction *WideDef = DU.WideDef;
1090 
1091   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1092 
1093   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1094   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1095   // invariant and will be folded or hoisted. If it actually comes from a
1096   // widened IV, it should be removed during a future call to widenIVUse.
1097   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1098   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1099                    ? WideDef
1100                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1101                                       IsSigned, NarrowUse);
1102   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1103                    ? WideDef
1104                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1105                                       IsSigned, NarrowUse);
1106 
1107   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1108   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1109                                         NarrowBO->getName());
1110   IRBuilder<> Builder(NarrowUse);
1111   Builder.Insert(WideBO);
1112   WideBO->copyIRFlags(NarrowBO);
1113   return WideBO;
1114 }
1115 
1116 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1117                                             const SCEVAddRecExpr *WideAR) {
1118   Instruction *NarrowUse = DU.NarrowUse;
1119   Instruction *NarrowDef = DU.NarrowDef;
1120   Instruction *WideDef = DU.WideDef;
1121 
1122   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1123 
1124   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1125 
1126   // We're trying to find X such that
1127   //
1128   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1129   //
1130   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1131   // and check using SCEV if any of them are correct.
1132 
1133   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1134   // correct solution to X.
1135   auto GuessNonIVOperand = [&](bool SignExt) {
1136     const SCEV *WideLHS;
1137     const SCEV *WideRHS;
1138 
1139     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1140       if (SignExt)
1141         return SE->getSignExtendExpr(S, Ty);
1142       return SE->getZeroExtendExpr(S, Ty);
1143     };
1144 
1145     if (IVOpIdx == 0) {
1146       WideLHS = SE->getSCEV(WideDef);
1147       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1148       WideRHS = GetExtend(NarrowRHS, WideType);
1149     } else {
1150       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1151       WideLHS = GetExtend(NarrowLHS, WideType);
1152       WideRHS = SE->getSCEV(WideDef);
1153     }
1154 
1155     // WideUse is "WideDef `op.wide` X" as described in the comment.
1156     const SCEV *WideUse = nullptr;
1157 
1158     switch (NarrowUse->getOpcode()) {
1159     default:
1160       llvm_unreachable("No other possibility!");
1161 
1162     case Instruction::Add:
1163       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1164       break;
1165 
1166     case Instruction::Mul:
1167       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1168       break;
1169 
1170     case Instruction::UDiv:
1171       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1172       break;
1173 
1174     case Instruction::Sub:
1175       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1176       break;
1177     }
1178 
1179     return WideUse == WideAR;
1180   };
1181 
1182   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1183   if (!GuessNonIVOperand(SignExtend)) {
1184     SignExtend = !SignExtend;
1185     if (!GuessNonIVOperand(SignExtend))
1186       return nullptr;
1187   }
1188 
1189   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1190                    ? WideDef
1191                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1192                                       SignExtend, NarrowUse);
1193   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1194                    ? WideDef
1195                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1196                                       SignExtend, NarrowUse);
1197 
1198   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1199   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1200                                         NarrowBO->getName());
1201 
1202   IRBuilder<> Builder(NarrowUse);
1203   Builder.Insert(WideBO);
1204   WideBO->copyIRFlags(NarrowBO);
1205   return WideBO;
1206 }
1207 
1208 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1209   auto It = ExtendKindMap.find(I);
1210   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1211   return It->second;
1212 }
1213 
1214 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1215                                      unsigned OpCode) const {
1216   if (OpCode == Instruction::Add)
1217     return SE->getAddExpr(LHS, RHS);
1218   if (OpCode == Instruction::Sub)
1219     return SE->getMinusSCEV(LHS, RHS);
1220   if (OpCode == Instruction::Mul)
1221     return SE->getMulExpr(LHS, RHS);
1222 
1223   llvm_unreachable("Unsupported opcode.");
1224 }
1225 
1226 /// No-wrap operations can transfer sign extension of their result to their
1227 /// operands. Generate the SCEV value for the widened operation without
1228 /// actually modifying the IR yet. If the expression after extending the
1229 /// operands is an AddRec for this loop, return the AddRec and the kind of
1230 /// extension used.
1231 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1232   // Handle the common case of add<nsw/nuw>
1233   const unsigned OpCode = DU.NarrowUse->getOpcode();
1234   // Only Add/Sub/Mul instructions supported yet.
1235   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1236       OpCode != Instruction::Mul)
1237     return {nullptr, Unknown};
1238 
1239   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1240   // if extending the other will lead to a recurrence.
1241   const unsigned ExtendOperIdx =
1242       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1243   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1244 
1245   const SCEV *ExtendOperExpr = nullptr;
1246   const OverflowingBinaryOperator *OBO =
1247     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1248   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1249   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1250     ExtendOperExpr = SE->getSignExtendExpr(
1251       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1252   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1253     ExtendOperExpr = SE->getZeroExtendExpr(
1254       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1255   else
1256     return {nullptr, Unknown};
1257 
1258   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1259   // flags. This instruction may be guarded by control flow that the no-wrap
1260   // behavior depends on. Non-control-equivalent instructions can be mapped to
1261   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1262   // semantics to those operations.
1263   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1264   const SCEV *rhs = ExtendOperExpr;
1265 
1266   // Let's swap operands to the initial order for the case of non-commutative
1267   // operations, like SUB. See PR21014.
1268   if (ExtendOperIdx == 0)
1269     std::swap(lhs, rhs);
1270   const SCEVAddRecExpr *AddRec =
1271       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1272 
1273   if (!AddRec || AddRec->getLoop() != L)
1274     return {nullptr, Unknown};
1275 
1276   return {AddRec, ExtKind};
1277 }
1278 
1279 /// Is this instruction potentially interesting for further simplification after
1280 /// widening it's type? In other words, can the extend be safely hoisted out of
1281 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1282 /// so, return the extended recurrence and the kind of extension used. Otherwise
1283 /// return {nullptr, Unknown}.
1284 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1285   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1286     return {nullptr, Unknown};
1287 
1288   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1289   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1290       SE->getTypeSizeInBits(WideType)) {
1291     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1292     // index. So don't follow this use.
1293     return {nullptr, Unknown};
1294   }
1295 
1296   const SCEV *WideExpr;
1297   ExtendKind ExtKind;
1298   if (DU.NeverNegative) {
1299     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1300     if (isa<SCEVAddRecExpr>(WideExpr))
1301       ExtKind = SignExtended;
1302     else {
1303       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1304       ExtKind = ZeroExtended;
1305     }
1306   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1307     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1308     ExtKind = SignExtended;
1309   } else {
1310     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1311     ExtKind = ZeroExtended;
1312   }
1313   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1314   if (!AddRec || AddRec->getLoop() != L)
1315     return {nullptr, Unknown};
1316   return {AddRec, ExtKind};
1317 }
1318 
1319 /// This IV user cannot be widen. Replace this use of the original narrow IV
1320 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1321 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1322   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1323         << " for user " << *DU.NarrowUse << "\n");
1324   IRBuilder<> Builder(
1325       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1326   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1327   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1328 }
1329 
1330 /// If the narrow use is a compare instruction, then widen the compare
1331 //  (and possibly the other operand).  The extend operation is hoisted into the
1332 // loop preheader as far as possible.
1333 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1334   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1335   if (!Cmp)
1336     return false;
1337 
1338   // We can legally widen the comparison in the following two cases:
1339   //
1340   //  - The signedness of the IV extension and comparison match
1341   //
1342   //  - The narrow IV is always positive (and thus its sign extension is equal
1343   //    to its zero extension).  For instance, let's say we're zero extending
1344   //    %narrow for the following use
1345   //
1346   //      icmp slt i32 %narrow, %val   ... (A)
1347   //
1348   //    and %narrow is always positive.  Then
1349   //
1350   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1351   //          == icmp slt i32 zext(%narrow), sext(%val)
1352   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1353   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1354     return false;
1355 
1356   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1357   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1358   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1359   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1360 
1361   // Widen the compare instruction.
1362   IRBuilder<> Builder(
1363       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1364   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1365 
1366   // Widen the other operand of the compare, if necessary.
1367   if (CastWidth < IVWidth) {
1368     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1369     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1370   }
1371   return true;
1372 }
1373 
1374 /// Determine whether an individual user of the narrow IV can be widened. If so,
1375 /// return the wide clone of the user.
1376 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1377   assert(ExtendKindMap.count(DU.NarrowDef) &&
1378          "Should already know the kind of extension used to widen NarrowDef");
1379 
1380   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1381   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1382     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1383       // For LCSSA phis, sink the truncate outside the loop.
1384       // After SimplifyCFG most loop exit targets have a single predecessor.
1385       // Otherwise fall back to a truncate within the loop.
1386       if (UsePhi->getNumOperands() != 1)
1387         truncateIVUse(DU, DT, LI);
1388       else {
1389         // Widening the PHI requires us to insert a trunc.  The logical place
1390         // for this trunc is in the same BB as the PHI.  This is not possible if
1391         // the BB is terminated by a catchswitch.
1392         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1393           return nullptr;
1394 
1395         PHINode *WidePhi =
1396           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1397                           UsePhi);
1398         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1399         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1400         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1401         UsePhi->replaceAllUsesWith(Trunc);
1402         DeadInsts.emplace_back(UsePhi);
1403         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1404               << " to " << *WidePhi << "\n");
1405       }
1406       return nullptr;
1407     }
1408   }
1409 
1410   // This narrow use can be widened by a sext if it's non-negative or its narrow
1411   // def was widended by a sext. Same for zext.
1412   auto canWidenBySExt = [&]() {
1413     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1414   };
1415   auto canWidenByZExt = [&]() {
1416     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1417   };
1418 
1419   // Our raison d'etre! Eliminate sign and zero extension.
1420   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1421       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1422     Value *NewDef = DU.WideDef;
1423     if (DU.NarrowUse->getType() != WideType) {
1424       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1425       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1426       if (CastWidth < IVWidth) {
1427         // The cast isn't as wide as the IV, so insert a Trunc.
1428         IRBuilder<> Builder(DU.NarrowUse);
1429         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1430       }
1431       else {
1432         // A wider extend was hidden behind a narrower one. This may induce
1433         // another round of IV widening in which the intermediate IV becomes
1434         // dead. It should be very rare.
1435         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1436               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1437         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1438         NewDef = DU.NarrowUse;
1439       }
1440     }
1441     if (NewDef != DU.NarrowUse) {
1442       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1443             << " replaced by " << *DU.WideDef << "\n");
1444       ++NumElimExt;
1445       DU.NarrowUse->replaceAllUsesWith(NewDef);
1446       DeadInsts.emplace_back(DU.NarrowUse);
1447     }
1448     // Now that the extend is gone, we want to expose it's uses for potential
1449     // further simplification. We don't need to directly inform SimplifyIVUsers
1450     // of the new users, because their parent IV will be processed later as a
1451     // new loop phi. If we preserved IVUsers analysis, we would also want to
1452     // push the uses of WideDef here.
1453 
1454     // No further widening is needed. The deceased [sz]ext had done it for us.
1455     return nullptr;
1456   }
1457 
1458   // Does this user itself evaluate to a recurrence after widening?
1459   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1460   if (!WideAddRec.first)
1461     WideAddRec = getWideRecurrence(DU);
1462 
1463   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1464   if (!WideAddRec.first) {
1465     // If use is a loop condition, try to promote the condition instead of
1466     // truncating the IV first.
1467     if (widenLoopCompare(DU))
1468       return nullptr;
1469 
1470     // This user does not evaluate to a recurrence after widening, so don't
1471     // follow it. Instead insert a Trunc to kill off the original use,
1472     // eventually isolating the original narrow IV so it can be removed.
1473     truncateIVUse(DU, DT, LI);
1474     return nullptr;
1475   }
1476   // Assume block terminators cannot evaluate to a recurrence. We can't to
1477   // insert a Trunc after a terminator if there happens to be a critical edge.
1478   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1479          "SCEV is not expected to evaluate a block terminator");
1480 
1481   // Reuse the IV increment that SCEVExpander created as long as it dominates
1482   // NarrowUse.
1483   Instruction *WideUse = nullptr;
1484   if (WideAddRec.first == WideIncExpr &&
1485       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1486     WideUse = WideInc;
1487   else {
1488     WideUse = cloneIVUser(DU, WideAddRec.first);
1489     if (!WideUse)
1490       return nullptr;
1491   }
1492   // Evaluation of WideAddRec ensured that the narrow expression could be
1493   // extended outside the loop without overflow. This suggests that the wide use
1494   // evaluates to the same expression as the extended narrow use, but doesn't
1495   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1496   // where it fails, we simply throw away the newly created wide use.
1497   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1498     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1499           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n");
1500     DeadInsts.emplace_back(WideUse);
1501     return nullptr;
1502   }
1503 
1504   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1505   // Returning WideUse pushes it on the worklist.
1506   return WideUse;
1507 }
1508 
1509 /// Add eligible users of NarrowDef to NarrowIVUsers.
1510 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1511   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1512   bool NonNegativeDef =
1513       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1514                            SE->getConstant(NarrowSCEV->getType(), 0));
1515   for (User *U : NarrowDef->users()) {
1516     Instruction *NarrowUser = cast<Instruction>(U);
1517 
1518     // Handle data flow merges and bizarre phi cycles.
1519     if (!Widened.insert(NarrowUser).second)
1520       continue;
1521 
1522     bool NonNegativeUse = false;
1523     if (!NonNegativeDef) {
1524       // We might have a control-dependent range information for this context.
1525       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1526         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1527     }
1528 
1529     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1530                                NonNegativeDef || NonNegativeUse);
1531   }
1532 }
1533 
1534 /// Process a single induction variable. First use the SCEVExpander to create a
1535 /// wide induction variable that evaluates to the same recurrence as the
1536 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1537 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1538 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1539 ///
1540 /// It would be simpler to delete uses as they are processed, but we must avoid
1541 /// invalidating SCEV expressions.
1542 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1543   // Is this phi an induction variable?
1544   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1545   if (!AddRec)
1546     return nullptr;
1547 
1548   // Widen the induction variable expression.
1549   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1550                                ? SE->getSignExtendExpr(AddRec, WideType)
1551                                : SE->getZeroExtendExpr(AddRec, WideType);
1552 
1553   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1554          "Expect the new IV expression to preserve its type");
1555 
1556   // Can the IV be extended outside the loop without overflow?
1557   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1558   if (!AddRec || AddRec->getLoop() != L)
1559     return nullptr;
1560 
1561   // An AddRec must have loop-invariant operands. Since this AddRec is
1562   // materialized by a loop header phi, the expression cannot have any post-loop
1563   // operands, so they must dominate the loop header.
1564   assert(
1565       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1566       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1567       "Loop header phi recurrence inputs do not dominate the loop");
1568 
1569   // Iterate over IV uses (including transitive ones) looking for IV increments
1570   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1571   // the increment calculate control-dependent range information basing on
1572   // dominating conditions inside of the loop (e.g. a range check inside of the
1573   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1574   //
1575   // Control-dependent range information is later used to prove that a narrow
1576   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1577   // this on demand because when pushNarrowIVUsers needs this information some
1578   // of the dominating conditions might be already widened.
1579   if (UsePostIncrementRanges)
1580     calculatePostIncRanges(OrigPhi);
1581 
1582   // The rewriter provides a value for the desired IV expression. This may
1583   // either find an existing phi or materialize a new one. Either way, we
1584   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1585   // of the phi-SCC dominates the loop entry.
1586   Instruction *InsertPt = &L->getHeader()->front();
1587   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1588 
1589   // Remembering the WideIV increment generated by SCEVExpander allows
1590   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1591   // employ a general reuse mechanism because the call above is the only call to
1592   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1593   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1594     WideInc =
1595       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1596     WideIncExpr = SE->getSCEV(WideInc);
1597     // Propagate the debug location associated with the original loop increment
1598     // to the new (widened) increment.
1599     auto *OrigInc =
1600       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1601     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1602   }
1603 
1604   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1605   ++NumWidened;
1606 
1607   // Traverse the def-use chain using a worklist starting at the original IV.
1608   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1609 
1610   Widened.insert(OrigPhi);
1611   pushNarrowIVUsers(OrigPhi, WidePhi);
1612 
1613   while (!NarrowIVUsers.empty()) {
1614     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1615 
1616     // Process a def-use edge. This may replace the use, so don't hold a
1617     // use_iterator across it.
1618     Instruction *WideUse = widenIVUse(DU, Rewriter);
1619 
1620     // Follow all def-use edges from the previous narrow use.
1621     if (WideUse)
1622       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1623 
1624     // widenIVUse may have removed the def-use edge.
1625     if (DU.NarrowDef->use_empty())
1626       DeadInsts.emplace_back(DU.NarrowDef);
1627   }
1628 
1629   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1630   // evaluate the same recurrence, we can just copy the debug info over.
1631   SmallVector<DbgValueInst *, 1> DbgValues;
1632   llvm::findDbgValues(DbgValues, OrigPhi);
1633   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1634                                      ValueAsMetadata::get(WidePhi));
1635   for (auto &DbgValue : DbgValues)
1636     DbgValue->setOperand(0, MDPhi);
1637   return WidePhi;
1638 }
1639 
1640 /// Calculates control-dependent range for the given def at the given context
1641 /// by looking at dominating conditions inside of the loop
1642 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1643                                     Instruction *NarrowUser) {
1644   using namespace llvm::PatternMatch;
1645 
1646   Value *NarrowDefLHS;
1647   const APInt *NarrowDefRHS;
1648   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1649                                  m_APInt(NarrowDefRHS))) ||
1650       !NarrowDefRHS->isNonNegative())
1651     return;
1652 
1653   auto UpdateRangeFromCondition = [&] (Value *Condition,
1654                                        bool TrueDest) {
1655     CmpInst::Predicate Pred;
1656     Value *CmpRHS;
1657     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1658                                  m_Value(CmpRHS))))
1659       return;
1660 
1661     CmpInst::Predicate P =
1662             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1663 
1664     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1665     auto CmpConstrainedLHSRange =
1666             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1667     auto NarrowDefRange =
1668             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1669 
1670     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1671   };
1672 
1673   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1674     if (!HasGuards)
1675       return;
1676 
1677     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1678                                      Ctx->getParent()->rend())) {
1679       Value *C = nullptr;
1680       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1681         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1682     }
1683   };
1684 
1685   UpdateRangeFromGuards(NarrowUser);
1686 
1687   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1688   // If NarrowUserBB is statically unreachable asking dominator queries may
1689   // yield surprising results. (e.g. the block may not have a dom tree node)
1690   if (!DT->isReachableFromEntry(NarrowUserBB))
1691     return;
1692 
1693   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1694        L->contains(DTB->getBlock());
1695        DTB = DTB->getIDom()) {
1696     auto *BB = DTB->getBlock();
1697     auto *TI = BB->getTerminator();
1698     UpdateRangeFromGuards(TI);
1699 
1700     auto *BI = dyn_cast<BranchInst>(TI);
1701     if (!BI || !BI->isConditional())
1702       continue;
1703 
1704     auto *TrueSuccessor = BI->getSuccessor(0);
1705     auto *FalseSuccessor = BI->getSuccessor(1);
1706 
1707     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1708       return BBE.isSingleEdge() &&
1709              DT->dominates(BBE, NarrowUser->getParent());
1710     };
1711 
1712     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1713       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1714 
1715     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1716       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1717   }
1718 }
1719 
1720 /// Calculates PostIncRangeInfos map for the given IV
1721 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1722   SmallPtrSet<Instruction *, 16> Visited;
1723   SmallVector<Instruction *, 6> Worklist;
1724   Worklist.push_back(OrigPhi);
1725   Visited.insert(OrigPhi);
1726 
1727   while (!Worklist.empty()) {
1728     Instruction *NarrowDef = Worklist.pop_back_val();
1729 
1730     for (Use &U : NarrowDef->uses()) {
1731       auto *NarrowUser = cast<Instruction>(U.getUser());
1732 
1733       // Don't go looking outside the current loop.
1734       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1735       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1736         continue;
1737 
1738       if (!Visited.insert(NarrowUser).second)
1739         continue;
1740 
1741       Worklist.push_back(NarrowUser);
1742 
1743       calculatePostIncRange(NarrowDef, NarrowUser);
1744     }
1745   }
1746 }
1747 
1748 //===----------------------------------------------------------------------===//
1749 //  Live IV Reduction - Minimize IVs live across the loop.
1750 //===----------------------------------------------------------------------===//
1751 
1752 //===----------------------------------------------------------------------===//
1753 //  Simplification of IV users based on SCEV evaluation.
1754 //===----------------------------------------------------------------------===//
1755 
1756 namespace {
1757 
1758 class IndVarSimplifyVisitor : public IVVisitor {
1759   ScalarEvolution *SE;
1760   const TargetTransformInfo *TTI;
1761   PHINode *IVPhi;
1762 
1763 public:
1764   WideIVInfo WI;
1765 
1766   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1767                         const TargetTransformInfo *TTI,
1768                         const DominatorTree *DTree)
1769     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1770     DT = DTree;
1771     WI.NarrowIV = IVPhi;
1772   }
1773 
1774   // Implement the interface used by simplifyUsersOfIV.
1775   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1776 };
1777 
1778 } // end anonymous namespace
1779 
1780 /// Iteratively perform simplification on a worklist of IV users. Each
1781 /// successive simplification may push more users which may themselves be
1782 /// candidates for simplification.
1783 ///
1784 /// Sign/Zero extend elimination is interleaved with IV simplification.
1785 void IndVarSimplify::simplifyAndExtend(Loop *L,
1786                                        SCEVExpander &Rewriter,
1787                                        LoopInfo *LI) {
1788   SmallVector<WideIVInfo, 8> WideIVs;
1789 
1790   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1791           Intrinsic::getName(Intrinsic::experimental_guard));
1792   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1793 
1794   SmallVector<PHINode*, 8> LoopPhis;
1795   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1796     LoopPhis.push_back(cast<PHINode>(I));
1797   }
1798   // Each round of simplification iterates through the SimplifyIVUsers worklist
1799   // for all current phis, then determines whether any IVs can be
1800   // widened. Widening adds new phis to LoopPhis, inducing another round of
1801   // simplification on the wide IVs.
1802   while (!LoopPhis.empty()) {
1803     // Evaluate as many IV expressions as possible before widening any IVs. This
1804     // forces SCEV to set no-wrap flags before evaluating sign/zero
1805     // extension. The first time SCEV attempts to normalize sign/zero extension,
1806     // the result becomes final. So for the most predictable results, we delay
1807     // evaluation of sign/zero extend evaluation until needed, and avoid running
1808     // other SCEV based analysis prior to simplifyAndExtend.
1809     do {
1810       PHINode *CurrIV = LoopPhis.pop_back_val();
1811 
1812       // Information about sign/zero extensions of CurrIV.
1813       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1814 
1815       Changed |=
1816           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1817 
1818       if (Visitor.WI.WidestNativeType) {
1819         WideIVs.push_back(Visitor.WI);
1820       }
1821     } while(!LoopPhis.empty());
1822 
1823     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1824       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1825       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1826         Changed = true;
1827         LoopPhis.push_back(WidePhi);
1828       }
1829     }
1830   }
1831 }
1832 
1833 //===----------------------------------------------------------------------===//
1834 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1835 //===----------------------------------------------------------------------===//
1836 
1837 /// Return true if this loop's backedge taken count expression can be safely and
1838 /// cheaply expanded into an instruction sequence that can be used by
1839 /// linearFunctionTestReplace.
1840 ///
1841 /// TODO: This fails for pointer-type loop counters with greater than one byte
1842 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1843 /// we could skip this check in the case that the LFTR loop counter (chosen by
1844 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1845 /// the loop test to an inequality test by checking the target data's alignment
1846 /// of element types (given that the initial pointer value originates from or is
1847 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1848 /// However, we don't yet have a strong motivation for converting loop tests
1849 /// into inequality tests.
1850 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1851                                         SCEVExpander &Rewriter) {
1852   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1853   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1854       BackedgeTakenCount->isZero())
1855     return false;
1856 
1857   if (!L->getExitingBlock())
1858     return false;
1859 
1860   // Can't rewrite non-branch yet.
1861   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1862     return false;
1863 
1864   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1865     return false;
1866 
1867   return true;
1868 }
1869 
1870 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1871 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1872   Instruction *IncI = dyn_cast<Instruction>(IncV);
1873   if (!IncI)
1874     return nullptr;
1875 
1876   switch (IncI->getOpcode()) {
1877   case Instruction::Add:
1878   case Instruction::Sub:
1879     break;
1880   case Instruction::GetElementPtr:
1881     // An IV counter must preserve its type.
1882     if (IncI->getNumOperands() == 2)
1883       break;
1884     LLVM_FALLTHROUGH;
1885   default:
1886     return nullptr;
1887   }
1888 
1889   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1890   if (Phi && Phi->getParent() == L->getHeader()) {
1891     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1892       return Phi;
1893     return nullptr;
1894   }
1895   if (IncI->getOpcode() == Instruction::GetElementPtr)
1896     return nullptr;
1897 
1898   // Allow add/sub to be commuted.
1899   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1900   if (Phi && Phi->getParent() == L->getHeader()) {
1901     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1902       return Phi;
1903   }
1904   return nullptr;
1905 }
1906 
1907 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1908 static ICmpInst *getLoopTest(Loop *L) {
1909   assert(L->getExitingBlock() && "expected loop exit");
1910 
1911   BasicBlock *LatchBlock = L->getLoopLatch();
1912   // Don't bother with LFTR if the loop is not properly simplified.
1913   if (!LatchBlock)
1914     return nullptr;
1915 
1916   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1917   assert(BI && "expected exit branch");
1918 
1919   return dyn_cast<ICmpInst>(BI->getCondition());
1920 }
1921 
1922 /// linearFunctionTestReplace policy. Return true unless we can show that the
1923 /// current exit test is already sufficiently canonical.
1924 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1925   // Do LFTR to simplify the exit condition to an ICMP.
1926   ICmpInst *Cond = getLoopTest(L);
1927   if (!Cond)
1928     return true;
1929 
1930   // Do LFTR to simplify the exit ICMP to EQ/NE
1931   ICmpInst::Predicate Pred = Cond->getPredicate();
1932   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1933     return true;
1934 
1935   // Look for a loop invariant RHS
1936   Value *LHS = Cond->getOperand(0);
1937   Value *RHS = Cond->getOperand(1);
1938   if (!isLoopInvariant(RHS, L, DT)) {
1939     if (!isLoopInvariant(LHS, L, DT))
1940       return true;
1941     std::swap(LHS, RHS);
1942   }
1943   // Look for a simple IV counter LHS
1944   PHINode *Phi = dyn_cast<PHINode>(LHS);
1945   if (!Phi)
1946     Phi = getLoopPhiForCounter(LHS, L, DT);
1947 
1948   if (!Phi)
1949     return true;
1950 
1951   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1952   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1953   if (Idx < 0)
1954     return true;
1955 
1956   // Do LFTR if the exit condition's IV is *not* a simple counter.
1957   Value *IncV = Phi->getIncomingValue(Idx);
1958   return Phi != getLoopPhiForCounter(IncV, L, DT);
1959 }
1960 
1961 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1962 /// down to checking that all operands are constant and listing instructions
1963 /// that may hide undef.
1964 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1965                                unsigned Depth) {
1966   if (isa<Constant>(V))
1967     return !isa<UndefValue>(V);
1968 
1969   if (Depth >= 6)
1970     return false;
1971 
1972   // Conservatively handle non-constant non-instructions. For example, Arguments
1973   // may be undef.
1974   Instruction *I = dyn_cast<Instruction>(V);
1975   if (!I)
1976     return false;
1977 
1978   // Load and return values may be undef.
1979   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1980     return false;
1981 
1982   // Optimistically handle other instructions.
1983   for (Value *Op : I->operands()) {
1984     if (!Visited.insert(Op).second)
1985       continue;
1986     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1987       return false;
1988   }
1989   return true;
1990 }
1991 
1992 /// Return true if the given value is concrete. We must prove that undef can
1993 /// never reach it.
1994 ///
1995 /// TODO: If we decide that this is a good approach to checking for undef, we
1996 /// may factor it into a common location.
1997 static bool hasConcreteDef(Value *V) {
1998   SmallPtrSet<Value*, 8> Visited;
1999   Visited.insert(V);
2000   return hasConcreteDefImpl(V, Visited, 0);
2001 }
2002 
2003 /// Return true if this IV has any uses other than the (soon to be rewritten)
2004 /// loop exit test.
2005 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2006   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2007   Value *IncV = Phi->getIncomingValue(LatchIdx);
2008 
2009   for (User *U : Phi->users())
2010     if (U != Cond && U != IncV) return false;
2011 
2012   for (User *U : IncV->users())
2013     if (U != Cond && U != Phi) return false;
2014   return true;
2015 }
2016 
2017 /// Find an affine IV in canonical form.
2018 ///
2019 /// BECount may be an i8* pointer type. The pointer difference is already
2020 /// valid count without scaling the address stride, so it remains a pointer
2021 /// expression as far as SCEV is concerned.
2022 ///
2023 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2024 ///
2025 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2026 ///
2027 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2028 /// This is difficult in general for SCEV because of potential overflow. But we
2029 /// could at least handle constant BECounts.
2030 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2031                                 ScalarEvolution *SE, DominatorTree *DT) {
2032   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2033 
2034   Value *Cond =
2035     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2036 
2037   // Loop over all of the PHI nodes, looking for a simple counter.
2038   PHINode *BestPhi = nullptr;
2039   const SCEV *BestInit = nullptr;
2040   BasicBlock *LatchBlock = L->getLoopLatch();
2041   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2042   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2043 
2044   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2045     PHINode *Phi = cast<PHINode>(I);
2046     if (!SE->isSCEVable(Phi->getType()))
2047       continue;
2048 
2049     // Avoid comparing an integer IV against a pointer Limit.
2050     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2051       continue;
2052 
2053     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2054     if (!AR || AR->getLoop() != L || !AR->isAffine())
2055       continue;
2056 
2057     // AR may be a pointer type, while BECount is an integer type.
2058     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2059     // AR may not be a narrower type, or we may never exit.
2060     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2061     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2062       continue;
2063 
2064     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2065     if (!Step || !Step->isOne())
2066       continue;
2067 
2068     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2069     Value *IncV = Phi->getIncomingValue(LatchIdx);
2070     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2071       continue;
2072 
2073     // Avoid reusing a potentially undef value to compute other values that may
2074     // have originally had a concrete definition.
2075     if (!hasConcreteDef(Phi)) {
2076       // We explicitly allow unknown phis as long as they are already used by
2077       // the loop test. In this case we assume that performing LFTR could not
2078       // increase the number of undef users.
2079       if (ICmpInst *Cond = getLoopTest(L)) {
2080         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2081             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2082           continue;
2083         }
2084       }
2085     }
2086     const SCEV *Init = AR->getStart();
2087 
2088     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2089       // Don't force a live loop counter if another IV can be used.
2090       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2091         continue;
2092 
2093       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2094       // also prefers integer to pointer IVs.
2095       if (BestInit->isZero() != Init->isZero()) {
2096         if (BestInit->isZero())
2097           continue;
2098       }
2099       // If two IVs both count from zero or both count from nonzero then the
2100       // narrower is likely a dead phi that has been widened. Use the wider phi
2101       // to allow the other to be eliminated.
2102       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2103         continue;
2104     }
2105     BestPhi = Phi;
2106     BestInit = Init;
2107   }
2108   return BestPhi;
2109 }
2110 
2111 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2112 /// the new loop test.
2113 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2114                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2115   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2116   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2117   const SCEV *IVInit = AR->getStart();
2118 
2119   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2120   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2121   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2122   // the existing GEPs whenever possible.
2123   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2124     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2125     // signed value. IVCount on the other hand represents the loop trip count,
2126     // which is an unsigned value. FindLoopCounter only allows induction
2127     // variables that have a positive unit stride of one. This means we don't
2128     // have to handle the case of negative offsets (yet) and just need to zero
2129     // extend IVCount.
2130     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2131     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2132 
2133     // Expand the code for the iteration count.
2134     assert(SE->isLoopInvariant(IVOffset, L) &&
2135            "Computed iteration count is not loop invariant!");
2136     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2137     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2138 
2139     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2140     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2141     // We could handle pointer IVs other than i8*, but we need to compensate for
2142     // gep index scaling. See canExpandBackedgeTakenCount comments.
2143     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2144                              cast<PointerType>(GEPBase->getType())
2145                                  ->getElementType())->isOne() &&
2146            "unit stride pointer IV must be i8*");
2147 
2148     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2149     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2150   } else {
2151     // In any other case, convert both IVInit and IVCount to integers before
2152     // comparing. This may result in SCEV expansion of pointers, but in practice
2153     // SCEV will fold the pointer arithmetic away as such:
2154     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2155     //
2156     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2157     // for simple memset-style loops.
2158     //
2159     // IVInit integer and IVCount pointer would only occur if a canonical IV
2160     // were generated on top of case #2, which is not expected.
2161 
2162     const SCEV *IVLimit = nullptr;
2163     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2164     // For non-zero Start, compute IVCount here.
2165     if (AR->getStart()->isZero())
2166       IVLimit = IVCount;
2167     else {
2168       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2169       const SCEV *IVInit = AR->getStart();
2170 
2171       // For integer IVs, truncate the IV before computing IVInit + BECount.
2172       if (SE->getTypeSizeInBits(IVInit->getType())
2173           > SE->getTypeSizeInBits(IVCount->getType()))
2174         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2175 
2176       IVLimit = SE->getAddExpr(IVInit, IVCount);
2177     }
2178     // Expand the code for the iteration count.
2179     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2180     IRBuilder<> Builder(BI);
2181     assert(SE->isLoopInvariant(IVLimit, L) &&
2182            "Computed iteration count is not loop invariant!");
2183     // Ensure that we generate the same type as IndVar, or a smaller integer
2184     // type. In the presence of null pointer values, we have an integer type
2185     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2186     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2187       IndVar->getType() : IVCount->getType();
2188     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2189   }
2190 }
2191 
2192 /// This method rewrites the exit condition of the loop to be a canonical !=
2193 /// comparison against the incremented loop induction variable.  This pass is
2194 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2195 /// determine a loop-invariant trip count of the loop, which is actually a much
2196 /// broader range than just linear tests.
2197 Value *IndVarSimplify::
2198 linearFunctionTestReplace(Loop *L,
2199                           const SCEV *BackedgeTakenCount,
2200                           PHINode *IndVar,
2201                           SCEVExpander &Rewriter) {
2202   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2203 
2204   // Initialize CmpIndVar and IVCount to their preincremented values.
2205   Value *CmpIndVar = IndVar;
2206   const SCEV *IVCount = BackedgeTakenCount;
2207 
2208   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2209 
2210   // If the exiting block is the same as the backedge block, we prefer to
2211   // compare against the post-incremented value, otherwise we must compare
2212   // against the preincremented value.
2213   if (L->getExitingBlock() == L->getLoopLatch()) {
2214     // Add one to the "backedge-taken" count to get the trip count.
2215     // This addition may overflow, which is valid as long as the comparison is
2216     // truncated to BackedgeTakenCount->getType().
2217     IVCount = SE->getAddExpr(BackedgeTakenCount,
2218                              SE->getOne(BackedgeTakenCount->getType()));
2219     // The BackedgeTaken expression contains the number of times that the
2220     // backedge branches to the loop header.  This is one less than the
2221     // number of times the loop executes, so use the incremented indvar.
2222     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2223   }
2224 
2225   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2226   assert(ExitCnt->getType()->isPointerTy() ==
2227              IndVar->getType()->isPointerTy() &&
2228          "genLoopLimit missed a cast");
2229 
2230   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2231   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2232   ICmpInst::Predicate P;
2233   if (L->contains(BI->getSuccessor(0)))
2234     P = ICmpInst::ICMP_NE;
2235   else
2236     P = ICmpInst::ICMP_EQ;
2237 
2238   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2239                << "      LHS:" << *CmpIndVar << '\n'
2240                << "       op:\t"
2241                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
2242                << "      RHS:\t" << *ExitCnt << "\n"
2243                << "  IVCount:\t" << *IVCount << "\n");
2244 
2245   IRBuilder<> Builder(BI);
2246 
2247   // The new loop exit condition should reuse the debug location of the
2248   // original loop exit condition.
2249   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2250     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2251 
2252   // LFTR can ignore IV overflow and truncate to the width of
2253   // BECount. This avoids materializing the add(zext(add)) expression.
2254   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2255   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2256   if (CmpIndVarSize > ExitCntSize) {
2257     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2258     const SCEV *ARStart = AR->getStart();
2259     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2260     // For constant IVCount, avoid truncation.
2261     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2262       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2263       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2264       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2265       // above such that IVCount is now zero.
2266       if (IVCount != BackedgeTakenCount && Count == 0) {
2267         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2268         ++Count;
2269       }
2270       else
2271         Count = Count.zext(CmpIndVarSize);
2272       APInt NewLimit;
2273       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2274         NewLimit = Start - Count;
2275       else
2276         NewLimit = Start + Count;
2277       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2278 
2279       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2280     } else {
2281       // We try to extend trip count first. If that doesn't work we truncate IV.
2282       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2283       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2284       // one of the two holds, extend the trip count, otherwise we truncate IV.
2285       bool Extended = false;
2286       const SCEV *IV = SE->getSCEV(CmpIndVar);
2287       const SCEV *ZExtTrunc =
2288            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2289                                                      ExitCnt->getType()),
2290                                  CmpIndVar->getType());
2291 
2292       if (ZExtTrunc == IV) {
2293         Extended = true;
2294         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2295                                      "wide.trip.count");
2296       } else {
2297         const SCEV *SExtTrunc =
2298           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2299                                                     ExitCnt->getType()),
2300                                 CmpIndVar->getType());
2301         if (SExtTrunc == IV) {
2302           Extended = true;
2303           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2304                                        "wide.trip.count");
2305         }
2306       }
2307 
2308       if (!Extended)
2309         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2310                                         "lftr.wideiv");
2311     }
2312   }
2313   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2314   Value *OrigCond = BI->getCondition();
2315   // It's tempting to use replaceAllUsesWith here to fully replace the old
2316   // comparison, but that's not immediately safe, since users of the old
2317   // comparison may not be dominated by the new comparison. Instead, just
2318   // update the branch to use the new comparison; in the common case this
2319   // will make old comparison dead.
2320   BI->setCondition(Cond);
2321   DeadInsts.push_back(OrigCond);
2322 
2323   ++NumLFTR;
2324   Changed = true;
2325   return Cond;
2326 }
2327 
2328 //===----------------------------------------------------------------------===//
2329 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2330 //===----------------------------------------------------------------------===//
2331 
2332 /// If there's a single exit block, sink any loop-invariant values that
2333 /// were defined in the preheader but not used inside the loop into the
2334 /// exit block to reduce register pressure in the loop.
2335 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2336   BasicBlock *ExitBlock = L->getExitBlock();
2337   if (!ExitBlock) return;
2338 
2339   BasicBlock *Preheader = L->getLoopPreheader();
2340   if (!Preheader) return;
2341 
2342   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2343   BasicBlock::iterator I(Preheader->getTerminator());
2344   while (I != Preheader->begin()) {
2345     --I;
2346     // New instructions were inserted at the end of the preheader.
2347     if (isa<PHINode>(I))
2348       break;
2349 
2350     // Don't move instructions which might have side effects, since the side
2351     // effects need to complete before instructions inside the loop.  Also don't
2352     // move instructions which might read memory, since the loop may modify
2353     // memory. Note that it's okay if the instruction might have undefined
2354     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2355     // block.
2356     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2357       continue;
2358 
2359     // Skip debug info intrinsics.
2360     if (isa<DbgInfoIntrinsic>(I))
2361       continue;
2362 
2363     // Skip eh pad instructions.
2364     if (I->isEHPad())
2365       continue;
2366 
2367     // Don't sink alloca: we never want to sink static alloca's out of the
2368     // entry block, and correctly sinking dynamic alloca's requires
2369     // checks for stacksave/stackrestore intrinsics.
2370     // FIXME: Refactor this check somehow?
2371     if (isa<AllocaInst>(I))
2372       continue;
2373 
2374     // Determine if there is a use in or before the loop (direct or
2375     // otherwise).
2376     bool UsedInLoop = false;
2377     for (Use &U : I->uses()) {
2378       Instruction *User = cast<Instruction>(U.getUser());
2379       BasicBlock *UseBB = User->getParent();
2380       if (PHINode *P = dyn_cast<PHINode>(User)) {
2381         unsigned i =
2382           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2383         UseBB = P->getIncomingBlock(i);
2384       }
2385       if (UseBB == Preheader || L->contains(UseBB)) {
2386         UsedInLoop = true;
2387         break;
2388       }
2389     }
2390 
2391     // If there is, the def must remain in the preheader.
2392     if (UsedInLoop)
2393       continue;
2394 
2395     // Otherwise, sink it to the exit block.
2396     Instruction *ToMove = &*I;
2397     bool Done = false;
2398 
2399     if (I != Preheader->begin()) {
2400       // Skip debug info intrinsics.
2401       do {
2402         --I;
2403       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2404 
2405       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2406         Done = true;
2407     } else {
2408       Done = true;
2409     }
2410 
2411     ToMove->moveBefore(*ExitBlock, InsertPt);
2412     if (Done) break;
2413     InsertPt = ToMove->getIterator();
2414   }
2415 }
2416 
2417 //===----------------------------------------------------------------------===//
2418 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2419 //===----------------------------------------------------------------------===//
2420 
2421 bool IndVarSimplify::run(Loop *L) {
2422   // We need (and expect!) the incoming loop to be in LCSSA.
2423   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2424          "LCSSA required to run indvars!");
2425 
2426   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2427   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2428   //    canonicalization can be a pessimization without LSR to "clean up"
2429   //    afterwards.
2430   //  - We depend on having a preheader; in particular,
2431   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2432   //    and we're in trouble if we can't find the induction variable even when
2433   //    we've manually inserted one.
2434   //  - LFTR relies on having a single backedge.
2435   if (!L->isLoopSimplifyForm())
2436     return false;
2437 
2438   // If there are any floating-point recurrences, attempt to
2439   // transform them to use integer recurrences.
2440   rewriteNonIntegerIVs(L);
2441 
2442   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2443 
2444   // Create a rewriter object which we'll use to transform the code with.
2445   SCEVExpander Rewriter(*SE, DL, "indvars");
2446 #ifndef NDEBUG
2447   Rewriter.setDebugType(DEBUG_TYPE);
2448 #endif
2449 
2450   // Eliminate redundant IV users.
2451   //
2452   // Simplification works best when run before other consumers of SCEV. We
2453   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2454   // other expressions involving loop IVs have been evaluated. This helps SCEV
2455   // set no-wrap flags before normalizing sign/zero extension.
2456   Rewriter.disableCanonicalMode();
2457   simplifyAndExtend(L, Rewriter, LI);
2458 
2459   // Check to see if this loop has a computable loop-invariant execution count.
2460   // If so, this means that we can compute the final value of any expressions
2461   // that are recurrent in the loop, and substitute the exit values from the
2462   // loop into any instructions outside of the loop that use the final values of
2463   // the current expressions.
2464   //
2465   if (ReplaceExitValue != NeverRepl &&
2466       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2467     rewriteLoopExitValues(L, Rewriter);
2468 
2469   // Eliminate redundant IV cycles.
2470   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2471 
2472   // If we have a trip count expression, rewrite the loop's exit condition
2473   // using it.  We can currently only handle loops with a single exit.
2474   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2475       needsLFTR(L, DT)) {
2476     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2477     if (IndVar) {
2478       // Check preconditions for proper SCEVExpander operation. SCEV does not
2479       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2480       // pass that uses the SCEVExpander must do it. This does not work well for
2481       // loop passes because SCEVExpander makes assumptions about all loops,
2482       // while LoopPassManager only forces the current loop to be simplified.
2483       //
2484       // FIXME: SCEV expansion has no way to bail out, so the caller must
2485       // explicitly check any assumptions made by SCEV. Brittle.
2486       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2487       if (!AR || AR->getLoop()->getLoopPreheader())
2488         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2489                                         Rewriter);
2490     }
2491   }
2492   // Clear the rewriter cache, because values that are in the rewriter's cache
2493   // can be deleted in the loop below, causing the AssertingVH in the cache to
2494   // trigger.
2495   Rewriter.clear();
2496 
2497   // Now that we're done iterating through lists, clean up any instructions
2498   // which are now dead.
2499   while (!DeadInsts.empty())
2500     if (Instruction *Inst =
2501             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2502       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2503 
2504   // The Rewriter may not be used from this point on.
2505 
2506   // Loop-invariant instructions in the preheader that aren't used in the
2507   // loop may be sunk below the loop to reduce register pressure.
2508   sinkUnusedInvariants(L);
2509 
2510   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2511   // trip count and therefore can further simplify exit values in addition to
2512   // rewriteLoopExitValues.
2513   rewriteFirstIterationLoopExitValues(L);
2514 
2515   // Clean up dead instructions.
2516   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2517 
2518   // Check a post-condition.
2519   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2520          "Indvars did not preserve LCSSA!");
2521 
2522   // Verify that LFTR, and any other change have not interfered with SCEV's
2523   // ability to compute trip count.
2524 #ifndef NDEBUG
2525   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2526     SE->forgetLoop(L);
2527     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2528     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2529         SE->getTypeSizeInBits(NewBECount->getType()))
2530       NewBECount = SE->getTruncateOrNoop(NewBECount,
2531                                          BackedgeTakenCount->getType());
2532     else
2533       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2534                                                  NewBECount->getType());
2535     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2536   }
2537 #endif
2538 
2539   return Changed;
2540 }
2541 
2542 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2543                                           LoopStandardAnalysisResults &AR,
2544                                           LPMUpdater &) {
2545   Function *F = L.getHeader()->getParent();
2546   const DataLayout &DL = F->getParent()->getDataLayout();
2547 
2548   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2549   if (!IVS.run(&L))
2550     return PreservedAnalyses::all();
2551 
2552   auto PA = getLoopPassPreservedAnalyses();
2553   PA.preserveSet<CFGAnalyses>();
2554   return PA;
2555 }
2556 
2557 namespace {
2558 
2559 struct IndVarSimplifyLegacyPass : public LoopPass {
2560   static char ID; // Pass identification, replacement for typeid
2561 
2562   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2563     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2564   }
2565 
2566   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2567     if (skipLoop(L))
2568       return false;
2569 
2570     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2571     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2572     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2573     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2574     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2575     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2576     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2577     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2578 
2579     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2580     return IVS.run(L);
2581   }
2582 
2583   void getAnalysisUsage(AnalysisUsage &AU) const override {
2584     AU.setPreservesCFG();
2585     getLoopAnalysisUsage(AU);
2586   }
2587 };
2588 
2589 } // end anonymous namespace
2590 
2591 char IndVarSimplifyLegacyPass::ID = 0;
2592 
2593 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2594                       "Induction Variable Simplification", false, false)
2595 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2596 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2597                     "Induction Variable Simplification", false, false)
2598 
2599 Pass *llvm::createIndVarSimplifyPass() {
2600   return new IndVarSimplifyLegacyPass();
2601 }
2602