1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/MemorySSA.h" 42 #include "llvm/Analysis/MemorySSAUpdater.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantRange.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 86 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 87 #include <cassert> 88 #include <cstdint> 89 #include <utility> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "indvars" 94 95 STATISTIC(NumWidened , "Number of indvars widened"); 96 STATISTIC(NumReplaced , "Number of exit values replaced"); 97 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 98 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 99 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 100 101 // Trip count verification can be enabled by default under NDEBUG if we 102 // implement a strong expression equivalence checker in SCEV. Until then, we 103 // use the verify-indvars flag, which may assert in some cases. 104 static cl::opt<bool> VerifyIndvars( 105 "verify-indvars", cl::Hidden, 106 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 107 "effect in release builds. (Note: this adds additional SCEV " 108 "queries potentially changing the analysis result)")); 109 110 static cl::opt<ReplaceExitVal> ReplaceExitValue( 111 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 112 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 113 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 114 clEnumValN(OnlyCheapRepl, "cheap", 115 "only replace exit value when the cost is cheap"), 116 clEnumValN(NoHardUse, "noharduse", 117 "only replace exit values when loop def likely dead"), 118 clEnumValN(AlwaysRepl, "always", 119 "always replace exit value whenever possible"))); 120 121 static cl::opt<bool> UsePostIncrementRanges( 122 "indvars-post-increment-ranges", cl::Hidden, 123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 128 cl::desc("Disable Linear Function Test Replace optimization")); 129 130 static cl::opt<bool> 131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 132 cl::desc("Predicate conditions in read only loops")); 133 134 static cl::opt<bool> 135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 136 cl::desc("Allow widening of indvars to eliminate s/zext")); 137 138 namespace { 139 140 struct RewritePhi; 141 142 class IndVarSimplify { 143 LoopInfo *LI; 144 ScalarEvolution *SE; 145 DominatorTree *DT; 146 const DataLayout &DL; 147 TargetLibraryInfo *TLI; 148 const TargetTransformInfo *TTI; 149 std::unique_ptr<MemorySSAUpdater> MSSAU; 150 151 SmallVector<WeakTrackingVH, 16> DeadInsts; 152 bool WidenIndVars; 153 154 bool handleFloatingPointIV(Loop *L, PHINode *PH); 155 bool rewriteNonIntegerIVs(Loop *L); 156 157 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 158 /// Try to eliminate loop exits based on analyzeable exit counts 159 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 160 /// Try to form loop invariant tests for loop exits by changing how many 161 /// iterations of the loop run when that is unobservable. 162 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 163 164 bool rewriteFirstIterationLoopExitValues(Loop *L); 165 166 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 167 const SCEV *ExitCount, 168 PHINode *IndVar, SCEVExpander &Rewriter); 169 170 bool sinkUnusedInvariants(Loop *L); 171 172 public: 173 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 174 const DataLayout &DL, TargetLibraryInfo *TLI, 175 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 176 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 177 WidenIndVars(WidenIndVars) { 178 if (MSSA) 179 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 180 } 181 182 bool run(Loop *L); 183 }; 184 185 } // end anonymous namespace 186 187 //===----------------------------------------------------------------------===// 188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 189 //===----------------------------------------------------------------------===// 190 191 /// Convert APF to an integer, if possible. 192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 193 bool isExact = false; 194 // See if we can convert this to an int64_t 195 uint64_t UIntVal; 196 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 197 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 198 !isExact) 199 return false; 200 IntVal = UIntVal; 201 return true; 202 } 203 204 /// If the loop has floating induction variable then insert corresponding 205 /// integer induction variable if possible. 206 /// For example, 207 /// for(double i = 0; i < 10000; ++i) 208 /// bar(i) 209 /// is converted into 210 /// for(int i = 0; i < 10000; ++i) 211 /// bar((double)i); 212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 213 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 214 unsigned BackEdge = IncomingEdge^1; 215 216 // Check incoming value. 217 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 218 219 int64_t InitValue; 220 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 221 return false; 222 223 // Check IV increment. Reject this PN if increment operation is not 224 // an add or increment value can not be represented by an integer. 225 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 226 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 227 228 // If this is not an add of the PHI with a constantfp, or if the constant fp 229 // is not an integer, bail out. 230 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 231 int64_t IncValue; 232 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 233 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 234 return false; 235 236 // Check Incr uses. One user is PN and the other user is an exit condition 237 // used by the conditional terminator. 238 Value::user_iterator IncrUse = Incr->user_begin(); 239 Instruction *U1 = cast<Instruction>(*IncrUse++); 240 if (IncrUse == Incr->user_end()) return false; 241 Instruction *U2 = cast<Instruction>(*IncrUse++); 242 if (IncrUse != Incr->user_end()) return false; 243 244 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 245 // only used by a branch, we can't transform it. 246 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 247 if (!Compare) 248 Compare = dyn_cast<FCmpInst>(U2); 249 if (!Compare || !Compare->hasOneUse() || 250 !isa<BranchInst>(Compare->user_back())) 251 return false; 252 253 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 254 255 // We need to verify that the branch actually controls the iteration count 256 // of the loop. If not, the new IV can overflow and no one will notice. 257 // The branch block must be in the loop and one of the successors must be out 258 // of the loop. 259 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 260 if (!L->contains(TheBr->getParent()) || 261 (L->contains(TheBr->getSuccessor(0)) && 262 L->contains(TheBr->getSuccessor(1)))) 263 return false; 264 265 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 266 // transform it. 267 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 268 int64_t ExitValue; 269 if (ExitValueVal == nullptr || 270 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 271 return false; 272 273 // Find new predicate for integer comparison. 274 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 275 switch (Compare->getPredicate()) { 276 default: return false; // Unknown comparison. 277 case CmpInst::FCMP_OEQ: 278 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 279 case CmpInst::FCMP_ONE: 280 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 281 case CmpInst::FCMP_OGT: 282 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 283 case CmpInst::FCMP_OGE: 284 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 285 case CmpInst::FCMP_OLT: 286 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 287 case CmpInst::FCMP_OLE: 288 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 289 } 290 291 // We convert the floating point induction variable to a signed i32 value if 292 // we can. This is only safe if the comparison will not overflow in a way 293 // that won't be trapped by the integer equivalent operations. Check for this 294 // now. 295 // TODO: We could use i64 if it is native and the range requires it. 296 297 // The start/stride/exit values must all fit in signed i32. 298 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 299 return false; 300 301 // If not actually striding (add x, 0.0), avoid touching the code. 302 if (IncValue == 0) 303 return false; 304 305 // Positive and negative strides have different safety conditions. 306 if (IncValue > 0) { 307 // If we have a positive stride, we require the init to be less than the 308 // exit value. 309 if (InitValue >= ExitValue) 310 return false; 311 312 uint32_t Range = uint32_t(ExitValue-InitValue); 313 // Check for infinite loop, either: 314 // while (i <= Exit) or until (i > Exit) 315 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 316 if (++Range == 0) return false; // Range overflows. 317 } 318 319 unsigned Leftover = Range % uint32_t(IncValue); 320 321 // If this is an equality comparison, we require that the strided value 322 // exactly land on the exit value, otherwise the IV condition will wrap 323 // around and do things the fp IV wouldn't. 324 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 325 Leftover != 0) 326 return false; 327 328 // If the stride would wrap around the i32 before exiting, we can't 329 // transform the IV. 330 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 331 return false; 332 } else { 333 // If we have a negative stride, we require the init to be greater than the 334 // exit value. 335 if (InitValue <= ExitValue) 336 return false; 337 338 uint32_t Range = uint32_t(InitValue-ExitValue); 339 // Check for infinite loop, either: 340 // while (i >= Exit) or until (i < Exit) 341 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 342 if (++Range == 0) return false; // Range overflows. 343 } 344 345 unsigned Leftover = Range % uint32_t(-IncValue); 346 347 // If this is an equality comparison, we require that the strided value 348 // exactly land on the exit value, otherwise the IV condition will wrap 349 // around and do things the fp IV wouldn't. 350 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 351 Leftover != 0) 352 return false; 353 354 // If the stride would wrap around the i32 before exiting, we can't 355 // transform the IV. 356 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 357 return false; 358 } 359 360 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 361 362 // Insert new integer induction variable. 363 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 364 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 365 PN->getIncomingBlock(IncomingEdge)); 366 367 Value *NewAdd = 368 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 369 Incr->getName()+".int", Incr); 370 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 371 372 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 373 ConstantInt::get(Int32Ty, ExitValue), 374 Compare->getName()); 375 376 // In the following deletions, PN may become dead and may be deleted. 377 // Use a WeakTrackingVH to observe whether this happens. 378 WeakTrackingVH WeakPH = PN; 379 380 // Delete the old floating point exit comparison. The branch starts using the 381 // new comparison. 382 NewCompare->takeName(Compare); 383 Compare->replaceAllUsesWith(NewCompare); 384 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 385 386 // Delete the old floating point increment. 387 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 388 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 389 390 // If the FP induction variable still has uses, this is because something else 391 // in the loop uses its value. In order to canonicalize the induction 392 // variable, we chose to eliminate the IV and rewrite it in terms of an 393 // int->fp cast. 394 // 395 // We give preference to sitofp over uitofp because it is faster on most 396 // platforms. 397 if (WeakPH) { 398 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 399 &*PN->getParent()->getFirstInsertionPt()); 400 PN->replaceAllUsesWith(Conv); 401 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 402 } 403 return true; 404 } 405 406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 407 // First step. Check to see if there are any floating-point recurrences. 408 // If there are, change them into integer recurrences, permitting analysis by 409 // the SCEV routines. 410 BasicBlock *Header = L->getHeader(); 411 412 SmallVector<WeakTrackingVH, 8> PHIs; 413 for (PHINode &PN : Header->phis()) 414 PHIs.push_back(&PN); 415 416 bool Changed = false; 417 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 418 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 419 Changed |= handleFloatingPointIV(L, PN); 420 421 // If the loop previously had floating-point IV, ScalarEvolution 422 // may not have been able to compute a trip count. Now that we've done some 423 // re-writing, the trip count may be computable. 424 if (Changed) 425 SE->forgetLoop(L); 426 return Changed; 427 } 428 429 //===---------------------------------------------------------------------===// 430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 431 // they will exit at the first iteration. 432 //===---------------------------------------------------------------------===// 433 434 /// Check to see if this loop has loop invariant conditions which lead to loop 435 /// exits. If so, we know that if the exit path is taken, it is at the first 436 /// loop iteration. This lets us predict exit values of PHI nodes that live in 437 /// loop header. 438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 439 // Verify the input to the pass is already in LCSSA form. 440 assert(L->isLCSSAForm(*DT)); 441 442 SmallVector<BasicBlock *, 8> ExitBlocks; 443 L->getUniqueExitBlocks(ExitBlocks); 444 445 bool MadeAnyChanges = false; 446 for (auto *ExitBB : ExitBlocks) { 447 // If there are no more PHI nodes in this exit block, then no more 448 // values defined inside the loop are used on this path. 449 for (PHINode &PN : ExitBB->phis()) { 450 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 451 IncomingValIdx != E; ++IncomingValIdx) { 452 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 453 454 // Can we prove that the exit must run on the first iteration if it 455 // runs at all? (i.e. early exits are fine for our purposes, but 456 // traces which lead to this exit being taken on the 2nd iteration 457 // aren't.) Note that this is about whether the exit branch is 458 // executed, not about whether it is taken. 459 if (!L->getLoopLatch() || 460 !DT->dominates(IncomingBB, L->getLoopLatch())) 461 continue; 462 463 // Get condition that leads to the exit path. 464 auto *TermInst = IncomingBB->getTerminator(); 465 466 Value *Cond = nullptr; 467 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 468 // Must be a conditional branch, otherwise the block 469 // should not be in the loop. 470 Cond = BI->getCondition(); 471 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 472 Cond = SI->getCondition(); 473 else 474 continue; 475 476 if (!L->isLoopInvariant(Cond)) 477 continue; 478 479 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 480 481 // Only deal with PHIs in the loop header. 482 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 483 continue; 484 485 // If ExitVal is a PHI on the loop header, then we know its 486 // value along this exit because the exit can only be taken 487 // on the first iteration. 488 auto *LoopPreheader = L->getLoopPreheader(); 489 assert(LoopPreheader && "Invalid loop"); 490 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 491 if (PreheaderIdx != -1) { 492 assert(ExitVal->getParent() == L->getHeader() && 493 "ExitVal must be in loop header"); 494 MadeAnyChanges = true; 495 PN.setIncomingValue(IncomingValIdx, 496 ExitVal->getIncomingValue(PreheaderIdx)); 497 } 498 } 499 } 500 } 501 return MadeAnyChanges; 502 } 503 504 //===----------------------------------------------------------------------===// 505 // IV Widening - Extend the width of an IV to cover its widest uses. 506 //===----------------------------------------------------------------------===// 507 508 /// Update information about the induction variable that is extended by this 509 /// sign or zero extend operation. This is used to determine the final width of 510 /// the IV before actually widening it. 511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 512 ScalarEvolution *SE, 513 const TargetTransformInfo *TTI) { 514 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 515 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 516 return; 517 518 Type *Ty = Cast->getType(); 519 uint64_t Width = SE->getTypeSizeInBits(Ty); 520 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 521 return; 522 523 // Check that `Cast` actually extends the induction variable (we rely on this 524 // later). This takes care of cases where `Cast` is extending a truncation of 525 // the narrow induction variable, and thus can end up being narrower than the 526 // "narrow" induction variable. 527 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 528 if (NarrowIVWidth >= Width) 529 return; 530 531 // Cast is either an sext or zext up to this point. 532 // We should not widen an indvar if arithmetics on the wider indvar are more 533 // expensive than those on the narrower indvar. We check only the cost of ADD 534 // because at least an ADD is required to increment the induction variable. We 535 // could compute more comprehensively the cost of all instructions on the 536 // induction variable when necessary. 537 if (TTI && 538 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 539 TTI->getArithmeticInstrCost(Instruction::Add, 540 Cast->getOperand(0)->getType())) { 541 return; 542 } 543 544 if (!WI.WidestNativeType) { 545 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 546 WI.IsSigned = IsSigned; 547 return; 548 } 549 550 // We extend the IV to satisfy the sign of its first user, arbitrarily. 551 if (WI.IsSigned != IsSigned) 552 return; 553 554 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 555 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Live IV Reduction - Minimize IVs live across the loop. 560 //===----------------------------------------------------------------------===// 561 562 //===----------------------------------------------------------------------===// 563 // Simplification of IV users based on SCEV evaluation. 564 //===----------------------------------------------------------------------===// 565 566 namespace { 567 568 class IndVarSimplifyVisitor : public IVVisitor { 569 ScalarEvolution *SE; 570 const TargetTransformInfo *TTI; 571 PHINode *IVPhi; 572 573 public: 574 WideIVInfo WI; 575 576 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 577 const TargetTransformInfo *TTI, 578 const DominatorTree *DTree) 579 : SE(SCEV), TTI(TTI), IVPhi(IV) { 580 DT = DTree; 581 WI.NarrowIV = IVPhi; 582 } 583 584 // Implement the interface used by simplifyUsersOfIV. 585 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 586 }; 587 588 } // end anonymous namespace 589 590 /// Iteratively perform simplification on a worklist of IV users. Each 591 /// successive simplification may push more users which may themselves be 592 /// candidates for simplification. 593 /// 594 /// Sign/Zero extend elimination is interleaved with IV simplification. 595 bool IndVarSimplify::simplifyAndExtend(Loop *L, 596 SCEVExpander &Rewriter, 597 LoopInfo *LI) { 598 SmallVector<WideIVInfo, 8> WideIVs; 599 600 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 601 Intrinsic::getName(Intrinsic::experimental_guard)); 602 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 603 604 SmallVector<PHINode*, 8> LoopPhis; 605 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 606 LoopPhis.push_back(cast<PHINode>(I)); 607 } 608 // Each round of simplification iterates through the SimplifyIVUsers worklist 609 // for all current phis, then determines whether any IVs can be 610 // widened. Widening adds new phis to LoopPhis, inducing another round of 611 // simplification on the wide IVs. 612 bool Changed = false; 613 while (!LoopPhis.empty()) { 614 // Evaluate as many IV expressions as possible before widening any IVs. This 615 // forces SCEV to set no-wrap flags before evaluating sign/zero 616 // extension. The first time SCEV attempts to normalize sign/zero extension, 617 // the result becomes final. So for the most predictable results, we delay 618 // evaluation of sign/zero extend evaluation until needed, and avoid running 619 // other SCEV based analysis prior to simplifyAndExtend. 620 do { 621 PHINode *CurrIV = LoopPhis.pop_back_val(); 622 623 // Information about sign/zero extensions of CurrIV. 624 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 625 626 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 627 &Visitor); 628 629 if (Visitor.WI.WidestNativeType) { 630 WideIVs.push_back(Visitor.WI); 631 } 632 } while(!LoopPhis.empty()); 633 634 // Continue if we disallowed widening. 635 if (!WidenIndVars) 636 continue; 637 638 for (; !WideIVs.empty(); WideIVs.pop_back()) { 639 unsigned ElimExt; 640 unsigned Widened; 641 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 642 DT, DeadInsts, ElimExt, Widened, 643 HasGuards, UsePostIncrementRanges)) { 644 NumElimExt += ElimExt; 645 NumWidened += Widened; 646 Changed = true; 647 LoopPhis.push_back(WidePhi); 648 } 649 } 650 } 651 return Changed; 652 } 653 654 //===----------------------------------------------------------------------===// 655 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 656 //===----------------------------------------------------------------------===// 657 658 /// Given an Value which is hoped to be part of an add recurance in the given 659 /// loop, return the associated Phi node if so. Otherwise, return null. Note 660 /// that this is less general than SCEVs AddRec checking. 661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 662 Instruction *IncI = dyn_cast<Instruction>(IncV); 663 if (!IncI) 664 return nullptr; 665 666 switch (IncI->getOpcode()) { 667 case Instruction::Add: 668 case Instruction::Sub: 669 break; 670 case Instruction::GetElementPtr: 671 // An IV counter must preserve its type. 672 if (IncI->getNumOperands() == 2) 673 break; 674 LLVM_FALLTHROUGH; 675 default: 676 return nullptr; 677 } 678 679 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 680 if (Phi && Phi->getParent() == L->getHeader()) { 681 if (L->isLoopInvariant(IncI->getOperand(1))) 682 return Phi; 683 return nullptr; 684 } 685 if (IncI->getOpcode() == Instruction::GetElementPtr) 686 return nullptr; 687 688 // Allow add/sub to be commuted. 689 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 690 if (Phi && Phi->getParent() == L->getHeader()) { 691 if (L->isLoopInvariant(IncI->getOperand(0))) 692 return Phi; 693 } 694 return nullptr; 695 } 696 697 /// Whether the current loop exit test is based on this value. Currently this 698 /// is limited to a direct use in the loop condition. 699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 700 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 701 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 702 // TODO: Allow non-icmp loop test. 703 if (!ICmp) 704 return false; 705 706 // TODO: Allow indirect use. 707 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 708 } 709 710 /// linearFunctionTestReplace policy. Return true unless we can show that the 711 /// current exit test is already sufficiently canonical. 712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 713 assert(L->getLoopLatch() && "Must be in simplified form"); 714 715 // Avoid converting a constant or loop invariant test back to a runtime 716 // test. This is critical for when SCEV's cached ExitCount is less precise 717 // than the current IR (such as after we've proven a particular exit is 718 // actually dead and thus the BE count never reaches our ExitCount.) 719 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 720 if (L->isLoopInvariant(BI->getCondition())) 721 return false; 722 723 // Do LFTR to simplify the exit condition to an ICMP. 724 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 725 if (!Cond) 726 return true; 727 728 // Do LFTR to simplify the exit ICMP to EQ/NE 729 ICmpInst::Predicate Pred = Cond->getPredicate(); 730 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 731 return true; 732 733 // Look for a loop invariant RHS 734 Value *LHS = Cond->getOperand(0); 735 Value *RHS = Cond->getOperand(1); 736 if (!L->isLoopInvariant(RHS)) { 737 if (!L->isLoopInvariant(LHS)) 738 return true; 739 std::swap(LHS, RHS); 740 } 741 // Look for a simple IV counter LHS 742 PHINode *Phi = dyn_cast<PHINode>(LHS); 743 if (!Phi) 744 Phi = getLoopPhiForCounter(LHS, L); 745 746 if (!Phi) 747 return true; 748 749 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 750 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 751 if (Idx < 0) 752 return true; 753 754 // Do LFTR if the exit condition's IV is *not* a simple counter. 755 Value *IncV = Phi->getIncomingValue(Idx); 756 return Phi != getLoopPhiForCounter(IncV, L); 757 } 758 759 /// Return true if undefined behavior would provable be executed on the path to 760 /// OnPathTo if Root produced a posion result. Note that this doesn't say 761 /// anything about whether OnPathTo is actually executed or whether Root is 762 /// actually poison. This can be used to assess whether a new use of Root can 763 /// be added at a location which is control equivalent with OnPathTo (such as 764 /// immediately before it) without introducing UB which didn't previously 765 /// exist. Note that a false result conveys no information. 766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 767 Instruction *OnPathTo, 768 DominatorTree *DT) { 769 // Basic approach is to assume Root is poison, propagate poison forward 770 // through all users we can easily track, and then check whether any of those 771 // users are provable UB and must execute before out exiting block might 772 // exit. 773 774 // The set of all recursive users we've visited (which are assumed to all be 775 // poison because of said visit) 776 SmallSet<const Value *, 16> KnownPoison; 777 SmallVector<const Instruction*, 16> Worklist; 778 Worklist.push_back(Root); 779 while (!Worklist.empty()) { 780 const Instruction *I = Worklist.pop_back_val(); 781 782 // If we know this must trigger UB on a path leading our target. 783 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 784 return true; 785 786 // If we can't analyze propagation through this instruction, just skip it 787 // and transitive users. Safe as false is a conservative result. 788 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 789 continue; 790 791 if (KnownPoison.insert(I).second) 792 for (const User *User : I->users()) 793 Worklist.push_back(cast<Instruction>(User)); 794 } 795 796 // Might be non-UB, or might have a path we couldn't prove must execute on 797 // way to exiting bb. 798 return false; 799 } 800 801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 802 /// down to checking that all operands are constant and listing instructions 803 /// that may hide undef. 804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 805 unsigned Depth) { 806 if (isa<Constant>(V)) 807 return !isa<UndefValue>(V); 808 809 if (Depth >= 6) 810 return false; 811 812 // Conservatively handle non-constant non-instructions. For example, Arguments 813 // may be undef. 814 Instruction *I = dyn_cast<Instruction>(V); 815 if (!I) 816 return false; 817 818 // Load and return values may be undef. 819 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 820 return false; 821 822 // Optimistically handle other instructions. 823 for (Value *Op : I->operands()) { 824 if (!Visited.insert(Op).second) 825 continue; 826 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 827 return false; 828 } 829 return true; 830 } 831 832 /// Return true if the given value is concrete. We must prove that undef can 833 /// never reach it. 834 /// 835 /// TODO: If we decide that this is a good approach to checking for undef, we 836 /// may factor it into a common location. 837 static bool hasConcreteDef(Value *V) { 838 SmallPtrSet<Value*, 8> Visited; 839 Visited.insert(V); 840 return hasConcreteDefImpl(V, Visited, 0); 841 } 842 843 /// Return true if this IV has any uses other than the (soon to be rewritten) 844 /// loop exit test. 845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 846 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 847 Value *IncV = Phi->getIncomingValue(LatchIdx); 848 849 for (User *U : Phi->users()) 850 if (U != Cond && U != IncV) return false; 851 852 for (User *U : IncV->users()) 853 if (U != Cond && U != Phi) return false; 854 return true; 855 } 856 857 /// Return true if the given phi is a "counter" in L. A counter is an 858 /// add recurance (of integer or pointer type) with an arbitrary start, and a 859 /// step of 1. Note that L must have exactly one latch. 860 static bool isLoopCounter(PHINode* Phi, Loop *L, 861 ScalarEvolution *SE) { 862 assert(Phi->getParent() == L->getHeader()); 863 assert(L->getLoopLatch()); 864 865 if (!SE->isSCEVable(Phi->getType())) 866 return false; 867 868 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 869 if (!AR || AR->getLoop() != L || !AR->isAffine()) 870 return false; 871 872 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 873 if (!Step || !Step->isOne()) 874 return false; 875 876 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 877 Value *IncV = Phi->getIncomingValue(LatchIdx); 878 return (getLoopPhiForCounter(IncV, L) == Phi); 879 } 880 881 /// Search the loop header for a loop counter (anadd rec w/step of one) 882 /// suitable for use by LFTR. If multiple counters are available, select the 883 /// "best" one based profitable heuristics. 884 /// 885 /// BECount may be an i8* pointer type. The pointer difference is already 886 /// valid count without scaling the address stride, so it remains a pointer 887 /// expression as far as SCEV is concerned. 888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 889 const SCEV *BECount, 890 ScalarEvolution *SE, DominatorTree *DT) { 891 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 892 893 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 894 895 // Loop over all of the PHI nodes, looking for a simple counter. 896 PHINode *BestPhi = nullptr; 897 const SCEV *BestInit = nullptr; 898 BasicBlock *LatchBlock = L->getLoopLatch(); 899 assert(LatchBlock && "Must be in simplified form"); 900 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 901 902 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 903 PHINode *Phi = cast<PHINode>(I); 904 if (!isLoopCounter(Phi, L, SE)) 905 continue; 906 907 // Avoid comparing an integer IV against a pointer Limit. 908 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 909 continue; 910 911 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 912 913 // AR may be a pointer type, while BECount is an integer type. 914 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 915 // AR may not be a narrower type, or we may never exit. 916 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 917 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 918 continue; 919 920 // Avoid reusing a potentially undef value to compute other values that may 921 // have originally had a concrete definition. 922 if (!hasConcreteDef(Phi)) { 923 // We explicitly allow unknown phis as long as they are already used by 924 // the loop exit test. This is legal since performing LFTR could not 925 // increase the number of undef users. 926 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 927 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 928 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 929 continue; 930 } 931 932 // Avoid introducing undefined behavior due to poison which didn't exist in 933 // the original program. (Annoyingly, the rules for poison and undef 934 // propagation are distinct, so this does NOT cover the undef case above.) 935 // We have to ensure that we don't introduce UB by introducing a use on an 936 // iteration where said IV produces poison. Our strategy here differs for 937 // pointers and integer IVs. For integers, we strip and reinfer as needed, 938 // see code in linearFunctionTestReplace. For pointers, we restrict 939 // transforms as there is no good way to reinfer inbounds once lost. 940 if (!Phi->getType()->isIntegerTy() && 941 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 942 continue; 943 944 const SCEV *Init = AR->getStart(); 945 946 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 947 // Don't force a live loop counter if another IV can be used. 948 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 949 continue; 950 951 // Prefer to count-from-zero. This is a more "canonical" counter form. It 952 // also prefers integer to pointer IVs. 953 if (BestInit->isZero() != Init->isZero()) { 954 if (BestInit->isZero()) 955 continue; 956 } 957 // If two IVs both count from zero or both count from nonzero then the 958 // narrower is likely a dead phi that has been widened. Use the wider phi 959 // to allow the other to be eliminated. 960 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 961 continue; 962 } 963 BestPhi = Phi; 964 BestInit = Init; 965 } 966 return BestPhi; 967 } 968 969 /// Insert an IR expression which computes the value held by the IV IndVar 970 /// (which must be an loop counter w/unit stride) after the backedge of loop L 971 /// is taken ExitCount times. 972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 973 const SCEV *ExitCount, bool UsePostInc, Loop *L, 974 SCEVExpander &Rewriter, ScalarEvolution *SE) { 975 assert(isLoopCounter(IndVar, L, SE)); 976 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 977 const SCEV *IVInit = AR->getStart(); 978 979 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 980 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 981 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 982 // the existing GEPs whenever possible. 983 if (IndVar->getType()->isPointerTy() && 984 !ExitCount->getType()->isPointerTy()) { 985 // IVOffset will be the new GEP offset that is interpreted by GEP as a 986 // signed value. ExitCount on the other hand represents the loop trip count, 987 // which is an unsigned value. FindLoopCounter only allows induction 988 // variables that have a positive unit stride of one. This means we don't 989 // have to handle the case of negative offsets (yet) and just need to zero 990 // extend ExitCount. 991 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 992 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 993 if (UsePostInc) 994 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 995 996 // Expand the code for the iteration count. 997 assert(SE->isLoopInvariant(IVOffset, L) && 998 "Computed iteration count is not loop invariant!"); 999 1000 // We could handle pointer IVs other than i8*, but we need to compensate for 1001 // gep index scaling. 1002 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1003 cast<PointerType>(IndVar->getType()) 1004 ->getElementType())->isOne() && 1005 "unit stride pointer IV must be i8*"); 1006 1007 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1009 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1010 } else { 1011 // In any other case, convert both IVInit and ExitCount to integers before 1012 // comparing. This may result in SCEV expansion of pointers, but in practice 1013 // SCEV will fold the pointer arithmetic away as such: 1014 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1015 // 1016 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1017 // for simple memset-style loops. 1018 // 1019 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1020 // were generated on top of case #2, which is not expected. 1021 1022 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1023 // For unit stride, IVCount = Start + ExitCount with 2's complement 1024 // overflow. 1025 1026 // For integer IVs, truncate the IV before computing IVInit + BECount, 1027 // unless we know apriori that the limit must be a constant when evaluated 1028 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1029 // of the IV in the loop over a (potentially) expensive expansion of the 1030 // widened exit count add(zext(add)) expression. 1031 if (SE->getTypeSizeInBits(IVInit->getType()) 1032 > SE->getTypeSizeInBits(ExitCount->getType())) { 1033 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1034 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1035 else 1036 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1037 } 1038 1039 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1040 1041 if (UsePostInc) 1042 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1043 1044 // Expand the code for the iteration count. 1045 assert(SE->isLoopInvariant(IVLimit, L) && 1046 "Computed iteration count is not loop invariant!"); 1047 // Ensure that we generate the same type as IndVar, or a smaller integer 1048 // type. In the presence of null pointer values, we have an integer type 1049 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1050 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1051 IndVar->getType() : ExitCount->getType(); 1052 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1053 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1054 } 1055 } 1056 1057 /// This method rewrites the exit condition of the loop to be a canonical != 1058 /// comparison against the incremented loop induction variable. This pass is 1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1060 /// determine a loop-invariant trip count of the loop, which is actually a much 1061 /// broader range than just linear tests. 1062 bool IndVarSimplify:: 1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1064 const SCEV *ExitCount, 1065 PHINode *IndVar, SCEVExpander &Rewriter) { 1066 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1067 assert(isLoopCounter(IndVar, L, SE)); 1068 Instruction * const IncVar = 1069 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1070 1071 // Initialize CmpIndVar to the preincremented IV. 1072 Value *CmpIndVar = IndVar; 1073 bool UsePostInc = false; 1074 1075 // If the exiting block is the same as the backedge block, we prefer to 1076 // compare against the post-incremented value, otherwise we must compare 1077 // against the preincremented value. 1078 if (ExitingBB == L->getLoopLatch()) { 1079 // For pointer IVs, we chose to not strip inbounds which requires us not 1080 // to add a potentially UB introducing use. We need to either a) show 1081 // the loop test we're modifying is already in post-inc form, or b) show 1082 // that adding a use must not introduce UB. 1083 bool SafeToPostInc = 1084 IndVar->getType()->isIntegerTy() || 1085 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1086 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1087 if (SafeToPostInc) { 1088 UsePostInc = true; 1089 CmpIndVar = IncVar; 1090 } 1091 } 1092 1093 // It may be necessary to drop nowrap flags on the incrementing instruction 1094 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1095 // case the increment might have previously been poison on the last iteration 1096 // only) or if LFTR switches to a different IV that was previously dynamically 1097 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1098 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1099 // check), because the pre-inc addrec flags may be adopted from the original 1100 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1101 // TODO: This handling is inaccurate for one case: If we switch to a 1102 // dynamically dead IV that wraps on the first loop iteration only, which is 1103 // not covered by the post-inc addrec. (If the new IV was not dynamically 1104 // dead, it could not be poison on the first iteration in the first place.) 1105 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1106 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1107 if (BO->hasNoUnsignedWrap()) 1108 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1109 if (BO->hasNoSignedWrap()) 1110 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1111 } 1112 1113 Value *ExitCnt = genLoopLimit( 1114 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1115 assert(ExitCnt->getType()->isPointerTy() == 1116 IndVar->getType()->isPointerTy() && 1117 "genLoopLimit missed a cast"); 1118 1119 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1120 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1121 ICmpInst::Predicate P; 1122 if (L->contains(BI->getSuccessor(0))) 1123 P = ICmpInst::ICMP_NE; 1124 else 1125 P = ICmpInst::ICMP_EQ; 1126 1127 IRBuilder<> Builder(BI); 1128 1129 // The new loop exit condition should reuse the debug location of the 1130 // original loop exit condition. 1131 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1132 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1133 1134 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1135 // avoid the expensive expansion of the limit expression in the wider type, 1136 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1137 // since we know (from the exit count bitwidth), that we can't self-wrap in 1138 // the narrower type. 1139 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1140 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1141 if (CmpIndVarSize > ExitCntSize) { 1142 assert(!CmpIndVar->getType()->isPointerTy() && 1143 !ExitCnt->getType()->isPointerTy()); 1144 1145 // Before resorting to actually inserting the truncate, use the same 1146 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1147 // the other side of the comparison instead. We still evaluate the limit 1148 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1149 // a truncate within in. 1150 bool Extended = false; 1151 const SCEV *IV = SE->getSCEV(CmpIndVar); 1152 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1153 ExitCnt->getType()); 1154 const SCEV *ZExtTrunc = 1155 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1156 1157 if (ZExtTrunc == IV) { 1158 Extended = true; 1159 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1160 "wide.trip.count"); 1161 } else { 1162 const SCEV *SExtTrunc = 1163 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1164 if (SExtTrunc == IV) { 1165 Extended = true; 1166 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1167 "wide.trip.count"); 1168 } 1169 } 1170 1171 if (Extended) { 1172 bool Discard; 1173 L->makeLoopInvariant(ExitCnt, Discard); 1174 } else 1175 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1176 "lftr.wideiv"); 1177 } 1178 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1179 << " LHS:" << *CmpIndVar << '\n' 1180 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1181 << "\n" 1182 << " RHS:\t" << *ExitCnt << "\n" 1183 << "ExitCount:\t" << *ExitCount << "\n" 1184 << " was: " << *BI->getCondition() << "\n"); 1185 1186 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1187 Value *OrigCond = BI->getCondition(); 1188 // It's tempting to use replaceAllUsesWith here to fully replace the old 1189 // comparison, but that's not immediately safe, since users of the old 1190 // comparison may not be dominated by the new comparison. Instead, just 1191 // update the branch to use the new comparison; in the common case this 1192 // will make old comparison dead. 1193 BI->setCondition(Cond); 1194 DeadInsts.emplace_back(OrigCond); 1195 1196 ++NumLFTR; 1197 return true; 1198 } 1199 1200 //===----------------------------------------------------------------------===// 1201 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1202 //===----------------------------------------------------------------------===// 1203 1204 /// If there's a single exit block, sink any loop-invariant values that 1205 /// were defined in the preheader but not used inside the loop into the 1206 /// exit block to reduce register pressure in the loop. 1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1208 BasicBlock *ExitBlock = L->getExitBlock(); 1209 if (!ExitBlock) return false; 1210 1211 BasicBlock *Preheader = L->getLoopPreheader(); 1212 if (!Preheader) return false; 1213 1214 bool MadeAnyChanges = false; 1215 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1216 BasicBlock::iterator I(Preheader->getTerminator()); 1217 while (I != Preheader->begin()) { 1218 --I; 1219 // New instructions were inserted at the end of the preheader. 1220 if (isa<PHINode>(I)) 1221 break; 1222 1223 // Don't move instructions which might have side effects, since the side 1224 // effects need to complete before instructions inside the loop. Also don't 1225 // move instructions which might read memory, since the loop may modify 1226 // memory. Note that it's okay if the instruction might have undefined 1227 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1228 // block. 1229 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1230 continue; 1231 1232 // Skip debug info intrinsics. 1233 if (isa<DbgInfoIntrinsic>(I)) 1234 continue; 1235 1236 // Skip eh pad instructions. 1237 if (I->isEHPad()) 1238 continue; 1239 1240 // Don't sink alloca: we never want to sink static alloca's out of the 1241 // entry block, and correctly sinking dynamic alloca's requires 1242 // checks for stacksave/stackrestore intrinsics. 1243 // FIXME: Refactor this check somehow? 1244 if (isa<AllocaInst>(I)) 1245 continue; 1246 1247 // Determine if there is a use in or before the loop (direct or 1248 // otherwise). 1249 bool UsedInLoop = false; 1250 for (Use &U : I->uses()) { 1251 Instruction *User = cast<Instruction>(U.getUser()); 1252 BasicBlock *UseBB = User->getParent(); 1253 if (PHINode *P = dyn_cast<PHINode>(User)) { 1254 unsigned i = 1255 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1256 UseBB = P->getIncomingBlock(i); 1257 } 1258 if (UseBB == Preheader || L->contains(UseBB)) { 1259 UsedInLoop = true; 1260 break; 1261 } 1262 } 1263 1264 // If there is, the def must remain in the preheader. 1265 if (UsedInLoop) 1266 continue; 1267 1268 // Otherwise, sink it to the exit block. 1269 Instruction *ToMove = &*I; 1270 bool Done = false; 1271 1272 if (I != Preheader->begin()) { 1273 // Skip debug info intrinsics. 1274 do { 1275 --I; 1276 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1277 1278 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1279 Done = true; 1280 } else { 1281 Done = true; 1282 } 1283 1284 MadeAnyChanges = true; 1285 ToMove->moveBefore(*ExitBlock, InsertPt); 1286 if (Done) break; 1287 InsertPt = ToMove->getIterator(); 1288 } 1289 1290 return MadeAnyChanges; 1291 } 1292 1293 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1294 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1295 auto *OldCond = BI->getCondition(); 1296 BI->setCondition(NewCond); 1297 if (OldCond->use_empty()) 1298 DeadInsts.emplace_back(OldCond); 1299 } 1300 1301 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1302 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1303 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1304 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1305 auto *OldCond = BI->getCondition(); 1306 auto *NewCond = 1307 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); 1308 replaceExitCond(BI, NewCond, DeadInsts); 1309 } 1310 1311 static void replaceWithInvariantCond( 1312 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1313 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, 1314 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1315 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1316 Rewriter.setInsertPoint(BI); 1317 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1318 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1319 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1320 if (ExitIfTrue) 1321 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1322 IRBuilder<> Builder(BI); 1323 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1324 BI->getCondition()->getName()); 1325 replaceExitCond(BI, NewCond, DeadInsts); 1326 } 1327 1328 static bool optimizeLoopExitWithUnknownExitCount( 1329 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, 1330 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1331 ScalarEvolution *SE, SCEVExpander &Rewriter, 1332 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1333 ICmpInst::Predicate Pred; 1334 Value *LHS, *RHS; 1335 using namespace PatternMatch; 1336 BasicBlock *TrueSucc, *FalseSucc; 1337 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1338 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1339 return false; 1340 1341 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1342 "Not a loop exit!"); 1343 1344 // 'LHS pred RHS' should now mean that we stay in loop. 1345 if (L->contains(FalseSucc)) 1346 Pred = CmpInst::getInversePredicate(Pred); 1347 1348 // If we are proving loop exit, invert the predicate. 1349 if (Inverted) 1350 Pred = CmpInst::getInversePredicate(Pred); 1351 1352 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1353 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1354 // Can we prove it to be trivially true? 1355 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { 1356 foldExit(L, ExitingBB, Inverted, DeadInsts); 1357 return true; 1358 } 1359 // Further logic works for non-inverted condition only. 1360 if (Inverted) 1361 return false; 1362 1363 auto *ARTy = LHSS->getType(); 1364 auto *MaxIterTy = MaxIter->getType(); 1365 // If possible, adjust types. 1366 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1367 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1368 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1369 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1370 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1371 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1372 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1373 } 1374 1375 if (SkipLastIter) { 1376 const SCEV *One = SE->getOne(MaxIter->getType()); 1377 MaxIter = SE->getMinusSCEV(MaxIter, One); 1378 } 1379 1380 // Check if there is a loop-invariant predicate equivalent to our check. 1381 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1382 L, BI, MaxIter); 1383 if (!LIP) 1384 return false; 1385 1386 // Can we prove it to be trivially true? 1387 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1388 foldExit(L, ExitingBB, Inverted, DeadInsts); 1389 else 1390 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, 1391 Rewriter, DeadInsts); 1392 1393 return true; 1394 } 1395 1396 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1397 SmallVector<BasicBlock*, 16> ExitingBlocks; 1398 L->getExitingBlocks(ExitingBlocks); 1399 1400 // Remove all exits which aren't both rewriteable and execute on every 1401 // iteration. 1402 auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1403 // If our exitting block exits multiple loops, we can only rewrite the 1404 // innermost one. Otherwise, we're changing how many times the innermost 1405 // loop runs before it exits. 1406 if (LI->getLoopFor(ExitingBB) != L) 1407 return true; 1408 1409 // Can't rewrite non-branch yet. 1410 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1411 if (!BI) 1412 return true; 1413 1414 // If already constant, nothing to do. 1415 if (isa<Constant>(BI->getCondition())) 1416 return true; 1417 1418 // Likewise, the loop latch must be dominated by the exiting BB. 1419 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1420 return true; 1421 1422 return false; 1423 }); 1424 ExitingBlocks.erase(NewEnd, ExitingBlocks.end()); 1425 1426 if (ExitingBlocks.empty()) 1427 return false; 1428 1429 // Get a symbolic upper bound on the loop backedge taken count. 1430 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1431 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1432 return false; 1433 1434 // Visit our exit blocks in order of dominance. We know from the fact that 1435 // all exits must dominate the latch, so there is a total dominance order 1436 // between them. 1437 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1438 // std::sort sorts in ascending order, so we want the inverse of 1439 // the normal dominance relation. 1440 if (A == B) return false; 1441 if (DT->properlyDominates(A, B)) 1442 return true; 1443 else { 1444 assert(DT->properlyDominates(B, A) && 1445 "expected total dominance order!"); 1446 return false; 1447 } 1448 }); 1449 #ifdef ASSERT 1450 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1451 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1452 } 1453 #endif 1454 1455 bool Changed = false; 1456 bool SkipLastIter = false; 1457 SmallSet<const SCEV*, 8> DominatingExitCounts; 1458 for (BasicBlock *ExitingBB : ExitingBlocks) { 1459 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1460 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1461 // Okay, we do not know the exit count here. Can we at least prove that it 1462 // will remain the same within iteration space? 1463 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1464 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { 1465 return optimizeLoopExitWithUnknownExitCount( 1466 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, 1467 Rewriter, DeadInsts); 1468 }; 1469 1470 // TODO: We might have proved that we can skip the last iteration for 1471 // this check. In this case, we only want to check the condition on the 1472 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1473 // corner case: 1474 // 1475 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1476 // 1477 // If we could not prove that len != 0, then we also could not prove that 1478 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1479 // OptimizeCond will likely not prove anything for it, even if it could 1480 // prove the same fact for len. 1481 // 1482 // As a temporary solution, we query both last and pre-last iterations in 1483 // hope that we will be able to prove triviality for at least one of 1484 // them. We can stop querying MaxExitCount for this case once SCEV 1485 // understands that (MaxExitCount - 1) will not overflow here. 1486 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1487 Changed = true; 1488 else if (SkipLastIter) 1489 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1490 Changed = true; 1491 continue; 1492 } 1493 1494 if (MaxExitCount == ExitCount) 1495 // If the loop has more than 1 iteration, all further checks will be 1496 // executed 1 iteration less. 1497 SkipLastIter = true; 1498 1499 // If we know we'd exit on the first iteration, rewrite the exit to 1500 // reflect this. This does not imply the loop must exit through this 1501 // exit; there may be an earlier one taken on the first iteration. 1502 // TODO: Given we know the backedge can't be taken, we should go ahead 1503 // and break it. Or at least, kill all the header phis and simplify. 1504 if (ExitCount->isZero()) { 1505 foldExit(L, ExitingBB, true, DeadInsts); 1506 Changed = true; 1507 continue; 1508 } 1509 1510 // If we end up with a pointer exit count, bail. Note that we can end up 1511 // with a pointer exit count for one exiting block, and not for another in 1512 // the same loop. 1513 if (!ExitCount->getType()->isIntegerTy() || 1514 !MaxExitCount->getType()->isIntegerTy()) 1515 continue; 1516 1517 Type *WiderType = 1518 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1519 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1520 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1521 assert(MaxExitCount->getType() == ExitCount->getType()); 1522 1523 // Can we prove that some other exit must be taken strictly before this 1524 // one? 1525 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1526 MaxExitCount, ExitCount)) { 1527 foldExit(L, ExitingBB, false, DeadInsts); 1528 Changed = true; 1529 continue; 1530 } 1531 1532 // As we run, keep track of which exit counts we've encountered. If we 1533 // find a duplicate, we've found an exit which would have exited on the 1534 // exiting iteration, but (from the visit order) strictly follows another 1535 // which does the same and is thus dead. 1536 if (!DominatingExitCounts.insert(ExitCount).second) { 1537 foldExit(L, ExitingBB, false, DeadInsts); 1538 Changed = true; 1539 continue; 1540 } 1541 1542 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1543 // here. If we kept track of the min of dominanting exits so far, we could 1544 // discharge exits with EC >= MDEC. This is less powerful than the existing 1545 // transform (since later exits aren't considered), but potentially more 1546 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1547 // or a >u b. Such a case is not currently known. 1548 } 1549 return Changed; 1550 } 1551 1552 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1553 SmallVector<BasicBlock*, 16> ExitingBlocks; 1554 L->getExitingBlocks(ExitingBlocks); 1555 1556 // Finally, see if we can rewrite our exit conditions into a loop invariant 1557 // form. If we have a read-only loop, and we can tell that we must exit down 1558 // a path which does not need any of the values computed within the loop, we 1559 // can rewrite the loop to exit on the first iteration. Note that this 1560 // doesn't either a) tell us the loop exits on the first iteration (unless 1561 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1562 // This transformation looks a lot like a restricted form of dead loop 1563 // elimination, but restricted to read-only loops and without neccesssarily 1564 // needing to kill the loop entirely. 1565 if (!LoopPredication) 1566 return false; 1567 1568 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1569 return false; 1570 1571 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1572 // through *explicit* control flow. We have to eliminate the possibility of 1573 // implicit exits (see below) before we know it's truly exact. 1574 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1575 if (isa<SCEVCouldNotCompute>(ExactBTC) || 1576 !SE->isLoopInvariant(ExactBTC, L) || 1577 !isSafeToExpand(ExactBTC, *SE)) 1578 return false; 1579 1580 // If we end up with a pointer exit count, bail. It may be unsized. 1581 if (!ExactBTC->getType()->isIntegerTy()) 1582 return false; 1583 1584 auto BadExit = [&](BasicBlock *ExitingBB) { 1585 // If our exiting block exits multiple loops, we can only rewrite the 1586 // innermost one. Otherwise, we're changing how many times the innermost 1587 // loop runs before it exits. 1588 if (LI->getLoopFor(ExitingBB) != L) 1589 return true; 1590 1591 // Can't rewrite non-branch yet. 1592 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1593 if (!BI) 1594 return true; 1595 1596 // If already constant, nothing to do. 1597 if (isa<Constant>(BI->getCondition())) 1598 return true; 1599 1600 // If the exit block has phis, we need to be able to compute the values 1601 // within the loop which contains them. This assumes trivially lcssa phis 1602 // have already been removed; TODO: generalize 1603 BasicBlock *ExitBlock = 1604 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1605 if (!ExitBlock->phis().empty()) 1606 return true; 1607 1608 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1609 assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count"); 1610 if (!SE->isLoopInvariant(ExitCount, L) || 1611 !isSafeToExpand(ExitCount, *SE)) 1612 return true; 1613 1614 // If we end up with a pointer exit count, bail. It may be unsized. 1615 if (!ExitCount->getType()->isIntegerTy()) 1616 return true; 1617 1618 return false; 1619 }; 1620 1621 // If we have any exits which can't be predicated themselves, than we can't 1622 // predicate any exit which isn't guaranteed to execute before it. Consider 1623 // two exits (a) and (b) which would both exit on the same iteration. If we 1624 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1625 // we could convert a loop from exiting through (a) to one exiting through 1626 // (b). Note that this problem exists only for exits with the same exit 1627 // count, and we could be more aggressive when exit counts are known inequal. 1628 llvm::sort(ExitingBlocks, 1629 [&](BasicBlock *A, BasicBlock *B) { 1630 // std::sort sorts in ascending order, so we want the inverse of 1631 // the normal dominance relation, plus a tie breaker for blocks 1632 // unordered by dominance. 1633 if (DT->properlyDominates(A, B)) return true; 1634 if (DT->properlyDominates(B, A)) return false; 1635 return A->getName() < B->getName(); 1636 }); 1637 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1638 // exits before the backedge). If they aren't, reasoning about reachability 1639 // is complicated and we choose not to for now. 1640 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1641 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1642 return false; 1643 1644 // Given our sorted total order, we know that exit[j] must be evaluated 1645 // after all exit[i] such j > i. 1646 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1647 if (BadExit(ExitingBlocks[i])) { 1648 ExitingBlocks.resize(i); 1649 break; 1650 } 1651 1652 if (ExitingBlocks.empty()) 1653 return false; 1654 1655 // We rely on not being able to reach an exiting block on a later iteration 1656 // then it's statically compute exit count. The implementaton of 1657 // getExitCount currently has this invariant, but assert it here so that 1658 // breakage is obvious if this ever changes.. 1659 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1660 return DT->dominates(ExitingBB, L->getLoopLatch()); 1661 })); 1662 1663 // At this point, ExitingBlocks consists of only those blocks which are 1664 // predicatable. Given that, we know we have at least one exit we can 1665 // predicate if the loop is doesn't have side effects and doesn't have any 1666 // implicit exits (because then our exact BTC isn't actually exact). 1667 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1668 // suggestions on how to improve this? I can obviously bail out for outer 1669 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1670 // is that enough for *all* side effects? 1671 for (BasicBlock *BB : L->blocks()) 1672 for (auto &I : *BB) 1673 // TODO:isGuaranteedToTransfer 1674 if (I.mayHaveSideEffects() || I.mayThrow()) 1675 return false; 1676 1677 bool Changed = false; 1678 // Finally, do the actual predication for all predicatable blocks. A couple 1679 // of notes here: 1680 // 1) We don't bother to constant fold dominated exits with identical exit 1681 // counts; that's simply a form of CSE/equality propagation and we leave 1682 // it for dedicated passes. 1683 // 2) We insert the comparison at the branch. Hoisting introduces additional 1684 // legality constraints and we leave that to dedicated logic. We want to 1685 // predicate even if we can't insert a loop invariant expression as 1686 // peeling or unrolling will likely reduce the cost of the otherwise loop 1687 // varying check. 1688 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1689 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1690 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1691 for (BasicBlock *ExitingBB : ExitingBlocks) { 1692 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1693 1694 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1695 Value *NewCond; 1696 if (ExitCount == ExactBTC) { 1697 NewCond = L->contains(BI->getSuccessor(0)) ? 1698 B.getFalse() : B.getTrue(); 1699 } else { 1700 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1701 if (!ExactBTCV) 1702 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1703 Value *RHS = ExactBTCV; 1704 if (ECV->getType() != RHS->getType()) { 1705 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1706 ECV = B.CreateZExt(ECV, WiderTy); 1707 RHS = B.CreateZExt(RHS, WiderTy); 1708 } 1709 auto Pred = L->contains(BI->getSuccessor(0)) ? 1710 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1711 NewCond = B.CreateICmp(Pred, ECV, RHS); 1712 } 1713 Value *OldCond = BI->getCondition(); 1714 BI->setCondition(NewCond); 1715 if (OldCond->use_empty()) 1716 DeadInsts.emplace_back(OldCond); 1717 Changed = true; 1718 } 1719 1720 return Changed; 1721 } 1722 1723 //===----------------------------------------------------------------------===// 1724 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1725 //===----------------------------------------------------------------------===// 1726 1727 bool IndVarSimplify::run(Loop *L) { 1728 // We need (and expect!) the incoming loop to be in LCSSA. 1729 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1730 "LCSSA required to run indvars!"); 1731 1732 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1733 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1734 // canonicalization can be a pessimization without LSR to "clean up" 1735 // afterwards. 1736 // - We depend on having a preheader; in particular, 1737 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1738 // and we're in trouble if we can't find the induction variable even when 1739 // we've manually inserted one. 1740 // - LFTR relies on having a single backedge. 1741 if (!L->isLoopSimplifyForm()) 1742 return false; 1743 1744 #ifndef NDEBUG 1745 // Used below for a consistency check only 1746 // Note: Since the result returned by ScalarEvolution may depend on the order 1747 // in which previous results are added to its cache, the call to 1748 // getBackedgeTakenCount() may change following SCEV queries. 1749 const SCEV *BackedgeTakenCount; 1750 if (VerifyIndvars) 1751 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1752 #endif 1753 1754 bool Changed = false; 1755 // If there are any floating-point recurrences, attempt to 1756 // transform them to use integer recurrences. 1757 Changed |= rewriteNonIntegerIVs(L); 1758 1759 // Create a rewriter object which we'll use to transform the code with. 1760 SCEVExpander Rewriter(*SE, DL, "indvars"); 1761 #ifndef NDEBUG 1762 Rewriter.setDebugType(DEBUG_TYPE); 1763 #endif 1764 1765 // Eliminate redundant IV users. 1766 // 1767 // Simplification works best when run before other consumers of SCEV. We 1768 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1769 // other expressions involving loop IVs have been evaluated. This helps SCEV 1770 // set no-wrap flags before normalizing sign/zero extension. 1771 Rewriter.disableCanonicalMode(); 1772 Changed |= simplifyAndExtend(L, Rewriter, LI); 1773 1774 // Check to see if we can compute the final value of any expressions 1775 // that are recurrent in the loop, and substitute the exit values from the 1776 // loop into any instructions outside of the loop that use the final values 1777 // of the current expressions. 1778 if (ReplaceExitValue != NeverRepl) { 1779 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1780 ReplaceExitValue, DeadInsts)) { 1781 NumReplaced += Rewrites; 1782 Changed = true; 1783 } 1784 } 1785 1786 // Eliminate redundant IV cycles. 1787 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1788 1789 // Try to eliminate loop exits based on analyzeable exit counts 1790 if (optimizeLoopExits(L, Rewriter)) { 1791 Changed = true; 1792 // Given we've changed exit counts, notify SCEV 1793 SE->forgetLoop(L); 1794 } 1795 1796 // Try to form loop invariant tests for loop exits by changing how many 1797 // iterations of the loop run when that is unobservable. 1798 if (predicateLoopExits(L, Rewriter)) { 1799 Changed = true; 1800 // Given we've changed exit counts, notify SCEV 1801 SE->forgetLoop(L); 1802 } 1803 1804 // If we have a trip count expression, rewrite the loop's exit condition 1805 // using it. 1806 if (!DisableLFTR) { 1807 BasicBlock *PreHeader = L->getLoopPreheader(); 1808 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 1809 1810 SmallVector<BasicBlock*, 16> ExitingBlocks; 1811 L->getExitingBlocks(ExitingBlocks); 1812 for (BasicBlock *ExitingBB : ExitingBlocks) { 1813 // Can't rewrite non-branch yet. 1814 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1815 continue; 1816 1817 // If our exitting block exits multiple loops, we can only rewrite the 1818 // innermost one. Otherwise, we're changing how many times the innermost 1819 // loop runs before it exits. 1820 if (LI->getLoopFor(ExitingBB) != L) 1821 continue; 1822 1823 if (!needsLFTR(L, ExitingBB)) 1824 continue; 1825 1826 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1827 if (isa<SCEVCouldNotCompute>(ExitCount)) 1828 continue; 1829 1830 // This was handled above, but as we form SCEVs, we can sometimes refine 1831 // existing ones; this allows exit counts to be folded to zero which 1832 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 1833 // until stable to handle cases like this better. 1834 if (ExitCount->isZero()) 1835 continue; 1836 1837 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 1838 if (!IndVar) 1839 continue; 1840 1841 // Avoid high cost expansions. Note: This heuristic is questionable in 1842 // that our definition of "high cost" is not exactly principled. 1843 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 1844 TTI, PreHeaderBR)) 1845 continue; 1846 1847 // Check preconditions for proper SCEVExpander operation. SCEV does not 1848 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 1849 // any pass that uses the SCEVExpander must do it. This does not work 1850 // well for loop passes because SCEVExpander makes assumptions about 1851 // all loops, while LoopPassManager only forces the current loop to be 1852 // simplified. 1853 // 1854 // FIXME: SCEV expansion has no way to bail out, so the caller must 1855 // explicitly check any assumptions made by SCEV. Brittle. 1856 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 1857 if (!AR || AR->getLoop()->getLoopPreheader()) 1858 Changed |= linearFunctionTestReplace(L, ExitingBB, 1859 ExitCount, IndVar, 1860 Rewriter); 1861 } 1862 } 1863 // Clear the rewriter cache, because values that are in the rewriter's cache 1864 // can be deleted in the loop below, causing the AssertingVH in the cache to 1865 // trigger. 1866 Rewriter.clear(); 1867 1868 // Now that we're done iterating through lists, clean up any instructions 1869 // which are now dead. 1870 while (!DeadInsts.empty()) 1871 if (Instruction *Inst = 1872 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 1873 Changed |= 1874 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 1875 1876 // The Rewriter may not be used from this point on. 1877 1878 // Loop-invariant instructions in the preheader that aren't used in the 1879 // loop may be sunk below the loop to reduce register pressure. 1880 Changed |= sinkUnusedInvariants(L); 1881 1882 // rewriteFirstIterationLoopExitValues does not rely on the computation of 1883 // trip count and therefore can further simplify exit values in addition to 1884 // rewriteLoopExitValues. 1885 Changed |= rewriteFirstIterationLoopExitValues(L); 1886 1887 // Clean up dead instructions. 1888 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 1889 1890 // Check a post-condition. 1891 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1892 "Indvars did not preserve LCSSA!"); 1893 1894 // Verify that LFTR, and any other change have not interfered with SCEV's 1895 // ability to compute trip count. We may have *changed* the exit count, but 1896 // only by reducing it. 1897 #ifndef NDEBUG 1898 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1899 SE->forgetLoop(L); 1900 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1901 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1902 SE->getTypeSizeInBits(NewBECount->getType())) 1903 NewBECount = SE->getTruncateOrNoop(NewBECount, 1904 BackedgeTakenCount->getType()); 1905 else 1906 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1907 NewBECount->getType()); 1908 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 1909 NewBECount) && "indvars must preserve SCEV"); 1910 } 1911 if (VerifyMemorySSA && MSSAU) 1912 MSSAU->getMemorySSA()->verifyMemorySSA(); 1913 #endif 1914 1915 return Changed; 1916 } 1917 1918 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 1919 LoopStandardAnalysisResults &AR, 1920 LPMUpdater &) { 1921 Function *F = L.getHeader()->getParent(); 1922 const DataLayout &DL = F->getParent()->getDataLayout(); 1923 1924 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 1925 WidenIndVars && AllowIVWidening); 1926 if (!IVS.run(&L)) 1927 return PreservedAnalyses::all(); 1928 1929 auto PA = getLoopPassPreservedAnalyses(); 1930 PA.preserveSet<CFGAnalyses>(); 1931 if (AR.MSSA) 1932 PA.preserve<MemorySSAAnalysis>(); 1933 return PA; 1934 } 1935 1936 namespace { 1937 1938 struct IndVarSimplifyLegacyPass : public LoopPass { 1939 static char ID; // Pass identification, replacement for typeid 1940 1941 IndVarSimplifyLegacyPass() : LoopPass(ID) { 1942 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 1943 } 1944 1945 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1946 if (skipLoop(L)) 1947 return false; 1948 1949 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1950 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1951 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1952 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1953 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 1954 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1955 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1956 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1957 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1958 MemorySSA *MSSA = nullptr; 1959 if (MSSAAnalysis) 1960 MSSA = &MSSAAnalysis->getMSSA(); 1961 1962 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 1963 return IVS.run(L); 1964 } 1965 1966 void getAnalysisUsage(AnalysisUsage &AU) const override { 1967 AU.setPreservesCFG(); 1968 AU.addPreserved<MemorySSAWrapperPass>(); 1969 getLoopAnalysisUsage(AU); 1970 } 1971 }; 1972 1973 } // end anonymous namespace 1974 1975 char IndVarSimplifyLegacyPass::ID = 0; 1976 1977 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 1978 "Induction Variable Simplification", false, false) 1979 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1980 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 1981 "Induction Variable Simplification", false, false) 1982 1983 Pass *llvm::createIndVarSimplifyPass() { 1984 return new IndVarSimplifyLegacyPass(); 1985 } 1986