xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision fa5ad797e30e80db298625feadabe6580d83a023)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/Statistic.h"
62 #include "llvm/ADT/STLExtras.h"
63 using namespace llvm;
64 
65 STATISTIC(NumRemoved , "Number of aux indvars removed");
66 STATISTIC(NumInserted, "Number of canonical indvars added");
67 STATISTIC(NumReplaced, "Number of exit values replaced");
68 STATISTIC(NumLFTR    , "Number of loop exit tests replaced");
69 
70 namespace {
71   class IndVarSimplify : public LoopPass {
72     IVUsers         *IU;
73     LoopInfo        *LI;
74     ScalarEvolution *SE;
75     DominatorTree   *DT;
76     bool Changed;
77   public:
78 
79     static char ID; // Pass identification, replacement for typeid
80     IndVarSimplify() : LoopPass(&ID) {}
81 
82     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
83 
84     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
85       AU.addRequired<DominatorTree>();
86       AU.addRequired<LoopInfo>();
87       AU.addRequired<ScalarEvolution>();
88       AU.addRequiredID(LoopSimplifyID);
89       AU.addRequiredID(LCSSAID);
90       AU.addRequired<IVUsers>();
91       AU.addPreserved<ScalarEvolution>();
92       AU.addPreservedID(LoopSimplifyID);
93       AU.addPreservedID(LCSSAID);
94       AU.addPreserved<IVUsers>();
95       AU.setPreservesCFG();
96     }
97 
98   private:
99 
100     void EliminateIVComparisons();
101     void RewriteNonIntegerIVs(Loop *L);
102 
103     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
104                                    Value *IndVar,
105                                    BasicBlock *ExitingBlock,
106                                    BranchInst *BI,
107                                    SCEVExpander &Rewriter);
108     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
109 
110     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
111 
112     void SinkUnusedInvariants(Loop *L);
113 
114     void HandleFloatingPointIV(Loop *L, PHINode *PH);
115   };
116 }
117 
118 char IndVarSimplify::ID = 0;
119 static RegisterPass<IndVarSimplify>
120 X("indvars", "Canonicalize Induction Variables");
121 
122 Pass *llvm::createIndVarSimplifyPass() {
123   return new IndVarSimplify();
124 }
125 
126 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
127 /// loop to be a canonical != comparison against the incremented loop induction
128 /// variable.  This pass is able to rewrite the exit tests of any loop where the
129 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
130 /// is actually a much broader range than just linear tests.
131 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
132                                    const SCEV *BackedgeTakenCount,
133                                    Value *IndVar,
134                                    BasicBlock *ExitingBlock,
135                                    BranchInst *BI,
136                                    SCEVExpander &Rewriter) {
137   // If the exiting block is not the same as the backedge block, we must compare
138   // against the preincremented value, otherwise we prefer to compare against
139   // the post-incremented value.
140   Value *CmpIndVar;
141   const SCEV *RHS = BackedgeTakenCount;
142   if (ExitingBlock == L->getLoopLatch()) {
143     // Add one to the "backedge-taken" count to get the trip count.
144     // If this addition may overflow, we have to be more pessimistic and
145     // cast the induction variable before doing the add.
146     const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
147     const SCEV *N =
148       SE->getAddExpr(BackedgeTakenCount,
149                      SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
150     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
151         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
152       // No overflow. Cast the sum.
153       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
154     } else {
155       // Potential overflow. Cast before doing the add.
156       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
157                                         IndVar->getType());
158       RHS = SE->getAddExpr(RHS,
159                            SE->getIntegerSCEV(1, IndVar->getType()));
160     }
161 
162     // The BackedgeTaken expression contains the number of times that the
163     // backedge branches to the loop header.  This is one less than the
164     // number of times the loop executes, so use the incremented indvar.
165     CmpIndVar = L->getCanonicalInductionVariableIncrement();
166   } else {
167     // We have to use the preincremented value...
168     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
169                                       IndVar->getType());
170     CmpIndVar = IndVar;
171   }
172 
173   // Expand the code for the iteration count.
174   assert(RHS->isLoopInvariant(L) &&
175          "Computed iteration count is not loop invariant!");
176   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
177 
178   // Insert a new icmp_ne or icmp_eq instruction before the branch.
179   ICmpInst::Predicate Opcode;
180   if (L->contains(BI->getSuccessor(0)))
181     Opcode = ICmpInst::ICMP_NE;
182   else
183     Opcode = ICmpInst::ICMP_EQ;
184 
185   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
186                << "      LHS:" << *CmpIndVar << '\n'
187                << "       op:\t"
188                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
189                << "      RHS:\t" << *RHS << "\n");
190 
191   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
192 
193   Value *OrigCond = BI->getCondition();
194   // It's tempting to use replaceAllUsesWith here to fully replace the old
195   // comparison, but that's not immediately safe, since users of the old
196   // comparison may not be dominated by the new comparison. Instead, just
197   // update the branch to use the new comparison; in the common case this
198   // will make old comparison dead.
199   BI->setCondition(Cond);
200   RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
201 
202   ++NumLFTR;
203   Changed = true;
204   return Cond;
205 }
206 
207 /// RewriteLoopExitValues - Check to see if this loop has a computable
208 /// loop-invariant execution count.  If so, this means that we can compute the
209 /// final value of any expressions that are recurrent in the loop, and
210 /// substitute the exit values from the loop into any instructions outside of
211 /// the loop that use the final values of the current expressions.
212 ///
213 /// This is mostly redundant with the regular IndVarSimplify activities that
214 /// happen later, except that it's more powerful in some cases, because it's
215 /// able to brute-force evaluate arbitrary instructions as long as they have
216 /// constant operands at the beginning of the loop.
217 void IndVarSimplify::RewriteLoopExitValues(Loop *L,
218                                            SCEVExpander &Rewriter) {
219   // Verify the input to the pass in already in LCSSA form.
220   assert(L->isLCSSAForm(*DT));
221 
222   SmallVector<BasicBlock*, 8> ExitBlocks;
223   L->getUniqueExitBlocks(ExitBlocks);
224 
225   // Find all values that are computed inside the loop, but used outside of it.
226   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
227   // the exit blocks of the loop to find them.
228   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
229     BasicBlock *ExitBB = ExitBlocks[i];
230 
231     // If there are no PHI nodes in this exit block, then no values defined
232     // inside the loop are used on this path, skip it.
233     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
234     if (!PN) continue;
235 
236     unsigned NumPreds = PN->getNumIncomingValues();
237 
238     // Iterate over all of the PHI nodes.
239     BasicBlock::iterator BBI = ExitBB->begin();
240     while ((PN = dyn_cast<PHINode>(BBI++))) {
241       if (PN->use_empty())
242         continue; // dead use, don't replace it
243 
244       // SCEV only supports integer expressions for now.
245       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
246         continue;
247 
248       // It's necessary to tell ScalarEvolution about this explicitly so that
249       // it can walk the def-use list and forget all SCEVs, as it may not be
250       // watching the PHI itself. Once the new exit value is in place, there
251       // may not be a def-use connection between the loop and every instruction
252       // which got a SCEVAddRecExpr for that loop.
253       SE->forgetValue(PN);
254 
255       // Iterate over all of the values in all the PHI nodes.
256       for (unsigned i = 0; i != NumPreds; ++i) {
257         // If the value being merged in is not integer or is not defined
258         // in the loop, skip it.
259         Value *InVal = PN->getIncomingValue(i);
260         if (!isa<Instruction>(InVal))
261           continue;
262 
263         // If this pred is for a subloop, not L itself, skip it.
264         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
265           continue; // The Block is in a subloop, skip it.
266 
267         // Check that InVal is defined in the loop.
268         Instruction *Inst = cast<Instruction>(InVal);
269         if (!L->contains(Inst))
270           continue;
271 
272         // Okay, this instruction has a user outside of the current loop
273         // and varies predictably *inside* the loop.  Evaluate the value it
274         // contains when the loop exits, if possible.
275         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
276         if (!ExitValue->isLoopInvariant(L))
277           continue;
278 
279         Changed = true;
280         ++NumReplaced;
281 
282         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
283 
284         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
285                      << "  LoopVal = " << *Inst << "\n");
286 
287         PN->setIncomingValue(i, ExitVal);
288 
289         // If this instruction is dead now, delete it.
290         RecursivelyDeleteTriviallyDeadInstructions(Inst);
291 
292         if (NumPreds == 1) {
293           // Completely replace a single-pred PHI. This is safe, because the
294           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
295           // node anymore.
296           PN->replaceAllUsesWith(ExitVal);
297           RecursivelyDeleteTriviallyDeadInstructions(PN);
298         }
299       }
300       if (NumPreds != 1) {
301         // Clone the PHI and delete the original one. This lets IVUsers and
302         // any other maps purge the original user from their records.
303         PHINode *NewPN = cast<PHINode>(PN->clone());
304         NewPN->takeName(PN);
305         NewPN->insertBefore(PN);
306         PN->replaceAllUsesWith(NewPN);
307         PN->eraseFromParent();
308       }
309     }
310   }
311 
312   // The insertion point instruction may have been deleted; clear it out
313   // so that the rewriter doesn't trip over it later.
314   Rewriter.clearInsertPoint();
315 }
316 
317 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
318   // First step.  Check to see if there are any floating-point recurrences.
319   // If there are, change them into integer recurrences, permitting analysis by
320   // the SCEV routines.
321   //
322   BasicBlock *Header    = L->getHeader();
323 
324   SmallVector<WeakVH, 8> PHIs;
325   for (BasicBlock::iterator I = Header->begin();
326        PHINode *PN = dyn_cast<PHINode>(I); ++I)
327     PHIs.push_back(PN);
328 
329   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
330     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
331       HandleFloatingPointIV(L, PN);
332 
333   // If the loop previously had floating-point IV, ScalarEvolution
334   // may not have been able to compute a trip count. Now that we've done some
335   // re-writing, the trip count may be computable.
336   if (Changed)
337     SE->forgetLoop(L);
338 }
339 
340 void IndVarSimplify::EliminateIVComparisons() {
341   // Look for ICmp users.
342   for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E;) {
343     IVStrideUse &UI = *I++;
344     ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser());
345     if (!ICmp) continue;
346 
347     bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1);
348     ICmpInst::Predicate Pred = ICmp->getPredicate();
349     if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred);
350 
351     // Get the SCEVs for the ICmp operands.
352     const SCEV *S = IU->getReplacementExpr(UI);
353     const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped));
354 
355     // Simplify unnecessary loops away.
356     const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
357     S = SE->getSCEVAtScope(S, ICmpLoop);
358     X = SE->getSCEVAtScope(X, ICmpLoop);
359 
360     // If the condition is always true or always false, replace it with
361     // a constant value.
362     if (SE->isKnownPredicate(Pred, S, X))
363       ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
364     else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
365       ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
366     else
367       continue;
368 
369     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
370     ICmp->eraseFromParent();
371   }
372 }
373 
374 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
375   IU = &getAnalysis<IVUsers>();
376   LI = &getAnalysis<LoopInfo>();
377   SE = &getAnalysis<ScalarEvolution>();
378   DT = &getAnalysis<DominatorTree>();
379   Changed = false;
380 
381   // If there are any floating-point recurrences, attempt to
382   // transform them to use integer recurrences.
383   RewriteNonIntegerIVs(L);
384 
385   BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
386   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
387 
388   // Create a rewriter object which we'll use to transform the code with.
389   SCEVExpander Rewriter(*SE);
390 
391   // Check to see if this loop has a computable loop-invariant execution count.
392   // If so, this means that we can compute the final value of any expressions
393   // that are recurrent in the loop, and substitute the exit values from the
394   // loop into any instructions outside of the loop that use the final values of
395   // the current expressions.
396   //
397   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
398     RewriteLoopExitValues(L, Rewriter);
399 
400   // Compute the type of the largest recurrence expression, and decide whether
401   // a canonical induction variable should be inserted.
402   const Type *LargestType = 0;
403   bool NeedCannIV = false;
404   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
405     LargestType = BackedgeTakenCount->getType();
406     LargestType = SE->getEffectiveSCEVType(LargestType);
407     // If we have a known trip count and a single exit block, we'll be
408     // rewriting the loop exit test condition below, which requires a
409     // canonical induction variable.
410     if (ExitingBlock)
411       NeedCannIV = true;
412   }
413   for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
414     const Type *Ty =
415       SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
416     if (!LargestType ||
417         SE->getTypeSizeInBits(Ty) >
418           SE->getTypeSizeInBits(LargestType))
419       LargestType = Ty;
420     NeedCannIV = true;
421   }
422 
423   // Now that we know the largest of the induction variable expressions
424   // in this loop, insert a canonical induction variable of the largest size.
425   Value *IndVar = 0;
426   if (NeedCannIV) {
427     // Check to see if the loop already has any canonical-looking induction
428     // variables. If any are present and wider than the planned canonical
429     // induction variable, temporarily remove them, so that the Rewriter
430     // doesn't attempt to reuse them.
431     SmallVector<PHINode *, 2> OldCannIVs;
432     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
433       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
434           SE->getTypeSizeInBits(LargestType))
435         OldCannIV->removeFromParent();
436       else
437         break;
438       OldCannIVs.push_back(OldCannIV);
439     }
440 
441     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
442 
443     ++NumInserted;
444     Changed = true;
445     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
446 
447     // Now that the official induction variable is established, reinsert
448     // any old canonical-looking variables after it so that the IR remains
449     // consistent. They will be deleted as part of the dead-PHI deletion at
450     // the end of the pass.
451     while (!OldCannIVs.empty()) {
452       PHINode *OldCannIV = OldCannIVs.pop_back_val();
453       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
454     }
455   }
456 
457   // If we have a trip count expression, rewrite the loop's exit condition
458   // using it.  We can currently only handle loops with a single exit.
459   ICmpInst *NewICmp = 0;
460   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
461       !BackedgeTakenCount->isZero() &&
462       ExitingBlock) {
463     assert(NeedCannIV &&
464            "LinearFunctionTestReplace requires a canonical induction variable");
465 
466     // Can't rewrite non-branch yet.
467     if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) {
468       // Eliminate comparisons which are always true or always false, due to
469       // the known backedge-taken count. This may include comparisons which
470       // are currently controlling (part of) the loop exit, so we can only do
471       // it when we know we're going to insert our own loop exit code.
472       EliminateIVComparisons();
473 
474       // Insert new loop exit code.
475       NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
476                                           ExitingBlock, BI, Rewriter);
477     }
478   }
479 
480   // Rewrite IV-derived expressions. Clears the rewriter cache.
481   RewriteIVExpressions(L, Rewriter);
482 
483   // The Rewriter may not be used from this point on.
484 
485   // Loop-invariant instructions in the preheader that aren't used in the
486   // loop may be sunk below the loop to reduce register pressure.
487   SinkUnusedInvariants(L);
488 
489   // For completeness, inform IVUsers of the IV use in the newly-created
490   // loop exit test instruction.
491   if (NewICmp)
492     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
493 
494   // Clean up dead instructions.
495   Changed |= DeleteDeadPHIs(L->getHeader());
496   // Check a post-condition.
497   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
498   return Changed;
499 }
500 
501 // FIXME: It is an extremely bad idea to indvar substitute anything more
502 // complex than affine induction variables.  Doing so will put expensive
503 // polynomial evaluations inside of the loop, and the str reduction pass
504 // currently can only reduce affine polynomials.  For now just disable
505 // indvar subst on anything more complex than an affine addrec, unless
506 // it can be expanded to a trivial value.
507 static bool isSafe(const SCEV *S, const Loop *L) {
508   // Loop-invariant values are safe.
509   if (S->isLoopInvariant(L)) return true;
510 
511   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
512   // to transform them into efficient code.
513   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
514     return AR->isAffine();
515 
516   // An add is safe it all its operands are safe.
517   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
518     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
519          E = Commutative->op_end(); I != E; ++I)
520       if (!isSafe(*I, L)) return false;
521     return true;
522   }
523 
524   // A cast is safe if its operand is.
525   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
526     return isSafe(C->getOperand(), L);
527 
528   // A udiv is safe if its operands are.
529   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
530     return isSafe(UD->getLHS(), L) &&
531            isSafe(UD->getRHS(), L);
532 
533   // SCEVUnknown is always safe.
534   if (isa<SCEVUnknown>(S))
535     return true;
536 
537   // Nothing else is safe.
538   return false;
539 }
540 
541 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
542   SmallVector<WeakVH, 16> DeadInsts;
543 
544   // Rewrite all induction variable expressions in terms of the canonical
545   // induction variable.
546   //
547   // If there were induction variables of other sizes or offsets, manually
548   // add the offsets to the primary induction variable and cast, avoiding
549   // the need for the code evaluation methods to insert induction variables
550   // of different sizes.
551   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
552     Value *Op = UI->getOperandValToReplace();
553     const Type *UseTy = Op->getType();
554     Instruction *User = UI->getUser();
555 
556     // Compute the final addrec to expand into code.
557     const SCEV *AR = IU->getReplacementExpr(*UI);
558 
559     // Evaluate the expression out of the loop, if possible.
560     if (!L->contains(UI->getUser())) {
561       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
562       if (ExitVal->isLoopInvariant(L))
563         AR = ExitVal;
564     }
565 
566     // FIXME: It is an extremely bad idea to indvar substitute anything more
567     // complex than affine induction variables.  Doing so will put expensive
568     // polynomial evaluations inside of the loop, and the str reduction pass
569     // currently can only reduce affine polynomials.  For now just disable
570     // indvar subst on anything more complex than an affine addrec, unless
571     // it can be expanded to a trivial value.
572     if (!isSafe(AR, L))
573       continue;
574 
575     // Determine the insertion point for this user. By default, insert
576     // immediately before the user. The SCEVExpander class will automatically
577     // hoist loop invariants out of the loop. For PHI nodes, there may be
578     // multiple uses, so compute the nearest common dominator for the
579     // incoming blocks.
580     Instruction *InsertPt = User;
581     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
582       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
583         if (PHI->getIncomingValue(i) == Op) {
584           if (InsertPt == User)
585             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
586           else
587             InsertPt =
588               DT->findNearestCommonDominator(InsertPt->getParent(),
589                                              PHI->getIncomingBlock(i))
590                     ->getTerminator();
591         }
592 
593     // Now expand it into actual Instructions and patch it into place.
594     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
595 
596     // Inform ScalarEvolution that this value is changing. The change doesn't
597     // affect its value, but it does potentially affect which use lists the
598     // value will be on after the replacement, which affects ScalarEvolution's
599     // ability to walk use lists and drop dangling pointers when a value is
600     // deleted.
601     SE->forgetValue(User);
602 
603     // Patch the new value into place.
604     if (Op->hasName())
605       NewVal->takeName(Op);
606     User->replaceUsesOfWith(Op, NewVal);
607     UI->setOperandValToReplace(NewVal);
608     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
609                  << "   into = " << *NewVal << "\n");
610     ++NumRemoved;
611     Changed = true;
612 
613     // The old value may be dead now.
614     DeadInsts.push_back(Op);
615   }
616 
617   // Clear the rewriter cache, because values that are in the rewriter's cache
618   // can be deleted in the loop below, causing the AssertingVH in the cache to
619   // trigger.
620   Rewriter.clear();
621   // Now that we're done iterating through lists, clean up any instructions
622   // which are now dead.
623   while (!DeadInsts.empty())
624     if (Instruction *Inst =
625           dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
626       RecursivelyDeleteTriviallyDeadInstructions(Inst);
627 }
628 
629 /// If there's a single exit block, sink any loop-invariant values that
630 /// were defined in the preheader but not used inside the loop into the
631 /// exit block to reduce register pressure in the loop.
632 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
633   BasicBlock *ExitBlock = L->getExitBlock();
634   if (!ExitBlock) return;
635 
636   BasicBlock *Preheader = L->getLoopPreheader();
637   if (!Preheader) return;
638 
639   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
640   BasicBlock::iterator I = Preheader->getTerminator();
641   while (I != Preheader->begin()) {
642     --I;
643     // New instructions were inserted at the end of the preheader.
644     if (isa<PHINode>(I))
645       break;
646 
647     // Don't move instructions which might have side effects, since the side
648     // effects need to complete before instructions inside the loop.  Also don't
649     // move instructions which might read memory, since the loop may modify
650     // memory. Note that it's okay if the instruction might have undefined
651     // behavior: LoopSimplify guarantees that the preheader dominates the exit
652     // block.
653     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
654       continue;
655 
656     // Skip debug info intrinsics.
657     if (isa<DbgInfoIntrinsic>(I))
658       continue;
659 
660     // Don't sink static AllocaInsts out of the entry block, which would
661     // turn them into dynamic allocas!
662     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
663       if (AI->isStaticAlloca())
664         continue;
665 
666     // Determine if there is a use in or before the loop (direct or
667     // otherwise).
668     bool UsedInLoop = false;
669     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
670          UI != UE; ++UI) {
671       BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
672       if (PHINode *P = dyn_cast<PHINode>(UI)) {
673         unsigned i =
674           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
675         UseBB = P->getIncomingBlock(i);
676       }
677       if (UseBB == Preheader || L->contains(UseBB)) {
678         UsedInLoop = true;
679         break;
680       }
681     }
682 
683     // If there is, the def must remain in the preheader.
684     if (UsedInLoop)
685       continue;
686 
687     // Otherwise, sink it to the exit block.
688     Instruction *ToMove = I;
689     bool Done = false;
690 
691     if (I != Preheader->begin()) {
692       // Skip debug info intrinsics.
693       do {
694         --I;
695       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
696 
697       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
698         Done = true;
699     } else {
700       Done = true;
701     }
702 
703     ToMove->moveBefore(InsertPt);
704     if (Done) break;
705     InsertPt = ToMove;
706   }
707 }
708 
709 /// ConvertToSInt - Convert APF to an integer, if possible.
710 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
711   bool isExact = false;
712   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
713     return false;
714   // See if we can convert this to an int64_t
715   uint64_t UIntVal;
716   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
717                            &isExact) != APFloat::opOK || !isExact)
718     return false;
719   IntVal = UIntVal;
720   return true;
721 }
722 
723 /// HandleFloatingPointIV - If the loop has floating induction variable
724 /// then insert corresponding integer induction variable if possible.
725 /// For example,
726 /// for(double i = 0; i < 10000; ++i)
727 ///   bar(i)
728 /// is converted into
729 /// for(int i = 0; i < 10000; ++i)
730 ///   bar((double)i);
731 ///
732 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
733   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
734   unsigned BackEdge     = IncomingEdge^1;
735 
736   // Check incoming value.
737   ConstantFP *InitValueVal =
738     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
739 
740   int64_t InitValue;
741   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
742     return;
743 
744   // Check IV increment. Reject this PN if increment operation is not
745   // an add or increment value can not be represented by an integer.
746   BinaryOperator *Incr =
747     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
748   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
749 
750   // If this is not an add of the PHI with a constantfp, or if the constant fp
751   // is not an integer, bail out.
752   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
753   int64_t IncValue;
754   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
755       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
756     return;
757 
758   // Check Incr uses. One user is PN and the other user is an exit condition
759   // used by the conditional terminator.
760   Value::use_iterator IncrUse = Incr->use_begin();
761   Instruction *U1 = cast<Instruction>(IncrUse++);
762   if (IncrUse == Incr->use_end()) return;
763   Instruction *U2 = cast<Instruction>(IncrUse++);
764   if (IncrUse != Incr->use_end()) return;
765 
766   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
767   // only used by a branch, we can't transform it.
768   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
769   if (!Compare)
770     Compare = dyn_cast<FCmpInst>(U2);
771   if (Compare == 0 || !Compare->hasOneUse() ||
772       !isa<BranchInst>(Compare->use_back()))
773     return;
774 
775   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
776 
777   // We need to verify that the branch actually controls the iteration count
778   // of the loop.  If not, the new IV can overflow and no one will notice.
779   // The branch block must be in the loop and one of the successors must be out
780   // of the loop.
781   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
782   if (!L->contains(TheBr->getParent()) ||
783       (L->contains(TheBr->getSuccessor(0)) &&
784        L->contains(TheBr->getSuccessor(1))))
785     return;
786 
787 
788   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
789   // transform it.
790   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
791   int64_t ExitValue;
792   if (ExitValueVal == 0 ||
793       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
794     return;
795 
796   // Find new predicate for integer comparison.
797   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
798   switch (Compare->getPredicate()) {
799   default: return;  // Unknown comparison.
800   case CmpInst::FCMP_OEQ:
801   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
802   case CmpInst::FCMP_ONE:
803   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
804   case CmpInst::FCMP_OGT:
805   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
806   case CmpInst::FCMP_OGE:
807   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
808   case CmpInst::FCMP_OLT:
809   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
810   case CmpInst::FCMP_OLE:
811   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
812   }
813 
814   // We convert the floating point induction variable to a signed i32 value if
815   // we can.  This is only safe if the comparison will not overflow in a way
816   // that won't be trapped by the integer equivalent operations.  Check for this
817   // now.
818   // TODO: We could use i64 if it is native and the range requires it.
819 
820   // The start/stride/exit values must all fit in signed i32.
821   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
822     return;
823 
824   // If not actually striding (add x, 0.0), avoid touching the code.
825   if (IncValue == 0)
826     return;
827 
828   // Positive and negative strides have different safety conditions.
829   if (IncValue > 0) {
830     // If we have a positive stride, we require the init to be less than the
831     // exit value and an equality or less than comparison.
832     if (InitValue >= ExitValue ||
833         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
834       return;
835 
836     uint32_t Range = uint32_t(ExitValue-InitValue);
837     if (NewPred == CmpInst::ICMP_SLE) {
838       // Normalize SLE -> SLT, check for infinite loop.
839       if (++Range == 0) return;  // Range overflows.
840     }
841 
842     unsigned Leftover = Range % uint32_t(IncValue);
843 
844     // If this is an equality comparison, we require that the strided value
845     // exactly land on the exit value, otherwise the IV condition will wrap
846     // around and do things the fp IV wouldn't.
847     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
848         Leftover != 0)
849       return;
850 
851     // If the stride would wrap around the i32 before exiting, we can't
852     // transform the IV.
853     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
854       return;
855 
856   } else {
857     // If we have a negative stride, we require the init to be greater than the
858     // exit value and an equality or greater than comparison.
859     if (InitValue >= ExitValue ||
860         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
861       return;
862 
863     uint32_t Range = uint32_t(InitValue-ExitValue);
864     if (NewPred == CmpInst::ICMP_SGE) {
865       // Normalize SGE -> SGT, check for infinite loop.
866       if (++Range == 0) return;  // Range overflows.
867     }
868 
869     unsigned Leftover = Range % uint32_t(-IncValue);
870 
871     // If this is an equality comparison, we require that the strided value
872     // exactly land on the exit value, otherwise the IV condition will wrap
873     // around and do things the fp IV wouldn't.
874     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
875         Leftover != 0)
876       return;
877 
878     // If the stride would wrap around the i32 before exiting, we can't
879     // transform the IV.
880     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
881       return;
882   }
883 
884   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
885 
886   // Insert new integer induction variable.
887   PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN);
888   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
889                       PN->getIncomingBlock(IncomingEdge));
890 
891   Value *NewAdd =
892     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
893                               Incr->getName()+".int", Incr);
894   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
895 
896   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
897                                       ConstantInt::get(Int32Ty, ExitValue),
898                                       Compare->getName());
899 
900   // In the following deletions, PN may become dead and may be deleted.
901   // Use a WeakVH to observe whether this happens.
902   WeakVH WeakPH = PN;
903 
904   // Delete the old floating point exit comparison.  The branch starts using the
905   // new comparison.
906   NewCompare->takeName(Compare);
907   Compare->replaceAllUsesWith(NewCompare);
908   RecursivelyDeleteTriviallyDeadInstructions(Compare);
909 
910   // Delete the old floating point increment.
911   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
912   RecursivelyDeleteTriviallyDeadInstructions(Incr);
913 
914   // If the FP induction variable still has uses, this is because something else
915   // in the loop uses its value.  In order to canonicalize the induction
916   // variable, we chose to eliminate the IV and rewrite it in terms of an
917   // int->fp cast.
918   //
919   // We give preference to sitofp over uitofp because it is faster on most
920   // platforms.
921   if (WeakPH) {
922     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
923                                  PN->getParent()->getFirstNonPHI());
924     PN->replaceAllUsesWith(Conv);
925     RecursivelyDeleteTriviallyDeadInstructions(PN);
926   }
927 
928   // Add a new IVUsers entry for the newly-created integer PHI.
929   IU->AddUsersIfInteresting(NewPHI);
930 }
931