1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/IVUsers.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumRemoved , "Number of aux indvars removed"); 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumInserted , "Number of canonical indvars added"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 namespace llvm { 62 cl::opt<bool> EnableIVRewrite( 63 "enable-iv-rewrite", cl::Hidden, 64 cl::desc("Enable canonical induction variable rewriting")); 65 66 // Trip count verification can be enabled by default under NDEBUG if we 67 // implement a strong expression equivalence checker in SCEV. Until then, we 68 // use the verify-indvars flag, which may assert in some cases. 69 cl::opt<bool> VerifyIndvars( 70 "verify-indvars", cl::Hidden, 71 cl::desc("Verify the ScalarEvolution result after running indvars")); 72 } 73 74 namespace { 75 class IndVarSimplify : public LoopPass { 76 IVUsers *IU; 77 LoopInfo *LI; 78 ScalarEvolution *SE; 79 DominatorTree *DT; 80 TargetData *TD; 81 82 SmallVector<WeakVH, 16> DeadInsts; 83 bool Changed; 84 public: 85 86 static char ID; // Pass identification, replacement for typeid 87 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 88 Changed(false) { 89 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 90 } 91 92 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 93 94 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 95 AU.addRequired<DominatorTree>(); 96 AU.addRequired<LoopInfo>(); 97 AU.addRequired<ScalarEvolution>(); 98 AU.addRequiredID(LoopSimplifyID); 99 AU.addRequiredID(LCSSAID); 100 if (EnableIVRewrite) 101 AU.addRequired<IVUsers>(); 102 AU.addPreserved<ScalarEvolution>(); 103 AU.addPreservedID(LoopSimplifyID); 104 AU.addPreservedID(LCSSAID); 105 if (EnableIVRewrite) 106 AU.addPreserved<IVUsers>(); 107 AU.setPreservesCFG(); 108 } 109 110 private: 111 virtual void releaseMemory() { 112 DeadInsts.clear(); 113 } 114 115 bool isValidRewrite(Value *FromVal, Value *ToVal); 116 117 void HandleFloatingPointIV(Loop *L, PHINode *PH); 118 void RewriteNonIntegerIVs(Loop *L); 119 120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 121 122 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 123 124 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 125 126 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 127 PHINode *IndVar, SCEVExpander &Rewriter); 128 129 void SinkUnusedInvariants(Loop *L); 130 }; 131 } 132 133 char IndVarSimplify::ID = 0; 134 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 135 "Induction Variable Simplification", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 137 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 139 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 140 INITIALIZE_PASS_DEPENDENCY(LCSSA) 141 INITIALIZE_PASS_DEPENDENCY(IVUsers) 142 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 143 "Induction Variable Simplification", false, false) 144 145 Pass *llvm::createIndVarSimplifyPass() { 146 return new IndVarSimplify(); 147 } 148 149 /// isValidRewrite - Return true if the SCEV expansion generated by the 150 /// rewriter can replace the original value. SCEV guarantees that it 151 /// produces the same value, but the way it is produced may be illegal IR. 152 /// Ideally, this function will only be called for verification. 153 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 154 // If an SCEV expression subsumed multiple pointers, its expansion could 155 // reassociate the GEP changing the base pointer. This is illegal because the 156 // final address produced by a GEP chain must be inbounds relative to its 157 // underlying object. Otherwise basic alias analysis, among other things, 158 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 159 // producing an expression involving multiple pointers. Until then, we must 160 // bail out here. 161 // 162 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 163 // because it understands lcssa phis while SCEV does not. 164 Value *FromPtr = FromVal; 165 Value *ToPtr = ToVal; 166 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 167 FromPtr = GEP->getPointerOperand(); 168 } 169 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 170 ToPtr = GEP->getPointerOperand(); 171 } 172 if (FromPtr != FromVal || ToPtr != ToVal) { 173 // Quickly check the common case 174 if (FromPtr == ToPtr) 175 return true; 176 177 // SCEV may have rewritten an expression that produces the GEP's pointer 178 // operand. That's ok as long as the pointer operand has the same base 179 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 180 // base of a recurrence. This handles the case in which SCEV expansion 181 // converts a pointer type recurrence into a nonrecurrent pointer base 182 // indexed by an integer recurrence. 183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 185 if (FromBase == ToBase) 186 return true; 187 188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 189 << *FromBase << " != " << *ToBase << "\n"); 190 191 return false; 192 } 193 return true; 194 } 195 196 /// Determine the insertion point for this user. By default, insert immediately 197 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 198 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 199 /// common dominator for the incoming blocks. 200 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 201 DominatorTree *DT) { 202 PHINode *PHI = dyn_cast<PHINode>(User); 203 if (!PHI) 204 return User; 205 206 Instruction *InsertPt = 0; 207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 208 if (PHI->getIncomingValue(i) != Def) 209 continue; 210 211 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 212 if (!InsertPt) { 213 InsertPt = InsertBB->getTerminator(); 214 continue; 215 } 216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 217 InsertPt = InsertBB->getTerminator(); 218 } 219 assert(InsertPt && "Missing phi operand"); 220 assert((!isa<Instruction>(Def) || 221 DT->dominates(cast<Instruction>(Def), InsertPt)) && 222 "def does not dominate all uses"); 223 return InsertPt; 224 } 225 226 //===----------------------------------------------------------------------===// 227 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 228 //===----------------------------------------------------------------------===// 229 230 /// ConvertToSInt - Convert APF to an integer, if possible. 231 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 232 bool isExact = false; 233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 234 return false; 235 // See if we can convert this to an int64_t 236 uint64_t UIntVal; 237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 238 &isExact) != APFloat::opOK || !isExact) 239 return false; 240 IntVal = UIntVal; 241 return true; 242 } 243 244 /// HandleFloatingPointIV - If the loop has floating induction variable 245 /// then insert corresponding integer induction variable if possible. 246 /// For example, 247 /// for(double i = 0; i < 10000; ++i) 248 /// bar(i) 249 /// is converted into 250 /// for(int i = 0; i < 10000; ++i) 251 /// bar((double)i); 252 /// 253 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 255 unsigned BackEdge = IncomingEdge^1; 256 257 // Check incoming value. 258 ConstantFP *InitValueVal = 259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 260 261 int64_t InitValue; 262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 263 return; 264 265 // Check IV increment. Reject this PN if increment operation is not 266 // an add or increment value can not be represented by an integer. 267 BinaryOperator *Incr = 268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 270 271 // If this is not an add of the PHI with a constantfp, or if the constant fp 272 // is not an integer, bail out. 273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 274 int64_t IncValue; 275 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 277 return; 278 279 // Check Incr uses. One user is PN and the other user is an exit condition 280 // used by the conditional terminator. 281 Value::use_iterator IncrUse = Incr->use_begin(); 282 Instruction *U1 = cast<Instruction>(*IncrUse++); 283 if (IncrUse == Incr->use_end()) return; 284 Instruction *U2 = cast<Instruction>(*IncrUse++); 285 if (IncrUse != Incr->use_end()) return; 286 287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 288 // only used by a branch, we can't transform it. 289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 290 if (!Compare) 291 Compare = dyn_cast<FCmpInst>(U2); 292 if (Compare == 0 || !Compare->hasOneUse() || 293 !isa<BranchInst>(Compare->use_back())) 294 return; 295 296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 297 298 // We need to verify that the branch actually controls the iteration count 299 // of the loop. If not, the new IV can overflow and no one will notice. 300 // The branch block must be in the loop and one of the successors must be out 301 // of the loop. 302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 303 if (!L->contains(TheBr->getParent()) || 304 (L->contains(TheBr->getSuccessor(0)) && 305 L->contains(TheBr->getSuccessor(1)))) 306 return; 307 308 309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 310 // transform it. 311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 312 int64_t ExitValue; 313 if (ExitValueVal == 0 || 314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 315 return; 316 317 // Find new predicate for integer comparison. 318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 319 switch (Compare->getPredicate()) { 320 default: return; // Unknown comparison. 321 case CmpInst::FCMP_OEQ: 322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 323 case CmpInst::FCMP_ONE: 324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 325 case CmpInst::FCMP_OGT: 326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 327 case CmpInst::FCMP_OGE: 328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 329 case CmpInst::FCMP_OLT: 330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 331 case CmpInst::FCMP_OLE: 332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 333 } 334 335 // We convert the floating point induction variable to a signed i32 value if 336 // we can. This is only safe if the comparison will not overflow in a way 337 // that won't be trapped by the integer equivalent operations. Check for this 338 // now. 339 // TODO: We could use i64 if it is native and the range requires it. 340 341 // The start/stride/exit values must all fit in signed i32. 342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 343 return; 344 345 // If not actually striding (add x, 0.0), avoid touching the code. 346 if (IncValue == 0) 347 return; 348 349 // Positive and negative strides have different safety conditions. 350 if (IncValue > 0) { 351 // If we have a positive stride, we require the init to be less than the 352 // exit value. 353 if (InitValue >= ExitValue) 354 return; 355 356 uint32_t Range = uint32_t(ExitValue-InitValue); 357 // Check for infinite loop, either: 358 // while (i <= Exit) or until (i > Exit) 359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 360 if (++Range == 0) return; // Range overflows. 361 } 362 363 unsigned Leftover = Range % uint32_t(IncValue); 364 365 // If this is an equality comparison, we require that the strided value 366 // exactly land on the exit value, otherwise the IV condition will wrap 367 // around and do things the fp IV wouldn't. 368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 369 Leftover != 0) 370 return; 371 372 // If the stride would wrap around the i32 before exiting, we can't 373 // transform the IV. 374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 375 return; 376 377 } else { 378 // If we have a negative stride, we require the init to be greater than the 379 // exit value. 380 if (InitValue <= ExitValue) 381 return; 382 383 uint32_t Range = uint32_t(InitValue-ExitValue); 384 // Check for infinite loop, either: 385 // while (i >= Exit) or until (i < Exit) 386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 387 if (++Range == 0) return; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(-IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 402 return; 403 } 404 405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 406 407 // Insert new integer induction variable. 408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 410 PN->getIncomingBlock(IncomingEdge)); 411 412 Value *NewAdd = 413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 414 Incr->getName()+".int", Incr); 415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 416 417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 418 ConstantInt::get(Int32Ty, ExitValue), 419 Compare->getName()); 420 421 // In the following deletions, PN may become dead and may be deleted. 422 // Use a WeakVH to observe whether this happens. 423 WeakVH WeakPH = PN; 424 425 // Delete the old floating point exit comparison. The branch starts using the 426 // new comparison. 427 NewCompare->takeName(Compare); 428 Compare->replaceAllUsesWith(NewCompare); 429 RecursivelyDeleteTriviallyDeadInstructions(Compare); 430 431 // Delete the old floating point increment. 432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 433 RecursivelyDeleteTriviallyDeadInstructions(Incr); 434 435 // If the FP induction variable still has uses, this is because something else 436 // in the loop uses its value. In order to canonicalize the induction 437 // variable, we chose to eliminate the IV and rewrite it in terms of an 438 // int->fp cast. 439 // 440 // We give preference to sitofp over uitofp because it is faster on most 441 // platforms. 442 if (WeakPH) { 443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 444 PN->getParent()->getFirstInsertionPt()); 445 PN->replaceAllUsesWith(Conv); 446 RecursivelyDeleteTriviallyDeadInstructions(PN); 447 } 448 449 // Add a new IVUsers entry for the newly-created integer PHI. 450 if (IU) 451 IU->AddUsersIfInteresting(NewPHI); 452 453 Changed = true; 454 } 455 456 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 457 // First step. Check to see if there are any floating-point recurrences. 458 // If there are, change them into integer recurrences, permitting analysis by 459 // the SCEV routines. 460 // 461 BasicBlock *Header = L->getHeader(); 462 463 SmallVector<WeakVH, 8> PHIs; 464 for (BasicBlock::iterator I = Header->begin(); 465 PHINode *PN = dyn_cast<PHINode>(I); ++I) 466 PHIs.push_back(PN); 467 468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 470 HandleFloatingPointIV(L, PN); 471 472 // If the loop previously had floating-point IV, ScalarEvolution 473 // may not have been able to compute a trip count. Now that we've done some 474 // re-writing, the trip count may be computable. 475 if (Changed) 476 SE->forgetLoop(L); 477 } 478 479 //===----------------------------------------------------------------------===// 480 // RewriteLoopExitValues - Optimize IV users outside the loop. 481 // As a side effect, reduces the amount of IV processing within the loop. 482 //===----------------------------------------------------------------------===// 483 484 /// RewriteLoopExitValues - Check to see if this loop has a computable 485 /// loop-invariant execution count. If so, this means that we can compute the 486 /// final value of any expressions that are recurrent in the loop, and 487 /// substitute the exit values from the loop into any instructions outside of 488 /// the loop that use the final values of the current expressions. 489 /// 490 /// This is mostly redundant with the regular IndVarSimplify activities that 491 /// happen later, except that it's more powerful in some cases, because it's 492 /// able to brute-force evaluate arbitrary instructions as long as they have 493 /// constant operands at the beginning of the loop. 494 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 495 // Verify the input to the pass in already in LCSSA form. 496 assert(L->isLCSSAForm(*DT)); 497 498 SmallVector<BasicBlock*, 8> ExitBlocks; 499 L->getUniqueExitBlocks(ExitBlocks); 500 501 // Find all values that are computed inside the loop, but used outside of it. 502 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 503 // the exit blocks of the loop to find them. 504 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 505 BasicBlock *ExitBB = ExitBlocks[i]; 506 507 // If there are no PHI nodes in this exit block, then no values defined 508 // inside the loop are used on this path, skip it. 509 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 510 if (!PN) continue; 511 512 unsigned NumPreds = PN->getNumIncomingValues(); 513 514 // Iterate over all of the PHI nodes. 515 BasicBlock::iterator BBI = ExitBB->begin(); 516 while ((PN = dyn_cast<PHINode>(BBI++))) { 517 if (PN->use_empty()) 518 continue; // dead use, don't replace it 519 520 // SCEV only supports integer expressions for now. 521 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 522 continue; 523 524 // It's necessary to tell ScalarEvolution about this explicitly so that 525 // it can walk the def-use list and forget all SCEVs, as it may not be 526 // watching the PHI itself. Once the new exit value is in place, there 527 // may not be a def-use connection between the loop and every instruction 528 // which got a SCEVAddRecExpr for that loop. 529 SE->forgetValue(PN); 530 531 // Iterate over all of the values in all the PHI nodes. 532 for (unsigned i = 0; i != NumPreds; ++i) { 533 // If the value being merged in is not integer or is not defined 534 // in the loop, skip it. 535 Value *InVal = PN->getIncomingValue(i); 536 if (!isa<Instruction>(InVal)) 537 continue; 538 539 // If this pred is for a subloop, not L itself, skip it. 540 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 541 continue; // The Block is in a subloop, skip it. 542 543 // Check that InVal is defined in the loop. 544 Instruction *Inst = cast<Instruction>(InVal); 545 if (!L->contains(Inst)) 546 continue; 547 548 // Okay, this instruction has a user outside of the current loop 549 // and varies predictably *inside* the loop. Evaluate the value it 550 // contains when the loop exits, if possible. 551 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 552 if (!SE->isLoopInvariant(ExitValue, L)) 553 continue; 554 555 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 556 557 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 558 << " LoopVal = " << *Inst << "\n"); 559 560 if (!isValidRewrite(Inst, ExitVal)) { 561 DeadInsts.push_back(ExitVal); 562 continue; 563 } 564 Changed = true; 565 ++NumReplaced; 566 567 PN->setIncomingValue(i, ExitVal); 568 569 // If this instruction is dead now, delete it. 570 RecursivelyDeleteTriviallyDeadInstructions(Inst); 571 572 if (NumPreds == 1) { 573 // Completely replace a single-pred PHI. This is safe, because the 574 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 575 // node anymore. 576 PN->replaceAllUsesWith(ExitVal); 577 RecursivelyDeleteTriviallyDeadInstructions(PN); 578 } 579 } 580 if (NumPreds != 1) { 581 // Clone the PHI and delete the original one. This lets IVUsers and 582 // any other maps purge the original user from their records. 583 PHINode *NewPN = cast<PHINode>(PN->clone()); 584 NewPN->takeName(PN); 585 NewPN->insertBefore(PN); 586 PN->replaceAllUsesWith(NewPN); 587 PN->eraseFromParent(); 588 } 589 } 590 } 591 592 // The insertion point instruction may have been deleted; clear it out 593 // so that the rewriter doesn't trip over it later. 594 Rewriter.clearInsertPoint(); 595 } 596 597 //===----------------------------------------------------------------------===// 598 // Rewrite IV users based on a canonical IV. 599 // Only for use with -enable-iv-rewrite. 600 //===----------------------------------------------------------------------===// 601 602 /// FIXME: It is an extremely bad idea to indvar substitute anything more 603 /// complex than affine induction variables. Doing so will put expensive 604 /// polynomial evaluations inside of the loop, and the str reduction pass 605 /// currently can only reduce affine polynomials. For now just disable 606 /// indvar subst on anything more complex than an affine addrec, unless 607 /// it can be expanded to a trivial value. 608 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 609 // Loop-invariant values are safe. 610 if (SE->isLoopInvariant(S, L)) return true; 611 612 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 613 // to transform them into efficient code. 614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 615 return AR->isAffine(); 616 617 // An add is safe it all its operands are safe. 618 if (const SCEVCommutativeExpr *Commutative 619 = dyn_cast<SCEVCommutativeExpr>(S)) { 620 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 621 E = Commutative->op_end(); I != E; ++I) 622 if (!isSafe(*I, L, SE)) return false; 623 return true; 624 } 625 626 // A cast is safe if its operand is. 627 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 628 return isSafe(C->getOperand(), L, SE); 629 630 // A udiv is safe if its operands are. 631 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 632 return isSafe(UD->getLHS(), L, SE) && 633 isSafe(UD->getRHS(), L, SE); 634 635 // SCEVUnknown is always safe. 636 if (isa<SCEVUnknown>(S)) 637 return true; 638 639 // Nothing else is safe. 640 return false; 641 } 642 643 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 644 // Rewrite all induction variable expressions in terms of the canonical 645 // induction variable. 646 // 647 // If there were induction variables of other sizes or offsets, manually 648 // add the offsets to the primary induction variable and cast, avoiding 649 // the need for the code evaluation methods to insert induction variables 650 // of different sizes. 651 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 652 Value *Op = UI->getOperandValToReplace(); 653 Type *UseTy = Op->getType(); 654 Instruction *User = UI->getUser(); 655 656 // Compute the final addrec to expand into code. 657 const SCEV *AR = IU->getReplacementExpr(*UI); 658 659 // Evaluate the expression out of the loop, if possible. 660 if (!L->contains(UI->getUser())) { 661 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 662 if (SE->isLoopInvariant(ExitVal, L)) 663 AR = ExitVal; 664 } 665 666 // FIXME: It is an extremely bad idea to indvar substitute anything more 667 // complex than affine induction variables. Doing so will put expensive 668 // polynomial evaluations inside of the loop, and the str reduction pass 669 // currently can only reduce affine polynomials. For now just disable 670 // indvar subst on anything more complex than an affine addrec, unless 671 // it can be expanded to a trivial value. 672 if (!isSafe(AR, L, SE)) 673 continue; 674 675 // Determine the insertion point for this user. By default, insert 676 // immediately before the user. The SCEVExpander class will automatically 677 // hoist loop invariants out of the loop. For PHI nodes, there may be 678 // multiple uses, so compute the nearest common dominator for the 679 // incoming blocks. 680 Instruction *InsertPt = getInsertPointForUses(User, Op, DT); 681 682 // Now expand it into actual Instructions and patch it into place. 683 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 684 685 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 686 << " into = " << *NewVal << "\n"); 687 688 if (!isValidRewrite(Op, NewVal)) { 689 DeadInsts.push_back(NewVal); 690 continue; 691 } 692 // Inform ScalarEvolution that this value is changing. The change doesn't 693 // affect its value, but it does potentially affect which use lists the 694 // value will be on after the replacement, which affects ScalarEvolution's 695 // ability to walk use lists and drop dangling pointers when a value is 696 // deleted. 697 SE->forgetValue(User); 698 699 // Patch the new value into place. 700 if (Op->hasName()) 701 NewVal->takeName(Op); 702 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 703 NewValI->setDebugLoc(User->getDebugLoc()); 704 User->replaceUsesOfWith(Op, NewVal); 705 UI->setOperandValToReplace(NewVal); 706 707 ++NumRemoved; 708 Changed = true; 709 710 // The old value may be dead now. 711 DeadInsts.push_back(Op); 712 } 713 } 714 715 //===----------------------------------------------------------------------===// 716 // IV Widening - Extend the width of an IV to cover its widest uses. 717 //===----------------------------------------------------------------------===// 718 719 namespace { 720 // Collect information about induction variables that are used by sign/zero 721 // extend operations. This information is recorded by CollectExtend and 722 // provides the input to WidenIV. 723 struct WideIVInfo { 724 Type *WidestNativeType; // Widest integer type created [sz]ext 725 bool IsSigned; // Was an sext user seen before a zext? 726 727 WideIVInfo() : WidestNativeType(0), IsSigned(false) {} 728 }; 729 730 class WideIVVisitor : public IVVisitor { 731 ScalarEvolution *SE; 732 const TargetData *TD; 733 734 public: 735 WideIVInfo WI; 736 737 WideIVVisitor(ScalarEvolution *SCEV, const TargetData *TData) : 738 SE(SCEV), TD(TData) {} 739 740 // Implement the interface used by simplifyUsersOfIV. 741 virtual void visitCast(CastInst *Cast); 742 }; 743 } 744 745 /// visitCast - Update information about the induction variable that is 746 /// extended by this sign or zero extend operation. This is used to determine 747 /// the final width of the IV before actually widening it. 748 void WideIVVisitor::visitCast(CastInst *Cast) { 749 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 750 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 751 return; 752 753 Type *Ty = Cast->getType(); 754 uint64_t Width = SE->getTypeSizeInBits(Ty); 755 if (TD && !TD->isLegalInteger(Width)) 756 return; 757 758 if (!WI.WidestNativeType) { 759 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 760 WI.IsSigned = IsSigned; 761 return; 762 } 763 764 // We extend the IV to satisfy the sign of its first user, arbitrarily. 765 if (WI.IsSigned != IsSigned) 766 return; 767 768 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 769 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 770 } 771 772 namespace { 773 774 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 775 /// WideIV that computes the same value as the Narrow IV def. This avoids 776 /// caching Use* pointers. 777 struct NarrowIVDefUse { 778 Instruction *NarrowDef; 779 Instruction *NarrowUse; 780 Instruction *WideDef; 781 782 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 783 784 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 785 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 786 }; 787 788 /// WidenIV - The goal of this transform is to remove sign and zero extends 789 /// without creating any new induction variables. To do this, it creates a new 790 /// phi of the wider type and redirects all users, either removing extends or 791 /// inserting truncs whenever we stop propagating the type. 792 /// 793 class WidenIV { 794 // Parameters 795 PHINode *OrigPhi; 796 Type *WideType; 797 bool IsSigned; 798 799 // Context 800 LoopInfo *LI; 801 Loop *L; 802 ScalarEvolution *SE; 803 DominatorTree *DT; 804 805 // Result 806 PHINode *WidePhi; 807 Instruction *WideInc; 808 const SCEV *WideIncExpr; 809 SmallVectorImpl<WeakVH> &DeadInsts; 810 811 SmallPtrSet<Instruction*,16> Widened; 812 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 813 814 public: 815 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo, 816 ScalarEvolution *SEv, DominatorTree *DTree, 817 SmallVectorImpl<WeakVH> &DI) : 818 OrigPhi(PN), 819 WideType(WI.WidestNativeType), 820 IsSigned(WI.IsSigned), 821 LI(LInfo), 822 L(LI->getLoopFor(OrigPhi->getParent())), 823 SE(SEv), 824 DT(DTree), 825 WidePhi(0), 826 WideInc(0), 827 WideIncExpr(0), 828 DeadInsts(DI) { 829 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 830 } 831 832 PHINode *CreateWideIV(SCEVExpander &Rewriter); 833 834 protected: 835 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 836 Instruction *Use); 837 838 Instruction *CloneIVUser(NarrowIVDefUse DU); 839 840 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 841 842 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 843 844 Instruction *WidenIVUse(NarrowIVDefUse DU); 845 846 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 847 }; 848 } // anonymous namespace 849 850 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 851 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 852 /// gratuitous for this purpose. 853 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 854 Instruction *Inst = dyn_cast<Instruction>(V); 855 if (!Inst) 856 return true; 857 858 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 859 } 860 861 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 862 Instruction *Use) { 863 // Set the debug location and conservative insertion point. 864 IRBuilder<> Builder(Use); 865 // Hoist the insertion point into loop preheaders as far as possible. 866 for (const Loop *L = LI->getLoopFor(Use->getParent()); 867 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 868 L = L->getParentLoop()) 869 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 870 871 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 872 Builder.CreateZExt(NarrowOper, WideType); 873 } 874 875 /// CloneIVUser - Instantiate a wide operation to replace a narrow 876 /// operation. This only needs to handle operations that can evaluation to 877 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 878 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 879 unsigned Opcode = DU.NarrowUse->getOpcode(); 880 switch (Opcode) { 881 default: 882 return 0; 883 case Instruction::Add: 884 case Instruction::Mul: 885 case Instruction::UDiv: 886 case Instruction::Sub: 887 case Instruction::And: 888 case Instruction::Or: 889 case Instruction::Xor: 890 case Instruction::Shl: 891 case Instruction::LShr: 892 case Instruction::AShr: 893 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 894 895 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 896 // anything about the narrow operand yet so must insert a [sz]ext. It is 897 // probably loop invariant and will be folded or hoisted. If it actually 898 // comes from a widened IV, it should be removed during a future call to 899 // WidenIVUse. 900 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 901 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 902 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 903 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 904 905 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 906 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 907 LHS, RHS, 908 NarrowBO->getName()); 909 IRBuilder<> Builder(DU.NarrowUse); 910 Builder.Insert(WideBO); 911 if (const OverflowingBinaryOperator *OBO = 912 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 913 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 914 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 915 } 916 return WideBO; 917 } 918 llvm_unreachable(0); 919 } 920 921 /// No-wrap operations can transfer sign extension of their result to their 922 /// operands. Generate the SCEV value for the widened operation without 923 /// actually modifying the IR yet. If the expression after extending the 924 /// operands is an AddRec for this loop, return it. 925 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 926 // Handle the common case of add<nsw/nuw> 927 if (DU.NarrowUse->getOpcode() != Instruction::Add) 928 return 0; 929 930 // One operand (NarrowDef) has already been extended to WideDef. Now determine 931 // if extending the other will lead to a recurrence. 932 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 933 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 934 935 const SCEV *ExtendOperExpr = 0; 936 const OverflowingBinaryOperator *OBO = 937 cast<OverflowingBinaryOperator>(DU.NarrowUse); 938 if (IsSigned && OBO->hasNoSignedWrap()) 939 ExtendOperExpr = SE->getSignExtendExpr( 940 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 941 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 942 ExtendOperExpr = SE->getZeroExtendExpr( 943 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 944 else 945 return 0; 946 947 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 948 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr, 949 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW)); 950 951 if (!AddRec || AddRec->getLoop() != L) 952 return 0; 953 return AddRec; 954 } 955 956 /// GetWideRecurrence - Is this instruction potentially interesting from 957 /// IVUsers' perspective after widening it's type? In other words, can the 958 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 959 /// recurrence on the same loop. If so, return the sign or zero extended 960 /// recurrence. Otherwise return NULL. 961 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 962 if (!SE->isSCEVable(NarrowUse->getType())) 963 return 0; 964 965 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 966 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 967 >= SE->getTypeSizeInBits(WideType)) { 968 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 969 // index. So don't follow this use. 970 return 0; 971 } 972 973 const SCEV *WideExpr = IsSigned ? 974 SE->getSignExtendExpr(NarrowExpr, WideType) : 975 SE->getZeroExtendExpr(NarrowExpr, WideType); 976 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 977 if (!AddRec || AddRec->getLoop() != L) 978 return 0; 979 return AddRec; 980 } 981 982 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 983 /// widened. If so, return the wide clone of the user. 984 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { 985 986 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 987 if (isa<PHINode>(DU.NarrowUse) && 988 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 989 return 0; 990 991 // Our raison d'etre! Eliminate sign and zero extension. 992 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 993 Value *NewDef = DU.WideDef; 994 if (DU.NarrowUse->getType() != WideType) { 995 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 996 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 997 if (CastWidth < IVWidth) { 998 // The cast isn't as wide as the IV, so insert a Trunc. 999 IRBuilder<> Builder(DU.NarrowUse); 1000 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1001 } 1002 else { 1003 // A wider extend was hidden behind a narrower one. This may induce 1004 // another round of IV widening in which the intermediate IV becomes 1005 // dead. It should be very rare. 1006 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1007 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1008 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1009 NewDef = DU.NarrowUse; 1010 } 1011 } 1012 if (NewDef != DU.NarrowUse) { 1013 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1014 << " replaced by " << *DU.WideDef << "\n"); 1015 ++NumElimExt; 1016 DU.NarrowUse->replaceAllUsesWith(NewDef); 1017 DeadInsts.push_back(DU.NarrowUse); 1018 } 1019 // Now that the extend is gone, we want to expose it's uses for potential 1020 // further simplification. We don't need to directly inform SimplifyIVUsers 1021 // of the new users, because their parent IV will be processed later as a 1022 // new loop phi. If we preserved IVUsers analysis, we would also want to 1023 // push the uses of WideDef here. 1024 1025 // No further widening is needed. The deceased [sz]ext had done it for us. 1026 return 0; 1027 } 1028 1029 // Does this user itself evaluate to a recurrence after widening? 1030 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1031 if (!WideAddRec) { 1032 WideAddRec = GetExtendedOperandRecurrence(DU); 1033 } 1034 if (!WideAddRec) { 1035 // This user does not evaluate to a recurence after widening, so don't 1036 // follow it. Instead insert a Trunc to kill off the original use, 1037 // eventually isolating the original narrow IV so it can be removed. 1038 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1039 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1040 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1041 return 0; 1042 } 1043 // Assume block terminators cannot evaluate to a recurrence. We can't to 1044 // insert a Trunc after a terminator if there happens to be a critical edge. 1045 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1046 "SCEV is not expected to evaluate a block terminator"); 1047 1048 // Reuse the IV increment that SCEVExpander created as long as it dominates 1049 // NarrowUse. 1050 Instruction *WideUse = 0; 1051 if (WideAddRec == WideIncExpr 1052 && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT)) 1053 WideUse = WideInc; 1054 else { 1055 WideUse = CloneIVUser(DU); 1056 if (!WideUse) 1057 return 0; 1058 } 1059 // Evaluation of WideAddRec ensured that the narrow expression could be 1060 // extended outside the loop without overflow. This suggests that the wide use 1061 // evaluates to the same expression as the extended narrow use, but doesn't 1062 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1063 // where it fails, we simply throw away the newly created wide use. 1064 if (WideAddRec != SE->getSCEV(WideUse)) { 1065 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1066 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1067 DeadInsts.push_back(WideUse); 1068 return 0; 1069 } 1070 1071 // Returning WideUse pushes it on the worklist. 1072 return WideUse; 1073 } 1074 1075 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1076 /// 1077 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1078 for (Value::use_iterator UI = NarrowDef->use_begin(), 1079 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1080 Instruction *NarrowUse = cast<Instruction>(*UI); 1081 1082 // Handle data flow merges and bizarre phi cycles. 1083 if (!Widened.insert(NarrowUse)) 1084 continue; 1085 1086 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1087 } 1088 } 1089 1090 /// CreateWideIV - Process a single induction variable. First use the 1091 /// SCEVExpander to create a wide induction variable that evaluates to the same 1092 /// recurrence as the original narrow IV. Then use a worklist to forward 1093 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1094 /// interesting IV users, the narrow IV will be isolated for removal by 1095 /// DeleteDeadPHIs. 1096 /// 1097 /// It would be simpler to delete uses as they are processed, but we must avoid 1098 /// invalidating SCEV expressions. 1099 /// 1100 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1101 // Is this phi an induction variable? 1102 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1103 if (!AddRec) 1104 return NULL; 1105 1106 // Widen the induction variable expression. 1107 const SCEV *WideIVExpr = IsSigned ? 1108 SE->getSignExtendExpr(AddRec, WideType) : 1109 SE->getZeroExtendExpr(AddRec, WideType); 1110 1111 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1112 "Expect the new IV expression to preserve its type"); 1113 1114 // Can the IV be extended outside the loop without overflow? 1115 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1116 if (!AddRec || AddRec->getLoop() != L) 1117 return NULL; 1118 1119 // An AddRec must have loop-invariant operands. Since this AddRec is 1120 // materialized by a loop header phi, the expression cannot have any post-loop 1121 // operands, so they must dominate the loop header. 1122 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1123 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1124 && "Loop header phi recurrence inputs do not dominate the loop"); 1125 1126 // The rewriter provides a value for the desired IV expression. This may 1127 // either find an existing phi or materialize a new one. Either way, we 1128 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1129 // of the phi-SCC dominates the loop entry. 1130 Instruction *InsertPt = L->getHeader()->begin(); 1131 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1132 1133 // Remembering the WideIV increment generated by SCEVExpander allows 1134 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1135 // employ a general reuse mechanism because the call above is the only call to 1136 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1137 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1138 WideInc = 1139 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1140 WideIncExpr = SE->getSCEV(WideInc); 1141 } 1142 1143 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1144 ++NumWidened; 1145 1146 // Traverse the def-use chain using a worklist starting at the original IV. 1147 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1148 1149 Widened.insert(OrigPhi); 1150 pushNarrowIVUsers(OrigPhi, WidePhi); 1151 1152 while (!NarrowIVUsers.empty()) { 1153 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1154 1155 // Process a def-use edge. This may replace the use, so don't hold a 1156 // use_iterator across it. 1157 Instruction *WideUse = WidenIVUse(DU); 1158 1159 // Follow all def-use edges from the previous narrow use. 1160 if (WideUse) 1161 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1162 1163 // WidenIVUse may have removed the def-use edge. 1164 if (DU.NarrowDef->use_empty()) 1165 DeadInsts.push_back(DU.NarrowDef); 1166 } 1167 return WidePhi; 1168 } 1169 1170 //===----------------------------------------------------------------------===// 1171 // Simplification of IV users based on SCEV evaluation. 1172 //===----------------------------------------------------------------------===// 1173 1174 1175 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1176 /// users. Each successive simplification may push more users which may 1177 /// themselves be candidates for simplification. 1178 /// 1179 /// Sign/Zero extend elimination is interleaved with IV simplification. 1180 /// 1181 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1182 SCEVExpander &Rewriter, 1183 LPPassManager &LPM) { 1184 std::map<PHINode *, WideIVInfo> WideIVMap; 1185 1186 SmallVector<PHINode*, 8> LoopPhis; 1187 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1188 LoopPhis.push_back(cast<PHINode>(I)); 1189 } 1190 // Each round of simplification iterates through the SimplifyIVUsers worklist 1191 // for all current phis, then determines whether any IVs can be 1192 // widened. Widening adds new phis to LoopPhis, inducing another round of 1193 // simplification on the wide IVs. 1194 while (!LoopPhis.empty()) { 1195 // Evaluate as many IV expressions as possible before widening any IVs. This 1196 // forces SCEV to set no-wrap flags before evaluating sign/zero 1197 // extension. The first time SCEV attempts to normalize sign/zero extension, 1198 // the result becomes final. So for the most predictable results, we delay 1199 // evaluation of sign/zero extend evaluation until needed, and avoid running 1200 // other SCEV based analysis prior to SimplifyAndExtend. 1201 do { 1202 PHINode *CurrIV = LoopPhis.pop_back_val(); 1203 1204 // Information about sign/zero extensions of CurrIV. 1205 WideIVVisitor WIV(SE, TD); 1206 1207 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1208 1209 if (WIV.WI.WidestNativeType) { 1210 WideIVMap[CurrIV] = WIV.WI; 1211 } 1212 } while(!LoopPhis.empty()); 1213 1214 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(), 1215 E = WideIVMap.end(); I != E; ++I) { 1216 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts); 1217 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1218 Changed = true; 1219 LoopPhis.push_back(WidePhi); 1220 } 1221 } 1222 WideIVMap.clear(); 1223 } 1224 } 1225 1226 //===----------------------------------------------------------------------===// 1227 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1228 //===----------------------------------------------------------------------===// 1229 1230 /// Check for expressions that ScalarEvolution generates to compute 1231 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1232 /// expanding them may incur additional cost (albeit in the loop preheader). 1233 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1234 ScalarEvolution *SE) { 1235 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1236 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1237 // precise expression, rather than a UDiv from the user's code. If we can't 1238 // find a UDiv in the code with some simple searching, assume the former and 1239 // forego rewriting the loop. 1240 if (isa<SCEVUDivExpr>(S)) { 1241 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1242 if (!OrigCond) return true; 1243 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1244 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1245 if (R != S) { 1246 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1247 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1248 if (L != S) 1249 return true; 1250 } 1251 } 1252 1253 if (EnableIVRewrite) 1254 return false; 1255 1256 // Recurse past add expressions, which commonly occur in the 1257 // BackedgeTakenCount. They may already exist in program code, and if not, 1258 // they are not too expensive rematerialize. 1259 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1260 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1261 I != E; ++I) { 1262 if (isHighCostExpansion(*I, BI, SE)) 1263 return true; 1264 } 1265 return false; 1266 } 1267 1268 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1269 // the exit condition. 1270 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1271 return true; 1272 1273 // If we haven't recognized an expensive SCEV patter, assume its an expression 1274 // produced by program code. 1275 return false; 1276 } 1277 1278 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1279 /// count expression can be safely and cheaply expanded into an instruction 1280 /// sequence that can be used by LinearFunctionTestReplace. 1281 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1282 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1283 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1284 BackedgeTakenCount->isZero()) 1285 return false; 1286 1287 if (!L->getExitingBlock()) 1288 return false; 1289 1290 // Can't rewrite non-branch yet. 1291 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1292 if (!BI) 1293 return false; 1294 1295 if (isHighCostExpansion(BackedgeTakenCount, BI, SE)) 1296 return false; 1297 1298 return true; 1299 } 1300 1301 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1302 /// through Truncs. 1303 /// 1304 /// TODO: Unnecessary when ForceLFTR is removed. 1305 static Type *getBackedgeIVType(Loop *L) { 1306 if (!L->getExitingBlock()) 1307 return 0; 1308 1309 // Can't rewrite non-branch yet. 1310 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1311 if (!BI) 1312 return 0; 1313 1314 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1315 if (!Cond) 1316 return 0; 1317 1318 Type *Ty = 0; 1319 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1320 OI != OE; ++OI) { 1321 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1322 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1323 if (!Trunc) 1324 continue; 1325 1326 return Trunc->getSrcTy(); 1327 } 1328 return Ty; 1329 } 1330 1331 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1332 /// invariant value to the phi. 1333 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1334 Instruction *IncI = dyn_cast<Instruction>(IncV); 1335 if (!IncI) 1336 return 0; 1337 1338 switch (IncI->getOpcode()) { 1339 case Instruction::Add: 1340 case Instruction::Sub: 1341 break; 1342 case Instruction::GetElementPtr: 1343 // An IV counter must preserve its type. 1344 if (IncI->getNumOperands() == 2) 1345 break; 1346 default: 1347 return 0; 1348 } 1349 1350 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1351 if (Phi && Phi->getParent() == L->getHeader()) { 1352 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1353 return Phi; 1354 return 0; 1355 } 1356 if (IncI->getOpcode() == Instruction::GetElementPtr) 1357 return 0; 1358 1359 // Allow add/sub to be commuted. 1360 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1361 if (Phi && Phi->getParent() == L->getHeader()) { 1362 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1363 return Phi; 1364 } 1365 return 0; 1366 } 1367 1368 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1369 /// that the current exit test is already sufficiently canonical. 1370 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1371 assert(L->getExitingBlock() && "expected loop exit"); 1372 1373 BasicBlock *LatchBlock = L->getLoopLatch(); 1374 // Don't bother with LFTR if the loop is not properly simplified. 1375 if (!LatchBlock) 1376 return false; 1377 1378 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1379 assert(BI && "expected exit branch"); 1380 1381 // Do LFTR to simplify the exit condition to an ICMP. 1382 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1383 if (!Cond) 1384 return true; 1385 1386 // Do LFTR to simplify the exit ICMP to EQ/NE 1387 ICmpInst::Predicate Pred = Cond->getPredicate(); 1388 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1389 return true; 1390 1391 // Look for a loop invariant RHS 1392 Value *LHS = Cond->getOperand(0); 1393 Value *RHS = Cond->getOperand(1); 1394 if (!isLoopInvariant(RHS, L, DT)) { 1395 if (!isLoopInvariant(LHS, L, DT)) 1396 return true; 1397 std::swap(LHS, RHS); 1398 } 1399 // Look for a simple IV counter LHS 1400 PHINode *Phi = dyn_cast<PHINode>(LHS); 1401 if (!Phi) 1402 Phi = getLoopPhiForCounter(LHS, L, DT); 1403 1404 if (!Phi) 1405 return true; 1406 1407 // Do LFTR if the exit condition's IV is *not* a simple counter. 1408 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1409 return Phi != getLoopPhiForCounter(IncV, L, DT); 1410 } 1411 1412 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1413 /// be rewritten) loop exit test. 1414 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1415 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1416 Value *IncV = Phi->getIncomingValue(LatchIdx); 1417 1418 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1419 UI != UE; ++UI) { 1420 if (*UI != Cond && *UI != IncV) return false; 1421 } 1422 1423 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1424 UI != UE; ++UI) { 1425 if (*UI != Cond && *UI != Phi) return false; 1426 } 1427 return true; 1428 } 1429 1430 /// FindLoopCounter - Find an affine IV in canonical form. 1431 /// 1432 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1433 /// 1434 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1435 /// This is difficult in general for SCEV because of potential overflow. But we 1436 /// could at least handle constant BECounts. 1437 static PHINode * 1438 FindLoopCounter(Loop *L, const SCEV *BECount, 1439 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1440 // I'm not sure how BECount could be a pointer type, but we definitely don't 1441 // want to LFTR that. 1442 if (BECount->getType()->isPointerTy()) 1443 return 0; 1444 1445 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1446 1447 Value *Cond = 1448 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1449 1450 // Loop over all of the PHI nodes, looking for a simple counter. 1451 PHINode *BestPhi = 0; 1452 const SCEV *BestInit = 0; 1453 BasicBlock *LatchBlock = L->getLoopLatch(); 1454 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1455 1456 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1457 PHINode *Phi = cast<PHINode>(I); 1458 if (!SE->isSCEVable(Phi->getType())) 1459 continue; 1460 1461 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1462 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1463 continue; 1464 1465 // AR may be a pointer type, while BECount is an integer type. 1466 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1467 // AR may not be a narrower type, or we may never exit. 1468 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1469 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1470 continue; 1471 1472 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1473 if (!Step || !Step->isOne()) 1474 continue; 1475 1476 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1477 Value *IncV = Phi->getIncomingValue(LatchIdx); 1478 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1479 continue; 1480 1481 const SCEV *Init = AR->getStart(); 1482 1483 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1484 // Don't force a live loop counter if another IV can be used. 1485 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1486 continue; 1487 1488 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1489 // also prefers integer to pointer IVs. 1490 if (BestInit->isZero() != Init->isZero()) { 1491 if (BestInit->isZero()) 1492 continue; 1493 } 1494 // If two IVs both count from zero or both count from nonzero then the 1495 // narrower is likely a dead phi that has been widened. Use the wider phi 1496 // to allow the other to be eliminated. 1497 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1498 continue; 1499 } 1500 BestPhi = Phi; 1501 BestInit = Init; 1502 } 1503 return BestPhi; 1504 } 1505 1506 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1507 /// loop to be a canonical != comparison against the incremented loop induction 1508 /// variable. This pass is able to rewrite the exit tests of any loop where the 1509 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1510 /// is actually a much broader range than just linear tests. 1511 Value *IndVarSimplify:: 1512 LinearFunctionTestReplace(Loop *L, 1513 const SCEV *BackedgeTakenCount, 1514 PHINode *IndVar, 1515 SCEVExpander &Rewriter) { 1516 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1517 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1518 1519 // LFTR can ignore IV overflow and truncate to the width of 1520 // BECount. This avoids materializing the add(zext(add)) expression. 1521 Type *CntTy = !EnableIVRewrite ? 1522 BackedgeTakenCount->getType() : IndVar->getType(); 1523 1524 const SCEV *IVLimit = BackedgeTakenCount; 1525 1526 // If the exiting block is not the same as the backedge block, we must compare 1527 // against the preincremented value, otherwise we prefer to compare against 1528 // the post-incremented value. 1529 Value *CmpIndVar; 1530 if (L->getExitingBlock() == L->getLoopLatch()) { 1531 // Add one to the "backedge-taken" count to get the trip count. 1532 // If this addition may overflow, we have to be more pessimistic and 1533 // cast the induction variable before doing the add. 1534 const SCEV *N = 1535 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1)); 1536 if (CntTy == IVLimit->getType()) 1537 IVLimit = N; 1538 else { 1539 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0); 1540 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1541 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1542 // No overflow. Cast the sum. 1543 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy); 1544 } else { 1545 // Potential overflow. Cast before doing the add. 1546 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1547 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1)); 1548 } 1549 } 1550 // The BackedgeTaken expression contains the number of times that the 1551 // backedge branches to the loop header. This is one less than the 1552 // number of times the loop executes, so use the incremented indvar. 1553 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1554 } else { 1555 // We have to use the preincremented value... 1556 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1557 CmpIndVar = IndVar; 1558 } 1559 1560 // For unit stride, IVLimit = Start + BECount with 2's complement overflow. 1561 // So for, non-zero start compute the IVLimit here. 1562 bool isPtrIV = false; 1563 Type *CmpTy = CntTy; 1564 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1565 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1566 if (!AR->getStart()->isZero()) { 1567 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1568 const SCEV *IVInit = AR->getStart(); 1569 1570 // For pointer types, sign extend BECount in order to materialize a GEP. 1571 // Note that for without EnableIVRewrite, we never run SCEVExpander on a 1572 // pointer type, because we must preserve the existing GEPs. Instead we 1573 // directly generate a GEP later. 1574 if (IVInit->getType()->isPointerTy()) { 1575 isPtrIV = true; 1576 CmpTy = SE->getEffectiveSCEVType(IVInit->getType()); 1577 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy); 1578 } 1579 // For integer types, truncate the IV before computing IVInit + BECount. 1580 else { 1581 if (SE->getTypeSizeInBits(IVInit->getType()) 1582 > SE->getTypeSizeInBits(CmpTy)) 1583 IVInit = SE->getTruncateExpr(IVInit, CmpTy); 1584 1585 IVLimit = SE->getAddExpr(IVInit, IVLimit); 1586 } 1587 } 1588 // Expand the code for the iteration count. 1589 IRBuilder<> Builder(BI); 1590 1591 assert(SE->isLoopInvariant(IVLimit, L) && 1592 "Computed iteration count is not loop invariant!"); 1593 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI); 1594 1595 // Create a gep for IVInit + IVLimit from on an existing pointer base. 1596 assert(isPtrIV == IndVar->getType()->isPointerTy() && 1597 "IndVar type must match IVInit type"); 1598 if (isPtrIV) { 1599 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1600 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter"); 1601 assert(SE->getSizeOfExpr( 1602 cast<PointerType>(IVStart->getType())->getElementType())->isOne() 1603 && "unit stride pointer IV must be i8*"); 1604 1605 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1606 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit"); 1607 Builder.SetInsertPoint(BI); 1608 } 1609 1610 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1611 ICmpInst::Predicate P; 1612 if (L->contains(BI->getSuccessor(0))) 1613 P = ICmpInst::ICMP_NE; 1614 else 1615 P = ICmpInst::ICMP_EQ; 1616 1617 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1618 << " LHS:" << *CmpIndVar << '\n' 1619 << " op:\t" 1620 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1621 << " RHS:\t" << *ExitCnt << "\n" 1622 << " Expr:\t" << *IVLimit << "\n"); 1623 1624 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1625 > SE->getTypeSizeInBits(CmpTy)) { 1626 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv"); 1627 } 1628 1629 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1630 Value *OrigCond = BI->getCondition(); 1631 // It's tempting to use replaceAllUsesWith here to fully replace the old 1632 // comparison, but that's not immediately safe, since users of the old 1633 // comparison may not be dominated by the new comparison. Instead, just 1634 // update the branch to use the new comparison; in the common case this 1635 // will make old comparison dead. 1636 BI->setCondition(Cond); 1637 DeadInsts.push_back(OrigCond); 1638 1639 ++NumLFTR; 1640 Changed = true; 1641 return Cond; 1642 } 1643 1644 //===----------------------------------------------------------------------===// 1645 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1646 //===----------------------------------------------------------------------===// 1647 1648 /// If there's a single exit block, sink any loop-invariant values that 1649 /// were defined in the preheader but not used inside the loop into the 1650 /// exit block to reduce register pressure in the loop. 1651 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1652 BasicBlock *ExitBlock = L->getExitBlock(); 1653 if (!ExitBlock) return; 1654 1655 BasicBlock *Preheader = L->getLoopPreheader(); 1656 if (!Preheader) return; 1657 1658 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1659 BasicBlock::iterator I = Preheader->getTerminator(); 1660 while (I != Preheader->begin()) { 1661 --I; 1662 // New instructions were inserted at the end of the preheader. 1663 if (isa<PHINode>(I)) 1664 break; 1665 1666 // Don't move instructions which might have side effects, since the side 1667 // effects need to complete before instructions inside the loop. Also don't 1668 // move instructions which might read memory, since the loop may modify 1669 // memory. Note that it's okay if the instruction might have undefined 1670 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1671 // block. 1672 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1673 continue; 1674 1675 // Skip debug info intrinsics. 1676 if (isa<DbgInfoIntrinsic>(I)) 1677 continue; 1678 1679 // Skip landingpad instructions. 1680 if (isa<LandingPadInst>(I)) 1681 continue; 1682 1683 // Don't sink static AllocaInsts out of the entry block, which would 1684 // turn them into dynamic allocas! 1685 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 1686 if (AI->isStaticAlloca()) 1687 continue; 1688 1689 // Determine if there is a use in or before the loop (direct or 1690 // otherwise). 1691 bool UsedInLoop = false; 1692 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1693 UI != UE; ++UI) { 1694 User *U = *UI; 1695 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1696 if (PHINode *P = dyn_cast<PHINode>(U)) { 1697 unsigned i = 1698 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1699 UseBB = P->getIncomingBlock(i); 1700 } 1701 if (UseBB == Preheader || L->contains(UseBB)) { 1702 UsedInLoop = true; 1703 break; 1704 } 1705 } 1706 1707 // If there is, the def must remain in the preheader. 1708 if (UsedInLoop) 1709 continue; 1710 1711 // Otherwise, sink it to the exit block. 1712 Instruction *ToMove = I; 1713 bool Done = false; 1714 1715 if (I != Preheader->begin()) { 1716 // Skip debug info intrinsics. 1717 do { 1718 --I; 1719 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1720 1721 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1722 Done = true; 1723 } else { 1724 Done = true; 1725 } 1726 1727 ToMove->moveBefore(InsertPt); 1728 if (Done) break; 1729 InsertPt = ToMove; 1730 } 1731 } 1732 1733 //===----------------------------------------------------------------------===// 1734 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1735 //===----------------------------------------------------------------------===// 1736 1737 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1738 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1739 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1740 // canonicalization can be a pessimization without LSR to "clean up" 1741 // afterwards. 1742 // - We depend on having a preheader; in particular, 1743 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1744 // and we're in trouble if we can't find the induction variable even when 1745 // we've manually inserted one. 1746 if (!L->isLoopSimplifyForm()) 1747 return false; 1748 1749 if (EnableIVRewrite) 1750 IU = &getAnalysis<IVUsers>(); 1751 LI = &getAnalysis<LoopInfo>(); 1752 SE = &getAnalysis<ScalarEvolution>(); 1753 DT = &getAnalysis<DominatorTree>(); 1754 TD = getAnalysisIfAvailable<TargetData>(); 1755 1756 DeadInsts.clear(); 1757 Changed = false; 1758 1759 // If there are any floating-point recurrences, attempt to 1760 // transform them to use integer recurrences. 1761 RewriteNonIntegerIVs(L); 1762 1763 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1764 1765 // Create a rewriter object which we'll use to transform the code with. 1766 SCEVExpander Rewriter(*SE, "indvars"); 1767 #ifndef NDEBUG 1768 Rewriter.setDebugType(DEBUG_TYPE); 1769 #endif 1770 1771 // Eliminate redundant IV users. 1772 // 1773 // Simplification works best when run before other consumers of SCEV. We 1774 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1775 // other expressions involving loop IVs have been evaluated. This helps SCEV 1776 // set no-wrap flags before normalizing sign/zero extension. 1777 if (!EnableIVRewrite) { 1778 Rewriter.disableCanonicalMode(); 1779 SimplifyAndExtend(L, Rewriter, LPM); 1780 } 1781 1782 // Check to see if this loop has a computable loop-invariant execution count. 1783 // If so, this means that we can compute the final value of any expressions 1784 // that are recurrent in the loop, and substitute the exit values from the 1785 // loop into any instructions outside of the loop that use the final values of 1786 // the current expressions. 1787 // 1788 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1789 RewriteLoopExitValues(L, Rewriter); 1790 1791 // Eliminate redundant IV users. 1792 if (EnableIVRewrite) 1793 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); 1794 1795 // Eliminate redundant IV cycles. 1796 if (!EnableIVRewrite) 1797 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1798 1799 // Compute the type of the largest recurrence expression, and decide whether 1800 // a canonical induction variable should be inserted. 1801 Type *LargestType = 0; 1802 bool NeedCannIV = false; 1803 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1804 if (EnableIVRewrite && ExpandBECount) { 1805 // If we have a known trip count and a single exit block, we'll be 1806 // rewriting the loop exit test condition below, which requires a 1807 // canonical induction variable. 1808 NeedCannIV = true; 1809 Type *Ty = BackedgeTakenCount->getType(); 1810 if (!EnableIVRewrite) { 1811 // In this mode, SimplifyIVUsers may have already widened the IV used by 1812 // the backedge test and inserted a Trunc on the compare's operand. Get 1813 // the wider type to avoid creating a redundant narrow IV only used by the 1814 // loop test. 1815 LargestType = getBackedgeIVType(L); 1816 } 1817 if (!LargestType || 1818 SE->getTypeSizeInBits(Ty) > 1819 SE->getTypeSizeInBits(LargestType)) 1820 LargestType = SE->getEffectiveSCEVType(Ty); 1821 } 1822 if (EnableIVRewrite) { 1823 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1824 NeedCannIV = true; 1825 Type *Ty = 1826 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1827 if (!LargestType || 1828 SE->getTypeSizeInBits(Ty) > 1829 SE->getTypeSizeInBits(LargestType)) 1830 LargestType = Ty; 1831 } 1832 } 1833 1834 // Now that we know the largest of the induction variable expressions 1835 // in this loop, insert a canonical induction variable of the largest size. 1836 PHINode *IndVar = 0; 1837 if (NeedCannIV) { 1838 // Check to see if the loop already has any canonical-looking induction 1839 // variables. If any are present and wider than the planned canonical 1840 // induction variable, temporarily remove them, so that the Rewriter 1841 // doesn't attempt to reuse them. 1842 SmallVector<PHINode *, 2> OldCannIVs; 1843 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1844 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1845 SE->getTypeSizeInBits(LargestType)) 1846 OldCannIV->removeFromParent(); 1847 else 1848 break; 1849 OldCannIVs.push_back(OldCannIV); 1850 } 1851 1852 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1853 1854 ++NumInserted; 1855 Changed = true; 1856 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1857 1858 // Now that the official induction variable is established, reinsert 1859 // any old canonical-looking variables after it so that the IR remains 1860 // consistent. They will be deleted as part of the dead-PHI deletion at 1861 // the end of the pass. 1862 while (!OldCannIVs.empty()) { 1863 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1864 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); 1865 } 1866 } 1867 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { 1868 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1869 } 1870 // If we have a trip count expression, rewrite the loop's exit condition 1871 // using it. We can currently only handle loops with a single exit. 1872 Value *NewICmp = 0; 1873 if (ExpandBECount && IndVar) { 1874 // Check preconditions for proper SCEVExpander operation. SCEV does not 1875 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1876 // pass that uses the SCEVExpander must do it. This does not work well for 1877 // loop passes because SCEVExpander makes assumptions about all loops, while 1878 // LoopPassManager only forces the current loop to be simplified. 1879 // 1880 // FIXME: SCEV expansion has no way to bail out, so the caller must 1881 // explicitly check any assumptions made by SCEV. Brittle. 1882 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1883 if (!AR || AR->getLoop()->getLoopPreheader()) 1884 NewICmp = 1885 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 1886 } 1887 // Rewrite IV-derived expressions. 1888 if (EnableIVRewrite) 1889 RewriteIVExpressions(L, Rewriter); 1890 1891 // Clear the rewriter cache, because values that are in the rewriter's cache 1892 // can be deleted in the loop below, causing the AssertingVH in the cache to 1893 // trigger. 1894 Rewriter.clear(); 1895 1896 // Now that we're done iterating through lists, clean up any instructions 1897 // which are now dead. 1898 while (!DeadInsts.empty()) 1899 if (Instruction *Inst = 1900 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1901 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1902 1903 // The Rewriter may not be used from this point on. 1904 1905 // Loop-invariant instructions in the preheader that aren't used in the 1906 // loop may be sunk below the loop to reduce register pressure. 1907 SinkUnusedInvariants(L); 1908 1909 // For completeness, inform IVUsers of the IV use in the newly-created 1910 // loop exit test instruction. 1911 if (IU && NewICmp) { 1912 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 1913 if (NewICmpInst) 1914 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); 1915 } 1916 // Clean up dead instructions. 1917 Changed |= DeleteDeadPHIs(L->getHeader()); 1918 // Check a post-condition. 1919 assert(L->isLCSSAForm(*DT) && 1920 "Indvars did not leave the loop in lcssa form!"); 1921 1922 // Verify that LFTR, and any other change have not interfered with SCEV's 1923 // ability to compute trip count. 1924 #ifndef NDEBUG 1925 if (!EnableIVRewrite && VerifyIndvars && 1926 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1927 SE->forgetLoop(L); 1928 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1929 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1930 SE->getTypeSizeInBits(NewBECount->getType())) 1931 NewBECount = SE->getTruncateOrNoop(NewBECount, 1932 BackedgeTakenCount->getType()); 1933 else 1934 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1935 NewBECount->getType()); 1936 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1937 } 1938 #endif 1939 1940 return Changed; 1941 } 1942