xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision f0f279291c7ca1a0b2c125f53cd08deafcc9e44f)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/GlobalsModRef.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/LoopPass.h"
33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "indvars"
57 
58 STATISTIC(NumWidened     , "Number of indvars widened");
59 STATISTIC(NumReplaced    , "Number of exit values replaced");
60 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
61 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
62 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
63 
64 // Trip count verification can be enabled by default under NDEBUG if we
65 // implement a strong expression equivalence checker in SCEV. Until then, we
66 // use the verify-indvars flag, which may assert in some cases.
67 static cl::opt<bool> VerifyIndvars(
68   "verify-indvars", cl::Hidden,
69   cl::desc("Verify the ScalarEvolution result after running indvars"));
70 
71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
72   cl::desc("Reduce live induction variables."));
73 
74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
75 
76 static cl::opt<ReplaceExitVal> ReplaceExitValue(
77     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
78     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
79     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
80                clEnumValN(OnlyCheapRepl, "cheap",
81                           "only replace exit value when the cost is cheap"),
82                clEnumValN(AlwaysRepl, "always",
83                           "always replace exit value whenever possible"),
84                clEnumValEnd));
85 
86 namespace {
87 struct RewritePhi;
88 
89 class IndVarSimplify : public LoopPass {
90   LoopInfo                  *LI;
91   ScalarEvolution           *SE;
92   DominatorTree             *DT;
93   TargetLibraryInfo         *TLI;
94   const TargetTransformInfo *TTI;
95 
96   SmallVector<WeakVH, 16> DeadInsts;
97   bool Changed;
98 public:
99 
100   static char ID; // Pass identification, replacement for typeid
101   IndVarSimplify()
102     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
103     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
104   }
105 
106   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
107 
108   void getAnalysisUsage(AnalysisUsage &AU) const override {
109     AU.setPreservesCFG();
110     getLoopAnalysisUsage(AU);
111   }
112 
113 private:
114   void releaseMemory() override {
115     DeadInsts.clear();
116   }
117 
118   bool isValidRewrite(Value *FromVal, Value *ToVal);
119 
120   void handleFloatingPointIV(Loop *L, PHINode *PH);
121   void rewriteNonIntegerIVs(Loop *L);
122 
123   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
124 
125   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
126   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
127   void rewriteFirstIterationLoopExitValues(Loop *L);
128 
129   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
130                                    PHINode *IndVar, SCEVExpander &Rewriter);
131 
132   void sinkUnusedInvariants(Loop *L);
133 
134   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
135                             Instruction *InsertPt, Type *Ty);
136 };
137 }
138 
139 char IndVarSimplify::ID = 0;
140 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
141                 "Induction Variable Simplification", false, false)
142 INITIALIZE_PASS_DEPENDENCY(LoopPass)
143 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
144                 "Induction Variable Simplification", false, false)
145 
146 Pass *llvm::createIndVarSimplifyPass() {
147   return new IndVarSimplify();
148 }
149 
150 /// Return true if the SCEV expansion generated by the rewriter can replace the
151 /// original value. SCEV guarantees that it produces the same value, but the way
152 /// it is produced may be illegal IR.  Ideally, this function will only be
153 /// called for verification.
154 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
155   // If an SCEV expression subsumed multiple pointers, its expansion could
156   // reassociate the GEP changing the base pointer. This is illegal because the
157   // final address produced by a GEP chain must be inbounds relative to its
158   // underlying object. Otherwise basic alias analysis, among other things,
159   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
160   // producing an expression involving multiple pointers. Until then, we must
161   // bail out here.
162   //
163   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
164   // because it understands lcssa phis while SCEV does not.
165   Value *FromPtr = FromVal;
166   Value *ToPtr = ToVal;
167   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
168     FromPtr = GEP->getPointerOperand();
169   }
170   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
171     ToPtr = GEP->getPointerOperand();
172   }
173   if (FromPtr != FromVal || ToPtr != ToVal) {
174     // Quickly check the common case
175     if (FromPtr == ToPtr)
176       return true;
177 
178     // SCEV may have rewritten an expression that produces the GEP's pointer
179     // operand. That's ok as long as the pointer operand has the same base
180     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
181     // base of a recurrence. This handles the case in which SCEV expansion
182     // converts a pointer type recurrence into a nonrecurrent pointer base
183     // indexed by an integer recurrence.
184 
185     // If the GEP base pointer is a vector of pointers, abort.
186     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
187       return false;
188 
189     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
190     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
191     if (FromBase == ToBase)
192       return true;
193 
194     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
195           << *FromBase << " != " << *ToBase << "\n");
196 
197     return false;
198   }
199   return true;
200 }
201 
202 /// Determine the insertion point for this user. By default, insert immediately
203 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
204 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
205 /// common dominator for the incoming blocks.
206 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
207                                           DominatorTree *DT, LoopInfo *LI) {
208   PHINode *PHI = dyn_cast<PHINode>(User);
209   if (!PHI)
210     return User;
211 
212   Instruction *InsertPt = nullptr;
213   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
214     if (PHI->getIncomingValue(i) != Def)
215       continue;
216 
217     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
218     if (!InsertPt) {
219       InsertPt = InsertBB->getTerminator();
220       continue;
221     }
222     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
223     InsertPt = InsertBB->getTerminator();
224   }
225   assert(InsertPt && "Missing phi operand");
226 
227   auto *DefI = dyn_cast<Instruction>(Def);
228   if (!DefI)
229     return InsertPt;
230 
231   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
232 
233   auto *L = LI->getLoopFor(DefI->getParent());
234   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
235 
236   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
237     if (LI->getLoopFor(DTN->getBlock()) == L)
238       return DTN->getBlock()->getTerminator();
239 
240   llvm_unreachable("DefI dominates InsertPt!");
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
245 //===----------------------------------------------------------------------===//
246 
247 /// Convert APF to an integer, if possible.
248 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
249   bool isExact = false;
250   // See if we can convert this to an int64_t
251   uint64_t UIntVal;
252   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
253                            &isExact) != APFloat::opOK || !isExact)
254     return false;
255   IntVal = UIntVal;
256   return true;
257 }
258 
259 /// If the loop has floating induction variable then insert corresponding
260 /// integer induction variable if possible.
261 /// For example,
262 /// for(double i = 0; i < 10000; ++i)
263 ///   bar(i)
264 /// is converted into
265 /// for(int i = 0; i < 10000; ++i)
266 ///   bar((double)i);
267 ///
268 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
269   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
270   unsigned BackEdge     = IncomingEdge^1;
271 
272   // Check incoming value.
273   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
274 
275   int64_t InitValue;
276   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
277     return;
278 
279   // Check IV increment. Reject this PN if increment operation is not
280   // an add or increment value can not be represented by an integer.
281   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
282   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
283 
284   // If this is not an add of the PHI with a constantfp, or if the constant fp
285   // is not an integer, bail out.
286   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
287   int64_t IncValue;
288   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
289       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
290     return;
291 
292   // Check Incr uses. One user is PN and the other user is an exit condition
293   // used by the conditional terminator.
294   Value::user_iterator IncrUse = Incr->user_begin();
295   Instruction *U1 = cast<Instruction>(*IncrUse++);
296   if (IncrUse == Incr->user_end()) return;
297   Instruction *U2 = cast<Instruction>(*IncrUse++);
298   if (IncrUse != Incr->user_end()) return;
299 
300   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
301   // only used by a branch, we can't transform it.
302   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
303   if (!Compare)
304     Compare = dyn_cast<FCmpInst>(U2);
305   if (!Compare || !Compare->hasOneUse() ||
306       !isa<BranchInst>(Compare->user_back()))
307     return;
308 
309   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
310 
311   // We need to verify that the branch actually controls the iteration count
312   // of the loop.  If not, the new IV can overflow and no one will notice.
313   // The branch block must be in the loop and one of the successors must be out
314   // of the loop.
315   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
316   if (!L->contains(TheBr->getParent()) ||
317       (L->contains(TheBr->getSuccessor(0)) &&
318        L->contains(TheBr->getSuccessor(1))))
319     return;
320 
321 
322   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
323   // transform it.
324   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
325   int64_t ExitValue;
326   if (ExitValueVal == nullptr ||
327       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
328     return;
329 
330   // Find new predicate for integer comparison.
331   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
332   switch (Compare->getPredicate()) {
333   default: return;  // Unknown comparison.
334   case CmpInst::FCMP_OEQ:
335   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
336   case CmpInst::FCMP_ONE:
337   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
338   case CmpInst::FCMP_OGT:
339   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
340   case CmpInst::FCMP_OGE:
341   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
342   case CmpInst::FCMP_OLT:
343   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
344   case CmpInst::FCMP_OLE:
345   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
346   }
347 
348   // We convert the floating point induction variable to a signed i32 value if
349   // we can.  This is only safe if the comparison will not overflow in a way
350   // that won't be trapped by the integer equivalent operations.  Check for this
351   // now.
352   // TODO: We could use i64 if it is native and the range requires it.
353 
354   // The start/stride/exit values must all fit in signed i32.
355   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
356     return;
357 
358   // If not actually striding (add x, 0.0), avoid touching the code.
359   if (IncValue == 0)
360     return;
361 
362   // Positive and negative strides have different safety conditions.
363   if (IncValue > 0) {
364     // If we have a positive stride, we require the init to be less than the
365     // exit value.
366     if (InitValue >= ExitValue)
367       return;
368 
369     uint32_t Range = uint32_t(ExitValue-InitValue);
370     // Check for infinite loop, either:
371     // while (i <= Exit) or until (i > Exit)
372     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
373       if (++Range == 0) return;  // Range overflows.
374     }
375 
376     unsigned Leftover = Range % uint32_t(IncValue);
377 
378     // If this is an equality comparison, we require that the strided value
379     // exactly land on the exit value, otherwise the IV condition will wrap
380     // around and do things the fp IV wouldn't.
381     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
382         Leftover != 0)
383       return;
384 
385     // If the stride would wrap around the i32 before exiting, we can't
386     // transform the IV.
387     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
388       return;
389 
390   } else {
391     // If we have a negative stride, we require the init to be greater than the
392     // exit value.
393     if (InitValue <= ExitValue)
394       return;
395 
396     uint32_t Range = uint32_t(InitValue-ExitValue);
397     // Check for infinite loop, either:
398     // while (i >= Exit) or until (i < Exit)
399     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
400       if (++Range == 0) return;  // Range overflows.
401     }
402 
403     unsigned Leftover = Range % uint32_t(-IncValue);
404 
405     // If this is an equality comparison, we require that the strided value
406     // exactly land on the exit value, otherwise the IV condition will wrap
407     // around and do things the fp IV wouldn't.
408     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
409         Leftover != 0)
410       return;
411 
412     // If the stride would wrap around the i32 before exiting, we can't
413     // transform the IV.
414     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
415       return;
416   }
417 
418   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
419 
420   // Insert new integer induction variable.
421   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
422   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
423                       PN->getIncomingBlock(IncomingEdge));
424 
425   Value *NewAdd =
426     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
427                               Incr->getName()+".int", Incr);
428   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
429 
430   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
431                                       ConstantInt::get(Int32Ty, ExitValue),
432                                       Compare->getName());
433 
434   // In the following deletions, PN may become dead and may be deleted.
435   // Use a WeakVH to observe whether this happens.
436   WeakVH WeakPH = PN;
437 
438   // Delete the old floating point exit comparison.  The branch starts using the
439   // new comparison.
440   NewCompare->takeName(Compare);
441   Compare->replaceAllUsesWith(NewCompare);
442   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
443 
444   // Delete the old floating point increment.
445   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
446   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
447 
448   // If the FP induction variable still has uses, this is because something else
449   // in the loop uses its value.  In order to canonicalize the induction
450   // variable, we chose to eliminate the IV and rewrite it in terms of an
451   // int->fp cast.
452   //
453   // We give preference to sitofp over uitofp because it is faster on most
454   // platforms.
455   if (WeakPH) {
456     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
457                                  &*PN->getParent()->getFirstInsertionPt());
458     PN->replaceAllUsesWith(Conv);
459     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
460   }
461   Changed = true;
462 }
463 
464 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
465   // First step.  Check to see if there are any floating-point recurrences.
466   // If there are, change them into integer recurrences, permitting analysis by
467   // the SCEV routines.
468   //
469   BasicBlock *Header = L->getHeader();
470 
471   SmallVector<WeakVH, 8> PHIs;
472   for (BasicBlock::iterator I = Header->begin();
473        PHINode *PN = dyn_cast<PHINode>(I); ++I)
474     PHIs.push_back(PN);
475 
476   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
477     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
478       handleFloatingPointIV(L, PN);
479 
480   // If the loop previously had floating-point IV, ScalarEvolution
481   // may not have been able to compute a trip count. Now that we've done some
482   // re-writing, the trip count may be computable.
483   if (Changed)
484     SE->forgetLoop(L);
485 }
486 
487 namespace {
488 // Collect information about PHI nodes which can be transformed in
489 // rewriteLoopExitValues.
490 struct RewritePhi {
491   PHINode *PN;
492   unsigned Ith;  // Ith incoming value.
493   Value *Val;    // Exit value after expansion.
494   bool HighCost; // High Cost when expansion.
495 
496   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
497       : PN(P), Ith(I), Val(V), HighCost(H) {}
498 };
499 }
500 
501 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
502                                           Loop *L, Instruction *InsertPt,
503                                           Type *ResultTy) {
504   // Before expanding S into an expensive LLVM expression, see if we can use an
505   // already existing value as the expansion for S.
506   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
507     if (ExistingValue->getType() == ResultTy)
508       return ExistingValue;
509 
510   // We didn't find anything, fall back to using SCEVExpander.
511   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
512 }
513 
514 //===----------------------------------------------------------------------===//
515 // rewriteLoopExitValues - Optimize IV users outside the loop.
516 // As a side effect, reduces the amount of IV processing within the loop.
517 //===----------------------------------------------------------------------===//
518 
519 /// Check to see if this loop has a computable loop-invariant execution count.
520 /// If so, this means that we can compute the final value of any expressions
521 /// that are recurrent in the loop, and substitute the exit values from the loop
522 /// into any instructions outside of the loop that use the final values of the
523 /// current expressions.
524 ///
525 /// This is mostly redundant with the regular IndVarSimplify activities that
526 /// happen later, except that it's more powerful in some cases, because it's
527 /// able to brute-force evaluate arbitrary instructions as long as they have
528 /// constant operands at the beginning of the loop.
529 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
530   // Check a pre-condition.
531   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
532 
533   SmallVector<BasicBlock*, 8> ExitBlocks;
534   L->getUniqueExitBlocks(ExitBlocks);
535 
536   SmallVector<RewritePhi, 8> RewritePhiSet;
537   // Find all values that are computed inside the loop, but used outside of it.
538   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
539   // the exit blocks of the loop to find them.
540   for (BasicBlock *ExitBB : ExitBlocks) {
541     // If there are no PHI nodes in this exit block, then no values defined
542     // inside the loop are used on this path, skip it.
543     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
544     if (!PN) continue;
545 
546     unsigned NumPreds = PN->getNumIncomingValues();
547 
548     // Iterate over all of the PHI nodes.
549     BasicBlock::iterator BBI = ExitBB->begin();
550     while ((PN = dyn_cast<PHINode>(BBI++))) {
551       if (PN->use_empty())
552         continue; // dead use, don't replace it
553 
554       if (!SE->isSCEVable(PN->getType()))
555         continue;
556 
557       // It's necessary to tell ScalarEvolution about this explicitly so that
558       // it can walk the def-use list and forget all SCEVs, as it may not be
559       // watching the PHI itself. Once the new exit value is in place, there
560       // may not be a def-use connection between the loop and every instruction
561       // which got a SCEVAddRecExpr for that loop.
562       SE->forgetValue(PN);
563 
564       // Iterate over all of the values in all the PHI nodes.
565       for (unsigned i = 0; i != NumPreds; ++i) {
566         // If the value being merged in is not integer or is not defined
567         // in the loop, skip it.
568         Value *InVal = PN->getIncomingValue(i);
569         if (!isa<Instruction>(InVal))
570           continue;
571 
572         // If this pred is for a subloop, not L itself, skip it.
573         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
574           continue; // The Block is in a subloop, skip it.
575 
576         // Check that InVal is defined in the loop.
577         Instruction *Inst = cast<Instruction>(InVal);
578         if (!L->contains(Inst))
579           continue;
580 
581         // Okay, this instruction has a user outside of the current loop
582         // and varies predictably *inside* the loop.  Evaluate the value it
583         // contains when the loop exits, if possible.
584         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
585         if (!SE->isLoopInvariant(ExitValue, L) ||
586             !isSafeToExpand(ExitValue, *SE))
587           continue;
588 
589         // Computing the value outside of the loop brings no benefit if :
590         //  - it is definitely used inside the loop in a way which can not be
591         //    optimized away.
592         //  - no use outside of the loop can take advantage of hoisting the
593         //    computation out of the loop
594         if (ExitValue->getSCEVType()>=scMulExpr) {
595           unsigned NumHardInternalUses = 0;
596           unsigned NumSoftExternalUses = 0;
597           unsigned NumUses = 0;
598           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
599                IB != IE && NumUses <= 6; ++IB) {
600             Instruction *UseInstr = cast<Instruction>(*IB);
601             unsigned Opc = UseInstr->getOpcode();
602             NumUses++;
603             if (L->contains(UseInstr)) {
604               if (Opc == Instruction::Call || Opc == Instruction::Ret)
605                 NumHardInternalUses++;
606             } else {
607               if (Opc == Instruction::PHI) {
608                 // Do not count the Phi as a use. LCSSA may have inserted
609                 // plenty of trivial ones.
610                 NumUses--;
611                 for (auto PB = UseInstr->user_begin(),
612                           PE = UseInstr->user_end();
613                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
614                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
615                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
616                     NumSoftExternalUses++;
617                 }
618                 continue;
619               }
620               if (Opc != Instruction::Call && Opc != Instruction::Ret)
621                 NumSoftExternalUses++;
622             }
623           }
624           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
625             continue;
626         }
627 
628         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
629         Value *ExitVal =
630             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
631 
632         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
633                      << "  LoopVal = " << *Inst << "\n");
634 
635         if (!isValidRewrite(Inst, ExitVal)) {
636           DeadInsts.push_back(ExitVal);
637           continue;
638         }
639 
640         // Collect all the candidate PHINodes to be rewritten.
641         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
642       }
643     }
644   }
645 
646   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
647 
648   // Transformation.
649   for (const RewritePhi &Phi : RewritePhiSet) {
650     PHINode *PN = Phi.PN;
651     Value *ExitVal = Phi.Val;
652 
653     // Only do the rewrite when the ExitValue can be expanded cheaply.
654     // If LoopCanBeDel is true, rewrite exit value aggressively.
655     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
656       DeadInsts.push_back(ExitVal);
657       continue;
658     }
659 
660     Changed = true;
661     ++NumReplaced;
662     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
663     PN->setIncomingValue(Phi.Ith, ExitVal);
664 
665     // If this instruction is dead now, delete it. Don't do it now to avoid
666     // invalidating iterators.
667     if (isInstructionTriviallyDead(Inst, TLI))
668       DeadInsts.push_back(Inst);
669 
670     // Replace PN with ExitVal if that is legal and does not break LCSSA.
671     if (PN->getNumIncomingValues() == 1 &&
672         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
673       PN->replaceAllUsesWith(ExitVal);
674       PN->eraseFromParent();
675     }
676   }
677 
678   // The insertion point instruction may have been deleted; clear it out
679   // so that the rewriter doesn't trip over it later.
680   Rewriter.clearInsertPoint();
681 }
682 
683 //===---------------------------------------------------------------------===//
684 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
685 // they will exit at the first iteration.
686 //===---------------------------------------------------------------------===//
687 
688 /// Check to see if this loop has loop invariant conditions which lead to loop
689 /// exits. If so, we know that if the exit path is taken, it is at the first
690 /// loop iteration. This lets us predict exit values of PHI nodes that live in
691 /// loop header.
692 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
693   // Verify the input to the pass is already in LCSSA form.
694   assert(L->isLCSSAForm(*DT));
695 
696   SmallVector<BasicBlock *, 8> ExitBlocks;
697   L->getUniqueExitBlocks(ExitBlocks);
698   auto *LoopHeader = L->getHeader();
699   assert(LoopHeader && "Invalid loop");
700 
701   for (auto *ExitBB : ExitBlocks) {
702     BasicBlock::iterator BBI = ExitBB->begin();
703     // If there are no more PHI nodes in this exit block, then no more
704     // values defined inside the loop are used on this path.
705     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
706       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
707           IncomingValIdx != E; ++IncomingValIdx) {
708         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
709 
710         // We currently only support loop exits from loop header. If the
711         // incoming block is not loop header, we need to recursively check
712         // all conditions starting from loop header are loop invariants.
713         // Additional support might be added in the future.
714         if (IncomingBB != LoopHeader)
715           continue;
716 
717         // Get condition that leads to the exit path.
718         auto *TermInst = IncomingBB->getTerminator();
719 
720         Value *Cond = nullptr;
721         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
722           // Must be a conditional branch, otherwise the block
723           // should not be in the loop.
724           Cond = BI->getCondition();
725         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
726           Cond = SI->getCondition();
727         else
728           continue;
729 
730         if (!L->isLoopInvariant(Cond))
731           continue;
732 
733         auto *ExitVal =
734             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
735 
736         // Only deal with PHIs.
737         if (!ExitVal)
738           continue;
739 
740         // If ExitVal is a PHI on the loop header, then we know its
741         // value along this exit because the exit can only be taken
742         // on the first iteration.
743         auto *LoopPreheader = L->getLoopPreheader();
744         assert(LoopPreheader && "Invalid loop");
745         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
746         if (PreheaderIdx != -1) {
747           assert(ExitVal->getParent() == LoopHeader &&
748                  "ExitVal must be in loop header");
749           PN->setIncomingValue(IncomingValIdx,
750               ExitVal->getIncomingValue(PreheaderIdx));
751         }
752       }
753     }
754   }
755 }
756 
757 /// Check whether it is possible to delete the loop after rewriting exit
758 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
759 /// aggressively.
760 bool IndVarSimplify::canLoopBeDeleted(
761     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
762 
763   BasicBlock *Preheader = L->getLoopPreheader();
764   // If there is no preheader, the loop will not be deleted.
765   if (!Preheader)
766     return false;
767 
768   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
769   // We obviate multiple ExitingBlocks case for simplicity.
770   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
771   // after exit value rewriting, we can enhance the logic here.
772   SmallVector<BasicBlock *, 4> ExitingBlocks;
773   L->getExitingBlocks(ExitingBlocks);
774   SmallVector<BasicBlock *, 8> ExitBlocks;
775   L->getUniqueExitBlocks(ExitBlocks);
776   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
777     return false;
778 
779   BasicBlock *ExitBlock = ExitBlocks[0];
780   BasicBlock::iterator BI = ExitBlock->begin();
781   while (PHINode *P = dyn_cast<PHINode>(BI)) {
782     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
783 
784     // If the Incoming value of P is found in RewritePhiSet, we know it
785     // could be rewritten to use a loop invariant value in transformation
786     // phase later. Skip it in the loop invariant check below.
787     bool found = false;
788     for (const RewritePhi &Phi : RewritePhiSet) {
789       unsigned i = Phi.Ith;
790       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
791         found = true;
792         break;
793       }
794     }
795 
796     Instruction *I;
797     if (!found && (I = dyn_cast<Instruction>(Incoming)))
798       if (!L->hasLoopInvariantOperands(I))
799         return false;
800 
801     ++BI;
802   }
803 
804   for (auto *BB : L->blocks())
805     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
806       return false;
807 
808   return true;
809 }
810 
811 //===----------------------------------------------------------------------===//
812 //  IV Widening - Extend the width of an IV to cover its widest uses.
813 //===----------------------------------------------------------------------===//
814 
815 namespace {
816 // Collect information about induction variables that are used by sign/zero
817 // extend operations. This information is recorded by CollectExtend and provides
818 // the input to WidenIV.
819 struct WideIVInfo {
820   PHINode *NarrowIV = nullptr;
821   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
822   bool IsSigned = false;            // Was a sext user seen before a zext?
823 };
824 }
825 
826 /// Update information about the induction variable that is extended by this
827 /// sign or zero extend operation. This is used to determine the final width of
828 /// the IV before actually widening it.
829 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
830                         const TargetTransformInfo *TTI) {
831   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
832   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
833     return;
834 
835   Type *Ty = Cast->getType();
836   uint64_t Width = SE->getTypeSizeInBits(Ty);
837   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
838     return;
839 
840   // Cast is either an sext or zext up to this point.
841   // We should not widen an indvar if arithmetics on the wider indvar are more
842   // expensive than those on the narrower indvar. We check only the cost of ADD
843   // because at least an ADD is required to increment the induction variable. We
844   // could compute more comprehensively the cost of all instructions on the
845   // induction variable when necessary.
846   if (TTI &&
847       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
848           TTI->getArithmeticInstrCost(Instruction::Add,
849                                       Cast->getOperand(0)->getType())) {
850     return;
851   }
852 
853   if (!WI.WidestNativeType) {
854     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
855     WI.IsSigned = IsSigned;
856     return;
857   }
858 
859   // We extend the IV to satisfy the sign of its first user, arbitrarily.
860   if (WI.IsSigned != IsSigned)
861     return;
862 
863   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
864     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
865 }
866 
867 namespace {
868 
869 /// Record a link in the Narrow IV def-use chain along with the WideIV that
870 /// computes the same value as the Narrow IV def.  This avoids caching Use*
871 /// pointers.
872 struct NarrowIVDefUse {
873   Instruction *NarrowDef = nullptr;
874   Instruction *NarrowUse = nullptr;
875   Instruction *WideDef = nullptr;
876 
877   // True if the narrow def is never negative.  Tracking this information lets
878   // us use a sign extension instead of a zero extension or vice versa, when
879   // profitable and legal.
880   bool NeverNegative = false;
881 
882   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
883                  bool NeverNegative)
884       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
885         NeverNegative(NeverNegative) {}
886 };
887 
888 /// The goal of this transform is to remove sign and zero extends without
889 /// creating any new induction variables. To do this, it creates a new phi of
890 /// the wider type and redirects all users, either removing extends or inserting
891 /// truncs whenever we stop propagating the type.
892 ///
893 class WidenIV {
894   // Parameters
895   PHINode *OrigPhi;
896   Type *WideType;
897   bool IsSigned;
898 
899   // Context
900   LoopInfo        *LI;
901   Loop            *L;
902   ScalarEvolution *SE;
903   DominatorTree   *DT;
904 
905   // Result
906   PHINode *WidePhi;
907   Instruction *WideInc;
908   const SCEV *WideIncExpr;
909   SmallVectorImpl<WeakVH> &DeadInsts;
910 
911   SmallPtrSet<Instruction*,16> Widened;
912   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
913 
914 public:
915   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
916           ScalarEvolution *SEv, DominatorTree *DTree,
917           SmallVectorImpl<WeakVH> &DI) :
918     OrigPhi(WI.NarrowIV),
919     WideType(WI.WidestNativeType),
920     IsSigned(WI.IsSigned),
921     LI(LInfo),
922     L(LI->getLoopFor(OrigPhi->getParent())),
923     SE(SEv),
924     DT(DTree),
925     WidePhi(nullptr),
926     WideInc(nullptr),
927     WideIncExpr(nullptr),
928     DeadInsts(DI) {
929     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
930   }
931 
932   PHINode *createWideIV(SCEVExpander &Rewriter);
933 
934 protected:
935   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
936                           Instruction *Use);
937 
938   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
939   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
940                                      const SCEVAddRecExpr *WideAR);
941   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
942 
943   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
944 
945   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
946 
947   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
948                               unsigned OpCode) const;
949 
950   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
951 
952   bool widenLoopCompare(NarrowIVDefUse DU);
953 
954   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
955 };
956 } // anonymous namespace
957 
958 /// Perform a quick domtree based check for loop invariance assuming that V is
959 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
960 /// purpose.
961 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
962   Instruction *Inst = dyn_cast<Instruction>(V);
963   if (!Inst)
964     return true;
965 
966   return DT->properlyDominates(Inst->getParent(), L->getHeader());
967 }
968 
969 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
970                                  bool IsSigned, Instruction *Use) {
971   // Set the debug location and conservative insertion point.
972   IRBuilder<> Builder(Use);
973   // Hoist the insertion point into loop preheaders as far as possible.
974   for (const Loop *L = LI->getLoopFor(Use->getParent());
975        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
976        L = L->getParentLoop())
977     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
978 
979   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
980                     Builder.CreateZExt(NarrowOper, WideType);
981 }
982 
983 /// Instantiate a wide operation to replace a narrow operation. This only needs
984 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
985 /// 0 for any operation we decide not to clone.
986 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
987                                   const SCEVAddRecExpr *WideAR) {
988   unsigned Opcode = DU.NarrowUse->getOpcode();
989   switch (Opcode) {
990   default:
991     return nullptr;
992   case Instruction::Add:
993   case Instruction::Mul:
994   case Instruction::UDiv:
995   case Instruction::Sub:
996     return cloneArithmeticIVUser(DU, WideAR);
997 
998   case Instruction::And:
999   case Instruction::Or:
1000   case Instruction::Xor:
1001   case Instruction::Shl:
1002   case Instruction::LShr:
1003   case Instruction::AShr:
1004     return cloneBitwiseIVUser(DU);
1005   }
1006 }
1007 
1008 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1009   Instruction *NarrowUse = DU.NarrowUse;
1010   Instruction *NarrowDef = DU.NarrowDef;
1011   Instruction *WideDef = DU.WideDef;
1012 
1013   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1014 
1015   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1016   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1017   // invariant and will be folded or hoisted. If it actually comes from a
1018   // widened IV, it should be removed during a future call to widenIVUse.
1019   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1020                    ? WideDef
1021                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1022                                       IsSigned, NarrowUse);
1023   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1024                    ? WideDef
1025                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1026                                       IsSigned, NarrowUse);
1027 
1028   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1029   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1030                                         NarrowBO->getName());
1031   IRBuilder<> Builder(NarrowUse);
1032   Builder.Insert(WideBO);
1033   WideBO->copyIRFlags(NarrowBO);
1034   return WideBO;
1035 }
1036 
1037 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1038                                             const SCEVAddRecExpr *WideAR) {
1039   Instruction *NarrowUse = DU.NarrowUse;
1040   Instruction *NarrowDef = DU.NarrowDef;
1041   Instruction *WideDef = DU.WideDef;
1042 
1043   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1044 
1045   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1046 
1047   // We're trying to find X such that
1048   //
1049   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1050   //
1051   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1052   // and check using SCEV if any of them are correct.
1053 
1054   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1055   // correct solution to X.
1056   auto GuessNonIVOperand = [&](bool SignExt) {
1057     const SCEV *WideLHS;
1058     const SCEV *WideRHS;
1059 
1060     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1061       if (SignExt)
1062         return SE->getSignExtendExpr(S, Ty);
1063       return SE->getZeroExtendExpr(S, Ty);
1064     };
1065 
1066     if (IVOpIdx == 0) {
1067       WideLHS = SE->getSCEV(WideDef);
1068       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1069       WideRHS = GetExtend(NarrowRHS, WideType);
1070     } else {
1071       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1072       WideLHS = GetExtend(NarrowLHS, WideType);
1073       WideRHS = SE->getSCEV(WideDef);
1074     }
1075 
1076     // WideUse is "WideDef `op.wide` X" as described in the comment.
1077     const SCEV *WideUse = nullptr;
1078 
1079     switch (NarrowUse->getOpcode()) {
1080     default:
1081       llvm_unreachable("No other possibility!");
1082 
1083     case Instruction::Add:
1084       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1085       break;
1086 
1087     case Instruction::Mul:
1088       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1089       break;
1090 
1091     case Instruction::UDiv:
1092       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1093       break;
1094 
1095     case Instruction::Sub:
1096       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1097       break;
1098     }
1099 
1100     return WideUse == WideAR;
1101   };
1102 
1103   bool SignExtend = IsSigned;
1104   if (!GuessNonIVOperand(SignExtend)) {
1105     SignExtend = !SignExtend;
1106     if (!GuessNonIVOperand(SignExtend))
1107       return nullptr;
1108   }
1109 
1110   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1111                    ? WideDef
1112                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1113                                       SignExtend, NarrowUse);
1114   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1115                    ? WideDef
1116                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1117                                       SignExtend, NarrowUse);
1118 
1119   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1120   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1121                                         NarrowBO->getName());
1122 
1123   IRBuilder<> Builder(NarrowUse);
1124   Builder.Insert(WideBO);
1125   WideBO->copyIRFlags(NarrowBO);
1126   return WideBO;
1127 }
1128 
1129 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1130                                      unsigned OpCode) const {
1131   if (OpCode == Instruction::Add)
1132     return SE->getAddExpr(LHS, RHS);
1133   if (OpCode == Instruction::Sub)
1134     return SE->getMinusSCEV(LHS, RHS);
1135   if (OpCode == Instruction::Mul)
1136     return SE->getMulExpr(LHS, RHS);
1137 
1138   llvm_unreachable("Unsupported opcode.");
1139 }
1140 
1141 /// No-wrap operations can transfer sign extension of their result to their
1142 /// operands. Generate the SCEV value for the widened operation without
1143 /// actually modifying the IR yet. If the expression after extending the
1144 /// operands is an AddRec for this loop, return it.
1145 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1146 
1147   // Handle the common case of add<nsw/nuw>
1148   const unsigned OpCode = DU.NarrowUse->getOpcode();
1149   // Only Add/Sub/Mul instructions supported yet.
1150   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1151       OpCode != Instruction::Mul)
1152     return nullptr;
1153 
1154   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1155   // if extending the other will lead to a recurrence.
1156   const unsigned ExtendOperIdx =
1157       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1158   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1159 
1160   const SCEV *ExtendOperExpr = nullptr;
1161   const OverflowingBinaryOperator *OBO =
1162     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1163   if (IsSigned && OBO->hasNoSignedWrap())
1164     ExtendOperExpr = SE->getSignExtendExpr(
1165       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1166   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1167     ExtendOperExpr = SE->getZeroExtendExpr(
1168       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1169   else
1170     return nullptr;
1171 
1172   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1173   // flags. This instruction may be guarded by control flow that the no-wrap
1174   // behavior depends on. Non-control-equivalent instructions can be mapped to
1175   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1176   // semantics to those operations.
1177   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1178   const SCEV *rhs = ExtendOperExpr;
1179 
1180   // Let's swap operands to the initial order for the case of non-commutative
1181   // operations, like SUB. See PR21014.
1182   if (ExtendOperIdx == 0)
1183     std::swap(lhs, rhs);
1184   const SCEVAddRecExpr *AddRec =
1185       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1186 
1187   if (!AddRec || AddRec->getLoop() != L)
1188     return nullptr;
1189   return AddRec;
1190 }
1191 
1192 /// Is this instruction potentially interesting for further simplification after
1193 /// widening it's type? In other words, can the extend be safely hoisted out of
1194 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1195 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1196 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1197   if (!SE->isSCEVable(NarrowUse->getType()))
1198     return nullptr;
1199 
1200   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1201   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1202       >= SE->getTypeSizeInBits(WideType)) {
1203     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1204     // index. So don't follow this use.
1205     return nullptr;
1206   }
1207 
1208   const SCEV *WideExpr = IsSigned ?
1209     SE->getSignExtendExpr(NarrowExpr, WideType) :
1210     SE->getZeroExtendExpr(NarrowExpr, WideType);
1211   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1212   if (!AddRec || AddRec->getLoop() != L)
1213     return nullptr;
1214   return AddRec;
1215 }
1216 
1217 /// This IV user cannot be widen. Replace this use of the original narrow IV
1218 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1219 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1220   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1221         << " for user " << *DU.NarrowUse << "\n");
1222   IRBuilder<> Builder(
1223       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1224   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1225   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1226 }
1227 
1228 /// If the narrow use is a compare instruction, then widen the compare
1229 //  (and possibly the other operand).  The extend operation is hoisted into the
1230 // loop preheader as far as possible.
1231 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1232   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1233   if (!Cmp)
1234     return false;
1235 
1236   // We can legally widen the comparison in the following two cases:
1237   //
1238   //  - The signedness of the IV extension and comparison match
1239   //
1240   //  - The narrow IV is always positive (and thus its sign extension is equal
1241   //    to its zero extension).  For instance, let's say we're zero extending
1242   //    %narrow for the following use
1243   //
1244   //      icmp slt i32 %narrow, %val   ... (A)
1245   //
1246   //    and %narrow is always positive.  Then
1247   //
1248   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1249   //          == icmp slt i32 zext(%narrow), sext(%val)
1250 
1251   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1252     return false;
1253 
1254   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1255   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1256   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1257   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1258 
1259   // Widen the compare instruction.
1260   IRBuilder<> Builder(
1261       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1262   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1263 
1264   // Widen the other operand of the compare, if necessary.
1265   if (CastWidth < IVWidth) {
1266     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1267     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1268   }
1269   return true;
1270 }
1271 
1272 /// Determine whether an individual user of the narrow IV can be widened. If so,
1273 /// return the wide clone of the user.
1274 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1275 
1276   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1277   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1278     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1279       // For LCSSA phis, sink the truncate outside the loop.
1280       // After SimplifyCFG most loop exit targets have a single predecessor.
1281       // Otherwise fall back to a truncate within the loop.
1282       if (UsePhi->getNumOperands() != 1)
1283         truncateIVUse(DU, DT, LI);
1284       else {
1285         // Widening the PHI requires us to insert a trunc.  The logical place
1286         // for this trunc is in the same BB as the PHI.  This is not possible if
1287         // the BB is terminated by a catchswitch.
1288         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1289           return nullptr;
1290 
1291         PHINode *WidePhi =
1292           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1293                           UsePhi);
1294         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1295         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1296         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1297         UsePhi->replaceAllUsesWith(Trunc);
1298         DeadInsts.emplace_back(UsePhi);
1299         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1300               << " to " << *WidePhi << "\n");
1301       }
1302       return nullptr;
1303     }
1304   }
1305   // Our raison d'etre! Eliminate sign and zero extension.
1306   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1307     Value *NewDef = DU.WideDef;
1308     if (DU.NarrowUse->getType() != WideType) {
1309       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1310       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1311       if (CastWidth < IVWidth) {
1312         // The cast isn't as wide as the IV, so insert a Trunc.
1313         IRBuilder<> Builder(DU.NarrowUse);
1314         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1315       }
1316       else {
1317         // A wider extend was hidden behind a narrower one. This may induce
1318         // another round of IV widening in which the intermediate IV becomes
1319         // dead. It should be very rare.
1320         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1321               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1322         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1323         NewDef = DU.NarrowUse;
1324       }
1325     }
1326     if (NewDef != DU.NarrowUse) {
1327       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1328             << " replaced by " << *DU.WideDef << "\n");
1329       ++NumElimExt;
1330       DU.NarrowUse->replaceAllUsesWith(NewDef);
1331       DeadInsts.emplace_back(DU.NarrowUse);
1332     }
1333     // Now that the extend is gone, we want to expose it's uses for potential
1334     // further simplification. We don't need to directly inform SimplifyIVUsers
1335     // of the new users, because their parent IV will be processed later as a
1336     // new loop phi. If we preserved IVUsers analysis, we would also want to
1337     // push the uses of WideDef here.
1338 
1339     // No further widening is needed. The deceased [sz]ext had done it for us.
1340     return nullptr;
1341   }
1342 
1343   // Does this user itself evaluate to a recurrence after widening?
1344   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1345   if (!WideAddRec)
1346     WideAddRec = getExtendedOperandRecurrence(DU);
1347 
1348   if (!WideAddRec) {
1349     // If use is a loop condition, try to promote the condition instead of
1350     // truncating the IV first.
1351     if (widenLoopCompare(DU))
1352       return nullptr;
1353 
1354     // This user does not evaluate to a recurence after widening, so don't
1355     // follow it. Instead insert a Trunc to kill off the original use,
1356     // eventually isolating the original narrow IV so it can be removed.
1357     truncateIVUse(DU, DT, LI);
1358     return nullptr;
1359   }
1360   // Assume block terminators cannot evaluate to a recurrence. We can't to
1361   // insert a Trunc after a terminator if there happens to be a critical edge.
1362   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1363          "SCEV is not expected to evaluate a block terminator");
1364 
1365   // Reuse the IV increment that SCEVExpander created as long as it dominates
1366   // NarrowUse.
1367   Instruction *WideUse = nullptr;
1368   if (WideAddRec == WideIncExpr
1369       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1370     WideUse = WideInc;
1371   else {
1372     WideUse = cloneIVUser(DU, WideAddRec);
1373     if (!WideUse)
1374       return nullptr;
1375   }
1376   // Evaluation of WideAddRec ensured that the narrow expression could be
1377   // extended outside the loop without overflow. This suggests that the wide use
1378   // evaluates to the same expression as the extended narrow use, but doesn't
1379   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1380   // where it fails, we simply throw away the newly created wide use.
1381   if (WideAddRec != SE->getSCEV(WideUse)) {
1382     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1383           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1384     DeadInsts.emplace_back(WideUse);
1385     return nullptr;
1386   }
1387 
1388   // Returning WideUse pushes it on the worklist.
1389   return WideUse;
1390 }
1391 
1392 /// Add eligible users of NarrowDef to NarrowIVUsers.
1393 ///
1394 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1395   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1396   bool NeverNegative =
1397       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1398                            SE->getConstant(NarrowSCEV->getType(), 0));
1399   for (User *U : NarrowDef->users()) {
1400     Instruction *NarrowUser = cast<Instruction>(U);
1401 
1402     // Handle data flow merges and bizarre phi cycles.
1403     if (!Widened.insert(NarrowUser).second)
1404       continue;
1405 
1406     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1407   }
1408 }
1409 
1410 /// Process a single induction variable. First use the SCEVExpander to create a
1411 /// wide induction variable that evaluates to the same recurrence as the
1412 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1413 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1414 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1415 ///
1416 /// It would be simpler to delete uses as they are processed, but we must avoid
1417 /// invalidating SCEV expressions.
1418 ///
1419 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1420   // Is this phi an induction variable?
1421   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1422   if (!AddRec)
1423     return nullptr;
1424 
1425   // Widen the induction variable expression.
1426   const SCEV *WideIVExpr = IsSigned ?
1427     SE->getSignExtendExpr(AddRec, WideType) :
1428     SE->getZeroExtendExpr(AddRec, WideType);
1429 
1430   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1431          "Expect the new IV expression to preserve its type");
1432 
1433   // Can the IV be extended outside the loop without overflow?
1434   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1435   if (!AddRec || AddRec->getLoop() != L)
1436     return nullptr;
1437 
1438   // An AddRec must have loop-invariant operands. Since this AddRec is
1439   // materialized by a loop header phi, the expression cannot have any post-loop
1440   // operands, so they must dominate the loop header.
1441   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1442          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1443          && "Loop header phi recurrence inputs do not dominate the loop");
1444 
1445   // The rewriter provides a value for the desired IV expression. This may
1446   // either find an existing phi or materialize a new one. Either way, we
1447   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1448   // of the phi-SCC dominates the loop entry.
1449   Instruction *InsertPt = &L->getHeader()->front();
1450   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1451 
1452   // Remembering the WideIV increment generated by SCEVExpander allows
1453   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1454   // employ a general reuse mechanism because the call above is the only call to
1455   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1456   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1457     WideInc =
1458       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1459     WideIncExpr = SE->getSCEV(WideInc);
1460   }
1461 
1462   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1463   ++NumWidened;
1464 
1465   // Traverse the def-use chain using a worklist starting at the original IV.
1466   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1467 
1468   Widened.insert(OrigPhi);
1469   pushNarrowIVUsers(OrigPhi, WidePhi);
1470 
1471   while (!NarrowIVUsers.empty()) {
1472     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1473 
1474     // Process a def-use edge. This may replace the use, so don't hold a
1475     // use_iterator across it.
1476     Instruction *WideUse = widenIVUse(DU, Rewriter);
1477 
1478     // Follow all def-use edges from the previous narrow use.
1479     if (WideUse)
1480       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1481 
1482     // widenIVUse may have removed the def-use edge.
1483     if (DU.NarrowDef->use_empty())
1484       DeadInsts.emplace_back(DU.NarrowDef);
1485   }
1486   return WidePhi;
1487 }
1488 
1489 //===----------------------------------------------------------------------===//
1490 //  Live IV Reduction - Minimize IVs live across the loop.
1491 //===----------------------------------------------------------------------===//
1492 
1493 
1494 //===----------------------------------------------------------------------===//
1495 //  Simplification of IV users based on SCEV evaluation.
1496 //===----------------------------------------------------------------------===//
1497 
1498 namespace {
1499 class IndVarSimplifyVisitor : public IVVisitor {
1500   ScalarEvolution *SE;
1501   const TargetTransformInfo *TTI;
1502   PHINode *IVPhi;
1503 
1504 public:
1505   WideIVInfo WI;
1506 
1507   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1508                         const TargetTransformInfo *TTI,
1509                         const DominatorTree *DTree)
1510     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1511     DT = DTree;
1512     WI.NarrowIV = IVPhi;
1513     if (ReduceLiveIVs)
1514       setSplitOverflowIntrinsics();
1515   }
1516 
1517   // Implement the interface used by simplifyUsersOfIV.
1518   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1519 };
1520 }
1521 
1522 /// Iteratively perform simplification on a worklist of IV users. Each
1523 /// successive simplification may push more users which may themselves be
1524 /// candidates for simplification.
1525 ///
1526 /// Sign/Zero extend elimination is interleaved with IV simplification.
1527 ///
1528 void IndVarSimplify::simplifyAndExtend(Loop *L,
1529                                        SCEVExpander &Rewriter,
1530                                        LoopInfo *LI) {
1531   SmallVector<WideIVInfo, 8> WideIVs;
1532 
1533   SmallVector<PHINode*, 8> LoopPhis;
1534   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1535     LoopPhis.push_back(cast<PHINode>(I));
1536   }
1537   // Each round of simplification iterates through the SimplifyIVUsers worklist
1538   // for all current phis, then determines whether any IVs can be
1539   // widened. Widening adds new phis to LoopPhis, inducing another round of
1540   // simplification on the wide IVs.
1541   while (!LoopPhis.empty()) {
1542     // Evaluate as many IV expressions as possible before widening any IVs. This
1543     // forces SCEV to set no-wrap flags before evaluating sign/zero
1544     // extension. The first time SCEV attempts to normalize sign/zero extension,
1545     // the result becomes final. So for the most predictable results, we delay
1546     // evaluation of sign/zero extend evaluation until needed, and avoid running
1547     // other SCEV based analysis prior to simplifyAndExtend.
1548     do {
1549       PHINode *CurrIV = LoopPhis.pop_back_val();
1550 
1551       // Information about sign/zero extensions of CurrIV.
1552       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1553 
1554       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1555 
1556       if (Visitor.WI.WidestNativeType) {
1557         WideIVs.push_back(Visitor.WI);
1558       }
1559     } while(!LoopPhis.empty());
1560 
1561     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1562       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1563       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1564         Changed = true;
1565         LoopPhis.push_back(WidePhi);
1566       }
1567     }
1568   }
1569 }
1570 
1571 //===----------------------------------------------------------------------===//
1572 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1573 //===----------------------------------------------------------------------===//
1574 
1575 /// Return true if this loop's backedge taken count expression can be safely and
1576 /// cheaply expanded into an instruction sequence that can be used by
1577 /// linearFunctionTestReplace.
1578 ///
1579 /// TODO: This fails for pointer-type loop counters with greater than one byte
1580 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1581 /// we could skip this check in the case that the LFTR loop counter (chosen by
1582 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1583 /// the loop test to an inequality test by checking the target data's alignment
1584 /// of element types (given that the initial pointer value originates from or is
1585 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1586 /// However, we don't yet have a strong motivation for converting loop tests
1587 /// into inequality tests.
1588 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1589                                         SCEVExpander &Rewriter) {
1590   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1591   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1592       BackedgeTakenCount->isZero())
1593     return false;
1594 
1595   if (!L->getExitingBlock())
1596     return false;
1597 
1598   // Can't rewrite non-branch yet.
1599   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1600     return false;
1601 
1602   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1603     return false;
1604 
1605   return true;
1606 }
1607 
1608 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1609 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1610   Instruction *IncI = dyn_cast<Instruction>(IncV);
1611   if (!IncI)
1612     return nullptr;
1613 
1614   switch (IncI->getOpcode()) {
1615   case Instruction::Add:
1616   case Instruction::Sub:
1617     break;
1618   case Instruction::GetElementPtr:
1619     // An IV counter must preserve its type.
1620     if (IncI->getNumOperands() == 2)
1621       break;
1622   default:
1623     return nullptr;
1624   }
1625 
1626   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1627   if (Phi && Phi->getParent() == L->getHeader()) {
1628     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1629       return Phi;
1630     return nullptr;
1631   }
1632   if (IncI->getOpcode() == Instruction::GetElementPtr)
1633     return nullptr;
1634 
1635   // Allow add/sub to be commuted.
1636   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1637   if (Phi && Phi->getParent() == L->getHeader()) {
1638     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1639       return Phi;
1640   }
1641   return nullptr;
1642 }
1643 
1644 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1645 static ICmpInst *getLoopTest(Loop *L) {
1646   assert(L->getExitingBlock() && "expected loop exit");
1647 
1648   BasicBlock *LatchBlock = L->getLoopLatch();
1649   // Don't bother with LFTR if the loop is not properly simplified.
1650   if (!LatchBlock)
1651     return nullptr;
1652 
1653   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1654   assert(BI && "expected exit branch");
1655 
1656   return dyn_cast<ICmpInst>(BI->getCondition());
1657 }
1658 
1659 /// linearFunctionTestReplace policy. Return true unless we can show that the
1660 /// current exit test is already sufficiently canonical.
1661 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1662   // Do LFTR to simplify the exit condition to an ICMP.
1663   ICmpInst *Cond = getLoopTest(L);
1664   if (!Cond)
1665     return true;
1666 
1667   // Do LFTR to simplify the exit ICMP to EQ/NE
1668   ICmpInst::Predicate Pred = Cond->getPredicate();
1669   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1670     return true;
1671 
1672   // Look for a loop invariant RHS
1673   Value *LHS = Cond->getOperand(0);
1674   Value *RHS = Cond->getOperand(1);
1675   if (!isLoopInvariant(RHS, L, DT)) {
1676     if (!isLoopInvariant(LHS, L, DT))
1677       return true;
1678     std::swap(LHS, RHS);
1679   }
1680   // Look for a simple IV counter LHS
1681   PHINode *Phi = dyn_cast<PHINode>(LHS);
1682   if (!Phi)
1683     Phi = getLoopPhiForCounter(LHS, L, DT);
1684 
1685   if (!Phi)
1686     return true;
1687 
1688   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1689   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1690   if (Idx < 0)
1691     return true;
1692 
1693   // Do LFTR if the exit condition's IV is *not* a simple counter.
1694   Value *IncV = Phi->getIncomingValue(Idx);
1695   return Phi != getLoopPhiForCounter(IncV, L, DT);
1696 }
1697 
1698 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1699 /// down to checking that all operands are constant and listing instructions
1700 /// that may hide undef.
1701 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1702                                unsigned Depth) {
1703   if (isa<Constant>(V))
1704     return !isa<UndefValue>(V);
1705 
1706   if (Depth >= 6)
1707     return false;
1708 
1709   // Conservatively handle non-constant non-instructions. For example, Arguments
1710   // may be undef.
1711   Instruction *I = dyn_cast<Instruction>(V);
1712   if (!I)
1713     return false;
1714 
1715   // Load and return values may be undef.
1716   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1717     return false;
1718 
1719   // Optimistically handle other instructions.
1720   for (Value *Op : I->operands()) {
1721     if (!Visited.insert(Op).second)
1722       continue;
1723     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1724       return false;
1725   }
1726   return true;
1727 }
1728 
1729 /// Return true if the given value is concrete. We must prove that undef can
1730 /// never reach it.
1731 ///
1732 /// TODO: If we decide that this is a good approach to checking for undef, we
1733 /// may factor it into a common location.
1734 static bool hasConcreteDef(Value *V) {
1735   SmallPtrSet<Value*, 8> Visited;
1736   Visited.insert(V);
1737   return hasConcreteDefImpl(V, Visited, 0);
1738 }
1739 
1740 /// Return true if this IV has any uses other than the (soon to be rewritten)
1741 /// loop exit test.
1742 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1743   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1744   Value *IncV = Phi->getIncomingValue(LatchIdx);
1745 
1746   for (User *U : Phi->users())
1747     if (U != Cond && U != IncV) return false;
1748 
1749   for (User *U : IncV->users())
1750     if (U != Cond && U != Phi) return false;
1751   return true;
1752 }
1753 
1754 /// Find an affine IV in canonical form.
1755 ///
1756 /// BECount may be an i8* pointer type. The pointer difference is already
1757 /// valid count without scaling the address stride, so it remains a pointer
1758 /// expression as far as SCEV is concerned.
1759 ///
1760 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1761 ///
1762 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1763 ///
1764 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1765 /// This is difficult in general for SCEV because of potential overflow. But we
1766 /// could at least handle constant BECounts.
1767 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1768                                 ScalarEvolution *SE, DominatorTree *DT) {
1769   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1770 
1771   Value *Cond =
1772     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1773 
1774   // Loop over all of the PHI nodes, looking for a simple counter.
1775   PHINode *BestPhi = nullptr;
1776   const SCEV *BestInit = nullptr;
1777   BasicBlock *LatchBlock = L->getLoopLatch();
1778   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1779   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1780 
1781   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1782     PHINode *Phi = cast<PHINode>(I);
1783     if (!SE->isSCEVable(Phi->getType()))
1784       continue;
1785 
1786     // Avoid comparing an integer IV against a pointer Limit.
1787     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1788       continue;
1789 
1790     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1791     if (!AR || AR->getLoop() != L || !AR->isAffine())
1792       continue;
1793 
1794     // AR may be a pointer type, while BECount is an integer type.
1795     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1796     // AR may not be a narrower type, or we may never exit.
1797     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1798     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
1799       continue;
1800 
1801     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1802     if (!Step || !Step->isOne())
1803       continue;
1804 
1805     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1806     Value *IncV = Phi->getIncomingValue(LatchIdx);
1807     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1808       continue;
1809 
1810     // Avoid reusing a potentially undef value to compute other values that may
1811     // have originally had a concrete definition.
1812     if (!hasConcreteDef(Phi)) {
1813       // We explicitly allow unknown phis as long as they are already used by
1814       // the loop test. In this case we assume that performing LFTR could not
1815       // increase the number of undef users.
1816       if (ICmpInst *Cond = getLoopTest(L)) {
1817         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1818             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1819           continue;
1820         }
1821       }
1822     }
1823     const SCEV *Init = AR->getStart();
1824 
1825     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1826       // Don't force a live loop counter if another IV can be used.
1827       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1828         continue;
1829 
1830       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1831       // also prefers integer to pointer IVs.
1832       if (BestInit->isZero() != Init->isZero()) {
1833         if (BestInit->isZero())
1834           continue;
1835       }
1836       // If two IVs both count from zero or both count from nonzero then the
1837       // narrower is likely a dead phi that has been widened. Use the wider phi
1838       // to allow the other to be eliminated.
1839       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1840         continue;
1841     }
1842     BestPhi = Phi;
1843     BestInit = Init;
1844   }
1845   return BestPhi;
1846 }
1847 
1848 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1849 /// the new loop test.
1850 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1851                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1852   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1853   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1854   const SCEV *IVInit = AR->getStart();
1855 
1856   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1857   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1858   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1859   // the existing GEPs whenever possible.
1860   if (IndVar->getType()->isPointerTy()
1861       && !IVCount->getType()->isPointerTy()) {
1862 
1863     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1864     // signed value. IVCount on the other hand represents the loop trip count,
1865     // which is an unsigned value. FindLoopCounter only allows induction
1866     // variables that have a positive unit stride of one. This means we don't
1867     // have to handle the case of negative offsets (yet) and just need to zero
1868     // extend IVCount.
1869     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1870     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1871 
1872     // Expand the code for the iteration count.
1873     assert(SE->isLoopInvariant(IVOffset, L) &&
1874            "Computed iteration count is not loop invariant!");
1875     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1876     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1877 
1878     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1879     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1880     // We could handle pointer IVs other than i8*, but we need to compensate for
1881     // gep index scaling. See canExpandBackedgeTakenCount comments.
1882     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1883              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1884            && "unit stride pointer IV must be i8*");
1885 
1886     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1887     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1888   }
1889   else {
1890     // In any other case, convert both IVInit and IVCount to integers before
1891     // comparing. This may result in SCEV expension of pointers, but in practice
1892     // SCEV will fold the pointer arithmetic away as such:
1893     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1894     //
1895     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1896     // for simple memset-style loops.
1897     //
1898     // IVInit integer and IVCount pointer would only occur if a canonical IV
1899     // were generated on top of case #2, which is not expected.
1900 
1901     const SCEV *IVLimit = nullptr;
1902     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1903     // For non-zero Start, compute IVCount here.
1904     if (AR->getStart()->isZero())
1905       IVLimit = IVCount;
1906     else {
1907       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1908       const SCEV *IVInit = AR->getStart();
1909 
1910       // For integer IVs, truncate the IV before computing IVInit + BECount.
1911       if (SE->getTypeSizeInBits(IVInit->getType())
1912           > SE->getTypeSizeInBits(IVCount->getType()))
1913         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1914 
1915       IVLimit = SE->getAddExpr(IVInit, IVCount);
1916     }
1917     // Expand the code for the iteration count.
1918     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1919     IRBuilder<> Builder(BI);
1920     assert(SE->isLoopInvariant(IVLimit, L) &&
1921            "Computed iteration count is not loop invariant!");
1922     // Ensure that we generate the same type as IndVar, or a smaller integer
1923     // type. In the presence of null pointer values, we have an integer type
1924     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1925     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1926       IndVar->getType() : IVCount->getType();
1927     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1928   }
1929 }
1930 
1931 /// This method rewrites the exit condition of the loop to be a canonical !=
1932 /// comparison against the incremented loop induction variable.  This pass is
1933 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1934 /// determine a loop-invariant trip count of the loop, which is actually a much
1935 /// broader range than just linear tests.
1936 Value *IndVarSimplify::
1937 linearFunctionTestReplace(Loop *L,
1938                           const SCEV *BackedgeTakenCount,
1939                           PHINode *IndVar,
1940                           SCEVExpander &Rewriter) {
1941   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1942 
1943   // Initialize CmpIndVar and IVCount to their preincremented values.
1944   Value *CmpIndVar = IndVar;
1945   const SCEV *IVCount = BackedgeTakenCount;
1946 
1947   // If the exiting block is the same as the backedge block, we prefer to
1948   // compare against the post-incremented value, otherwise we must compare
1949   // against the preincremented value.
1950   if (L->getExitingBlock() == L->getLoopLatch()) {
1951     // Add one to the "backedge-taken" count to get the trip count.
1952     // This addition may overflow, which is valid as long as the comparison is
1953     // truncated to BackedgeTakenCount->getType().
1954     IVCount = SE->getAddExpr(BackedgeTakenCount,
1955                              SE->getOne(BackedgeTakenCount->getType()));
1956     // The BackedgeTaken expression contains the number of times that the
1957     // backedge branches to the loop header.  This is one less than the
1958     // number of times the loop executes, so use the incremented indvar.
1959     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1960   }
1961 
1962   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1963   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1964          && "genLoopLimit missed a cast");
1965 
1966   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1967   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1968   ICmpInst::Predicate P;
1969   if (L->contains(BI->getSuccessor(0)))
1970     P = ICmpInst::ICMP_NE;
1971   else
1972     P = ICmpInst::ICMP_EQ;
1973 
1974   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1975                << "      LHS:" << *CmpIndVar << '\n'
1976                << "       op:\t"
1977                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1978                << "      RHS:\t" << *ExitCnt << "\n"
1979                << "  IVCount:\t" << *IVCount << "\n");
1980 
1981   IRBuilder<> Builder(BI);
1982 
1983   // LFTR can ignore IV overflow and truncate to the width of
1984   // BECount. This avoids materializing the add(zext(add)) expression.
1985   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1986   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1987   if (CmpIndVarSize > ExitCntSize) {
1988     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1989     const SCEV *ARStart = AR->getStart();
1990     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1991     // For constant IVCount, avoid truncation.
1992     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1993       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1994       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1995       // Note that the post-inc value of BackedgeTakenCount may have overflowed
1996       // above such that IVCount is now zero.
1997       if (IVCount != BackedgeTakenCount && Count == 0) {
1998         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1999         ++Count;
2000       }
2001       else
2002         Count = Count.zext(CmpIndVarSize);
2003       APInt NewLimit;
2004       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2005         NewLimit = Start - Count;
2006       else
2007         NewLimit = Start + Count;
2008       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2009 
2010       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2011     } else {
2012       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2013                                       "lftr.wideiv");
2014     }
2015   }
2016   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2017   Value *OrigCond = BI->getCondition();
2018   // It's tempting to use replaceAllUsesWith here to fully replace the old
2019   // comparison, but that's not immediately safe, since users of the old
2020   // comparison may not be dominated by the new comparison. Instead, just
2021   // update the branch to use the new comparison; in the common case this
2022   // will make old comparison dead.
2023   BI->setCondition(Cond);
2024   DeadInsts.push_back(OrigCond);
2025 
2026   ++NumLFTR;
2027   Changed = true;
2028   return Cond;
2029 }
2030 
2031 //===----------------------------------------------------------------------===//
2032 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2033 //===----------------------------------------------------------------------===//
2034 
2035 /// If there's a single exit block, sink any loop-invariant values that
2036 /// were defined in the preheader but not used inside the loop into the
2037 /// exit block to reduce register pressure in the loop.
2038 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2039   BasicBlock *ExitBlock = L->getExitBlock();
2040   if (!ExitBlock) return;
2041 
2042   BasicBlock *Preheader = L->getLoopPreheader();
2043   if (!Preheader) return;
2044 
2045   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2046   BasicBlock::iterator I(Preheader->getTerminator());
2047   while (I != Preheader->begin()) {
2048     --I;
2049     // New instructions were inserted at the end of the preheader.
2050     if (isa<PHINode>(I))
2051       break;
2052 
2053     // Don't move instructions which might have side effects, since the side
2054     // effects need to complete before instructions inside the loop.  Also don't
2055     // move instructions which might read memory, since the loop may modify
2056     // memory. Note that it's okay if the instruction might have undefined
2057     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2058     // block.
2059     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2060       continue;
2061 
2062     // Skip debug info intrinsics.
2063     if (isa<DbgInfoIntrinsic>(I))
2064       continue;
2065 
2066     // Skip eh pad instructions.
2067     if (I->isEHPad())
2068       continue;
2069 
2070     // Don't sink alloca: we never want to sink static alloca's out of the
2071     // entry block, and correctly sinking dynamic alloca's requires
2072     // checks for stacksave/stackrestore intrinsics.
2073     // FIXME: Refactor this check somehow?
2074     if (isa<AllocaInst>(I))
2075       continue;
2076 
2077     // Determine if there is a use in or before the loop (direct or
2078     // otherwise).
2079     bool UsedInLoop = false;
2080     for (Use &U : I->uses()) {
2081       Instruction *User = cast<Instruction>(U.getUser());
2082       BasicBlock *UseBB = User->getParent();
2083       if (PHINode *P = dyn_cast<PHINode>(User)) {
2084         unsigned i =
2085           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2086         UseBB = P->getIncomingBlock(i);
2087       }
2088       if (UseBB == Preheader || L->contains(UseBB)) {
2089         UsedInLoop = true;
2090         break;
2091       }
2092     }
2093 
2094     // If there is, the def must remain in the preheader.
2095     if (UsedInLoop)
2096       continue;
2097 
2098     // Otherwise, sink it to the exit block.
2099     Instruction *ToMove = &*I;
2100     bool Done = false;
2101 
2102     if (I != Preheader->begin()) {
2103       // Skip debug info intrinsics.
2104       do {
2105         --I;
2106       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2107 
2108       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2109         Done = true;
2110     } else {
2111       Done = true;
2112     }
2113 
2114     ToMove->moveBefore(InsertPt);
2115     if (Done) break;
2116     InsertPt = ToMove;
2117   }
2118 }
2119 
2120 //===----------------------------------------------------------------------===//
2121 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2122 //===----------------------------------------------------------------------===//
2123 
2124 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2125   if (skipLoop(L))
2126     return false;
2127 
2128   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2129   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2130   //    canonicalization can be a pessimization without LSR to "clean up"
2131   //    afterwards.
2132   //  - We depend on having a preheader; in particular,
2133   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2134   //    and we're in trouble if we can't find the induction variable even when
2135   //    we've manually inserted one.
2136   if (!L->isLoopSimplifyForm())
2137     return false;
2138 
2139   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2140   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2141   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2142   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2143   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2144   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2145   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2146   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2147 
2148   DeadInsts.clear();
2149   Changed = false;
2150 
2151   // If there are any floating-point recurrences, attempt to
2152   // transform them to use integer recurrences.
2153   rewriteNonIntegerIVs(L);
2154 
2155   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2156 
2157   // Create a rewriter object which we'll use to transform the code with.
2158   SCEVExpander Rewriter(*SE, DL, "indvars");
2159 #ifndef NDEBUG
2160   Rewriter.setDebugType(DEBUG_TYPE);
2161 #endif
2162 
2163   // Eliminate redundant IV users.
2164   //
2165   // Simplification works best when run before other consumers of SCEV. We
2166   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2167   // other expressions involving loop IVs have been evaluated. This helps SCEV
2168   // set no-wrap flags before normalizing sign/zero extension.
2169   Rewriter.disableCanonicalMode();
2170   simplifyAndExtend(L, Rewriter, LI);
2171 
2172   // Check to see if this loop has a computable loop-invariant execution count.
2173   // If so, this means that we can compute the final value of any expressions
2174   // that are recurrent in the loop, and substitute the exit values from the
2175   // loop into any instructions outside of the loop that use the final values of
2176   // the current expressions.
2177   //
2178   if (ReplaceExitValue != NeverRepl &&
2179       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2180     rewriteLoopExitValues(L, Rewriter);
2181 
2182   // Eliminate redundant IV cycles.
2183   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2184 
2185   // If we have a trip count expression, rewrite the loop's exit condition
2186   // using it.  We can currently only handle loops with a single exit.
2187   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2188     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2189     if (IndVar) {
2190       // Check preconditions for proper SCEVExpander operation. SCEV does not
2191       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2192       // pass that uses the SCEVExpander must do it. This does not work well for
2193       // loop passes because SCEVExpander makes assumptions about all loops,
2194       // while LoopPassManager only forces the current loop to be simplified.
2195       //
2196       // FIXME: SCEV expansion has no way to bail out, so the caller must
2197       // explicitly check any assumptions made by SCEV. Brittle.
2198       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2199       if (!AR || AR->getLoop()->getLoopPreheader())
2200         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2201                                         Rewriter);
2202     }
2203   }
2204   // Clear the rewriter cache, because values that are in the rewriter's cache
2205   // can be deleted in the loop below, causing the AssertingVH in the cache to
2206   // trigger.
2207   Rewriter.clear();
2208 
2209   // Now that we're done iterating through lists, clean up any instructions
2210   // which are now dead.
2211   while (!DeadInsts.empty())
2212     if (Instruction *Inst =
2213             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2214       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2215 
2216   // The Rewriter may not be used from this point on.
2217 
2218   // Loop-invariant instructions in the preheader that aren't used in the
2219   // loop may be sunk below the loop to reduce register pressure.
2220   sinkUnusedInvariants(L);
2221 
2222   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2223   // trip count and therefore can further simplify exit values in addition to
2224   // rewriteLoopExitValues.
2225   rewriteFirstIterationLoopExitValues(L);
2226 
2227   // Clean up dead instructions.
2228   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2229 
2230   // Check a post-condition.
2231   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2232 
2233   // Verify that LFTR, and any other change have not interfered with SCEV's
2234   // ability to compute trip count.
2235 #ifndef NDEBUG
2236   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2237     SE->forgetLoop(L);
2238     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2239     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2240         SE->getTypeSizeInBits(NewBECount->getType()))
2241       NewBECount = SE->getTruncateOrNoop(NewBECount,
2242                                          BackedgeTakenCount->getType());
2243     else
2244       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2245                                                  NewBECount->getType());
2246     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2247   }
2248 #endif
2249 
2250   return Changed;
2251 }
2252