1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/GlobalsModRef.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/PatternMatch.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/Transforms/Utils/LoopUtils.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 89 class IndVarSimplify : public LoopPass { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 TargetLibraryInfo *TLI; 94 const TargetTransformInfo *TTI; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() 102 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.setPreservesCFG(); 110 getLoopAnalysisUsage(AU); 111 } 112 113 private: 114 void releaseMemory() override { 115 DeadInsts.clear(); 116 } 117 118 bool isValidRewrite(Value *FromVal, Value *ToVal); 119 120 void handleFloatingPointIV(Loop *L, PHINode *PH); 121 void rewriteNonIntegerIVs(Loop *L); 122 123 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 124 125 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 126 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 127 void rewriteFirstIterationLoopExitValues(Loop *L); 128 129 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 130 PHINode *IndVar, SCEVExpander &Rewriter); 131 132 void sinkUnusedInvariants(Loop *L); 133 134 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 135 Instruction *InsertPt, Type *Ty); 136 }; 137 } 138 139 char IndVarSimplify::ID = 0; 140 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 141 "Induction Variable Simplification", false, false) 142 INITIALIZE_PASS_DEPENDENCY(LoopPass) 143 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 144 "Induction Variable Simplification", false, false) 145 146 Pass *llvm::createIndVarSimplifyPass() { 147 return new IndVarSimplify(); 148 } 149 150 /// Return true if the SCEV expansion generated by the rewriter can replace the 151 /// original value. SCEV guarantees that it produces the same value, but the way 152 /// it is produced may be illegal IR. Ideally, this function will only be 153 /// called for verification. 154 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 155 // If an SCEV expression subsumed multiple pointers, its expansion could 156 // reassociate the GEP changing the base pointer. This is illegal because the 157 // final address produced by a GEP chain must be inbounds relative to its 158 // underlying object. Otherwise basic alias analysis, among other things, 159 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 160 // producing an expression involving multiple pointers. Until then, we must 161 // bail out here. 162 // 163 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 164 // because it understands lcssa phis while SCEV does not. 165 Value *FromPtr = FromVal; 166 Value *ToPtr = ToVal; 167 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 168 FromPtr = GEP->getPointerOperand(); 169 } 170 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 171 ToPtr = GEP->getPointerOperand(); 172 } 173 if (FromPtr != FromVal || ToPtr != ToVal) { 174 // Quickly check the common case 175 if (FromPtr == ToPtr) 176 return true; 177 178 // SCEV may have rewritten an expression that produces the GEP's pointer 179 // operand. That's ok as long as the pointer operand has the same base 180 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 181 // base of a recurrence. This handles the case in which SCEV expansion 182 // converts a pointer type recurrence into a nonrecurrent pointer base 183 // indexed by an integer recurrence. 184 185 // If the GEP base pointer is a vector of pointers, abort. 186 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 187 return false; 188 189 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 190 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 191 if (FromBase == ToBase) 192 return true; 193 194 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 195 << *FromBase << " != " << *ToBase << "\n"); 196 197 return false; 198 } 199 return true; 200 } 201 202 /// Determine the insertion point for this user. By default, insert immediately 203 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 204 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 205 /// common dominator for the incoming blocks. 206 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 207 DominatorTree *DT, LoopInfo *LI) { 208 PHINode *PHI = dyn_cast<PHINode>(User); 209 if (!PHI) 210 return User; 211 212 Instruction *InsertPt = nullptr; 213 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 214 if (PHI->getIncomingValue(i) != Def) 215 continue; 216 217 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 218 if (!InsertPt) { 219 InsertPt = InsertBB->getTerminator(); 220 continue; 221 } 222 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 223 InsertPt = InsertBB->getTerminator(); 224 } 225 assert(InsertPt && "Missing phi operand"); 226 227 auto *DefI = dyn_cast<Instruction>(Def); 228 if (!DefI) 229 return InsertPt; 230 231 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 232 233 auto *L = LI->getLoopFor(DefI->getParent()); 234 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 235 236 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 237 if (LI->getLoopFor(DTN->getBlock()) == L) 238 return DTN->getBlock()->getTerminator(); 239 240 llvm_unreachable("DefI dominates InsertPt!"); 241 } 242 243 //===----------------------------------------------------------------------===// 244 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 245 //===----------------------------------------------------------------------===// 246 247 /// Convert APF to an integer, if possible. 248 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 249 bool isExact = false; 250 // See if we can convert this to an int64_t 251 uint64_t UIntVal; 252 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 253 &isExact) != APFloat::opOK || !isExact) 254 return false; 255 IntVal = UIntVal; 256 return true; 257 } 258 259 /// If the loop has floating induction variable then insert corresponding 260 /// integer induction variable if possible. 261 /// For example, 262 /// for(double i = 0; i < 10000; ++i) 263 /// bar(i) 264 /// is converted into 265 /// for(int i = 0; i < 10000; ++i) 266 /// bar((double)i); 267 /// 268 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 269 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 270 unsigned BackEdge = IncomingEdge^1; 271 272 // Check incoming value. 273 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 274 275 int64_t InitValue; 276 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 277 return; 278 279 // Check IV increment. Reject this PN if increment operation is not 280 // an add or increment value can not be represented by an integer. 281 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 282 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 283 284 // If this is not an add of the PHI with a constantfp, or if the constant fp 285 // is not an integer, bail out. 286 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 287 int64_t IncValue; 288 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 289 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 290 return; 291 292 // Check Incr uses. One user is PN and the other user is an exit condition 293 // used by the conditional terminator. 294 Value::user_iterator IncrUse = Incr->user_begin(); 295 Instruction *U1 = cast<Instruction>(*IncrUse++); 296 if (IncrUse == Incr->user_end()) return; 297 Instruction *U2 = cast<Instruction>(*IncrUse++); 298 if (IncrUse != Incr->user_end()) return; 299 300 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 301 // only used by a branch, we can't transform it. 302 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 303 if (!Compare) 304 Compare = dyn_cast<FCmpInst>(U2); 305 if (!Compare || !Compare->hasOneUse() || 306 !isa<BranchInst>(Compare->user_back())) 307 return; 308 309 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 310 311 // We need to verify that the branch actually controls the iteration count 312 // of the loop. If not, the new IV can overflow and no one will notice. 313 // The branch block must be in the loop and one of the successors must be out 314 // of the loop. 315 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 316 if (!L->contains(TheBr->getParent()) || 317 (L->contains(TheBr->getSuccessor(0)) && 318 L->contains(TheBr->getSuccessor(1)))) 319 return; 320 321 322 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 323 // transform it. 324 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 325 int64_t ExitValue; 326 if (ExitValueVal == nullptr || 327 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 328 return; 329 330 // Find new predicate for integer comparison. 331 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 332 switch (Compare->getPredicate()) { 333 default: return; // Unknown comparison. 334 case CmpInst::FCMP_OEQ: 335 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 336 case CmpInst::FCMP_ONE: 337 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 338 case CmpInst::FCMP_OGT: 339 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 340 case CmpInst::FCMP_OGE: 341 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 342 case CmpInst::FCMP_OLT: 343 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 344 case CmpInst::FCMP_OLE: 345 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 346 } 347 348 // We convert the floating point induction variable to a signed i32 value if 349 // we can. This is only safe if the comparison will not overflow in a way 350 // that won't be trapped by the integer equivalent operations. Check for this 351 // now. 352 // TODO: We could use i64 if it is native and the range requires it. 353 354 // The start/stride/exit values must all fit in signed i32. 355 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 356 return; 357 358 // If not actually striding (add x, 0.0), avoid touching the code. 359 if (IncValue == 0) 360 return; 361 362 // Positive and negative strides have different safety conditions. 363 if (IncValue > 0) { 364 // If we have a positive stride, we require the init to be less than the 365 // exit value. 366 if (InitValue >= ExitValue) 367 return; 368 369 uint32_t Range = uint32_t(ExitValue-InitValue); 370 // Check for infinite loop, either: 371 // while (i <= Exit) or until (i > Exit) 372 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 373 if (++Range == 0) return; // Range overflows. 374 } 375 376 unsigned Leftover = Range % uint32_t(IncValue); 377 378 // If this is an equality comparison, we require that the strided value 379 // exactly land on the exit value, otherwise the IV condition will wrap 380 // around and do things the fp IV wouldn't. 381 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 382 Leftover != 0) 383 return; 384 385 // If the stride would wrap around the i32 before exiting, we can't 386 // transform the IV. 387 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 388 return; 389 390 } else { 391 // If we have a negative stride, we require the init to be greater than the 392 // exit value. 393 if (InitValue <= ExitValue) 394 return; 395 396 uint32_t Range = uint32_t(InitValue-ExitValue); 397 // Check for infinite loop, either: 398 // while (i >= Exit) or until (i < Exit) 399 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 400 if (++Range == 0) return; // Range overflows. 401 } 402 403 unsigned Leftover = Range % uint32_t(-IncValue); 404 405 // If this is an equality comparison, we require that the strided value 406 // exactly land on the exit value, otherwise the IV condition will wrap 407 // around and do things the fp IV wouldn't. 408 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 409 Leftover != 0) 410 return; 411 412 // If the stride would wrap around the i32 before exiting, we can't 413 // transform the IV. 414 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 415 return; 416 } 417 418 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 419 420 // Insert new integer induction variable. 421 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 422 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 423 PN->getIncomingBlock(IncomingEdge)); 424 425 Value *NewAdd = 426 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 427 Incr->getName()+".int", Incr); 428 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 429 430 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 431 ConstantInt::get(Int32Ty, ExitValue), 432 Compare->getName()); 433 434 // In the following deletions, PN may become dead and may be deleted. 435 // Use a WeakVH to observe whether this happens. 436 WeakVH WeakPH = PN; 437 438 // Delete the old floating point exit comparison. The branch starts using the 439 // new comparison. 440 NewCompare->takeName(Compare); 441 Compare->replaceAllUsesWith(NewCompare); 442 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 443 444 // Delete the old floating point increment. 445 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 446 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 447 448 // If the FP induction variable still has uses, this is because something else 449 // in the loop uses its value. In order to canonicalize the induction 450 // variable, we chose to eliminate the IV and rewrite it in terms of an 451 // int->fp cast. 452 // 453 // We give preference to sitofp over uitofp because it is faster on most 454 // platforms. 455 if (WeakPH) { 456 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 457 &*PN->getParent()->getFirstInsertionPt()); 458 PN->replaceAllUsesWith(Conv); 459 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 460 } 461 Changed = true; 462 } 463 464 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 465 // First step. Check to see if there are any floating-point recurrences. 466 // If there are, change them into integer recurrences, permitting analysis by 467 // the SCEV routines. 468 // 469 BasicBlock *Header = L->getHeader(); 470 471 SmallVector<WeakVH, 8> PHIs; 472 for (BasicBlock::iterator I = Header->begin(); 473 PHINode *PN = dyn_cast<PHINode>(I); ++I) 474 PHIs.push_back(PN); 475 476 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 477 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 478 handleFloatingPointIV(L, PN); 479 480 // If the loop previously had floating-point IV, ScalarEvolution 481 // may not have been able to compute a trip count. Now that we've done some 482 // re-writing, the trip count may be computable. 483 if (Changed) 484 SE->forgetLoop(L); 485 } 486 487 namespace { 488 // Collect information about PHI nodes which can be transformed in 489 // rewriteLoopExitValues. 490 struct RewritePhi { 491 PHINode *PN; 492 unsigned Ith; // Ith incoming value. 493 Value *Val; // Exit value after expansion. 494 bool HighCost; // High Cost when expansion. 495 496 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 497 : PN(P), Ith(I), Val(V), HighCost(H) {} 498 }; 499 } 500 501 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 502 Loop *L, Instruction *InsertPt, 503 Type *ResultTy) { 504 // Before expanding S into an expensive LLVM expression, see if we can use an 505 // already existing value as the expansion for S. 506 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 507 if (ExistingValue->getType() == ResultTy) 508 return ExistingValue; 509 510 // We didn't find anything, fall back to using SCEVExpander. 511 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 512 } 513 514 //===----------------------------------------------------------------------===// 515 // rewriteLoopExitValues - Optimize IV users outside the loop. 516 // As a side effect, reduces the amount of IV processing within the loop. 517 //===----------------------------------------------------------------------===// 518 519 /// Check to see if this loop has a computable loop-invariant execution count. 520 /// If so, this means that we can compute the final value of any expressions 521 /// that are recurrent in the loop, and substitute the exit values from the loop 522 /// into any instructions outside of the loop that use the final values of the 523 /// current expressions. 524 /// 525 /// This is mostly redundant with the regular IndVarSimplify activities that 526 /// happen later, except that it's more powerful in some cases, because it's 527 /// able to brute-force evaluate arbitrary instructions as long as they have 528 /// constant operands at the beginning of the loop. 529 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 530 // Check a pre-condition. 531 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 532 533 SmallVector<BasicBlock*, 8> ExitBlocks; 534 L->getUniqueExitBlocks(ExitBlocks); 535 536 SmallVector<RewritePhi, 8> RewritePhiSet; 537 // Find all values that are computed inside the loop, but used outside of it. 538 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 539 // the exit blocks of the loop to find them. 540 for (BasicBlock *ExitBB : ExitBlocks) { 541 // If there are no PHI nodes in this exit block, then no values defined 542 // inside the loop are used on this path, skip it. 543 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 544 if (!PN) continue; 545 546 unsigned NumPreds = PN->getNumIncomingValues(); 547 548 // Iterate over all of the PHI nodes. 549 BasicBlock::iterator BBI = ExitBB->begin(); 550 while ((PN = dyn_cast<PHINode>(BBI++))) { 551 if (PN->use_empty()) 552 continue; // dead use, don't replace it 553 554 if (!SE->isSCEVable(PN->getType())) 555 continue; 556 557 // It's necessary to tell ScalarEvolution about this explicitly so that 558 // it can walk the def-use list and forget all SCEVs, as it may not be 559 // watching the PHI itself. Once the new exit value is in place, there 560 // may not be a def-use connection between the loop and every instruction 561 // which got a SCEVAddRecExpr for that loop. 562 SE->forgetValue(PN); 563 564 // Iterate over all of the values in all the PHI nodes. 565 for (unsigned i = 0; i != NumPreds; ++i) { 566 // If the value being merged in is not integer or is not defined 567 // in the loop, skip it. 568 Value *InVal = PN->getIncomingValue(i); 569 if (!isa<Instruction>(InVal)) 570 continue; 571 572 // If this pred is for a subloop, not L itself, skip it. 573 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 574 continue; // The Block is in a subloop, skip it. 575 576 // Check that InVal is defined in the loop. 577 Instruction *Inst = cast<Instruction>(InVal); 578 if (!L->contains(Inst)) 579 continue; 580 581 // Okay, this instruction has a user outside of the current loop 582 // and varies predictably *inside* the loop. Evaluate the value it 583 // contains when the loop exits, if possible. 584 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 585 if (!SE->isLoopInvariant(ExitValue, L) || 586 !isSafeToExpand(ExitValue, *SE)) 587 continue; 588 589 // Computing the value outside of the loop brings no benefit if : 590 // - it is definitely used inside the loop in a way which can not be 591 // optimized away. 592 // - no use outside of the loop can take advantage of hoisting the 593 // computation out of the loop 594 if (ExitValue->getSCEVType()>=scMulExpr) { 595 unsigned NumHardInternalUses = 0; 596 unsigned NumSoftExternalUses = 0; 597 unsigned NumUses = 0; 598 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 599 IB != IE && NumUses <= 6; ++IB) { 600 Instruction *UseInstr = cast<Instruction>(*IB); 601 unsigned Opc = UseInstr->getOpcode(); 602 NumUses++; 603 if (L->contains(UseInstr)) { 604 if (Opc == Instruction::Call || Opc == Instruction::Ret) 605 NumHardInternalUses++; 606 } else { 607 if (Opc == Instruction::PHI) { 608 // Do not count the Phi as a use. LCSSA may have inserted 609 // plenty of trivial ones. 610 NumUses--; 611 for (auto PB = UseInstr->user_begin(), 612 PE = UseInstr->user_end(); 613 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 614 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 615 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 616 NumSoftExternalUses++; 617 } 618 continue; 619 } 620 if (Opc != Instruction::Call && Opc != Instruction::Ret) 621 NumSoftExternalUses++; 622 } 623 } 624 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 625 continue; 626 } 627 628 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 629 Value *ExitVal = 630 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 631 632 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 633 << " LoopVal = " << *Inst << "\n"); 634 635 if (!isValidRewrite(Inst, ExitVal)) { 636 DeadInsts.push_back(ExitVal); 637 continue; 638 } 639 640 // Collect all the candidate PHINodes to be rewritten. 641 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 642 } 643 } 644 } 645 646 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 647 648 // Transformation. 649 for (const RewritePhi &Phi : RewritePhiSet) { 650 PHINode *PN = Phi.PN; 651 Value *ExitVal = Phi.Val; 652 653 // Only do the rewrite when the ExitValue can be expanded cheaply. 654 // If LoopCanBeDel is true, rewrite exit value aggressively. 655 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 656 DeadInsts.push_back(ExitVal); 657 continue; 658 } 659 660 Changed = true; 661 ++NumReplaced; 662 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 663 PN->setIncomingValue(Phi.Ith, ExitVal); 664 665 // If this instruction is dead now, delete it. Don't do it now to avoid 666 // invalidating iterators. 667 if (isInstructionTriviallyDead(Inst, TLI)) 668 DeadInsts.push_back(Inst); 669 670 // Replace PN with ExitVal if that is legal and does not break LCSSA. 671 if (PN->getNumIncomingValues() == 1 && 672 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 673 PN->replaceAllUsesWith(ExitVal); 674 PN->eraseFromParent(); 675 } 676 } 677 678 // The insertion point instruction may have been deleted; clear it out 679 // so that the rewriter doesn't trip over it later. 680 Rewriter.clearInsertPoint(); 681 } 682 683 //===---------------------------------------------------------------------===// 684 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 685 // they will exit at the first iteration. 686 //===---------------------------------------------------------------------===// 687 688 /// Check to see if this loop has loop invariant conditions which lead to loop 689 /// exits. If so, we know that if the exit path is taken, it is at the first 690 /// loop iteration. This lets us predict exit values of PHI nodes that live in 691 /// loop header. 692 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 693 // Verify the input to the pass is already in LCSSA form. 694 assert(L->isLCSSAForm(*DT)); 695 696 SmallVector<BasicBlock *, 8> ExitBlocks; 697 L->getUniqueExitBlocks(ExitBlocks); 698 auto *LoopHeader = L->getHeader(); 699 assert(LoopHeader && "Invalid loop"); 700 701 for (auto *ExitBB : ExitBlocks) { 702 BasicBlock::iterator BBI = ExitBB->begin(); 703 // If there are no more PHI nodes in this exit block, then no more 704 // values defined inside the loop are used on this path. 705 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 706 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 707 IncomingValIdx != E; ++IncomingValIdx) { 708 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 709 710 // We currently only support loop exits from loop header. If the 711 // incoming block is not loop header, we need to recursively check 712 // all conditions starting from loop header are loop invariants. 713 // Additional support might be added in the future. 714 if (IncomingBB != LoopHeader) 715 continue; 716 717 // Get condition that leads to the exit path. 718 auto *TermInst = IncomingBB->getTerminator(); 719 720 Value *Cond = nullptr; 721 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 722 // Must be a conditional branch, otherwise the block 723 // should not be in the loop. 724 Cond = BI->getCondition(); 725 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 726 Cond = SI->getCondition(); 727 else 728 continue; 729 730 if (!L->isLoopInvariant(Cond)) 731 continue; 732 733 auto *ExitVal = 734 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 735 736 // Only deal with PHIs. 737 if (!ExitVal) 738 continue; 739 740 // If ExitVal is a PHI on the loop header, then we know its 741 // value along this exit because the exit can only be taken 742 // on the first iteration. 743 auto *LoopPreheader = L->getLoopPreheader(); 744 assert(LoopPreheader && "Invalid loop"); 745 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 746 if (PreheaderIdx != -1) { 747 assert(ExitVal->getParent() == LoopHeader && 748 "ExitVal must be in loop header"); 749 PN->setIncomingValue(IncomingValIdx, 750 ExitVal->getIncomingValue(PreheaderIdx)); 751 } 752 } 753 } 754 } 755 } 756 757 /// Check whether it is possible to delete the loop after rewriting exit 758 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 759 /// aggressively. 760 bool IndVarSimplify::canLoopBeDeleted( 761 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 762 763 BasicBlock *Preheader = L->getLoopPreheader(); 764 // If there is no preheader, the loop will not be deleted. 765 if (!Preheader) 766 return false; 767 768 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 769 // We obviate multiple ExitingBlocks case for simplicity. 770 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 771 // after exit value rewriting, we can enhance the logic here. 772 SmallVector<BasicBlock *, 4> ExitingBlocks; 773 L->getExitingBlocks(ExitingBlocks); 774 SmallVector<BasicBlock *, 8> ExitBlocks; 775 L->getUniqueExitBlocks(ExitBlocks); 776 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 777 return false; 778 779 BasicBlock *ExitBlock = ExitBlocks[0]; 780 BasicBlock::iterator BI = ExitBlock->begin(); 781 while (PHINode *P = dyn_cast<PHINode>(BI)) { 782 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 783 784 // If the Incoming value of P is found in RewritePhiSet, we know it 785 // could be rewritten to use a loop invariant value in transformation 786 // phase later. Skip it in the loop invariant check below. 787 bool found = false; 788 for (const RewritePhi &Phi : RewritePhiSet) { 789 unsigned i = Phi.Ith; 790 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 791 found = true; 792 break; 793 } 794 } 795 796 Instruction *I; 797 if (!found && (I = dyn_cast<Instruction>(Incoming))) 798 if (!L->hasLoopInvariantOperands(I)) 799 return false; 800 801 ++BI; 802 } 803 804 for (auto *BB : L->blocks()) 805 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 806 return false; 807 808 return true; 809 } 810 811 //===----------------------------------------------------------------------===// 812 // IV Widening - Extend the width of an IV to cover its widest uses. 813 //===----------------------------------------------------------------------===// 814 815 namespace { 816 // Collect information about induction variables that are used by sign/zero 817 // extend operations. This information is recorded by CollectExtend and provides 818 // the input to WidenIV. 819 struct WideIVInfo { 820 PHINode *NarrowIV = nullptr; 821 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 822 bool IsSigned = false; // Was a sext user seen before a zext? 823 }; 824 } 825 826 /// Update information about the induction variable that is extended by this 827 /// sign or zero extend operation. This is used to determine the final width of 828 /// the IV before actually widening it. 829 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 830 const TargetTransformInfo *TTI) { 831 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 832 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 833 return; 834 835 Type *Ty = Cast->getType(); 836 uint64_t Width = SE->getTypeSizeInBits(Ty); 837 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 838 return; 839 840 // Cast is either an sext or zext up to this point. 841 // We should not widen an indvar if arithmetics on the wider indvar are more 842 // expensive than those on the narrower indvar. We check only the cost of ADD 843 // because at least an ADD is required to increment the induction variable. We 844 // could compute more comprehensively the cost of all instructions on the 845 // induction variable when necessary. 846 if (TTI && 847 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 848 TTI->getArithmeticInstrCost(Instruction::Add, 849 Cast->getOperand(0)->getType())) { 850 return; 851 } 852 853 if (!WI.WidestNativeType) { 854 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 855 WI.IsSigned = IsSigned; 856 return; 857 } 858 859 // We extend the IV to satisfy the sign of its first user, arbitrarily. 860 if (WI.IsSigned != IsSigned) 861 return; 862 863 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 864 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 865 } 866 867 namespace { 868 869 /// Record a link in the Narrow IV def-use chain along with the WideIV that 870 /// computes the same value as the Narrow IV def. This avoids caching Use* 871 /// pointers. 872 struct NarrowIVDefUse { 873 Instruction *NarrowDef = nullptr; 874 Instruction *NarrowUse = nullptr; 875 Instruction *WideDef = nullptr; 876 877 // True if the narrow def is never negative. Tracking this information lets 878 // us use a sign extension instead of a zero extension or vice versa, when 879 // profitable and legal. 880 bool NeverNegative = false; 881 882 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 883 bool NeverNegative) 884 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 885 NeverNegative(NeverNegative) {} 886 }; 887 888 /// The goal of this transform is to remove sign and zero extends without 889 /// creating any new induction variables. To do this, it creates a new phi of 890 /// the wider type and redirects all users, either removing extends or inserting 891 /// truncs whenever we stop propagating the type. 892 /// 893 class WidenIV { 894 // Parameters 895 PHINode *OrigPhi; 896 Type *WideType; 897 bool IsSigned; 898 899 // Context 900 LoopInfo *LI; 901 Loop *L; 902 ScalarEvolution *SE; 903 DominatorTree *DT; 904 905 // Result 906 PHINode *WidePhi; 907 Instruction *WideInc; 908 const SCEV *WideIncExpr; 909 SmallVectorImpl<WeakVH> &DeadInsts; 910 911 SmallPtrSet<Instruction*,16> Widened; 912 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 913 914 public: 915 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 916 ScalarEvolution *SEv, DominatorTree *DTree, 917 SmallVectorImpl<WeakVH> &DI) : 918 OrigPhi(WI.NarrowIV), 919 WideType(WI.WidestNativeType), 920 IsSigned(WI.IsSigned), 921 LI(LInfo), 922 L(LI->getLoopFor(OrigPhi->getParent())), 923 SE(SEv), 924 DT(DTree), 925 WidePhi(nullptr), 926 WideInc(nullptr), 927 WideIncExpr(nullptr), 928 DeadInsts(DI) { 929 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 930 } 931 932 PHINode *createWideIV(SCEVExpander &Rewriter); 933 934 protected: 935 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 936 Instruction *Use); 937 938 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 939 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 940 const SCEVAddRecExpr *WideAR); 941 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 942 943 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 944 945 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 946 947 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 948 unsigned OpCode) const; 949 950 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 951 952 bool widenLoopCompare(NarrowIVDefUse DU); 953 954 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 955 }; 956 } // anonymous namespace 957 958 /// Perform a quick domtree based check for loop invariance assuming that V is 959 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 960 /// purpose. 961 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 962 Instruction *Inst = dyn_cast<Instruction>(V); 963 if (!Inst) 964 return true; 965 966 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 967 } 968 969 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 970 bool IsSigned, Instruction *Use) { 971 // Set the debug location and conservative insertion point. 972 IRBuilder<> Builder(Use); 973 // Hoist the insertion point into loop preheaders as far as possible. 974 for (const Loop *L = LI->getLoopFor(Use->getParent()); 975 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 976 L = L->getParentLoop()) 977 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 978 979 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 980 Builder.CreateZExt(NarrowOper, WideType); 981 } 982 983 /// Instantiate a wide operation to replace a narrow operation. This only needs 984 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 985 /// 0 for any operation we decide not to clone. 986 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 987 const SCEVAddRecExpr *WideAR) { 988 unsigned Opcode = DU.NarrowUse->getOpcode(); 989 switch (Opcode) { 990 default: 991 return nullptr; 992 case Instruction::Add: 993 case Instruction::Mul: 994 case Instruction::UDiv: 995 case Instruction::Sub: 996 return cloneArithmeticIVUser(DU, WideAR); 997 998 case Instruction::And: 999 case Instruction::Or: 1000 case Instruction::Xor: 1001 case Instruction::Shl: 1002 case Instruction::LShr: 1003 case Instruction::AShr: 1004 return cloneBitwiseIVUser(DU); 1005 } 1006 } 1007 1008 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1009 Instruction *NarrowUse = DU.NarrowUse; 1010 Instruction *NarrowDef = DU.NarrowDef; 1011 Instruction *WideDef = DU.WideDef; 1012 1013 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1014 1015 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1016 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1017 // invariant and will be folded or hoisted. If it actually comes from a 1018 // widened IV, it should be removed during a future call to widenIVUse. 1019 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1020 ? WideDef 1021 : createExtendInst(NarrowUse->getOperand(0), WideType, 1022 IsSigned, NarrowUse); 1023 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1024 ? WideDef 1025 : createExtendInst(NarrowUse->getOperand(1), WideType, 1026 IsSigned, NarrowUse); 1027 1028 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1029 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1030 NarrowBO->getName()); 1031 IRBuilder<> Builder(NarrowUse); 1032 Builder.Insert(WideBO); 1033 WideBO->copyIRFlags(NarrowBO); 1034 return WideBO; 1035 } 1036 1037 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1038 const SCEVAddRecExpr *WideAR) { 1039 Instruction *NarrowUse = DU.NarrowUse; 1040 Instruction *NarrowDef = DU.NarrowDef; 1041 Instruction *WideDef = DU.WideDef; 1042 1043 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1044 1045 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1046 1047 // We're trying to find X such that 1048 // 1049 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1050 // 1051 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1052 // and check using SCEV if any of them are correct. 1053 1054 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1055 // correct solution to X. 1056 auto GuessNonIVOperand = [&](bool SignExt) { 1057 const SCEV *WideLHS; 1058 const SCEV *WideRHS; 1059 1060 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1061 if (SignExt) 1062 return SE->getSignExtendExpr(S, Ty); 1063 return SE->getZeroExtendExpr(S, Ty); 1064 }; 1065 1066 if (IVOpIdx == 0) { 1067 WideLHS = SE->getSCEV(WideDef); 1068 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1069 WideRHS = GetExtend(NarrowRHS, WideType); 1070 } else { 1071 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1072 WideLHS = GetExtend(NarrowLHS, WideType); 1073 WideRHS = SE->getSCEV(WideDef); 1074 } 1075 1076 // WideUse is "WideDef `op.wide` X" as described in the comment. 1077 const SCEV *WideUse = nullptr; 1078 1079 switch (NarrowUse->getOpcode()) { 1080 default: 1081 llvm_unreachable("No other possibility!"); 1082 1083 case Instruction::Add: 1084 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1085 break; 1086 1087 case Instruction::Mul: 1088 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1089 break; 1090 1091 case Instruction::UDiv: 1092 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1093 break; 1094 1095 case Instruction::Sub: 1096 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1097 break; 1098 } 1099 1100 return WideUse == WideAR; 1101 }; 1102 1103 bool SignExtend = IsSigned; 1104 if (!GuessNonIVOperand(SignExtend)) { 1105 SignExtend = !SignExtend; 1106 if (!GuessNonIVOperand(SignExtend)) 1107 return nullptr; 1108 } 1109 1110 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1111 ? WideDef 1112 : createExtendInst(NarrowUse->getOperand(0), WideType, 1113 SignExtend, NarrowUse); 1114 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1115 ? WideDef 1116 : createExtendInst(NarrowUse->getOperand(1), WideType, 1117 SignExtend, NarrowUse); 1118 1119 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1120 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1121 NarrowBO->getName()); 1122 1123 IRBuilder<> Builder(NarrowUse); 1124 Builder.Insert(WideBO); 1125 WideBO->copyIRFlags(NarrowBO); 1126 return WideBO; 1127 } 1128 1129 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1130 unsigned OpCode) const { 1131 if (OpCode == Instruction::Add) 1132 return SE->getAddExpr(LHS, RHS); 1133 if (OpCode == Instruction::Sub) 1134 return SE->getMinusSCEV(LHS, RHS); 1135 if (OpCode == Instruction::Mul) 1136 return SE->getMulExpr(LHS, RHS); 1137 1138 llvm_unreachable("Unsupported opcode."); 1139 } 1140 1141 /// No-wrap operations can transfer sign extension of their result to their 1142 /// operands. Generate the SCEV value for the widened operation without 1143 /// actually modifying the IR yet. If the expression after extending the 1144 /// operands is an AddRec for this loop, return it. 1145 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1146 1147 // Handle the common case of add<nsw/nuw> 1148 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1149 // Only Add/Sub/Mul instructions supported yet. 1150 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1151 OpCode != Instruction::Mul) 1152 return nullptr; 1153 1154 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1155 // if extending the other will lead to a recurrence. 1156 const unsigned ExtendOperIdx = 1157 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1158 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1159 1160 const SCEV *ExtendOperExpr = nullptr; 1161 const OverflowingBinaryOperator *OBO = 1162 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1163 if (IsSigned && OBO->hasNoSignedWrap()) 1164 ExtendOperExpr = SE->getSignExtendExpr( 1165 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1166 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1167 ExtendOperExpr = SE->getZeroExtendExpr( 1168 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1169 else 1170 return nullptr; 1171 1172 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1173 // flags. This instruction may be guarded by control flow that the no-wrap 1174 // behavior depends on. Non-control-equivalent instructions can be mapped to 1175 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1176 // semantics to those operations. 1177 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1178 const SCEV *rhs = ExtendOperExpr; 1179 1180 // Let's swap operands to the initial order for the case of non-commutative 1181 // operations, like SUB. See PR21014. 1182 if (ExtendOperIdx == 0) 1183 std::swap(lhs, rhs); 1184 const SCEVAddRecExpr *AddRec = 1185 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1186 1187 if (!AddRec || AddRec->getLoop() != L) 1188 return nullptr; 1189 return AddRec; 1190 } 1191 1192 /// Is this instruction potentially interesting for further simplification after 1193 /// widening it's type? In other words, can the extend be safely hoisted out of 1194 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1195 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1196 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1197 if (!SE->isSCEVable(NarrowUse->getType())) 1198 return nullptr; 1199 1200 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1201 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1202 >= SE->getTypeSizeInBits(WideType)) { 1203 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1204 // index. So don't follow this use. 1205 return nullptr; 1206 } 1207 1208 const SCEV *WideExpr = IsSigned ? 1209 SE->getSignExtendExpr(NarrowExpr, WideType) : 1210 SE->getZeroExtendExpr(NarrowExpr, WideType); 1211 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1212 if (!AddRec || AddRec->getLoop() != L) 1213 return nullptr; 1214 return AddRec; 1215 } 1216 1217 /// This IV user cannot be widen. Replace this use of the original narrow IV 1218 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1219 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1220 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1221 << " for user " << *DU.NarrowUse << "\n"); 1222 IRBuilder<> Builder( 1223 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1224 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1225 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1226 } 1227 1228 /// If the narrow use is a compare instruction, then widen the compare 1229 // (and possibly the other operand). The extend operation is hoisted into the 1230 // loop preheader as far as possible. 1231 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1232 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1233 if (!Cmp) 1234 return false; 1235 1236 // We can legally widen the comparison in the following two cases: 1237 // 1238 // - The signedness of the IV extension and comparison match 1239 // 1240 // - The narrow IV is always positive (and thus its sign extension is equal 1241 // to its zero extension). For instance, let's say we're zero extending 1242 // %narrow for the following use 1243 // 1244 // icmp slt i32 %narrow, %val ... (A) 1245 // 1246 // and %narrow is always positive. Then 1247 // 1248 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1249 // == icmp slt i32 zext(%narrow), sext(%val) 1250 1251 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1252 return false; 1253 1254 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1255 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1256 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1257 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1258 1259 // Widen the compare instruction. 1260 IRBuilder<> Builder( 1261 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1262 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1263 1264 // Widen the other operand of the compare, if necessary. 1265 if (CastWidth < IVWidth) { 1266 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1267 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1268 } 1269 return true; 1270 } 1271 1272 /// Determine whether an individual user of the narrow IV can be widened. If so, 1273 /// return the wide clone of the user. 1274 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1275 1276 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1277 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1278 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1279 // For LCSSA phis, sink the truncate outside the loop. 1280 // After SimplifyCFG most loop exit targets have a single predecessor. 1281 // Otherwise fall back to a truncate within the loop. 1282 if (UsePhi->getNumOperands() != 1) 1283 truncateIVUse(DU, DT, LI); 1284 else { 1285 // Widening the PHI requires us to insert a trunc. The logical place 1286 // for this trunc is in the same BB as the PHI. This is not possible if 1287 // the BB is terminated by a catchswitch. 1288 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1289 return nullptr; 1290 1291 PHINode *WidePhi = 1292 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1293 UsePhi); 1294 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1295 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1296 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1297 UsePhi->replaceAllUsesWith(Trunc); 1298 DeadInsts.emplace_back(UsePhi); 1299 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1300 << " to " << *WidePhi << "\n"); 1301 } 1302 return nullptr; 1303 } 1304 } 1305 // Our raison d'etre! Eliminate sign and zero extension. 1306 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1307 Value *NewDef = DU.WideDef; 1308 if (DU.NarrowUse->getType() != WideType) { 1309 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1310 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1311 if (CastWidth < IVWidth) { 1312 // The cast isn't as wide as the IV, so insert a Trunc. 1313 IRBuilder<> Builder(DU.NarrowUse); 1314 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1315 } 1316 else { 1317 // A wider extend was hidden behind a narrower one. This may induce 1318 // another round of IV widening in which the intermediate IV becomes 1319 // dead. It should be very rare. 1320 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1321 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1322 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1323 NewDef = DU.NarrowUse; 1324 } 1325 } 1326 if (NewDef != DU.NarrowUse) { 1327 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1328 << " replaced by " << *DU.WideDef << "\n"); 1329 ++NumElimExt; 1330 DU.NarrowUse->replaceAllUsesWith(NewDef); 1331 DeadInsts.emplace_back(DU.NarrowUse); 1332 } 1333 // Now that the extend is gone, we want to expose it's uses for potential 1334 // further simplification. We don't need to directly inform SimplifyIVUsers 1335 // of the new users, because their parent IV will be processed later as a 1336 // new loop phi. If we preserved IVUsers analysis, we would also want to 1337 // push the uses of WideDef here. 1338 1339 // No further widening is needed. The deceased [sz]ext had done it for us. 1340 return nullptr; 1341 } 1342 1343 // Does this user itself evaluate to a recurrence after widening? 1344 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1345 if (!WideAddRec) 1346 WideAddRec = getExtendedOperandRecurrence(DU); 1347 1348 if (!WideAddRec) { 1349 // If use is a loop condition, try to promote the condition instead of 1350 // truncating the IV first. 1351 if (widenLoopCompare(DU)) 1352 return nullptr; 1353 1354 // This user does not evaluate to a recurence after widening, so don't 1355 // follow it. Instead insert a Trunc to kill off the original use, 1356 // eventually isolating the original narrow IV so it can be removed. 1357 truncateIVUse(DU, DT, LI); 1358 return nullptr; 1359 } 1360 // Assume block terminators cannot evaluate to a recurrence. We can't to 1361 // insert a Trunc after a terminator if there happens to be a critical edge. 1362 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1363 "SCEV is not expected to evaluate a block terminator"); 1364 1365 // Reuse the IV increment that SCEVExpander created as long as it dominates 1366 // NarrowUse. 1367 Instruction *WideUse = nullptr; 1368 if (WideAddRec == WideIncExpr 1369 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1370 WideUse = WideInc; 1371 else { 1372 WideUse = cloneIVUser(DU, WideAddRec); 1373 if (!WideUse) 1374 return nullptr; 1375 } 1376 // Evaluation of WideAddRec ensured that the narrow expression could be 1377 // extended outside the loop without overflow. This suggests that the wide use 1378 // evaluates to the same expression as the extended narrow use, but doesn't 1379 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1380 // where it fails, we simply throw away the newly created wide use. 1381 if (WideAddRec != SE->getSCEV(WideUse)) { 1382 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1383 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1384 DeadInsts.emplace_back(WideUse); 1385 return nullptr; 1386 } 1387 1388 // Returning WideUse pushes it on the worklist. 1389 return WideUse; 1390 } 1391 1392 /// Add eligible users of NarrowDef to NarrowIVUsers. 1393 /// 1394 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1395 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1396 bool NeverNegative = 1397 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1398 SE->getConstant(NarrowSCEV->getType(), 0)); 1399 for (User *U : NarrowDef->users()) { 1400 Instruction *NarrowUser = cast<Instruction>(U); 1401 1402 // Handle data flow merges and bizarre phi cycles. 1403 if (!Widened.insert(NarrowUser).second) 1404 continue; 1405 1406 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1407 } 1408 } 1409 1410 /// Process a single induction variable. First use the SCEVExpander to create a 1411 /// wide induction variable that evaluates to the same recurrence as the 1412 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1413 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1414 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1415 /// 1416 /// It would be simpler to delete uses as they are processed, but we must avoid 1417 /// invalidating SCEV expressions. 1418 /// 1419 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1420 // Is this phi an induction variable? 1421 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1422 if (!AddRec) 1423 return nullptr; 1424 1425 // Widen the induction variable expression. 1426 const SCEV *WideIVExpr = IsSigned ? 1427 SE->getSignExtendExpr(AddRec, WideType) : 1428 SE->getZeroExtendExpr(AddRec, WideType); 1429 1430 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1431 "Expect the new IV expression to preserve its type"); 1432 1433 // Can the IV be extended outside the loop without overflow? 1434 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1435 if (!AddRec || AddRec->getLoop() != L) 1436 return nullptr; 1437 1438 // An AddRec must have loop-invariant operands. Since this AddRec is 1439 // materialized by a loop header phi, the expression cannot have any post-loop 1440 // operands, so they must dominate the loop header. 1441 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1442 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1443 && "Loop header phi recurrence inputs do not dominate the loop"); 1444 1445 // The rewriter provides a value for the desired IV expression. This may 1446 // either find an existing phi or materialize a new one. Either way, we 1447 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1448 // of the phi-SCC dominates the loop entry. 1449 Instruction *InsertPt = &L->getHeader()->front(); 1450 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1451 1452 // Remembering the WideIV increment generated by SCEVExpander allows 1453 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1454 // employ a general reuse mechanism because the call above is the only call to 1455 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1456 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1457 WideInc = 1458 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1459 WideIncExpr = SE->getSCEV(WideInc); 1460 } 1461 1462 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1463 ++NumWidened; 1464 1465 // Traverse the def-use chain using a worklist starting at the original IV. 1466 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1467 1468 Widened.insert(OrigPhi); 1469 pushNarrowIVUsers(OrigPhi, WidePhi); 1470 1471 while (!NarrowIVUsers.empty()) { 1472 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1473 1474 // Process a def-use edge. This may replace the use, so don't hold a 1475 // use_iterator across it. 1476 Instruction *WideUse = widenIVUse(DU, Rewriter); 1477 1478 // Follow all def-use edges from the previous narrow use. 1479 if (WideUse) 1480 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1481 1482 // widenIVUse may have removed the def-use edge. 1483 if (DU.NarrowDef->use_empty()) 1484 DeadInsts.emplace_back(DU.NarrowDef); 1485 } 1486 return WidePhi; 1487 } 1488 1489 //===----------------------------------------------------------------------===// 1490 // Live IV Reduction - Minimize IVs live across the loop. 1491 //===----------------------------------------------------------------------===// 1492 1493 1494 //===----------------------------------------------------------------------===// 1495 // Simplification of IV users based on SCEV evaluation. 1496 //===----------------------------------------------------------------------===// 1497 1498 namespace { 1499 class IndVarSimplifyVisitor : public IVVisitor { 1500 ScalarEvolution *SE; 1501 const TargetTransformInfo *TTI; 1502 PHINode *IVPhi; 1503 1504 public: 1505 WideIVInfo WI; 1506 1507 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1508 const TargetTransformInfo *TTI, 1509 const DominatorTree *DTree) 1510 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1511 DT = DTree; 1512 WI.NarrowIV = IVPhi; 1513 if (ReduceLiveIVs) 1514 setSplitOverflowIntrinsics(); 1515 } 1516 1517 // Implement the interface used by simplifyUsersOfIV. 1518 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1519 }; 1520 } 1521 1522 /// Iteratively perform simplification on a worklist of IV users. Each 1523 /// successive simplification may push more users which may themselves be 1524 /// candidates for simplification. 1525 /// 1526 /// Sign/Zero extend elimination is interleaved with IV simplification. 1527 /// 1528 void IndVarSimplify::simplifyAndExtend(Loop *L, 1529 SCEVExpander &Rewriter, 1530 LoopInfo *LI) { 1531 SmallVector<WideIVInfo, 8> WideIVs; 1532 1533 SmallVector<PHINode*, 8> LoopPhis; 1534 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1535 LoopPhis.push_back(cast<PHINode>(I)); 1536 } 1537 // Each round of simplification iterates through the SimplifyIVUsers worklist 1538 // for all current phis, then determines whether any IVs can be 1539 // widened. Widening adds new phis to LoopPhis, inducing another round of 1540 // simplification on the wide IVs. 1541 while (!LoopPhis.empty()) { 1542 // Evaluate as many IV expressions as possible before widening any IVs. This 1543 // forces SCEV to set no-wrap flags before evaluating sign/zero 1544 // extension. The first time SCEV attempts to normalize sign/zero extension, 1545 // the result becomes final. So for the most predictable results, we delay 1546 // evaluation of sign/zero extend evaluation until needed, and avoid running 1547 // other SCEV based analysis prior to simplifyAndExtend. 1548 do { 1549 PHINode *CurrIV = LoopPhis.pop_back_val(); 1550 1551 // Information about sign/zero extensions of CurrIV. 1552 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1553 1554 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1555 1556 if (Visitor.WI.WidestNativeType) { 1557 WideIVs.push_back(Visitor.WI); 1558 } 1559 } while(!LoopPhis.empty()); 1560 1561 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1562 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1563 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1564 Changed = true; 1565 LoopPhis.push_back(WidePhi); 1566 } 1567 } 1568 } 1569 } 1570 1571 //===----------------------------------------------------------------------===// 1572 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1573 //===----------------------------------------------------------------------===// 1574 1575 /// Return true if this loop's backedge taken count expression can be safely and 1576 /// cheaply expanded into an instruction sequence that can be used by 1577 /// linearFunctionTestReplace. 1578 /// 1579 /// TODO: This fails for pointer-type loop counters with greater than one byte 1580 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1581 /// we could skip this check in the case that the LFTR loop counter (chosen by 1582 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1583 /// the loop test to an inequality test by checking the target data's alignment 1584 /// of element types (given that the initial pointer value originates from or is 1585 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1586 /// However, we don't yet have a strong motivation for converting loop tests 1587 /// into inequality tests. 1588 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1589 SCEVExpander &Rewriter) { 1590 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1591 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1592 BackedgeTakenCount->isZero()) 1593 return false; 1594 1595 if (!L->getExitingBlock()) 1596 return false; 1597 1598 // Can't rewrite non-branch yet. 1599 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1600 return false; 1601 1602 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1603 return false; 1604 1605 return true; 1606 } 1607 1608 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1609 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1610 Instruction *IncI = dyn_cast<Instruction>(IncV); 1611 if (!IncI) 1612 return nullptr; 1613 1614 switch (IncI->getOpcode()) { 1615 case Instruction::Add: 1616 case Instruction::Sub: 1617 break; 1618 case Instruction::GetElementPtr: 1619 // An IV counter must preserve its type. 1620 if (IncI->getNumOperands() == 2) 1621 break; 1622 default: 1623 return nullptr; 1624 } 1625 1626 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1627 if (Phi && Phi->getParent() == L->getHeader()) { 1628 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1629 return Phi; 1630 return nullptr; 1631 } 1632 if (IncI->getOpcode() == Instruction::GetElementPtr) 1633 return nullptr; 1634 1635 // Allow add/sub to be commuted. 1636 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1637 if (Phi && Phi->getParent() == L->getHeader()) { 1638 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1639 return Phi; 1640 } 1641 return nullptr; 1642 } 1643 1644 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1645 static ICmpInst *getLoopTest(Loop *L) { 1646 assert(L->getExitingBlock() && "expected loop exit"); 1647 1648 BasicBlock *LatchBlock = L->getLoopLatch(); 1649 // Don't bother with LFTR if the loop is not properly simplified. 1650 if (!LatchBlock) 1651 return nullptr; 1652 1653 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1654 assert(BI && "expected exit branch"); 1655 1656 return dyn_cast<ICmpInst>(BI->getCondition()); 1657 } 1658 1659 /// linearFunctionTestReplace policy. Return true unless we can show that the 1660 /// current exit test is already sufficiently canonical. 1661 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1662 // Do LFTR to simplify the exit condition to an ICMP. 1663 ICmpInst *Cond = getLoopTest(L); 1664 if (!Cond) 1665 return true; 1666 1667 // Do LFTR to simplify the exit ICMP to EQ/NE 1668 ICmpInst::Predicate Pred = Cond->getPredicate(); 1669 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1670 return true; 1671 1672 // Look for a loop invariant RHS 1673 Value *LHS = Cond->getOperand(0); 1674 Value *RHS = Cond->getOperand(1); 1675 if (!isLoopInvariant(RHS, L, DT)) { 1676 if (!isLoopInvariant(LHS, L, DT)) 1677 return true; 1678 std::swap(LHS, RHS); 1679 } 1680 // Look for a simple IV counter LHS 1681 PHINode *Phi = dyn_cast<PHINode>(LHS); 1682 if (!Phi) 1683 Phi = getLoopPhiForCounter(LHS, L, DT); 1684 1685 if (!Phi) 1686 return true; 1687 1688 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1689 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1690 if (Idx < 0) 1691 return true; 1692 1693 // Do LFTR if the exit condition's IV is *not* a simple counter. 1694 Value *IncV = Phi->getIncomingValue(Idx); 1695 return Phi != getLoopPhiForCounter(IncV, L, DT); 1696 } 1697 1698 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1699 /// down to checking that all operands are constant and listing instructions 1700 /// that may hide undef. 1701 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1702 unsigned Depth) { 1703 if (isa<Constant>(V)) 1704 return !isa<UndefValue>(V); 1705 1706 if (Depth >= 6) 1707 return false; 1708 1709 // Conservatively handle non-constant non-instructions. For example, Arguments 1710 // may be undef. 1711 Instruction *I = dyn_cast<Instruction>(V); 1712 if (!I) 1713 return false; 1714 1715 // Load and return values may be undef. 1716 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1717 return false; 1718 1719 // Optimistically handle other instructions. 1720 for (Value *Op : I->operands()) { 1721 if (!Visited.insert(Op).second) 1722 continue; 1723 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1724 return false; 1725 } 1726 return true; 1727 } 1728 1729 /// Return true if the given value is concrete. We must prove that undef can 1730 /// never reach it. 1731 /// 1732 /// TODO: If we decide that this is a good approach to checking for undef, we 1733 /// may factor it into a common location. 1734 static bool hasConcreteDef(Value *V) { 1735 SmallPtrSet<Value*, 8> Visited; 1736 Visited.insert(V); 1737 return hasConcreteDefImpl(V, Visited, 0); 1738 } 1739 1740 /// Return true if this IV has any uses other than the (soon to be rewritten) 1741 /// loop exit test. 1742 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1743 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1744 Value *IncV = Phi->getIncomingValue(LatchIdx); 1745 1746 for (User *U : Phi->users()) 1747 if (U != Cond && U != IncV) return false; 1748 1749 for (User *U : IncV->users()) 1750 if (U != Cond && U != Phi) return false; 1751 return true; 1752 } 1753 1754 /// Find an affine IV in canonical form. 1755 /// 1756 /// BECount may be an i8* pointer type. The pointer difference is already 1757 /// valid count without scaling the address stride, so it remains a pointer 1758 /// expression as far as SCEV is concerned. 1759 /// 1760 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1761 /// 1762 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1763 /// 1764 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1765 /// This is difficult in general for SCEV because of potential overflow. But we 1766 /// could at least handle constant BECounts. 1767 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1768 ScalarEvolution *SE, DominatorTree *DT) { 1769 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1770 1771 Value *Cond = 1772 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1773 1774 // Loop over all of the PHI nodes, looking for a simple counter. 1775 PHINode *BestPhi = nullptr; 1776 const SCEV *BestInit = nullptr; 1777 BasicBlock *LatchBlock = L->getLoopLatch(); 1778 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1779 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1780 1781 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1782 PHINode *Phi = cast<PHINode>(I); 1783 if (!SE->isSCEVable(Phi->getType())) 1784 continue; 1785 1786 // Avoid comparing an integer IV against a pointer Limit. 1787 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1788 continue; 1789 1790 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1791 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1792 continue; 1793 1794 // AR may be a pointer type, while BECount is an integer type. 1795 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1796 // AR may not be a narrower type, or we may never exit. 1797 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1798 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 1799 continue; 1800 1801 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1802 if (!Step || !Step->isOne()) 1803 continue; 1804 1805 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1806 Value *IncV = Phi->getIncomingValue(LatchIdx); 1807 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1808 continue; 1809 1810 // Avoid reusing a potentially undef value to compute other values that may 1811 // have originally had a concrete definition. 1812 if (!hasConcreteDef(Phi)) { 1813 // We explicitly allow unknown phis as long as they are already used by 1814 // the loop test. In this case we assume that performing LFTR could not 1815 // increase the number of undef users. 1816 if (ICmpInst *Cond = getLoopTest(L)) { 1817 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1818 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1819 continue; 1820 } 1821 } 1822 } 1823 const SCEV *Init = AR->getStart(); 1824 1825 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1826 // Don't force a live loop counter if another IV can be used. 1827 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1828 continue; 1829 1830 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1831 // also prefers integer to pointer IVs. 1832 if (BestInit->isZero() != Init->isZero()) { 1833 if (BestInit->isZero()) 1834 continue; 1835 } 1836 // If two IVs both count from zero or both count from nonzero then the 1837 // narrower is likely a dead phi that has been widened. Use the wider phi 1838 // to allow the other to be eliminated. 1839 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1840 continue; 1841 } 1842 BestPhi = Phi; 1843 BestInit = Init; 1844 } 1845 return BestPhi; 1846 } 1847 1848 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1849 /// the new loop test. 1850 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1851 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1852 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1853 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1854 const SCEV *IVInit = AR->getStart(); 1855 1856 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1857 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1858 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1859 // the existing GEPs whenever possible. 1860 if (IndVar->getType()->isPointerTy() 1861 && !IVCount->getType()->isPointerTy()) { 1862 1863 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1864 // signed value. IVCount on the other hand represents the loop trip count, 1865 // which is an unsigned value. FindLoopCounter only allows induction 1866 // variables that have a positive unit stride of one. This means we don't 1867 // have to handle the case of negative offsets (yet) and just need to zero 1868 // extend IVCount. 1869 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1870 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1871 1872 // Expand the code for the iteration count. 1873 assert(SE->isLoopInvariant(IVOffset, L) && 1874 "Computed iteration count is not loop invariant!"); 1875 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1876 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1877 1878 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1879 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1880 // We could handle pointer IVs other than i8*, but we need to compensate for 1881 // gep index scaling. See canExpandBackedgeTakenCount comments. 1882 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1883 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1884 && "unit stride pointer IV must be i8*"); 1885 1886 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1887 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1888 } 1889 else { 1890 // In any other case, convert both IVInit and IVCount to integers before 1891 // comparing. This may result in SCEV expension of pointers, but in practice 1892 // SCEV will fold the pointer arithmetic away as such: 1893 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1894 // 1895 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1896 // for simple memset-style loops. 1897 // 1898 // IVInit integer and IVCount pointer would only occur if a canonical IV 1899 // were generated on top of case #2, which is not expected. 1900 1901 const SCEV *IVLimit = nullptr; 1902 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1903 // For non-zero Start, compute IVCount here. 1904 if (AR->getStart()->isZero()) 1905 IVLimit = IVCount; 1906 else { 1907 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1908 const SCEV *IVInit = AR->getStart(); 1909 1910 // For integer IVs, truncate the IV before computing IVInit + BECount. 1911 if (SE->getTypeSizeInBits(IVInit->getType()) 1912 > SE->getTypeSizeInBits(IVCount->getType())) 1913 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1914 1915 IVLimit = SE->getAddExpr(IVInit, IVCount); 1916 } 1917 // Expand the code for the iteration count. 1918 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1919 IRBuilder<> Builder(BI); 1920 assert(SE->isLoopInvariant(IVLimit, L) && 1921 "Computed iteration count is not loop invariant!"); 1922 // Ensure that we generate the same type as IndVar, or a smaller integer 1923 // type. In the presence of null pointer values, we have an integer type 1924 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1925 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1926 IndVar->getType() : IVCount->getType(); 1927 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1928 } 1929 } 1930 1931 /// This method rewrites the exit condition of the loop to be a canonical != 1932 /// comparison against the incremented loop induction variable. This pass is 1933 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1934 /// determine a loop-invariant trip count of the loop, which is actually a much 1935 /// broader range than just linear tests. 1936 Value *IndVarSimplify:: 1937 linearFunctionTestReplace(Loop *L, 1938 const SCEV *BackedgeTakenCount, 1939 PHINode *IndVar, 1940 SCEVExpander &Rewriter) { 1941 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1942 1943 // Initialize CmpIndVar and IVCount to their preincremented values. 1944 Value *CmpIndVar = IndVar; 1945 const SCEV *IVCount = BackedgeTakenCount; 1946 1947 // If the exiting block is the same as the backedge block, we prefer to 1948 // compare against the post-incremented value, otherwise we must compare 1949 // against the preincremented value. 1950 if (L->getExitingBlock() == L->getLoopLatch()) { 1951 // Add one to the "backedge-taken" count to get the trip count. 1952 // This addition may overflow, which is valid as long as the comparison is 1953 // truncated to BackedgeTakenCount->getType(). 1954 IVCount = SE->getAddExpr(BackedgeTakenCount, 1955 SE->getOne(BackedgeTakenCount->getType())); 1956 // The BackedgeTaken expression contains the number of times that the 1957 // backedge branches to the loop header. This is one less than the 1958 // number of times the loop executes, so use the incremented indvar. 1959 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1960 } 1961 1962 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1963 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1964 && "genLoopLimit missed a cast"); 1965 1966 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1967 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1968 ICmpInst::Predicate P; 1969 if (L->contains(BI->getSuccessor(0))) 1970 P = ICmpInst::ICMP_NE; 1971 else 1972 P = ICmpInst::ICMP_EQ; 1973 1974 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1975 << " LHS:" << *CmpIndVar << '\n' 1976 << " op:\t" 1977 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1978 << " RHS:\t" << *ExitCnt << "\n" 1979 << " IVCount:\t" << *IVCount << "\n"); 1980 1981 IRBuilder<> Builder(BI); 1982 1983 // LFTR can ignore IV overflow and truncate to the width of 1984 // BECount. This avoids materializing the add(zext(add)) expression. 1985 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1986 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1987 if (CmpIndVarSize > ExitCntSize) { 1988 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1989 const SCEV *ARStart = AR->getStart(); 1990 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1991 // For constant IVCount, avoid truncation. 1992 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1993 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 1994 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 1995 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1996 // above such that IVCount is now zero. 1997 if (IVCount != BackedgeTakenCount && Count == 0) { 1998 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1999 ++Count; 2000 } 2001 else 2002 Count = Count.zext(CmpIndVarSize); 2003 APInt NewLimit; 2004 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2005 NewLimit = Start - Count; 2006 else 2007 NewLimit = Start + Count; 2008 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2009 2010 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2011 } else { 2012 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2013 "lftr.wideiv"); 2014 } 2015 } 2016 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2017 Value *OrigCond = BI->getCondition(); 2018 // It's tempting to use replaceAllUsesWith here to fully replace the old 2019 // comparison, but that's not immediately safe, since users of the old 2020 // comparison may not be dominated by the new comparison. Instead, just 2021 // update the branch to use the new comparison; in the common case this 2022 // will make old comparison dead. 2023 BI->setCondition(Cond); 2024 DeadInsts.push_back(OrigCond); 2025 2026 ++NumLFTR; 2027 Changed = true; 2028 return Cond; 2029 } 2030 2031 //===----------------------------------------------------------------------===// 2032 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2033 //===----------------------------------------------------------------------===// 2034 2035 /// If there's a single exit block, sink any loop-invariant values that 2036 /// were defined in the preheader but not used inside the loop into the 2037 /// exit block to reduce register pressure in the loop. 2038 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2039 BasicBlock *ExitBlock = L->getExitBlock(); 2040 if (!ExitBlock) return; 2041 2042 BasicBlock *Preheader = L->getLoopPreheader(); 2043 if (!Preheader) return; 2044 2045 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2046 BasicBlock::iterator I(Preheader->getTerminator()); 2047 while (I != Preheader->begin()) { 2048 --I; 2049 // New instructions were inserted at the end of the preheader. 2050 if (isa<PHINode>(I)) 2051 break; 2052 2053 // Don't move instructions which might have side effects, since the side 2054 // effects need to complete before instructions inside the loop. Also don't 2055 // move instructions which might read memory, since the loop may modify 2056 // memory. Note that it's okay if the instruction might have undefined 2057 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2058 // block. 2059 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2060 continue; 2061 2062 // Skip debug info intrinsics. 2063 if (isa<DbgInfoIntrinsic>(I)) 2064 continue; 2065 2066 // Skip eh pad instructions. 2067 if (I->isEHPad()) 2068 continue; 2069 2070 // Don't sink alloca: we never want to sink static alloca's out of the 2071 // entry block, and correctly sinking dynamic alloca's requires 2072 // checks for stacksave/stackrestore intrinsics. 2073 // FIXME: Refactor this check somehow? 2074 if (isa<AllocaInst>(I)) 2075 continue; 2076 2077 // Determine if there is a use in or before the loop (direct or 2078 // otherwise). 2079 bool UsedInLoop = false; 2080 for (Use &U : I->uses()) { 2081 Instruction *User = cast<Instruction>(U.getUser()); 2082 BasicBlock *UseBB = User->getParent(); 2083 if (PHINode *P = dyn_cast<PHINode>(User)) { 2084 unsigned i = 2085 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2086 UseBB = P->getIncomingBlock(i); 2087 } 2088 if (UseBB == Preheader || L->contains(UseBB)) { 2089 UsedInLoop = true; 2090 break; 2091 } 2092 } 2093 2094 // If there is, the def must remain in the preheader. 2095 if (UsedInLoop) 2096 continue; 2097 2098 // Otherwise, sink it to the exit block. 2099 Instruction *ToMove = &*I; 2100 bool Done = false; 2101 2102 if (I != Preheader->begin()) { 2103 // Skip debug info intrinsics. 2104 do { 2105 --I; 2106 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2107 2108 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2109 Done = true; 2110 } else { 2111 Done = true; 2112 } 2113 2114 ToMove->moveBefore(InsertPt); 2115 if (Done) break; 2116 InsertPt = ToMove; 2117 } 2118 } 2119 2120 //===----------------------------------------------------------------------===// 2121 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2122 //===----------------------------------------------------------------------===// 2123 2124 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2125 if (skipLoop(L)) 2126 return false; 2127 2128 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2129 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2130 // canonicalization can be a pessimization without LSR to "clean up" 2131 // afterwards. 2132 // - We depend on having a preheader; in particular, 2133 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2134 // and we're in trouble if we can't find the induction variable even when 2135 // we've manually inserted one. 2136 if (!L->isLoopSimplifyForm()) 2137 return false; 2138 2139 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2140 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2141 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2142 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2143 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2144 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2145 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2146 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2147 2148 DeadInsts.clear(); 2149 Changed = false; 2150 2151 // If there are any floating-point recurrences, attempt to 2152 // transform them to use integer recurrences. 2153 rewriteNonIntegerIVs(L); 2154 2155 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2156 2157 // Create a rewriter object which we'll use to transform the code with. 2158 SCEVExpander Rewriter(*SE, DL, "indvars"); 2159 #ifndef NDEBUG 2160 Rewriter.setDebugType(DEBUG_TYPE); 2161 #endif 2162 2163 // Eliminate redundant IV users. 2164 // 2165 // Simplification works best when run before other consumers of SCEV. We 2166 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2167 // other expressions involving loop IVs have been evaluated. This helps SCEV 2168 // set no-wrap flags before normalizing sign/zero extension. 2169 Rewriter.disableCanonicalMode(); 2170 simplifyAndExtend(L, Rewriter, LI); 2171 2172 // Check to see if this loop has a computable loop-invariant execution count. 2173 // If so, this means that we can compute the final value of any expressions 2174 // that are recurrent in the loop, and substitute the exit values from the 2175 // loop into any instructions outside of the loop that use the final values of 2176 // the current expressions. 2177 // 2178 if (ReplaceExitValue != NeverRepl && 2179 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2180 rewriteLoopExitValues(L, Rewriter); 2181 2182 // Eliminate redundant IV cycles. 2183 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2184 2185 // If we have a trip count expression, rewrite the loop's exit condition 2186 // using it. We can currently only handle loops with a single exit. 2187 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2188 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2189 if (IndVar) { 2190 // Check preconditions for proper SCEVExpander operation. SCEV does not 2191 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2192 // pass that uses the SCEVExpander must do it. This does not work well for 2193 // loop passes because SCEVExpander makes assumptions about all loops, 2194 // while LoopPassManager only forces the current loop to be simplified. 2195 // 2196 // FIXME: SCEV expansion has no way to bail out, so the caller must 2197 // explicitly check any assumptions made by SCEV. Brittle. 2198 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2199 if (!AR || AR->getLoop()->getLoopPreheader()) 2200 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2201 Rewriter); 2202 } 2203 } 2204 // Clear the rewriter cache, because values that are in the rewriter's cache 2205 // can be deleted in the loop below, causing the AssertingVH in the cache to 2206 // trigger. 2207 Rewriter.clear(); 2208 2209 // Now that we're done iterating through lists, clean up any instructions 2210 // which are now dead. 2211 while (!DeadInsts.empty()) 2212 if (Instruction *Inst = 2213 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2214 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2215 2216 // The Rewriter may not be used from this point on. 2217 2218 // Loop-invariant instructions in the preheader that aren't used in the 2219 // loop may be sunk below the loop to reduce register pressure. 2220 sinkUnusedInvariants(L); 2221 2222 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2223 // trip count and therefore can further simplify exit values in addition to 2224 // rewriteLoopExitValues. 2225 rewriteFirstIterationLoopExitValues(L); 2226 2227 // Clean up dead instructions. 2228 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2229 2230 // Check a post-condition. 2231 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2232 2233 // Verify that LFTR, and any other change have not interfered with SCEV's 2234 // ability to compute trip count. 2235 #ifndef NDEBUG 2236 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2237 SE->forgetLoop(L); 2238 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2239 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2240 SE->getTypeSizeInBits(NewBECount->getType())) 2241 NewBECount = SE->getTruncateOrNoop(NewBECount, 2242 BackedgeTakenCount->getType()); 2243 else 2244 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2245 NewBECount->getType()); 2246 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2247 } 2248 #endif 2249 2250 return Changed; 2251 } 2252