1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 } 89 90 namespace { 91 class IndVarSimplify : public LoopPass { 92 LoopInfo *LI; 93 ScalarEvolution *SE; 94 DominatorTree *DT; 95 TargetLibraryInfo *TLI; 96 const TargetTransformInfo *TTI; 97 98 SmallVector<WeakVH, 16> DeadInsts; 99 bool Changed; 100 public: 101 102 static char ID; // Pass identification, replacement for typeid 103 IndVarSimplify() 104 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 105 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.addRequired<DominatorTreeWrapperPass>(); 112 AU.addRequired<LoopInfoWrapperPass>(); 113 AU.addRequired<ScalarEvolutionWrapperPass>(); 114 AU.addRequiredID(LoopSimplifyID); 115 AU.addRequiredID(LCSSAID); 116 AU.addPreserved<GlobalsAAWrapperPass>(); 117 AU.addPreserved<ScalarEvolutionWrapperPass>(); 118 AU.addPreservedID(LoopSimplifyID); 119 AU.addPreservedID(LCSSAID); 120 AU.setPreservesCFG(); 121 } 122 123 private: 124 void releaseMemory() override { 125 DeadInsts.clear(); 126 } 127 128 bool isValidRewrite(Value *FromVal, Value *ToVal); 129 130 void HandleFloatingPointIV(Loop *L, PHINode *PH); 131 void RewriteNonIntegerIVs(Loop *L); 132 133 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 134 135 bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 136 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 137 138 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 139 PHINode *IndVar, SCEVExpander &Rewriter); 140 141 void SinkUnusedInvariants(Loop *L); 142 143 Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 144 Instruction *InsertPt, Type *Ty); 145 }; 146 } 147 148 char IndVarSimplify::ID = 0; 149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 150 "Induction Variable Simplification", false, false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 155 INITIALIZE_PASS_DEPENDENCY(LCSSA) 156 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 157 "Induction Variable Simplification", false, false) 158 159 Pass *llvm::createIndVarSimplifyPass() { 160 return new IndVarSimplify(); 161 } 162 163 /// isValidRewrite - Return true if the SCEV expansion generated by the 164 /// rewriter can replace the original value. SCEV guarantees that it 165 /// produces the same value, but the way it is produced may be illegal IR. 166 /// Ideally, this function will only be called for verification. 167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 168 // If an SCEV expression subsumed multiple pointers, its expansion could 169 // reassociate the GEP changing the base pointer. This is illegal because the 170 // final address produced by a GEP chain must be inbounds relative to its 171 // underlying object. Otherwise basic alias analysis, among other things, 172 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 173 // producing an expression involving multiple pointers. Until then, we must 174 // bail out here. 175 // 176 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 177 // because it understands lcssa phis while SCEV does not. 178 Value *FromPtr = FromVal; 179 Value *ToPtr = ToVal; 180 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 181 FromPtr = GEP->getPointerOperand(); 182 } 183 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 184 ToPtr = GEP->getPointerOperand(); 185 } 186 if (FromPtr != FromVal || ToPtr != ToVal) { 187 // Quickly check the common case 188 if (FromPtr == ToPtr) 189 return true; 190 191 // SCEV may have rewritten an expression that produces the GEP's pointer 192 // operand. That's ok as long as the pointer operand has the same base 193 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 194 // base of a recurrence. This handles the case in which SCEV expansion 195 // converts a pointer type recurrence into a nonrecurrent pointer base 196 // indexed by an integer recurrence. 197 198 // If the GEP base pointer is a vector of pointers, abort. 199 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 200 return false; 201 202 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 203 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 204 if (FromBase == ToBase) 205 return true; 206 207 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 208 << *FromBase << " != " << *ToBase << "\n"); 209 210 return false; 211 } 212 return true; 213 } 214 215 /// Determine the insertion point for this user. By default, insert immediately 216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 218 /// common dominator for the incoming blocks. 219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 220 DominatorTree *DT) { 221 PHINode *PHI = dyn_cast<PHINode>(User); 222 if (!PHI) 223 return User; 224 225 Instruction *InsertPt = nullptr; 226 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 227 if (PHI->getIncomingValue(i) != Def) 228 continue; 229 230 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 231 if (!InsertPt) { 232 InsertPt = InsertBB->getTerminator(); 233 continue; 234 } 235 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 236 InsertPt = InsertBB->getTerminator(); 237 } 238 assert(InsertPt && "Missing phi operand"); 239 assert((!isa<Instruction>(Def) || 240 DT->dominates(cast<Instruction>(Def), InsertPt)) && 241 "def does not dominate all uses"); 242 return InsertPt; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 247 //===----------------------------------------------------------------------===// 248 249 /// ConvertToSInt - Convert APF to an integer, if possible. 250 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 251 bool isExact = false; 252 // See if we can convert this to an int64_t 253 uint64_t UIntVal; 254 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 255 &isExact) != APFloat::opOK || !isExact) 256 return false; 257 IntVal = UIntVal; 258 return true; 259 } 260 261 /// HandleFloatingPointIV - If the loop has floating induction variable 262 /// then insert corresponding integer induction variable if possible. 263 /// For example, 264 /// for(double i = 0; i < 10000; ++i) 265 /// bar(i) 266 /// is converted into 267 /// for(int i = 0; i < 10000; ++i) 268 /// bar((double)i); 269 /// 270 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 271 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 272 unsigned BackEdge = IncomingEdge^1; 273 274 // Check incoming value. 275 ConstantFP *InitValueVal = 276 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 277 278 int64_t InitValue; 279 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 280 return; 281 282 // Check IV increment. Reject this PN if increment operation is not 283 // an add or increment value can not be represented by an integer. 284 BinaryOperator *Incr = 285 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 286 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 287 288 // If this is not an add of the PHI with a constantfp, or if the constant fp 289 // is not an integer, bail out. 290 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 291 int64_t IncValue; 292 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 293 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 294 return; 295 296 // Check Incr uses. One user is PN and the other user is an exit condition 297 // used by the conditional terminator. 298 Value::user_iterator IncrUse = Incr->user_begin(); 299 Instruction *U1 = cast<Instruction>(*IncrUse++); 300 if (IncrUse == Incr->user_end()) return; 301 Instruction *U2 = cast<Instruction>(*IncrUse++); 302 if (IncrUse != Incr->user_end()) return; 303 304 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 305 // only used by a branch, we can't transform it. 306 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 307 if (!Compare) 308 Compare = dyn_cast<FCmpInst>(U2); 309 if (!Compare || !Compare->hasOneUse() || 310 !isa<BranchInst>(Compare->user_back())) 311 return; 312 313 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 314 315 // We need to verify that the branch actually controls the iteration count 316 // of the loop. If not, the new IV can overflow and no one will notice. 317 // The branch block must be in the loop and one of the successors must be out 318 // of the loop. 319 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 320 if (!L->contains(TheBr->getParent()) || 321 (L->contains(TheBr->getSuccessor(0)) && 322 L->contains(TheBr->getSuccessor(1)))) 323 return; 324 325 326 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 327 // transform it. 328 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 329 int64_t ExitValue; 330 if (ExitValueVal == nullptr || 331 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 332 return; 333 334 // Find new predicate for integer comparison. 335 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 336 switch (Compare->getPredicate()) { 337 default: return; // Unknown comparison. 338 case CmpInst::FCMP_OEQ: 339 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 340 case CmpInst::FCMP_ONE: 341 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 342 case CmpInst::FCMP_OGT: 343 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 344 case CmpInst::FCMP_OGE: 345 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 346 case CmpInst::FCMP_OLT: 347 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 348 case CmpInst::FCMP_OLE: 349 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 350 } 351 352 // We convert the floating point induction variable to a signed i32 value if 353 // we can. This is only safe if the comparison will not overflow in a way 354 // that won't be trapped by the integer equivalent operations. Check for this 355 // now. 356 // TODO: We could use i64 if it is native and the range requires it. 357 358 // The start/stride/exit values must all fit in signed i32. 359 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 360 return; 361 362 // If not actually striding (add x, 0.0), avoid touching the code. 363 if (IncValue == 0) 364 return; 365 366 // Positive and negative strides have different safety conditions. 367 if (IncValue > 0) { 368 // If we have a positive stride, we require the init to be less than the 369 // exit value. 370 if (InitValue >= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(ExitValue-InitValue); 374 // Check for infinite loop, either: 375 // while (i <= Exit) or until (i > Exit) 376 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 392 return; 393 394 } else { 395 // If we have a negative stride, we require the init to be greater than the 396 // exit value. 397 if (InitValue <= ExitValue) 398 return; 399 400 uint32_t Range = uint32_t(InitValue-ExitValue); 401 // Check for infinite loop, either: 402 // while (i >= Exit) or until (i < Exit) 403 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 404 if (++Range == 0) return; // Range overflows. 405 } 406 407 unsigned Leftover = Range % uint32_t(-IncValue); 408 409 // If this is an equality comparison, we require that the strided value 410 // exactly land on the exit value, otherwise the IV condition will wrap 411 // around and do things the fp IV wouldn't. 412 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 413 Leftover != 0) 414 return; 415 416 // If the stride would wrap around the i32 before exiting, we can't 417 // transform the IV. 418 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 419 return; 420 } 421 422 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 423 424 // Insert new integer induction variable. 425 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 426 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 427 PN->getIncomingBlock(IncomingEdge)); 428 429 Value *NewAdd = 430 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 431 Incr->getName()+".int", Incr); 432 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 433 434 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 435 ConstantInt::get(Int32Ty, ExitValue), 436 Compare->getName()); 437 438 // In the following deletions, PN may become dead and may be deleted. 439 // Use a WeakVH to observe whether this happens. 440 WeakVH WeakPH = PN; 441 442 // Delete the old floating point exit comparison. The branch starts using the 443 // new comparison. 444 NewCompare->takeName(Compare); 445 Compare->replaceAllUsesWith(NewCompare); 446 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 447 448 // Delete the old floating point increment. 449 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 450 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 451 452 // If the FP induction variable still has uses, this is because something else 453 // in the loop uses its value. In order to canonicalize the induction 454 // variable, we chose to eliminate the IV and rewrite it in terms of an 455 // int->fp cast. 456 // 457 // We give preference to sitofp over uitofp because it is faster on most 458 // platforms. 459 if (WeakPH) { 460 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 461 PN->getParent()->getFirstInsertionPt()); 462 PN->replaceAllUsesWith(Conv); 463 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 464 } 465 Changed = true; 466 } 467 468 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 469 // First step. Check to see if there are any floating-point recurrences. 470 // If there are, change them into integer recurrences, permitting analysis by 471 // the SCEV routines. 472 // 473 BasicBlock *Header = L->getHeader(); 474 475 SmallVector<WeakVH, 8> PHIs; 476 for (BasicBlock::iterator I = Header->begin(); 477 PHINode *PN = dyn_cast<PHINode>(I); ++I) 478 PHIs.push_back(PN); 479 480 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 481 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 482 HandleFloatingPointIV(L, PN); 483 484 // If the loop previously had floating-point IV, ScalarEvolution 485 // may not have been able to compute a trip count. Now that we've done some 486 // re-writing, the trip count may be computable. 487 if (Changed) 488 SE->forgetLoop(L); 489 } 490 491 namespace { 492 // Collect information about PHI nodes which can be transformed in 493 // RewriteLoopExitValues. 494 struct RewritePhi { 495 PHINode *PN; 496 unsigned Ith; // Ith incoming value. 497 Value *Val; // Exit value after expansion. 498 bool HighCost; // High Cost when expansion. 499 bool SafePhi; // LCSSASafePhiForRAUW. 500 501 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 502 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 503 }; 504 } 505 506 Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 507 Loop *L, Instruction *InsertPt, 508 Type *ResultTy) { 509 // Before expanding S into an expensive LLVM expression, see if we can use an 510 // already existing value as the expansion for S. 511 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 512 if (ExistingValue->getType() == ResultTy) 513 return ExistingValue; 514 515 // We didn't find anything, fall back to using SCEVExpander. 516 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 517 } 518 519 //===----------------------------------------------------------------------===// 520 // RewriteLoopExitValues - Optimize IV users outside the loop. 521 // As a side effect, reduces the amount of IV processing within the loop. 522 //===----------------------------------------------------------------------===// 523 524 /// RewriteLoopExitValues - Check to see if this loop has a computable 525 /// loop-invariant execution count. If so, this means that we can compute the 526 /// final value of any expressions that are recurrent in the loop, and 527 /// substitute the exit values from the loop into any instructions outside of 528 /// the loop that use the final values of the current expressions. 529 /// 530 /// This is mostly redundant with the regular IndVarSimplify activities that 531 /// happen later, except that it's more powerful in some cases, because it's 532 /// able to brute-force evaluate arbitrary instructions as long as they have 533 /// constant operands at the beginning of the loop. 534 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 535 // Verify the input to the pass in already in LCSSA form. 536 assert(L->isLCSSAForm(*DT)); 537 538 SmallVector<BasicBlock*, 8> ExitBlocks; 539 L->getUniqueExitBlocks(ExitBlocks); 540 541 SmallVector<RewritePhi, 8> RewritePhiSet; 542 // Find all values that are computed inside the loop, but used outside of it. 543 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 544 // the exit blocks of the loop to find them. 545 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 546 BasicBlock *ExitBB = ExitBlocks[i]; 547 548 // If there are no PHI nodes in this exit block, then no values defined 549 // inside the loop are used on this path, skip it. 550 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 551 if (!PN) continue; 552 553 unsigned NumPreds = PN->getNumIncomingValues(); 554 555 // We would like to be able to RAUW single-incoming value PHI nodes. We 556 // have to be certain this is safe even when this is an LCSSA PHI node. 557 // While the computed exit value is no longer varying in *this* loop, the 558 // exit block may be an exit block for an outer containing loop as well, 559 // the exit value may be varying in the outer loop, and thus it may still 560 // require an LCSSA PHI node. The safe case is when this is 561 // single-predecessor PHI node (LCSSA) and the exit block containing it is 562 // part of the enclosing loop, or this is the outer most loop of the nest. 563 // In either case the exit value could (at most) be varying in the same 564 // loop body as the phi node itself. Thus if it is in turn used outside of 565 // an enclosing loop it will only be via a separate LCSSA node. 566 bool LCSSASafePhiForRAUW = 567 NumPreds == 1 && 568 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 569 570 // Iterate over all of the PHI nodes. 571 BasicBlock::iterator BBI = ExitBB->begin(); 572 while ((PN = dyn_cast<PHINode>(BBI++))) { 573 if (PN->use_empty()) 574 continue; // dead use, don't replace it 575 576 // SCEV only supports integer expressions for now. 577 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 578 continue; 579 580 // It's necessary to tell ScalarEvolution about this explicitly so that 581 // it can walk the def-use list and forget all SCEVs, as it may not be 582 // watching the PHI itself. Once the new exit value is in place, there 583 // may not be a def-use connection between the loop and every instruction 584 // which got a SCEVAddRecExpr for that loop. 585 SE->forgetValue(PN); 586 587 // Iterate over all of the values in all the PHI nodes. 588 for (unsigned i = 0; i != NumPreds; ++i) { 589 // If the value being merged in is not integer or is not defined 590 // in the loop, skip it. 591 Value *InVal = PN->getIncomingValue(i); 592 if (!isa<Instruction>(InVal)) 593 continue; 594 595 // If this pred is for a subloop, not L itself, skip it. 596 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 597 continue; // The Block is in a subloop, skip it. 598 599 // Check that InVal is defined in the loop. 600 Instruction *Inst = cast<Instruction>(InVal); 601 if (!L->contains(Inst)) 602 continue; 603 604 // Okay, this instruction has a user outside of the current loop 605 // and varies predictably *inside* the loop. Evaluate the value it 606 // contains when the loop exits, if possible. 607 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 608 if (!SE->isLoopInvariant(ExitValue, L) || 609 !isSafeToExpand(ExitValue, *SE)) 610 continue; 611 612 // Computing the value outside of the loop brings no benefit if : 613 // - it is definitely used inside the loop in a way which can not be 614 // optimized away. 615 // - no use outside of the loop can take advantage of hoisting the 616 // computation out of the loop 617 if (ExitValue->getSCEVType()>=scMulExpr) { 618 unsigned NumHardInternalUses = 0; 619 unsigned NumSoftExternalUses = 0; 620 unsigned NumUses = 0; 621 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 622 IB != IE && NumUses <= 6; ++IB) { 623 Instruction *UseInstr = cast<Instruction>(*IB); 624 unsigned Opc = UseInstr->getOpcode(); 625 NumUses++; 626 if (L->contains(UseInstr)) { 627 if (Opc == Instruction::Call || Opc == Instruction::Ret) 628 NumHardInternalUses++; 629 } else { 630 if (Opc == Instruction::PHI) { 631 // Do not count the Phi as a use. LCSSA may have inserted 632 // plenty of trivial ones. 633 NumUses--; 634 for (auto PB = UseInstr->user_begin(), 635 PE = UseInstr->user_end(); 636 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 637 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 638 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 639 NumSoftExternalUses++; 640 } 641 continue; 642 } 643 if (Opc != Instruction::Call && Opc != Instruction::Ret) 644 NumSoftExternalUses++; 645 } 646 } 647 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 648 continue; 649 } 650 651 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 652 Value *ExitVal = 653 ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 654 655 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 656 << " LoopVal = " << *Inst << "\n"); 657 658 if (!isValidRewrite(Inst, ExitVal)) { 659 DeadInsts.push_back(ExitVal); 660 continue; 661 } 662 663 // Collect all the candidate PHINodes to be rewritten. 664 RewritePhiSet.push_back( 665 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 666 } 667 } 668 } 669 670 bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet); 671 672 // Transformation. 673 for (const RewritePhi &Phi : RewritePhiSet) { 674 PHINode *PN = Phi.PN; 675 Value *ExitVal = Phi.Val; 676 677 // Only do the rewrite when the ExitValue can be expanded cheaply. 678 // If LoopCanBeDel is true, rewrite exit value aggressively. 679 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 680 DeadInsts.push_back(ExitVal); 681 continue; 682 } 683 684 Changed = true; 685 ++NumReplaced; 686 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 687 PN->setIncomingValue(Phi.Ith, ExitVal); 688 689 // If this instruction is dead now, delete it. Don't do it now to avoid 690 // invalidating iterators. 691 if (isInstructionTriviallyDead(Inst, TLI)) 692 DeadInsts.push_back(Inst); 693 694 // If we determined that this PHI is safe to replace even if an LCSSA 695 // PHI, do so. 696 if (Phi.SafePhi) { 697 PN->replaceAllUsesWith(ExitVal); 698 PN->eraseFromParent(); 699 } 700 } 701 702 // The insertion point instruction may have been deleted; clear it out 703 // so that the rewriter doesn't trip over it later. 704 Rewriter.clearInsertPoint(); 705 } 706 707 /// CanLoopBeDeleted - Check whether it is possible to delete the loop after 708 /// rewriting exit value. If it is possible, ignore ReplaceExitValue and 709 /// do rewriting aggressively. 710 bool IndVarSimplify::CanLoopBeDeleted( 711 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 712 713 BasicBlock *Preheader = L->getLoopPreheader(); 714 // If there is no preheader, the loop will not be deleted. 715 if (!Preheader) 716 return false; 717 718 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 719 // We obviate multiple ExitingBlocks case for simplicity. 720 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 721 // after exit value rewriting, we can enhance the logic here. 722 SmallVector<BasicBlock *, 4> ExitingBlocks; 723 L->getExitingBlocks(ExitingBlocks); 724 SmallVector<BasicBlock *, 8> ExitBlocks; 725 L->getUniqueExitBlocks(ExitBlocks); 726 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 727 return false; 728 729 BasicBlock *ExitBlock = ExitBlocks[0]; 730 BasicBlock::iterator BI = ExitBlock->begin(); 731 while (PHINode *P = dyn_cast<PHINode>(BI)) { 732 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 733 734 // If the Incoming value of P is found in RewritePhiSet, we know it 735 // could be rewritten to use a loop invariant value in transformation 736 // phase later. Skip it in the loop invariant check below. 737 bool found = false; 738 for (const RewritePhi &Phi : RewritePhiSet) { 739 unsigned i = Phi.Ith; 740 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 741 found = true; 742 break; 743 } 744 } 745 746 Instruction *I; 747 if (!found && (I = dyn_cast<Instruction>(Incoming))) 748 if (!L->hasLoopInvariantOperands(I)) 749 return false; 750 751 ++BI; 752 } 753 754 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 755 LI != LE; ++LI) { 756 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 757 ++BI) { 758 if (BI->mayHaveSideEffects()) 759 return false; 760 } 761 } 762 763 return true; 764 } 765 766 //===----------------------------------------------------------------------===// 767 // IV Widening - Extend the width of an IV to cover its widest uses. 768 //===----------------------------------------------------------------------===// 769 770 namespace { 771 // Collect information about induction variables that are used by sign/zero 772 // extend operations. This information is recorded by CollectExtend and 773 // provides the input to WidenIV. 774 struct WideIVInfo { 775 PHINode *NarrowIV; 776 Type *WidestNativeType; // Widest integer type created [sz]ext 777 bool IsSigned; // Was a sext user seen before a zext? 778 779 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 780 IsSigned(false) {} 781 }; 782 } 783 784 /// visitCast - Update information about the induction variable that is 785 /// extended by this sign or zero extend operation. This is used to determine 786 /// the final width of the IV before actually widening it. 787 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 788 const TargetTransformInfo *TTI) { 789 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 790 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 791 return; 792 793 Type *Ty = Cast->getType(); 794 uint64_t Width = SE->getTypeSizeInBits(Ty); 795 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 796 return; 797 798 // Cast is either an sext or zext up to this point. 799 // We should not widen an indvar if arithmetics on the wider indvar are more 800 // expensive than those on the narrower indvar. We check only the cost of ADD 801 // because at least an ADD is required to increment the induction variable. We 802 // could compute more comprehensively the cost of all instructions on the 803 // induction variable when necessary. 804 if (TTI && 805 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 806 TTI->getArithmeticInstrCost(Instruction::Add, 807 Cast->getOperand(0)->getType())) { 808 return; 809 } 810 811 if (!WI.WidestNativeType) { 812 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 813 WI.IsSigned = IsSigned; 814 return; 815 } 816 817 // We extend the IV to satisfy the sign of its first user, arbitrarily. 818 if (WI.IsSigned != IsSigned) 819 return; 820 821 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 822 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 823 } 824 825 namespace { 826 827 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 828 /// WideIV that computes the same value as the Narrow IV def. This avoids 829 /// caching Use* pointers. 830 struct NarrowIVDefUse { 831 Instruction *NarrowDef; 832 Instruction *NarrowUse; 833 Instruction *WideDef; 834 835 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 836 837 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 838 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 839 }; 840 841 /// WidenIV - The goal of this transform is to remove sign and zero extends 842 /// without creating any new induction variables. To do this, it creates a new 843 /// phi of the wider type and redirects all users, either removing extends or 844 /// inserting truncs whenever we stop propagating the type. 845 /// 846 class WidenIV { 847 // Parameters 848 PHINode *OrigPhi; 849 Type *WideType; 850 bool IsSigned; 851 852 // True if the narrow induction variable is never negative. Tracking this 853 // information lets us use a sign extension instead of a zero extension or 854 // vice versa, when profitable and legal. 855 bool NeverNegative; 856 857 // Context 858 LoopInfo *LI; 859 Loop *L; 860 ScalarEvolution *SE; 861 DominatorTree *DT; 862 863 // Result 864 PHINode *WidePhi; 865 Instruction *WideInc; 866 const SCEV *WideIncExpr; 867 SmallVectorImpl<WeakVH> &DeadInsts; 868 869 SmallPtrSet<Instruction*,16> Widened; 870 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 871 872 public: 873 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 874 ScalarEvolution *SEv, DominatorTree *DTree, 875 SmallVectorImpl<WeakVH> &DI) : 876 OrigPhi(WI.NarrowIV), 877 WideType(WI.WidestNativeType), 878 IsSigned(WI.IsSigned), 879 NeverNegative(false), 880 LI(LInfo), 881 L(LI->getLoopFor(OrigPhi->getParent())), 882 SE(SEv), 883 DT(DTree), 884 WidePhi(nullptr), 885 WideInc(nullptr), 886 WideIncExpr(nullptr), 887 DeadInsts(DI) { 888 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 889 } 890 891 PHINode *CreateWideIV(SCEVExpander &Rewriter); 892 893 protected: 894 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 895 Instruction *Use); 896 897 Instruction *CloneIVUser(NarrowIVDefUse DU); 898 899 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 900 901 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 902 903 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 904 unsigned OpCode) const; 905 906 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 907 908 bool WidenLoopCompare(NarrowIVDefUse DU); 909 910 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 911 }; 912 } // anonymous namespace 913 914 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 915 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 916 /// gratuitous for this purpose. 917 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 918 Instruction *Inst = dyn_cast<Instruction>(V); 919 if (!Inst) 920 return true; 921 922 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 923 } 924 925 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 926 Instruction *Use) { 927 // Set the debug location and conservative insertion point. 928 IRBuilder<> Builder(Use); 929 // Hoist the insertion point into loop preheaders as far as possible. 930 for (const Loop *L = LI->getLoopFor(Use->getParent()); 931 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 932 L = L->getParentLoop()) 933 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 934 935 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 936 Builder.CreateZExt(NarrowOper, WideType); 937 } 938 939 /// CloneIVUser - Instantiate a wide operation to replace a narrow 940 /// operation. This only needs to handle operations that can evaluation to 941 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 942 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 943 unsigned Opcode = DU.NarrowUse->getOpcode(); 944 switch (Opcode) { 945 default: 946 return nullptr; 947 case Instruction::Add: 948 case Instruction::Mul: 949 case Instruction::UDiv: 950 case Instruction::Sub: 951 case Instruction::And: 952 case Instruction::Or: 953 case Instruction::Xor: 954 case Instruction::Shl: 955 case Instruction::LShr: 956 case Instruction::AShr: 957 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 958 959 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 960 // anything about the narrow operand yet so must insert a [sz]ext. It is 961 // probably loop invariant and will be folded or hoisted. If it actually 962 // comes from a widened IV, it should be removed during a future call to 963 // WidenIVUse. 964 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 965 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 966 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 967 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 968 969 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 970 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 971 LHS, RHS, 972 NarrowBO->getName()); 973 IRBuilder<> Builder(DU.NarrowUse); 974 Builder.Insert(WideBO); 975 if (const OverflowingBinaryOperator *OBO = 976 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 977 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 978 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 979 } 980 return WideBO; 981 } 982 } 983 984 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 985 unsigned OpCode) const { 986 if (OpCode == Instruction::Add) 987 return SE->getAddExpr(LHS, RHS); 988 if (OpCode == Instruction::Sub) 989 return SE->getMinusSCEV(LHS, RHS); 990 if (OpCode == Instruction::Mul) 991 return SE->getMulExpr(LHS, RHS); 992 993 llvm_unreachable("Unsupported opcode."); 994 } 995 996 /// No-wrap operations can transfer sign extension of their result to their 997 /// operands. Generate the SCEV value for the widened operation without 998 /// actually modifying the IR yet. If the expression after extending the 999 /// operands is an AddRec for this loop, return it. 1000 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 1001 1002 // Handle the common case of add<nsw/nuw> 1003 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1004 // Only Add/Sub/Mul instructions supported yet. 1005 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1006 OpCode != Instruction::Mul) 1007 return nullptr; 1008 1009 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1010 // if extending the other will lead to a recurrence. 1011 const unsigned ExtendOperIdx = 1012 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1013 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1014 1015 const SCEV *ExtendOperExpr = nullptr; 1016 const OverflowingBinaryOperator *OBO = 1017 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1018 if (IsSigned && OBO->hasNoSignedWrap()) 1019 ExtendOperExpr = SE->getSignExtendExpr( 1020 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1021 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1022 ExtendOperExpr = SE->getZeroExtendExpr( 1023 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1024 else 1025 return nullptr; 1026 1027 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1028 // flags. This instruction may be guarded by control flow that the no-wrap 1029 // behavior depends on. Non-control-equivalent instructions can be mapped to 1030 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1031 // semantics to those operations. 1032 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1033 const SCEV *rhs = ExtendOperExpr; 1034 1035 // Let's swap operands to the initial order for the case of non-commutative 1036 // operations, like SUB. See PR21014. 1037 if (ExtendOperIdx == 0) 1038 std::swap(lhs, rhs); 1039 const SCEVAddRecExpr *AddRec = 1040 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 1041 1042 if (!AddRec || AddRec->getLoop() != L) 1043 return nullptr; 1044 return AddRec; 1045 } 1046 1047 /// GetWideRecurrence - Is this instruction potentially interesting for further 1048 /// simplification after widening it's type? In other words, can the 1049 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 1050 /// recurrence on the same loop. If so, return the sign or zero extended 1051 /// recurrence. Otherwise return NULL. 1052 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 1053 if (!SE->isSCEVable(NarrowUse->getType())) 1054 return nullptr; 1055 1056 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1057 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1058 >= SE->getTypeSizeInBits(WideType)) { 1059 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1060 // index. So don't follow this use. 1061 return nullptr; 1062 } 1063 1064 const SCEV *WideExpr = IsSigned ? 1065 SE->getSignExtendExpr(NarrowExpr, WideType) : 1066 SE->getZeroExtendExpr(NarrowExpr, WideType); 1067 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1068 if (!AddRec || AddRec->getLoop() != L) 1069 return nullptr; 1070 return AddRec; 1071 } 1072 1073 /// This IV user cannot be widen. Replace this use of the original narrow IV 1074 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1075 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1076 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1077 << " for user " << *DU.NarrowUse << "\n"); 1078 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1079 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1080 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1081 } 1082 1083 /// If the narrow use is a compare instruction, then widen the compare 1084 // (and possibly the other operand). The extend operation is hoisted into the 1085 // loop preheader as far as possible. 1086 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 1087 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1088 if (!Cmp) 1089 return false; 1090 1091 // We can legally widen the comparison in the following two cases: 1092 // 1093 // - The signedness of the IV extension and comparison match 1094 // 1095 // - The narrow IV is always positive (and thus its sign extension is equal 1096 // to its zero extension). For instance, let's say we're zero extending 1097 // %narrow for the following use 1098 // 1099 // icmp slt i32 %narrow, %val ... (A) 1100 // 1101 // and %narrow is always positive. Then 1102 // 1103 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1104 // == icmp slt i32 zext(%narrow), sext(%val) 1105 1106 if (!(NeverNegative || IsSigned == Cmp->isSigned())) 1107 return false; 1108 1109 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1110 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1111 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1112 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1113 1114 // Widen the compare instruction. 1115 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1116 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1117 1118 // Widen the other operand of the compare, if necessary. 1119 if (CastWidth < IVWidth) { 1120 Value *ExtOp = getExtend(Op, WideType, Cmp->isSigned(), Cmp); 1121 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1122 } 1123 return true; 1124 } 1125 1126 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 1127 /// widened. If so, return the wide clone of the user. 1128 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1129 1130 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1131 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1132 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1133 // For LCSSA phis, sink the truncate outside the loop. 1134 // After SimplifyCFG most loop exit targets have a single predecessor. 1135 // Otherwise fall back to a truncate within the loop. 1136 if (UsePhi->getNumOperands() != 1) 1137 truncateIVUse(DU, DT); 1138 else { 1139 PHINode *WidePhi = 1140 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1141 UsePhi); 1142 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1143 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 1144 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1145 UsePhi->replaceAllUsesWith(Trunc); 1146 DeadInsts.emplace_back(UsePhi); 1147 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1148 << " to " << *WidePhi << "\n"); 1149 } 1150 return nullptr; 1151 } 1152 } 1153 // Our raison d'etre! Eliminate sign and zero extension. 1154 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1155 Value *NewDef = DU.WideDef; 1156 if (DU.NarrowUse->getType() != WideType) { 1157 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1158 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1159 if (CastWidth < IVWidth) { 1160 // The cast isn't as wide as the IV, so insert a Trunc. 1161 IRBuilder<> Builder(DU.NarrowUse); 1162 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1163 } 1164 else { 1165 // A wider extend was hidden behind a narrower one. This may induce 1166 // another round of IV widening in which the intermediate IV becomes 1167 // dead. It should be very rare. 1168 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1169 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1170 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1171 NewDef = DU.NarrowUse; 1172 } 1173 } 1174 if (NewDef != DU.NarrowUse) { 1175 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1176 << " replaced by " << *DU.WideDef << "\n"); 1177 ++NumElimExt; 1178 DU.NarrowUse->replaceAllUsesWith(NewDef); 1179 DeadInsts.emplace_back(DU.NarrowUse); 1180 } 1181 // Now that the extend is gone, we want to expose it's uses for potential 1182 // further simplification. We don't need to directly inform SimplifyIVUsers 1183 // of the new users, because their parent IV will be processed later as a 1184 // new loop phi. If we preserved IVUsers analysis, we would also want to 1185 // push the uses of WideDef here. 1186 1187 // No further widening is needed. The deceased [sz]ext had done it for us. 1188 return nullptr; 1189 } 1190 1191 // Does this user itself evaluate to a recurrence after widening? 1192 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1193 if (!WideAddRec) 1194 WideAddRec = GetExtendedOperandRecurrence(DU); 1195 1196 if (!WideAddRec) { 1197 // If use is a loop condition, try to promote the condition instead of 1198 // truncating the IV first. 1199 if (WidenLoopCompare(DU)) 1200 return nullptr; 1201 1202 // This user does not evaluate to a recurence after widening, so don't 1203 // follow it. Instead insert a Trunc to kill off the original use, 1204 // eventually isolating the original narrow IV so it can be removed. 1205 truncateIVUse(DU, DT); 1206 return nullptr; 1207 } 1208 // Assume block terminators cannot evaluate to a recurrence. We can't to 1209 // insert a Trunc after a terminator if there happens to be a critical edge. 1210 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1211 "SCEV is not expected to evaluate a block terminator"); 1212 1213 // Reuse the IV increment that SCEVExpander created as long as it dominates 1214 // NarrowUse. 1215 Instruction *WideUse = nullptr; 1216 if (WideAddRec == WideIncExpr 1217 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1218 WideUse = WideInc; 1219 else { 1220 WideUse = CloneIVUser(DU); 1221 if (!WideUse) 1222 return nullptr; 1223 } 1224 // Evaluation of WideAddRec ensured that the narrow expression could be 1225 // extended outside the loop without overflow. This suggests that the wide use 1226 // evaluates to the same expression as the extended narrow use, but doesn't 1227 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1228 // where it fails, we simply throw away the newly created wide use. 1229 if (WideAddRec != SE->getSCEV(WideUse)) { 1230 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1231 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1232 DeadInsts.emplace_back(WideUse); 1233 return nullptr; 1234 } 1235 1236 // Returning WideUse pushes it on the worklist. 1237 return WideUse; 1238 } 1239 1240 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1241 /// 1242 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1243 for (User *U : NarrowDef->users()) { 1244 Instruction *NarrowUser = cast<Instruction>(U); 1245 1246 // Handle data flow merges and bizarre phi cycles. 1247 if (!Widened.insert(NarrowUser).second) 1248 continue; 1249 1250 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1251 } 1252 } 1253 1254 /// CreateWideIV - Process a single induction variable. First use the 1255 /// SCEVExpander to create a wide induction variable that evaluates to the same 1256 /// recurrence as the original narrow IV. Then use a worklist to forward 1257 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1258 /// interesting IV users, the narrow IV will be isolated for removal by 1259 /// DeleteDeadPHIs. 1260 /// 1261 /// It would be simpler to delete uses as they are processed, but we must avoid 1262 /// invalidating SCEV expressions. 1263 /// 1264 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1265 // Is this phi an induction variable? 1266 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1267 if (!AddRec) 1268 return nullptr; 1269 1270 NeverNegative = SE->isKnownPredicate(ICmpInst::ICMP_SGE, AddRec, 1271 SE->getConstant(AddRec->getType(), 0)); 1272 1273 // Widen the induction variable expression. 1274 const SCEV *WideIVExpr = IsSigned ? 1275 SE->getSignExtendExpr(AddRec, WideType) : 1276 SE->getZeroExtendExpr(AddRec, WideType); 1277 1278 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1279 "Expect the new IV expression to preserve its type"); 1280 1281 // Can the IV be extended outside the loop without overflow? 1282 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1283 if (!AddRec || AddRec->getLoop() != L) 1284 return nullptr; 1285 1286 // An AddRec must have loop-invariant operands. Since this AddRec is 1287 // materialized by a loop header phi, the expression cannot have any post-loop 1288 // operands, so they must dominate the loop header. 1289 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1290 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1291 && "Loop header phi recurrence inputs do not dominate the loop"); 1292 1293 // The rewriter provides a value for the desired IV expression. This may 1294 // either find an existing phi or materialize a new one. Either way, we 1295 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1296 // of the phi-SCC dominates the loop entry. 1297 Instruction *InsertPt = L->getHeader()->begin(); 1298 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1299 1300 // Remembering the WideIV increment generated by SCEVExpander allows 1301 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1302 // employ a general reuse mechanism because the call above is the only call to 1303 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1304 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1305 WideInc = 1306 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1307 WideIncExpr = SE->getSCEV(WideInc); 1308 } 1309 1310 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1311 ++NumWidened; 1312 1313 // Traverse the def-use chain using a worklist starting at the original IV. 1314 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1315 1316 Widened.insert(OrigPhi); 1317 pushNarrowIVUsers(OrigPhi, WidePhi); 1318 1319 while (!NarrowIVUsers.empty()) { 1320 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1321 1322 // Process a def-use edge. This may replace the use, so don't hold a 1323 // use_iterator across it. 1324 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1325 1326 // Follow all def-use edges from the previous narrow use. 1327 if (WideUse) 1328 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1329 1330 // WidenIVUse may have removed the def-use edge. 1331 if (DU.NarrowDef->use_empty()) 1332 DeadInsts.emplace_back(DU.NarrowDef); 1333 } 1334 return WidePhi; 1335 } 1336 1337 //===----------------------------------------------------------------------===// 1338 // Live IV Reduction - Minimize IVs live across the loop. 1339 //===----------------------------------------------------------------------===// 1340 1341 1342 //===----------------------------------------------------------------------===// 1343 // Simplification of IV users based on SCEV evaluation. 1344 //===----------------------------------------------------------------------===// 1345 1346 namespace { 1347 class IndVarSimplifyVisitor : public IVVisitor { 1348 ScalarEvolution *SE; 1349 const TargetTransformInfo *TTI; 1350 PHINode *IVPhi; 1351 1352 public: 1353 WideIVInfo WI; 1354 1355 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1356 const TargetTransformInfo *TTI, 1357 const DominatorTree *DTree) 1358 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1359 DT = DTree; 1360 WI.NarrowIV = IVPhi; 1361 if (ReduceLiveIVs) 1362 setSplitOverflowIntrinsics(); 1363 } 1364 1365 // Implement the interface used by simplifyUsersOfIV. 1366 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1367 }; 1368 } 1369 1370 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1371 /// users. Each successive simplification may push more users which may 1372 /// themselves be candidates for simplification. 1373 /// 1374 /// Sign/Zero extend elimination is interleaved with IV simplification. 1375 /// 1376 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1377 SCEVExpander &Rewriter, 1378 LPPassManager &LPM) { 1379 SmallVector<WideIVInfo, 8> WideIVs; 1380 1381 SmallVector<PHINode*, 8> LoopPhis; 1382 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1383 LoopPhis.push_back(cast<PHINode>(I)); 1384 } 1385 // Each round of simplification iterates through the SimplifyIVUsers worklist 1386 // for all current phis, then determines whether any IVs can be 1387 // widened. Widening adds new phis to LoopPhis, inducing another round of 1388 // simplification on the wide IVs. 1389 while (!LoopPhis.empty()) { 1390 // Evaluate as many IV expressions as possible before widening any IVs. This 1391 // forces SCEV to set no-wrap flags before evaluating sign/zero 1392 // extension. The first time SCEV attempts to normalize sign/zero extension, 1393 // the result becomes final. So for the most predictable results, we delay 1394 // evaluation of sign/zero extend evaluation until needed, and avoid running 1395 // other SCEV based analysis prior to SimplifyAndExtend. 1396 do { 1397 PHINode *CurrIV = LoopPhis.pop_back_val(); 1398 1399 // Information about sign/zero extensions of CurrIV. 1400 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1401 1402 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1403 1404 if (Visitor.WI.WidestNativeType) { 1405 WideIVs.push_back(Visitor.WI); 1406 } 1407 } while(!LoopPhis.empty()); 1408 1409 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1410 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1411 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1412 Changed = true; 1413 LoopPhis.push_back(WidePhi); 1414 } 1415 } 1416 } 1417 } 1418 1419 //===----------------------------------------------------------------------===// 1420 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1421 //===----------------------------------------------------------------------===// 1422 1423 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1424 /// count expression can be safely and cheaply expanded into an instruction 1425 /// sequence that can be used by LinearFunctionTestReplace. 1426 /// 1427 /// TODO: This fails for pointer-type loop counters with greater than one byte 1428 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1429 /// we could skip this check in the case that the LFTR loop counter (chosen by 1430 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1431 /// the loop test to an inequality test by checking the target data's alignment 1432 /// of element types (given that the initial pointer value originates from or is 1433 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1434 /// However, we don't yet have a strong motivation for converting loop tests 1435 /// into inequality tests. 1436 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1437 SCEVExpander &Rewriter) { 1438 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1439 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1440 BackedgeTakenCount->isZero()) 1441 return false; 1442 1443 if (!L->getExitingBlock()) 1444 return false; 1445 1446 // Can't rewrite non-branch yet. 1447 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1448 return false; 1449 1450 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1451 return false; 1452 1453 return true; 1454 } 1455 1456 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1457 /// invariant value to the phi. 1458 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1459 Instruction *IncI = dyn_cast<Instruction>(IncV); 1460 if (!IncI) 1461 return nullptr; 1462 1463 switch (IncI->getOpcode()) { 1464 case Instruction::Add: 1465 case Instruction::Sub: 1466 break; 1467 case Instruction::GetElementPtr: 1468 // An IV counter must preserve its type. 1469 if (IncI->getNumOperands() == 2) 1470 break; 1471 default: 1472 return nullptr; 1473 } 1474 1475 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1476 if (Phi && Phi->getParent() == L->getHeader()) { 1477 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1478 return Phi; 1479 return nullptr; 1480 } 1481 if (IncI->getOpcode() == Instruction::GetElementPtr) 1482 return nullptr; 1483 1484 // Allow add/sub to be commuted. 1485 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1486 if (Phi && Phi->getParent() == L->getHeader()) { 1487 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1488 return Phi; 1489 } 1490 return nullptr; 1491 } 1492 1493 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1494 static ICmpInst *getLoopTest(Loop *L) { 1495 assert(L->getExitingBlock() && "expected loop exit"); 1496 1497 BasicBlock *LatchBlock = L->getLoopLatch(); 1498 // Don't bother with LFTR if the loop is not properly simplified. 1499 if (!LatchBlock) 1500 return nullptr; 1501 1502 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1503 assert(BI && "expected exit branch"); 1504 1505 return dyn_cast<ICmpInst>(BI->getCondition()); 1506 } 1507 1508 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1509 /// that the current exit test is already sufficiently canonical. 1510 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1511 // Do LFTR to simplify the exit condition to an ICMP. 1512 ICmpInst *Cond = getLoopTest(L); 1513 if (!Cond) 1514 return true; 1515 1516 // Do LFTR to simplify the exit ICMP to EQ/NE 1517 ICmpInst::Predicate Pred = Cond->getPredicate(); 1518 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1519 return true; 1520 1521 // Look for a loop invariant RHS 1522 Value *LHS = Cond->getOperand(0); 1523 Value *RHS = Cond->getOperand(1); 1524 if (!isLoopInvariant(RHS, L, DT)) { 1525 if (!isLoopInvariant(LHS, L, DT)) 1526 return true; 1527 std::swap(LHS, RHS); 1528 } 1529 // Look for a simple IV counter LHS 1530 PHINode *Phi = dyn_cast<PHINode>(LHS); 1531 if (!Phi) 1532 Phi = getLoopPhiForCounter(LHS, L, DT); 1533 1534 if (!Phi) 1535 return true; 1536 1537 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1538 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1539 if (Idx < 0) 1540 return true; 1541 1542 // Do LFTR if the exit condition's IV is *not* a simple counter. 1543 Value *IncV = Phi->getIncomingValue(Idx); 1544 return Phi != getLoopPhiForCounter(IncV, L, DT); 1545 } 1546 1547 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1548 /// down to checking that all operands are constant and listing instructions 1549 /// that may hide undef. 1550 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1551 unsigned Depth) { 1552 if (isa<Constant>(V)) 1553 return !isa<UndefValue>(V); 1554 1555 if (Depth >= 6) 1556 return false; 1557 1558 // Conservatively handle non-constant non-instructions. For example, Arguments 1559 // may be undef. 1560 Instruction *I = dyn_cast<Instruction>(V); 1561 if (!I) 1562 return false; 1563 1564 // Load and return values may be undef. 1565 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1566 return false; 1567 1568 // Optimistically handle other instructions. 1569 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1570 if (!Visited.insert(*OI).second) 1571 continue; 1572 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1573 return false; 1574 } 1575 return true; 1576 } 1577 1578 /// Return true if the given value is concrete. We must prove that undef can 1579 /// never reach it. 1580 /// 1581 /// TODO: If we decide that this is a good approach to checking for undef, we 1582 /// may factor it into a common location. 1583 static bool hasConcreteDef(Value *V) { 1584 SmallPtrSet<Value*, 8> Visited; 1585 Visited.insert(V); 1586 return hasConcreteDefImpl(V, Visited, 0); 1587 } 1588 1589 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1590 /// be rewritten) loop exit test. 1591 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1592 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1593 Value *IncV = Phi->getIncomingValue(LatchIdx); 1594 1595 for (User *U : Phi->users()) 1596 if (U != Cond && U != IncV) return false; 1597 1598 for (User *U : IncV->users()) 1599 if (U != Cond && U != Phi) return false; 1600 return true; 1601 } 1602 1603 /// FindLoopCounter - Find an affine IV in canonical form. 1604 /// 1605 /// BECount may be an i8* pointer type. The pointer difference is already 1606 /// valid count without scaling the address stride, so it remains a pointer 1607 /// expression as far as SCEV is concerned. 1608 /// 1609 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1610 /// 1611 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1612 /// 1613 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1614 /// This is difficult in general for SCEV because of potential overflow. But we 1615 /// could at least handle constant BECounts. 1616 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1617 ScalarEvolution *SE, DominatorTree *DT) { 1618 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1619 1620 Value *Cond = 1621 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1622 1623 // Loop over all of the PHI nodes, looking for a simple counter. 1624 PHINode *BestPhi = nullptr; 1625 const SCEV *BestInit = nullptr; 1626 BasicBlock *LatchBlock = L->getLoopLatch(); 1627 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1628 1629 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1630 PHINode *Phi = cast<PHINode>(I); 1631 if (!SE->isSCEVable(Phi->getType())) 1632 continue; 1633 1634 // Avoid comparing an integer IV against a pointer Limit. 1635 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1636 continue; 1637 1638 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1639 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1640 continue; 1641 1642 // AR may be a pointer type, while BECount is an integer type. 1643 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1644 // AR may not be a narrower type, or we may never exit. 1645 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1646 if (PhiWidth < BCWidth || 1647 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1648 continue; 1649 1650 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1651 if (!Step || !Step->isOne()) 1652 continue; 1653 1654 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1655 Value *IncV = Phi->getIncomingValue(LatchIdx); 1656 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1657 continue; 1658 1659 // Avoid reusing a potentially undef value to compute other values that may 1660 // have originally had a concrete definition. 1661 if (!hasConcreteDef(Phi)) { 1662 // We explicitly allow unknown phis as long as they are already used by 1663 // the loop test. In this case we assume that performing LFTR could not 1664 // increase the number of undef users. 1665 if (ICmpInst *Cond = getLoopTest(L)) { 1666 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1667 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1668 continue; 1669 } 1670 } 1671 } 1672 const SCEV *Init = AR->getStart(); 1673 1674 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1675 // Don't force a live loop counter if another IV can be used. 1676 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1677 continue; 1678 1679 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1680 // also prefers integer to pointer IVs. 1681 if (BestInit->isZero() != Init->isZero()) { 1682 if (BestInit->isZero()) 1683 continue; 1684 } 1685 // If two IVs both count from zero or both count from nonzero then the 1686 // narrower is likely a dead phi that has been widened. Use the wider phi 1687 // to allow the other to be eliminated. 1688 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1689 continue; 1690 } 1691 BestPhi = Phi; 1692 BestInit = Init; 1693 } 1694 return BestPhi; 1695 } 1696 1697 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1698 /// holds the RHS of the new loop test. 1699 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1700 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1701 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1702 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1703 const SCEV *IVInit = AR->getStart(); 1704 1705 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1706 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1707 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1708 // the existing GEPs whenever possible. 1709 if (IndVar->getType()->isPointerTy() 1710 && !IVCount->getType()->isPointerTy()) { 1711 1712 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1713 // signed value. IVCount on the other hand represents the loop trip count, 1714 // which is an unsigned value. FindLoopCounter only allows induction 1715 // variables that have a positive unit stride of one. This means we don't 1716 // have to handle the case of negative offsets (yet) and just need to zero 1717 // extend IVCount. 1718 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1719 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1720 1721 // Expand the code for the iteration count. 1722 assert(SE->isLoopInvariant(IVOffset, L) && 1723 "Computed iteration count is not loop invariant!"); 1724 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1725 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1726 1727 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1728 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1729 // We could handle pointer IVs other than i8*, but we need to compensate for 1730 // gep index scaling. See canExpandBackedgeTakenCount comments. 1731 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1732 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1733 && "unit stride pointer IV must be i8*"); 1734 1735 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1736 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1737 } 1738 else { 1739 // In any other case, convert both IVInit and IVCount to integers before 1740 // comparing. This may result in SCEV expension of pointers, but in practice 1741 // SCEV will fold the pointer arithmetic away as such: 1742 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1743 // 1744 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1745 // for simple memset-style loops. 1746 // 1747 // IVInit integer and IVCount pointer would only occur if a canonical IV 1748 // were generated on top of case #2, which is not expected. 1749 1750 const SCEV *IVLimit = nullptr; 1751 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1752 // For non-zero Start, compute IVCount here. 1753 if (AR->getStart()->isZero()) 1754 IVLimit = IVCount; 1755 else { 1756 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1757 const SCEV *IVInit = AR->getStart(); 1758 1759 // For integer IVs, truncate the IV before computing IVInit + BECount. 1760 if (SE->getTypeSizeInBits(IVInit->getType()) 1761 > SE->getTypeSizeInBits(IVCount->getType())) 1762 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1763 1764 IVLimit = SE->getAddExpr(IVInit, IVCount); 1765 } 1766 // Expand the code for the iteration count. 1767 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1768 IRBuilder<> Builder(BI); 1769 assert(SE->isLoopInvariant(IVLimit, L) && 1770 "Computed iteration count is not loop invariant!"); 1771 // Ensure that we generate the same type as IndVar, or a smaller integer 1772 // type. In the presence of null pointer values, we have an integer type 1773 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1774 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1775 IndVar->getType() : IVCount->getType(); 1776 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1777 } 1778 } 1779 1780 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1781 /// loop to be a canonical != comparison against the incremented loop induction 1782 /// variable. This pass is able to rewrite the exit tests of any loop where the 1783 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1784 /// is actually a much broader range than just linear tests. 1785 Value *IndVarSimplify:: 1786 LinearFunctionTestReplace(Loop *L, 1787 const SCEV *BackedgeTakenCount, 1788 PHINode *IndVar, 1789 SCEVExpander &Rewriter) { 1790 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1791 1792 // Initialize CmpIndVar and IVCount to their preincremented values. 1793 Value *CmpIndVar = IndVar; 1794 const SCEV *IVCount = BackedgeTakenCount; 1795 1796 // If the exiting block is the same as the backedge block, we prefer to 1797 // compare against the post-incremented value, otherwise we must compare 1798 // against the preincremented value. 1799 if (L->getExitingBlock() == L->getLoopLatch()) { 1800 // Add one to the "backedge-taken" count to get the trip count. 1801 // This addition may overflow, which is valid as long as the comparison is 1802 // truncated to BackedgeTakenCount->getType(). 1803 IVCount = SE->getAddExpr(BackedgeTakenCount, 1804 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1805 // The BackedgeTaken expression contains the number of times that the 1806 // backedge branches to the loop header. This is one less than the 1807 // number of times the loop executes, so use the incremented indvar. 1808 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1809 } 1810 1811 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1812 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1813 && "genLoopLimit missed a cast"); 1814 1815 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1816 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1817 ICmpInst::Predicate P; 1818 if (L->contains(BI->getSuccessor(0))) 1819 P = ICmpInst::ICMP_NE; 1820 else 1821 P = ICmpInst::ICMP_EQ; 1822 1823 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1824 << " LHS:" << *CmpIndVar << '\n' 1825 << " op:\t" 1826 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1827 << " RHS:\t" << *ExitCnt << "\n" 1828 << " IVCount:\t" << *IVCount << "\n"); 1829 1830 IRBuilder<> Builder(BI); 1831 1832 // LFTR can ignore IV overflow and truncate to the width of 1833 // BECount. This avoids materializing the add(zext(add)) expression. 1834 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1835 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1836 if (CmpIndVarSize > ExitCntSize) { 1837 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1838 const SCEV *ARStart = AR->getStart(); 1839 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1840 // For constant IVCount, avoid truncation. 1841 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1842 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1843 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1844 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1845 // above such that IVCount is now zero. 1846 if (IVCount != BackedgeTakenCount && Count == 0) { 1847 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1848 ++Count; 1849 } 1850 else 1851 Count = Count.zext(CmpIndVarSize); 1852 APInt NewLimit; 1853 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1854 NewLimit = Start - Count; 1855 else 1856 NewLimit = Start + Count; 1857 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1858 1859 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1860 } else { 1861 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1862 "lftr.wideiv"); 1863 } 1864 } 1865 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1866 Value *OrigCond = BI->getCondition(); 1867 // It's tempting to use replaceAllUsesWith here to fully replace the old 1868 // comparison, but that's not immediately safe, since users of the old 1869 // comparison may not be dominated by the new comparison. Instead, just 1870 // update the branch to use the new comparison; in the common case this 1871 // will make old comparison dead. 1872 BI->setCondition(Cond); 1873 DeadInsts.push_back(OrigCond); 1874 1875 ++NumLFTR; 1876 Changed = true; 1877 return Cond; 1878 } 1879 1880 //===----------------------------------------------------------------------===// 1881 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1882 //===----------------------------------------------------------------------===// 1883 1884 /// If there's a single exit block, sink any loop-invariant values that 1885 /// were defined in the preheader but not used inside the loop into the 1886 /// exit block to reduce register pressure in the loop. 1887 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1888 BasicBlock *ExitBlock = L->getExitBlock(); 1889 if (!ExitBlock) return; 1890 1891 BasicBlock *Preheader = L->getLoopPreheader(); 1892 if (!Preheader) return; 1893 1894 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1895 BasicBlock::iterator I = Preheader->getTerminator(); 1896 while (I != Preheader->begin()) { 1897 --I; 1898 // New instructions were inserted at the end of the preheader. 1899 if (isa<PHINode>(I)) 1900 break; 1901 1902 // Don't move instructions which might have side effects, since the side 1903 // effects need to complete before instructions inside the loop. Also don't 1904 // move instructions which might read memory, since the loop may modify 1905 // memory. Note that it's okay if the instruction might have undefined 1906 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1907 // block. 1908 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1909 continue; 1910 1911 // Skip debug info intrinsics. 1912 if (isa<DbgInfoIntrinsic>(I)) 1913 continue; 1914 1915 // Skip eh pad instructions. 1916 if (I->isEHPad()) 1917 continue; 1918 1919 // Don't sink alloca: we never want to sink static alloca's out of the 1920 // entry block, and correctly sinking dynamic alloca's requires 1921 // checks for stacksave/stackrestore intrinsics. 1922 // FIXME: Refactor this check somehow? 1923 if (isa<AllocaInst>(I)) 1924 continue; 1925 1926 // Determine if there is a use in or before the loop (direct or 1927 // otherwise). 1928 bool UsedInLoop = false; 1929 for (Use &U : I->uses()) { 1930 Instruction *User = cast<Instruction>(U.getUser()); 1931 BasicBlock *UseBB = User->getParent(); 1932 if (PHINode *P = dyn_cast<PHINode>(User)) { 1933 unsigned i = 1934 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1935 UseBB = P->getIncomingBlock(i); 1936 } 1937 if (UseBB == Preheader || L->contains(UseBB)) { 1938 UsedInLoop = true; 1939 break; 1940 } 1941 } 1942 1943 // If there is, the def must remain in the preheader. 1944 if (UsedInLoop) 1945 continue; 1946 1947 // Otherwise, sink it to the exit block. 1948 Instruction *ToMove = I; 1949 bool Done = false; 1950 1951 if (I != Preheader->begin()) { 1952 // Skip debug info intrinsics. 1953 do { 1954 --I; 1955 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1956 1957 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1958 Done = true; 1959 } else { 1960 Done = true; 1961 } 1962 1963 ToMove->moveBefore(InsertPt); 1964 if (Done) break; 1965 InsertPt = ToMove; 1966 } 1967 } 1968 1969 //===----------------------------------------------------------------------===// 1970 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1971 //===----------------------------------------------------------------------===// 1972 1973 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1974 if (skipOptnoneFunction(L)) 1975 return false; 1976 1977 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1978 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1979 // canonicalization can be a pessimization without LSR to "clean up" 1980 // afterwards. 1981 // - We depend on having a preheader; in particular, 1982 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1983 // and we're in trouble if we can't find the induction variable even when 1984 // we've manually inserted one. 1985 if (!L->isLoopSimplifyForm()) 1986 return false; 1987 1988 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1989 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1990 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1991 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1992 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1993 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1994 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1995 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1996 1997 DeadInsts.clear(); 1998 Changed = false; 1999 2000 // If there are any floating-point recurrences, attempt to 2001 // transform them to use integer recurrences. 2002 RewriteNonIntegerIVs(L); 2003 2004 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2005 2006 // Create a rewriter object which we'll use to transform the code with. 2007 SCEVExpander Rewriter(*SE, DL, "indvars"); 2008 #ifndef NDEBUG 2009 Rewriter.setDebugType(DEBUG_TYPE); 2010 #endif 2011 2012 // Eliminate redundant IV users. 2013 // 2014 // Simplification works best when run before other consumers of SCEV. We 2015 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2016 // other expressions involving loop IVs have been evaluated. This helps SCEV 2017 // set no-wrap flags before normalizing sign/zero extension. 2018 Rewriter.disableCanonicalMode(); 2019 SimplifyAndExtend(L, Rewriter, LPM); 2020 2021 // Check to see if this loop has a computable loop-invariant execution count. 2022 // If so, this means that we can compute the final value of any expressions 2023 // that are recurrent in the loop, and substitute the exit values from the 2024 // loop into any instructions outside of the loop that use the final values of 2025 // the current expressions. 2026 // 2027 if (ReplaceExitValue != NeverRepl && 2028 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2029 RewriteLoopExitValues(L, Rewriter); 2030 2031 // Eliminate redundant IV cycles. 2032 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2033 2034 // If we have a trip count expression, rewrite the loop's exit condition 2035 // using it. We can currently only handle loops with a single exit. 2036 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2037 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2038 if (IndVar) { 2039 // Check preconditions for proper SCEVExpander operation. SCEV does not 2040 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2041 // pass that uses the SCEVExpander must do it. This does not work well for 2042 // loop passes because SCEVExpander makes assumptions about all loops, 2043 // while LoopPassManager only forces the current loop to be simplified. 2044 // 2045 // FIXME: SCEV expansion has no way to bail out, so the caller must 2046 // explicitly check any assumptions made by SCEV. Brittle. 2047 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2048 if (!AR || AR->getLoop()->getLoopPreheader()) 2049 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2050 Rewriter); 2051 } 2052 } 2053 // Clear the rewriter cache, because values that are in the rewriter's cache 2054 // can be deleted in the loop below, causing the AssertingVH in the cache to 2055 // trigger. 2056 Rewriter.clear(); 2057 2058 // Now that we're done iterating through lists, clean up any instructions 2059 // which are now dead. 2060 while (!DeadInsts.empty()) 2061 if (Instruction *Inst = 2062 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2063 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2064 2065 // The Rewriter may not be used from this point on. 2066 2067 // Loop-invariant instructions in the preheader that aren't used in the 2068 // loop may be sunk below the loop to reduce register pressure. 2069 SinkUnusedInvariants(L); 2070 2071 // Clean up dead instructions. 2072 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2073 // Check a post-condition. 2074 assert(L->isLCSSAForm(*DT) && 2075 "Indvars did not leave the loop in lcssa form!"); 2076 2077 // Verify that LFTR, and any other change have not interfered with SCEV's 2078 // ability to compute trip count. 2079 #ifndef NDEBUG 2080 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2081 SE->forgetLoop(L); 2082 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2083 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2084 SE->getTypeSizeInBits(NewBECount->getType())) 2085 NewBECount = SE->getTruncateOrNoop(NewBECount, 2086 BackedgeTakenCount->getType()); 2087 else 2088 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2089 NewBECount->getType()); 2090 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2091 } 2092 #endif 2093 2094 return Changed; 2095 } 2096