xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision efe89ad414f14f377d8ab69c35ff627083390355)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/Statistic.h"
63 #include "llvm/ADT/STLExtras.h"
64 using namespace llvm;
65 
66 STATISTIC(NumRemoved     , "Number of aux indvars removed");
67 STATISTIC(NumWidened     , "Number of indvars widened");
68 STATISTIC(NumInserted    , "Number of canonical indvars added");
69 STATISTIC(NumReplaced    , "Number of exit values replaced");
70 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
71 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
72 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
74 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
75 
76 static cl::opt<bool> DisableIVRewrite(
77   "disable-iv-rewrite", cl::Hidden,
78   cl::desc("Disable canonical induction variable rewriting"));
79 
80 namespace {
81   class IndVarSimplify : public LoopPass {
82     IVUsers         *IU;
83     LoopInfo        *LI;
84     ScalarEvolution *SE;
85     DominatorTree   *DT;
86     TargetData      *TD;
87 
88     SmallVector<WeakVH, 16> DeadInsts;
89     bool Changed;
90   public:
91 
92     static char ID; // Pass identification, replacement for typeid
93     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
94                        Changed(false) {
95       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
96     }
97 
98     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
99 
100     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101       AU.addRequired<DominatorTree>();
102       AU.addRequired<LoopInfo>();
103       AU.addRequired<ScalarEvolution>();
104       AU.addRequiredID(LoopSimplifyID);
105       AU.addRequiredID(LCSSAID);
106       if (!DisableIVRewrite)
107         AU.addRequired<IVUsers>();
108       AU.addPreserved<ScalarEvolution>();
109       AU.addPreservedID(LoopSimplifyID);
110       AU.addPreservedID(LCSSAID);
111       if (!DisableIVRewrite)
112         AU.addPreserved<IVUsers>();
113       AU.setPreservesCFG();
114     }
115 
116   private:
117     bool isValidRewrite(Value *FromVal, Value *ToVal);
118 
119     void SimplifyIVUsers(SCEVExpander &Rewriter);
120     void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
121 
122     bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
123     void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
124     void EliminateIVRemainder(BinaryOperator *Rem,
125                               Value *IVOperand,
126                               bool IsSigned);
127     bool isSimpleIVUser(Instruction *I, const Loop *L);
128     void RewriteNonIntegerIVs(Loop *L);
129 
130     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                         PHINode *IndVar,
132                                         SCEVExpander &Rewriter);
133 
134     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135 
136     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
137 
138     void SinkUnusedInvariants(Loop *L);
139 
140     void HandleFloatingPointIV(Loop *L, PHINode *PH);
141   };
142 }
143 
144 char IndVarSimplify::ID = 0;
145 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
146                 "Induction Variable Simplification", false, false)
147 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
148 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
149 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
150 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
151 INITIALIZE_PASS_DEPENDENCY(LCSSA)
152 INITIALIZE_PASS_DEPENDENCY(IVUsers)
153 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
154                 "Induction Variable Simplification", false, false)
155 
156 Pass *llvm::createIndVarSimplifyPass() {
157   return new IndVarSimplify();
158 }
159 
160 /// isValidRewrite - Return true if the SCEV expansion generated by the
161 /// rewriter can replace the original value. SCEV guarantees that it
162 /// produces the same value, but the way it is produced may be illegal IR.
163 /// Ideally, this function will only be called for verification.
164 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
165   // If an SCEV expression subsumed multiple pointers, its expansion could
166   // reassociate the GEP changing the base pointer. This is illegal because the
167   // final address produced by a GEP chain must be inbounds relative to its
168   // underlying object. Otherwise basic alias analysis, among other things,
169   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
170   // producing an expression involving multiple pointers. Until then, we must
171   // bail out here.
172   //
173   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
174   // because it understands lcssa phis while SCEV does not.
175   Value *FromPtr = FromVal;
176   Value *ToPtr = ToVal;
177   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
178     FromPtr = GEP->getPointerOperand();
179   }
180   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
181     ToPtr = GEP->getPointerOperand();
182   }
183   if (FromPtr != FromVal || ToPtr != ToVal) {
184     // Quickly check the common case
185     if (FromPtr == ToPtr)
186       return true;
187 
188     // SCEV may have rewritten an expression that produces the GEP's pointer
189     // operand. That's ok as long as the pointer operand has the same base
190     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
191     // base of a recurrence. This handles the case in which SCEV expansion
192     // converts a pointer type recurrence into a nonrecurrent pointer base
193     // indexed by an integer recurrence.
194     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
195     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
196     if (FromBase == ToBase)
197       return true;
198 
199     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
200           << *FromBase << " != " << *ToBase << "\n");
201 
202     return false;
203   }
204   return true;
205 }
206 
207 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
208 /// count expression can be safely and cheaply expanded into an instruction
209 /// sequence that can be used by LinearFunctionTestReplace.
210 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
211   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
212   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
213       BackedgeTakenCount->isZero())
214     return false;
215 
216   if (!L->getExitingBlock())
217     return false;
218 
219   // Can't rewrite non-branch yet.
220   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
221   if (!BI)
222     return false;
223 
224   // Special case: If the backedge-taken count is a UDiv, it's very likely a
225   // UDiv that ScalarEvolution produced in order to compute a precise
226   // expression, rather than a UDiv from the user's code. If we can't find a
227   // UDiv in the code with some simple searching, assume the former and forego
228   // rewriting the loop.
229   if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
230     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
231     if (!OrigCond) return false;
232     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
233     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
234     if (R != BackedgeTakenCount) {
235       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
236       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
237       if (L != BackedgeTakenCount)
238         return false;
239     }
240   }
241   return true;
242 }
243 
244 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
245 /// through Truncs.
246 ///
247 /// TODO: Unnecessary once LinearFunctionTestReplace is removed.
248 static const Type *getBackedgeIVType(Loop *L) {
249   if (!L->getExitingBlock())
250     return 0;
251 
252   // Can't rewrite non-branch yet.
253   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
254   if (!BI)
255     return 0;
256 
257   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
258   if (!Cond)
259     return 0;
260 
261   const Type *Ty = 0;
262   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
263       OI != OE; ++OI) {
264     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
265     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
266     if (!Trunc)
267       continue;
268 
269     return Trunc->getSrcTy();
270   }
271   return Ty;
272 }
273 
274 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
275 /// loop to be a canonical != comparison against the incremented loop induction
276 /// variable.  This pass is able to rewrite the exit tests of any loop where the
277 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
278 /// is actually a much broader range than just linear tests.
279 ICmpInst *IndVarSimplify::
280 LinearFunctionTestReplace(Loop *L,
281                           const SCEV *BackedgeTakenCount,
282                           PHINode *IndVar,
283                           SCEVExpander &Rewriter) {
284   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
285   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
286 
287   // If the exiting block is not the same as the backedge block, we must compare
288   // against the preincremented value, otherwise we prefer to compare against
289   // the post-incremented value.
290   Value *CmpIndVar;
291   const SCEV *RHS = BackedgeTakenCount;
292   if (L->getExitingBlock() == L->getLoopLatch()) {
293     // Add one to the "backedge-taken" count to get the trip count.
294     // If this addition may overflow, we have to be more pessimistic and
295     // cast the induction variable before doing the add.
296     const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
297     const SCEV *N =
298       SE->getAddExpr(BackedgeTakenCount,
299                      SE->getConstant(BackedgeTakenCount->getType(), 1));
300     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
301         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
302       // No overflow. Cast the sum.
303       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
304     } else {
305       // Potential overflow. Cast before doing the add.
306       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
307                                         IndVar->getType());
308       RHS = SE->getAddExpr(RHS,
309                            SE->getConstant(IndVar->getType(), 1));
310     }
311 
312     // The BackedgeTaken expression contains the number of times that the
313     // backedge branches to the loop header.  This is one less than the
314     // number of times the loop executes, so use the incremented indvar.
315     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
316   } else {
317     // We have to use the preincremented value...
318     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                       IndVar->getType());
320     CmpIndVar = IndVar;
321   }
322 
323   // Expand the code for the iteration count.
324   assert(SE->isLoopInvariant(RHS, L) &&
325          "Computed iteration count is not loop invariant!");
326   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
327 
328   // Insert a new icmp_ne or icmp_eq instruction before the branch.
329   ICmpInst::Predicate Opcode;
330   if (L->contains(BI->getSuccessor(0)))
331     Opcode = ICmpInst::ICMP_NE;
332   else
333     Opcode = ICmpInst::ICMP_EQ;
334 
335   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
336                << "      LHS:" << *CmpIndVar << '\n'
337                << "       op:\t"
338                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
339                << "      RHS:\t" << *RHS << "\n");
340 
341   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
342 
343   Value *OrigCond = BI->getCondition();
344   // It's tempting to use replaceAllUsesWith here to fully replace the old
345   // comparison, but that's not immediately safe, since users of the old
346   // comparison may not be dominated by the new comparison. Instead, just
347   // update the branch to use the new comparison; in the common case this
348   // will make old comparison dead.
349   BI->setCondition(Cond);
350   DeadInsts.push_back(OrigCond);
351 
352   ++NumLFTR;
353   Changed = true;
354   return Cond;
355 }
356 
357 /// RewriteLoopExitValues - Check to see if this loop has a computable
358 /// loop-invariant execution count.  If so, this means that we can compute the
359 /// final value of any expressions that are recurrent in the loop, and
360 /// substitute the exit values from the loop into any instructions outside of
361 /// the loop that use the final values of the current expressions.
362 ///
363 /// This is mostly redundant with the regular IndVarSimplify activities that
364 /// happen later, except that it's more powerful in some cases, because it's
365 /// able to brute-force evaluate arbitrary instructions as long as they have
366 /// constant operands at the beginning of the loop.
367 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
368   // Verify the input to the pass in already in LCSSA form.
369   assert(L->isLCSSAForm(*DT));
370 
371   SmallVector<BasicBlock*, 8> ExitBlocks;
372   L->getUniqueExitBlocks(ExitBlocks);
373 
374   // Find all values that are computed inside the loop, but used outside of it.
375   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
376   // the exit blocks of the loop to find them.
377   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
378     BasicBlock *ExitBB = ExitBlocks[i];
379 
380     // If there are no PHI nodes in this exit block, then no values defined
381     // inside the loop are used on this path, skip it.
382     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
383     if (!PN) continue;
384 
385     unsigned NumPreds = PN->getNumIncomingValues();
386 
387     // Iterate over all of the PHI nodes.
388     BasicBlock::iterator BBI = ExitBB->begin();
389     while ((PN = dyn_cast<PHINode>(BBI++))) {
390       if (PN->use_empty())
391         continue; // dead use, don't replace it
392 
393       // SCEV only supports integer expressions for now.
394       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
395         continue;
396 
397       // It's necessary to tell ScalarEvolution about this explicitly so that
398       // it can walk the def-use list and forget all SCEVs, as it may not be
399       // watching the PHI itself. Once the new exit value is in place, there
400       // may not be a def-use connection between the loop and every instruction
401       // which got a SCEVAddRecExpr for that loop.
402       SE->forgetValue(PN);
403 
404       // Iterate over all of the values in all the PHI nodes.
405       for (unsigned i = 0; i != NumPreds; ++i) {
406         // If the value being merged in is not integer or is not defined
407         // in the loop, skip it.
408         Value *InVal = PN->getIncomingValue(i);
409         if (!isa<Instruction>(InVal))
410           continue;
411 
412         // If this pred is for a subloop, not L itself, skip it.
413         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
414           continue; // The Block is in a subloop, skip it.
415 
416         // Check that InVal is defined in the loop.
417         Instruction *Inst = cast<Instruction>(InVal);
418         if (!L->contains(Inst))
419           continue;
420 
421         // Okay, this instruction has a user outside of the current loop
422         // and varies predictably *inside* the loop.  Evaluate the value it
423         // contains when the loop exits, if possible.
424         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
425         if (!SE->isLoopInvariant(ExitValue, L))
426           continue;
427 
428         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
429 
430         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
431                      << "  LoopVal = " << *Inst << "\n");
432 
433         if (!isValidRewrite(Inst, ExitVal)) {
434           DeadInsts.push_back(ExitVal);
435           continue;
436         }
437         Changed = true;
438         ++NumReplaced;
439 
440         PN->setIncomingValue(i, ExitVal);
441 
442         // If this instruction is dead now, delete it.
443         RecursivelyDeleteTriviallyDeadInstructions(Inst);
444 
445         if (NumPreds == 1) {
446           // Completely replace a single-pred PHI. This is safe, because the
447           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
448           // node anymore.
449           PN->replaceAllUsesWith(ExitVal);
450           RecursivelyDeleteTriviallyDeadInstructions(PN);
451         }
452       }
453       if (NumPreds != 1) {
454         // Clone the PHI and delete the original one. This lets IVUsers and
455         // any other maps purge the original user from their records.
456         PHINode *NewPN = cast<PHINode>(PN->clone());
457         NewPN->takeName(PN);
458         NewPN->insertBefore(PN);
459         PN->replaceAllUsesWith(NewPN);
460         PN->eraseFromParent();
461       }
462     }
463   }
464 
465   // The insertion point instruction may have been deleted; clear it out
466   // so that the rewriter doesn't trip over it later.
467   Rewriter.clearInsertPoint();
468 }
469 
470 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
471   // First step.  Check to see if there are any floating-point recurrences.
472   // If there are, change them into integer recurrences, permitting analysis by
473   // the SCEV routines.
474   //
475   BasicBlock *Header = L->getHeader();
476 
477   SmallVector<WeakVH, 8> PHIs;
478   for (BasicBlock::iterator I = Header->begin();
479        PHINode *PN = dyn_cast<PHINode>(I); ++I)
480     PHIs.push_back(PN);
481 
482   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
483     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
484       HandleFloatingPointIV(L, PN);
485 
486   // If the loop previously had floating-point IV, ScalarEvolution
487   // may not have been able to compute a trip count. Now that we've done some
488   // re-writing, the trip count may be computable.
489   if (Changed)
490     SE->forgetLoop(L);
491 }
492 
493 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
494 /// loop. IVUsers is treated as a worklist. Each successive simplification may
495 /// push more users which may themselves be candidates for simplification.
496 ///
497 /// This is the old approach to IV simplification to be replaced by
498 /// SimplifyIVUsersNoRewrite.
499 ///
500 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
501   // Each round of simplification involves a round of eliminating operations
502   // followed by a round of widening IVs. A single IVUsers worklist is used
503   // across all rounds. The inner loop advances the user. If widening exposes
504   // more uses, then another pass through the outer loop is triggered.
505   for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
506     Instruction *UseInst = I->getUser();
507     Value *IVOperand = I->getOperandValToReplace();
508 
509     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
510       EliminateIVComparison(ICmp, IVOperand);
511       continue;
512     }
513     if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
514       bool IsSigned = Rem->getOpcode() == Instruction::SRem;
515       if (IsSigned || Rem->getOpcode() == Instruction::URem) {
516         EliminateIVRemainder(Rem, IVOperand, IsSigned);
517         continue;
518       }
519     }
520   }
521 }
522 
523 namespace {
524   // Collect information about induction variables that are used by sign/zero
525   // extend operations. This information is recorded by CollectExtend and
526   // provides the input to WidenIV.
527   struct WideIVInfo {
528     const Type *WidestNativeType; // Widest integer type created [sz]ext
529     bool IsSigned;                // Was an sext user seen before a zext?
530 
531     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
532   };
533 }
534 
535 /// CollectExtend - Update information about the induction variable that is
536 /// extended by this sign or zero extend operation. This is used to determine
537 /// the final width of the IV before actually widening it.
538 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
539                           ScalarEvolution *SE, const TargetData *TD) {
540   const Type *Ty = Cast->getType();
541   uint64_t Width = SE->getTypeSizeInBits(Ty);
542   if (TD && !TD->isLegalInteger(Width))
543     return;
544 
545   if (!WI.WidestNativeType) {
546     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
547     WI.IsSigned = IsSigned;
548     return;
549   }
550 
551   // We extend the IV to satisfy the sign of its first user, arbitrarily.
552   if (WI.IsSigned != IsSigned)
553     return;
554 
555   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
556     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
557 }
558 
559 namespace {
560 /// WidenIV - The goal of this transform is to remove sign and zero extends
561 /// without creating any new induction variables. To do this, it creates a new
562 /// phi of the wider type and redirects all users, either removing extends or
563 /// inserting truncs whenever we stop propagating the type.
564 ///
565 class WidenIV {
566   // Parameters
567   PHINode *OrigPhi;
568   const Type *WideType;
569   bool IsSigned;
570 
571   // Context
572   LoopInfo        *LI;
573   Loop            *L;
574   ScalarEvolution *SE;
575   DominatorTree   *DT;
576 
577   // Result
578   PHINode *WidePhi;
579   Instruction *WideInc;
580   const SCEV *WideIncExpr;
581   SmallVectorImpl<WeakVH> &DeadInsts;
582 
583   SmallPtrSet<Instruction*,16> Widened;
584 
585 public:
586   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
587           ScalarEvolution *SEv, DominatorTree *DTree,
588           SmallVectorImpl<WeakVH> &DI) :
589     OrigPhi(PN),
590     WideType(WI.WidestNativeType),
591     IsSigned(WI.IsSigned),
592     LI(LInfo),
593     L(LI->getLoopFor(OrigPhi->getParent())),
594     SE(SEv),
595     DT(DTree),
596     WidePhi(0),
597     WideInc(0),
598     WideIncExpr(0),
599     DeadInsts(DI) {
600     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
601   }
602 
603   PHINode *CreateWideIV(SCEVExpander &Rewriter);
604 
605 protected:
606   Instruction *CloneIVUser(Instruction *NarrowUse,
607                            Instruction *NarrowDef,
608                            Instruction *WideDef);
609 
610   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
611 
612   Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
613                           Instruction *WideDef);
614 };
615 } // anonymous namespace
616 
617 static Value *getExtend( Value *NarrowOper, const Type *WideType,
618                                bool IsSigned, IRBuilder<> &Builder) {
619   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
620                     Builder.CreateZExt(NarrowOper, WideType);
621 }
622 
623 /// CloneIVUser - Instantiate a wide operation to replace a narrow
624 /// operation. This only needs to handle operations that can evaluation to
625 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
626 Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
627                                   Instruction *NarrowDef,
628                                   Instruction *WideDef) {
629   unsigned Opcode = NarrowUse->getOpcode();
630   switch (Opcode) {
631   default:
632     return 0;
633   case Instruction::Add:
634   case Instruction::Mul:
635   case Instruction::UDiv:
636   case Instruction::Sub:
637   case Instruction::And:
638   case Instruction::Or:
639   case Instruction::Xor:
640   case Instruction::Shl:
641   case Instruction::LShr:
642   case Instruction::AShr:
643     DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
644 
645     IRBuilder<> Builder(NarrowUse);
646 
647     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
648     // anything about the narrow operand yet so must insert a [sz]ext. It is
649     // probably loop invariant and will be folded or hoisted. If it actually
650     // comes from a widened IV, it should be removed during a future call to
651     // WidenIVUse.
652     Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
653       getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
654     Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
655       getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
656 
657     BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
658     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
659                                                     LHS, RHS,
660                                                     NarrowBO->getName());
661     Builder.Insert(WideBO);
662     if (const OverflowingBinaryOperator *OBO =
663         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
664       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
665       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
666     }
667     return WideBO;
668   }
669   llvm_unreachable(0);
670 }
671 
672 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
673 // perspective after widening it's type? In other words, can the extend be
674 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
675 // on the same loop. If so, return the sign or zero extended
676 // recurrence. Otherwise return NULL.
677 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
678   if (!SE->isSCEVable(NarrowUse->getType()))
679     return 0;
680 
681   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
682   const SCEV *WideExpr = IsSigned ?
683     SE->getSignExtendExpr(NarrowExpr, WideType) :
684     SE->getZeroExtendExpr(NarrowExpr, WideType);
685   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
686   if (!AddRec || AddRec->getLoop() != L)
687     return 0;
688 
689   return AddRec;
690 }
691 
692 /// HoistStep - Attempt to hoist an IV increment above a potential use.
693 ///
694 /// To successfully hoist, two criteria must be met:
695 /// - IncV operands dominate InsertPos and
696 /// - InsertPos dominates IncV
697 ///
698 /// Meeting the second condition means that we don't need to check all of IncV's
699 /// existing uses (it's moving up in the domtree).
700 ///
701 /// This does not yet recursively hoist the operands, although that would
702 /// not be difficult.
703 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
704                       const DominatorTree *DT)
705 {
706   if (DT->dominates(IncV, InsertPos))
707     return true;
708 
709   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
710     return false;
711 
712   if (IncV->mayHaveSideEffects())
713     return false;
714 
715   // Attempt to hoist IncV
716   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
717        OI != OE; ++OI) {
718     Instruction *OInst = dyn_cast<Instruction>(OI);
719     if (OInst && !DT->dominates(OInst, InsertPos))
720       return false;
721   }
722   IncV->moveBefore(InsertPos);
723   return true;
724 }
725 
726 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
727 /// widened. If so, return the wide clone of the user.
728 Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
729                                  Instruction *WideDef) {
730   Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
731 
732   // To be consistent with IVUsers, stop traversing the def-use chain at
733   // inner-loop phis or post-loop phis.
734   if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
735     return 0;
736 
737   // Handle data flow merges and bizarre phi cycles.
738   if (!Widened.insert(NarrowUse))
739     return 0;
740 
741   // Our raison d'etre! Eliminate sign and zero extension.
742   if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
743     Value *NewDef = WideDef;
744     if (NarrowUse->getType() != WideType) {
745       unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
746       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
747       if (CastWidth < IVWidth) {
748         // The cast isn't as wide as the IV, so insert a Trunc.
749         IRBuilder<> Builder(NarrowDefUse);
750         NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
751       }
752       else {
753         // A wider extend was hidden behind a narrower one. This may induce
754         // another round of IV widening in which the intermediate IV becomes
755         // dead. It should be very rare.
756         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
757               << " not wide enough to subsume " << *NarrowUse << "\n");
758         NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
759         NewDef = NarrowUse;
760       }
761     }
762     if (NewDef != NarrowUse) {
763       DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
764             << " replaced by " << *WideDef << "\n");
765       ++NumElimExt;
766       NarrowUse->replaceAllUsesWith(NewDef);
767       DeadInsts.push_back(NarrowUse);
768     }
769     // Now that the extend is gone, we want to expose it's uses for potential
770     // further simplification. We don't need to directly inform SimplifyIVUsers
771     // of the new users, because their parent IV will be processed later as a
772     // new loop phi. If we preserved IVUsers analysis, we would also want to
773     // push the uses of WideDef here.
774 
775     // No further widening is needed. The deceased [sz]ext had done it for us.
776     return 0;
777   }
778   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
779   if (!WideAddRec) {
780     // This user does not evaluate to a recurence after widening, so don't
781     // follow it. Instead insert a Trunc to kill off the original use,
782     // eventually isolating the original narrow IV so it can be removed.
783     IRBuilder<> Builder(NarrowDefUse);
784     Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
785     NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
786     return 0;
787   }
788   // We assume that block terminators are not SCEVable.
789   assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
790          "can't split terminators");
791 
792   // Reuse the IV increment that SCEVExpander created as long as it dominates
793   // NarrowUse.
794   Instruction *WideUse = 0;
795   if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
796     WideUse = WideInc;
797   }
798   else {
799     WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
800     if (!WideUse)
801       return 0;
802   }
803   // GetWideRecurrence ensured that the narrow expression could be extended
804   // outside the loop without overflow. This suggests that the wide use
805   // evaluates to the same expression as the extended narrow use, but doesn't
806   // absolutely guarantee it. Hence the following failsafe check. In rare cases
807   // where it fails, we simply throw away the newly created wide use.
808   if (WideAddRec != SE->getSCEV(WideUse)) {
809     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
810           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
811     DeadInsts.push_back(WideUse);
812     return 0;
813   }
814 
815   // Returning WideUse pushes it on the worklist.
816   return WideUse;
817 }
818 
819 /// CreateWideIV - Process a single induction variable. First use the
820 /// SCEVExpander to create a wide induction variable that evaluates to the same
821 /// recurrence as the original narrow IV. Then use a worklist to forward
822 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
823 /// interesting IV users, the narrow IV will be isolated for removal by
824 /// DeleteDeadPHIs.
825 ///
826 /// It would be simpler to delete uses as they are processed, but we must avoid
827 /// invalidating SCEV expressions.
828 ///
829 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
830   // Is this phi an induction variable?
831   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
832   if (!AddRec)
833     return NULL;
834 
835   // Widen the induction variable expression.
836   const SCEV *WideIVExpr = IsSigned ?
837     SE->getSignExtendExpr(AddRec, WideType) :
838     SE->getZeroExtendExpr(AddRec, WideType);
839 
840   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
841          "Expect the new IV expression to preserve its type");
842 
843   // Can the IV be extended outside the loop without overflow?
844   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
845   if (!AddRec || AddRec->getLoop() != L)
846     return NULL;
847 
848   // An AddRec must have loop-invariant operands. Since this AddRec is
849   // materialized by a loop header phi, the expression cannot have any post-loop
850   // operands, so they must dominate the loop header.
851   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
852          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
853          && "Loop header phi recurrence inputs do not dominate the loop");
854 
855   // The rewriter provides a value for the desired IV expression. This may
856   // either find an existing phi or materialize a new one. Either way, we
857   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
858   // of the phi-SCC dominates the loop entry.
859   Instruction *InsertPt = L->getHeader()->begin();
860   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
861 
862   // Remembering the WideIV increment generated by SCEVExpander allows
863   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
864   // employ a general reuse mechanism because the call above is the only call to
865   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
866   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
867     WideInc =
868       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
869     WideIncExpr = SE->getSCEV(WideInc);
870   }
871 
872   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
873   ++NumWidened;
874 
875   // Traverse the def-use chain using a worklist starting at the original IV.
876   assert(Widened.empty() && "expect initial state" );
877 
878   // Each worklist entry has a Narrow def-use link and Wide def.
879   SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
880   for (Value::use_iterator UI = OrigPhi->use_begin(),
881          UE = OrigPhi->use_end(); UI != UE; ++UI) {
882     NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WidePhi));
883   }
884   while (!NarrowIVUsers.empty()) {
885     Use *UsePtr;
886     Instruction *WideDef;
887     tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
888     Use &NarrowDefUse = *UsePtr;
889 
890     // Process a def-use edge. This may replace the use, so don't hold a
891     // use_iterator across it.
892     Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
893     Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
894 
895     // Follow all def-use edges from the previous narrow use.
896     if (WideUse) {
897       for (Value::use_iterator UI = NarrowDefUse.getUser()->use_begin(),
898              UE = NarrowDefUse.getUser()->use_end(); UI != UE; ++UI) {
899         NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideUse));
900       }
901     }
902     // WidenIVUse may have removed the def-use edge.
903     if (NarrowDef->use_empty())
904       DeadInsts.push_back(NarrowDef);
905   }
906   return WidePhi;
907 }
908 
909 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
910   unsigned IVOperIdx = 0;
911   ICmpInst::Predicate Pred = ICmp->getPredicate();
912   if (IVOperand != ICmp->getOperand(0)) {
913     // Swapped
914     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
915     IVOperIdx = 1;
916     Pred = ICmpInst::getSwappedPredicate(Pred);
917   }
918 
919   // Get the SCEVs for the ICmp operands.
920   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
921   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
922 
923   // Simplify unnecessary loops away.
924   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
925   S = SE->getSCEVAtScope(S, ICmpLoop);
926   X = SE->getSCEVAtScope(X, ICmpLoop);
927 
928   // If the condition is always true or always false, replace it with
929   // a constant value.
930   if (SE->isKnownPredicate(Pred, S, X))
931     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
932   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
933     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
934   else
935     return;
936 
937   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
938   ++NumElimCmp;
939   Changed = true;
940   DeadInsts.push_back(ICmp);
941 }
942 
943 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
944                                           Value *IVOperand,
945                                           bool IsSigned) {
946   // We're only interested in the case where we know something about
947   // the numerator.
948   if (IVOperand != Rem->getOperand(0))
949     return;
950 
951   // Get the SCEVs for the ICmp operands.
952   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
953   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
954 
955   // Simplify unnecessary loops away.
956   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
957   S = SE->getSCEVAtScope(S, ICmpLoop);
958   X = SE->getSCEVAtScope(X, ICmpLoop);
959 
960   // i % n  -->  i  if i is in [0,n).
961   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
962       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
963                            S, X))
964     Rem->replaceAllUsesWith(Rem->getOperand(0));
965   else {
966     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
967     const SCEV *LessOne =
968       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
969     if (IsSigned && !SE->isKnownNonNegative(LessOne))
970       return;
971 
972     if (!SE->isKnownPredicate(IsSigned ?
973                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
974                               LessOne, X))
975       return;
976 
977     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
978                                   Rem->getOperand(0), Rem->getOperand(1),
979                                   "tmp");
980     SelectInst *Sel =
981       SelectInst::Create(ICmp,
982                          ConstantInt::get(Rem->getType(), 0),
983                          Rem->getOperand(0), "tmp", Rem);
984     Rem->replaceAllUsesWith(Sel);
985   }
986 
987   // Inform IVUsers about the new users.
988   if (IU) {
989     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
990       IU->AddUsersIfInteresting(I);
991   }
992   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
993   ++NumElimRem;
994   Changed = true;
995   DeadInsts.push_back(Rem);
996 }
997 
998 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
999 /// no observable side-effect given the range of IV values.
1000 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1001                                      Instruction *IVOperand) {
1002   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1003     EliminateIVComparison(ICmp, IVOperand);
1004     return true;
1005   }
1006   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1007     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1008     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1009       EliminateIVRemainder(Rem, IVOperand, IsSigned);
1010       return true;
1011     }
1012   }
1013 
1014   // Eliminate any operation that SCEV can prove is an identity function.
1015   if (!SE->isSCEVable(UseInst->getType()) ||
1016       (UseInst->getType() != IVOperand->getType()) ||
1017       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1018     return false;
1019 
1020   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1021 
1022   UseInst->replaceAllUsesWith(IVOperand);
1023   ++NumElimIdentity;
1024   Changed = true;
1025   DeadInsts.push_back(UseInst);
1026   return true;
1027 }
1028 
1029 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1030 ///
1031 static void pushIVUsers(
1032   Instruction *Def,
1033   SmallPtrSet<Instruction*,16> &Simplified,
1034   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1035 
1036   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1037        UI != E; ++UI) {
1038     Instruction *User = cast<Instruction>(*UI);
1039 
1040     // Avoid infinite or exponential worklist processing.
1041     // Also ensure unique worklist users.
1042     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1043     // self edges first.
1044     if (User != Def && Simplified.insert(User))
1045       SimpleIVUsers.push_back(std::make_pair(User, Def));
1046   }
1047 }
1048 
1049 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1050 /// expression in terms of that IV.
1051 ///
1052 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1053 /// non-recursively when the operand is already known to be a simpleIVUser.
1054 ///
1055 bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1056   if (!SE->isSCEVable(I->getType()))
1057     return false;
1058 
1059   // Get the symbolic expression for this instruction.
1060   const SCEV *S = SE->getSCEV(I);
1061 
1062   // We assume that terminators are not SCEVable.
1063   assert((!S || I != I->getParent()->getTerminator()) &&
1064          "can't fold terminators");
1065 
1066   // Only consider affine recurrences.
1067   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1068   if (AR && AR->getLoop() == L)
1069     return true;
1070 
1071   return false;
1072 }
1073 
1074 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1075 /// of IV users. Each successive simplification may push more users which may
1076 /// themselves be candidates for simplification.
1077 ///
1078 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1079 /// simplifies instructions in-place during analysis. Rather than rewriting
1080 /// induction variables bottom-up from their users, it transforms a chain of
1081 /// IVUsers top-down, updating the IR only when it encouters a clear
1082 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1083 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1084 /// extend elimination.
1085 ///
1086 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1087 ///
1088 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1089   std::map<PHINode *, WideIVInfo> WideIVMap;
1090 
1091   SmallVector<PHINode*, 8> LoopPhis;
1092   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1093     LoopPhis.push_back(cast<PHINode>(I));
1094   }
1095   // Each round of simplification iterates through the SimplifyIVUsers worklist
1096   // for all current phis, then determines whether any IVs can be
1097   // widened. Widening adds new phis to LoopPhis, inducing another round of
1098   // simplification on the wide IVs.
1099   while (!LoopPhis.empty()) {
1100     // Evaluate as many IV expressions as possible before widening any IVs. This
1101     // forces SCEV to set no-wrap flags before evaluating sign/zero
1102     // extension. The first time SCEV attempts to normalize sign/zero extension,
1103     // the result becomes final. So for the most predictable results, we delay
1104     // evaluation of sign/zero extend evaluation until needed, and avoid running
1105     // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1106     do {
1107       PHINode *CurrIV = LoopPhis.pop_back_val();
1108 
1109       // Information about sign/zero extensions of CurrIV.
1110       WideIVInfo WI;
1111 
1112       // Instructions processed by SimplifyIVUsers for CurrIV.
1113       SmallPtrSet<Instruction*,16> Simplified;
1114 
1115       // Use-def pairs if IVUsers waiting to be processed for CurrIV.
1116       SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1117 
1118       // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1119       // called multiple times for the same LoopPhi. This is the proper thing to
1120       // do for loop header phis that use each other.
1121       pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1122 
1123       while (!SimpleIVUsers.empty()) {
1124         Instruction *UseInst, *Operand;
1125         tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1126         // Bypass back edges to avoid extra work.
1127         if (UseInst == CurrIV) continue;
1128 
1129         if (EliminateIVUser(UseInst, Operand)) {
1130           pushIVUsers(Operand, Simplified, SimpleIVUsers);
1131           continue;
1132         }
1133         if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1134           bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1135           if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1136             CollectExtend(Cast, IsSigned, WI, SE, TD);
1137           }
1138           continue;
1139         }
1140         if (isSimpleIVUser(UseInst, L)) {
1141           pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1142         }
1143       }
1144       if (WI.WidestNativeType) {
1145         WideIVMap[CurrIV] = WI;
1146       }
1147     } while(!LoopPhis.empty());
1148 
1149     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1150            E = WideIVMap.end(); I != E; ++I) {
1151       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1152       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1153         Changed = true;
1154         LoopPhis.push_back(WidePhi);
1155       }
1156     }
1157     WideIVMap.clear();
1158   }
1159 }
1160 
1161 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1162   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1163   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1164   //    canonicalization can be a pessimization without LSR to "clean up"
1165   //    afterwards.
1166   //  - We depend on having a preheader; in particular,
1167   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1168   //    and we're in trouble if we can't find the induction variable even when
1169   //    we've manually inserted one.
1170   if (!L->isLoopSimplifyForm())
1171     return false;
1172 
1173   if (!DisableIVRewrite)
1174     IU = &getAnalysis<IVUsers>();
1175   LI = &getAnalysis<LoopInfo>();
1176   SE = &getAnalysis<ScalarEvolution>();
1177   DT = &getAnalysis<DominatorTree>();
1178   TD = getAnalysisIfAvailable<TargetData>();
1179 
1180   DeadInsts.clear();
1181   Changed = false;
1182 
1183   // If there are any floating-point recurrences, attempt to
1184   // transform them to use integer recurrences.
1185   RewriteNonIntegerIVs(L);
1186 
1187   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1188 
1189   // Create a rewriter object which we'll use to transform the code with.
1190   SCEVExpander Rewriter(*SE, "indvars");
1191 
1192   // Eliminate redundant IV users.
1193   //
1194   // Simplification works best when run before other consumers of SCEV. We
1195   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1196   // other expressions involving loop IVs have been evaluated. This helps SCEV
1197   // set no-wrap flags before normalizing sign/zero extension.
1198   if (DisableIVRewrite) {
1199     Rewriter.disableCanonicalMode();
1200     SimplifyIVUsersNoRewrite(L, Rewriter);
1201   }
1202 
1203   // Check to see if this loop has a computable loop-invariant execution count.
1204   // If so, this means that we can compute the final value of any expressions
1205   // that are recurrent in the loop, and substitute the exit values from the
1206   // loop into any instructions outside of the loop that use the final values of
1207   // the current expressions.
1208   //
1209   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1210     RewriteLoopExitValues(L, Rewriter);
1211 
1212   // Eliminate redundant IV users.
1213   if (!DisableIVRewrite)
1214     SimplifyIVUsers(Rewriter);
1215 
1216   // Compute the type of the largest recurrence expression, and decide whether
1217   // a canonical induction variable should be inserted.
1218   const Type *LargestType = 0;
1219   bool NeedCannIV = false;
1220   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1221   if (ExpandBECount) {
1222     // If we have a known trip count and a single exit block, we'll be
1223     // rewriting the loop exit test condition below, which requires a
1224     // canonical induction variable.
1225     NeedCannIV = true;
1226     const Type *Ty = BackedgeTakenCount->getType();
1227     if (DisableIVRewrite) {
1228       // In this mode, SimplifyIVUsers may have already widened the IV used by
1229       // the backedge test and inserted a Trunc on the compare's operand. Get
1230       // the wider type to avoid creating a redundant narrow IV only used by the
1231       // loop test.
1232       LargestType = getBackedgeIVType(L);
1233     }
1234     if (!LargestType ||
1235         SE->getTypeSizeInBits(Ty) >
1236         SE->getTypeSizeInBits(LargestType))
1237       LargestType = SE->getEffectiveSCEVType(Ty);
1238   }
1239   if (!DisableIVRewrite) {
1240     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1241       NeedCannIV = true;
1242       const Type *Ty =
1243         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1244       if (!LargestType ||
1245           SE->getTypeSizeInBits(Ty) >
1246           SE->getTypeSizeInBits(LargestType))
1247         LargestType = Ty;
1248     }
1249   }
1250 
1251   // Now that we know the largest of the induction variable expressions
1252   // in this loop, insert a canonical induction variable of the largest size.
1253   PHINode *IndVar = 0;
1254   if (NeedCannIV) {
1255     // Check to see if the loop already has any canonical-looking induction
1256     // variables. If any are present and wider than the planned canonical
1257     // induction variable, temporarily remove them, so that the Rewriter
1258     // doesn't attempt to reuse them.
1259     SmallVector<PHINode *, 2> OldCannIVs;
1260     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1261       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1262           SE->getTypeSizeInBits(LargestType))
1263         OldCannIV->removeFromParent();
1264       else
1265         break;
1266       OldCannIVs.push_back(OldCannIV);
1267     }
1268 
1269     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1270 
1271     ++NumInserted;
1272     Changed = true;
1273     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1274 
1275     // Now that the official induction variable is established, reinsert
1276     // any old canonical-looking variables after it so that the IR remains
1277     // consistent. They will be deleted as part of the dead-PHI deletion at
1278     // the end of the pass.
1279     while (!OldCannIVs.empty()) {
1280       PHINode *OldCannIV = OldCannIVs.pop_back_val();
1281       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1282     }
1283   }
1284 
1285   // If we have a trip count expression, rewrite the loop's exit condition
1286   // using it.  We can currently only handle loops with a single exit.
1287   ICmpInst *NewICmp = 0;
1288   if (ExpandBECount) {
1289     assert(canExpandBackedgeTakenCount(L, SE) &&
1290            "canonical IV disrupted BackedgeTaken expansion");
1291     assert(NeedCannIV &&
1292            "LinearFunctionTestReplace requires a canonical induction variable");
1293     NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1294                                         Rewriter);
1295   }
1296   // Rewrite IV-derived expressions.
1297   if (!DisableIVRewrite)
1298     RewriteIVExpressions(L, Rewriter);
1299 
1300   // Clear the rewriter cache, because values that are in the rewriter's cache
1301   // can be deleted in the loop below, causing the AssertingVH in the cache to
1302   // trigger.
1303   Rewriter.clear();
1304 
1305   // Now that we're done iterating through lists, clean up any instructions
1306   // which are now dead.
1307   while (!DeadInsts.empty())
1308     if (Instruction *Inst =
1309           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1310       RecursivelyDeleteTriviallyDeadInstructions(Inst);
1311 
1312   // The Rewriter may not be used from this point on.
1313 
1314   // Loop-invariant instructions in the preheader that aren't used in the
1315   // loop may be sunk below the loop to reduce register pressure.
1316   SinkUnusedInvariants(L);
1317 
1318   // For completeness, inform IVUsers of the IV use in the newly-created
1319   // loop exit test instruction.
1320   if (NewICmp && IU)
1321     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1322 
1323   // Clean up dead instructions.
1324   Changed |= DeleteDeadPHIs(L->getHeader());
1325   // Check a post-condition.
1326   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1327   return Changed;
1328 }
1329 
1330 // FIXME: It is an extremely bad idea to indvar substitute anything more
1331 // complex than affine induction variables.  Doing so will put expensive
1332 // polynomial evaluations inside of the loop, and the str reduction pass
1333 // currently can only reduce affine polynomials.  For now just disable
1334 // indvar subst on anything more complex than an affine addrec, unless
1335 // it can be expanded to a trivial value.
1336 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1337   // Loop-invariant values are safe.
1338   if (SE->isLoopInvariant(S, L)) return true;
1339 
1340   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1341   // to transform them into efficient code.
1342   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1343     return AR->isAffine();
1344 
1345   // An add is safe it all its operands are safe.
1346   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1347     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1348          E = Commutative->op_end(); I != E; ++I)
1349       if (!isSafe(*I, L, SE)) return false;
1350     return true;
1351   }
1352 
1353   // A cast is safe if its operand is.
1354   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1355     return isSafe(C->getOperand(), L, SE);
1356 
1357   // A udiv is safe if its operands are.
1358   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1359     return isSafe(UD->getLHS(), L, SE) &&
1360            isSafe(UD->getRHS(), L, SE);
1361 
1362   // SCEVUnknown is always safe.
1363   if (isa<SCEVUnknown>(S))
1364     return true;
1365 
1366   // Nothing else is safe.
1367   return false;
1368 }
1369 
1370 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1371   // Rewrite all induction variable expressions in terms of the canonical
1372   // induction variable.
1373   //
1374   // If there were induction variables of other sizes or offsets, manually
1375   // add the offsets to the primary induction variable and cast, avoiding
1376   // the need for the code evaluation methods to insert induction variables
1377   // of different sizes.
1378   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1379     Value *Op = UI->getOperandValToReplace();
1380     const Type *UseTy = Op->getType();
1381     Instruction *User = UI->getUser();
1382 
1383     // Compute the final addrec to expand into code.
1384     const SCEV *AR = IU->getReplacementExpr(*UI);
1385 
1386     // Evaluate the expression out of the loop, if possible.
1387     if (!L->contains(UI->getUser())) {
1388       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1389       if (SE->isLoopInvariant(ExitVal, L))
1390         AR = ExitVal;
1391     }
1392 
1393     // FIXME: It is an extremely bad idea to indvar substitute anything more
1394     // complex than affine induction variables.  Doing so will put expensive
1395     // polynomial evaluations inside of the loop, and the str reduction pass
1396     // currently can only reduce affine polynomials.  For now just disable
1397     // indvar subst on anything more complex than an affine addrec, unless
1398     // it can be expanded to a trivial value.
1399     if (!isSafe(AR, L, SE))
1400       continue;
1401 
1402     // Determine the insertion point for this user. By default, insert
1403     // immediately before the user. The SCEVExpander class will automatically
1404     // hoist loop invariants out of the loop. For PHI nodes, there may be
1405     // multiple uses, so compute the nearest common dominator for the
1406     // incoming blocks.
1407     Instruction *InsertPt = User;
1408     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1409       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1410         if (PHI->getIncomingValue(i) == Op) {
1411           if (InsertPt == User)
1412             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1413           else
1414             InsertPt =
1415               DT->findNearestCommonDominator(InsertPt->getParent(),
1416                                              PHI->getIncomingBlock(i))
1417                     ->getTerminator();
1418         }
1419 
1420     // Now expand it into actual Instructions and patch it into place.
1421     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1422 
1423     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1424                  << "   into = " << *NewVal << "\n");
1425 
1426     if (!isValidRewrite(Op, NewVal)) {
1427       DeadInsts.push_back(NewVal);
1428       continue;
1429     }
1430     // Inform ScalarEvolution that this value is changing. The change doesn't
1431     // affect its value, but it does potentially affect which use lists the
1432     // value will be on after the replacement, which affects ScalarEvolution's
1433     // ability to walk use lists and drop dangling pointers when a value is
1434     // deleted.
1435     SE->forgetValue(User);
1436 
1437     // Patch the new value into place.
1438     if (Op->hasName())
1439       NewVal->takeName(Op);
1440     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1441       NewValI->setDebugLoc(User->getDebugLoc());
1442     User->replaceUsesOfWith(Op, NewVal);
1443     UI->setOperandValToReplace(NewVal);
1444 
1445     ++NumRemoved;
1446     Changed = true;
1447 
1448     // The old value may be dead now.
1449     DeadInsts.push_back(Op);
1450   }
1451 }
1452 
1453 /// If there's a single exit block, sink any loop-invariant values that
1454 /// were defined in the preheader but not used inside the loop into the
1455 /// exit block to reduce register pressure in the loop.
1456 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1457   BasicBlock *ExitBlock = L->getExitBlock();
1458   if (!ExitBlock) return;
1459 
1460   BasicBlock *Preheader = L->getLoopPreheader();
1461   if (!Preheader) return;
1462 
1463   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1464   BasicBlock::iterator I = Preheader->getTerminator();
1465   while (I != Preheader->begin()) {
1466     --I;
1467     // New instructions were inserted at the end of the preheader.
1468     if (isa<PHINode>(I))
1469       break;
1470 
1471     // Don't move instructions which might have side effects, since the side
1472     // effects need to complete before instructions inside the loop.  Also don't
1473     // move instructions which might read memory, since the loop may modify
1474     // memory. Note that it's okay if the instruction might have undefined
1475     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1476     // block.
1477     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1478       continue;
1479 
1480     // Skip debug info intrinsics.
1481     if (isa<DbgInfoIntrinsic>(I))
1482       continue;
1483 
1484     // Don't sink static AllocaInsts out of the entry block, which would
1485     // turn them into dynamic allocas!
1486     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1487       if (AI->isStaticAlloca())
1488         continue;
1489 
1490     // Determine if there is a use in or before the loop (direct or
1491     // otherwise).
1492     bool UsedInLoop = false;
1493     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1494          UI != UE; ++UI) {
1495       User *U = *UI;
1496       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1497       if (PHINode *P = dyn_cast<PHINode>(U)) {
1498         unsigned i =
1499           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1500         UseBB = P->getIncomingBlock(i);
1501       }
1502       if (UseBB == Preheader || L->contains(UseBB)) {
1503         UsedInLoop = true;
1504         break;
1505       }
1506     }
1507 
1508     // If there is, the def must remain in the preheader.
1509     if (UsedInLoop)
1510       continue;
1511 
1512     // Otherwise, sink it to the exit block.
1513     Instruction *ToMove = I;
1514     bool Done = false;
1515 
1516     if (I != Preheader->begin()) {
1517       // Skip debug info intrinsics.
1518       do {
1519         --I;
1520       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1521 
1522       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1523         Done = true;
1524     } else {
1525       Done = true;
1526     }
1527 
1528     ToMove->moveBefore(InsertPt);
1529     if (Done) break;
1530     InsertPt = ToMove;
1531   }
1532 }
1533 
1534 /// ConvertToSInt - Convert APF to an integer, if possible.
1535 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1536   bool isExact = false;
1537   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1538     return false;
1539   // See if we can convert this to an int64_t
1540   uint64_t UIntVal;
1541   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1542                            &isExact) != APFloat::opOK || !isExact)
1543     return false;
1544   IntVal = UIntVal;
1545   return true;
1546 }
1547 
1548 /// HandleFloatingPointIV - If the loop has floating induction variable
1549 /// then insert corresponding integer induction variable if possible.
1550 /// For example,
1551 /// for(double i = 0; i < 10000; ++i)
1552 ///   bar(i)
1553 /// is converted into
1554 /// for(int i = 0; i < 10000; ++i)
1555 ///   bar((double)i);
1556 ///
1557 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1558   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1559   unsigned BackEdge     = IncomingEdge^1;
1560 
1561   // Check incoming value.
1562   ConstantFP *InitValueVal =
1563     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1564 
1565   int64_t InitValue;
1566   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1567     return;
1568 
1569   // Check IV increment. Reject this PN if increment operation is not
1570   // an add or increment value can not be represented by an integer.
1571   BinaryOperator *Incr =
1572     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1573   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1574 
1575   // If this is not an add of the PHI with a constantfp, or if the constant fp
1576   // is not an integer, bail out.
1577   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1578   int64_t IncValue;
1579   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1580       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1581     return;
1582 
1583   // Check Incr uses. One user is PN and the other user is an exit condition
1584   // used by the conditional terminator.
1585   Value::use_iterator IncrUse = Incr->use_begin();
1586   Instruction *U1 = cast<Instruction>(*IncrUse++);
1587   if (IncrUse == Incr->use_end()) return;
1588   Instruction *U2 = cast<Instruction>(*IncrUse++);
1589   if (IncrUse != Incr->use_end()) return;
1590 
1591   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1592   // only used by a branch, we can't transform it.
1593   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1594   if (!Compare)
1595     Compare = dyn_cast<FCmpInst>(U2);
1596   if (Compare == 0 || !Compare->hasOneUse() ||
1597       !isa<BranchInst>(Compare->use_back()))
1598     return;
1599 
1600   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1601 
1602   // We need to verify that the branch actually controls the iteration count
1603   // of the loop.  If not, the new IV can overflow and no one will notice.
1604   // The branch block must be in the loop and one of the successors must be out
1605   // of the loop.
1606   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1607   if (!L->contains(TheBr->getParent()) ||
1608       (L->contains(TheBr->getSuccessor(0)) &&
1609        L->contains(TheBr->getSuccessor(1))))
1610     return;
1611 
1612 
1613   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1614   // transform it.
1615   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1616   int64_t ExitValue;
1617   if (ExitValueVal == 0 ||
1618       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1619     return;
1620 
1621   // Find new predicate for integer comparison.
1622   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1623   switch (Compare->getPredicate()) {
1624   default: return;  // Unknown comparison.
1625   case CmpInst::FCMP_OEQ:
1626   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1627   case CmpInst::FCMP_ONE:
1628   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1629   case CmpInst::FCMP_OGT:
1630   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1631   case CmpInst::FCMP_OGE:
1632   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1633   case CmpInst::FCMP_OLT:
1634   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1635   case CmpInst::FCMP_OLE:
1636   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1637   }
1638 
1639   // We convert the floating point induction variable to a signed i32 value if
1640   // we can.  This is only safe if the comparison will not overflow in a way
1641   // that won't be trapped by the integer equivalent operations.  Check for this
1642   // now.
1643   // TODO: We could use i64 if it is native and the range requires it.
1644 
1645   // The start/stride/exit values must all fit in signed i32.
1646   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1647     return;
1648 
1649   // If not actually striding (add x, 0.0), avoid touching the code.
1650   if (IncValue == 0)
1651     return;
1652 
1653   // Positive and negative strides have different safety conditions.
1654   if (IncValue > 0) {
1655     // If we have a positive stride, we require the init to be less than the
1656     // exit value and an equality or less than comparison.
1657     if (InitValue >= ExitValue ||
1658         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1659       return;
1660 
1661     uint32_t Range = uint32_t(ExitValue-InitValue);
1662     if (NewPred == CmpInst::ICMP_SLE) {
1663       // Normalize SLE -> SLT, check for infinite loop.
1664       if (++Range == 0) return;  // Range overflows.
1665     }
1666 
1667     unsigned Leftover = Range % uint32_t(IncValue);
1668 
1669     // If this is an equality comparison, we require that the strided value
1670     // exactly land on the exit value, otherwise the IV condition will wrap
1671     // around and do things the fp IV wouldn't.
1672     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1673         Leftover != 0)
1674       return;
1675 
1676     // If the stride would wrap around the i32 before exiting, we can't
1677     // transform the IV.
1678     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1679       return;
1680 
1681   } else {
1682     // If we have a negative stride, we require the init to be greater than the
1683     // exit value and an equality or greater than comparison.
1684     if (InitValue >= ExitValue ||
1685         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1686       return;
1687 
1688     uint32_t Range = uint32_t(InitValue-ExitValue);
1689     if (NewPred == CmpInst::ICMP_SGE) {
1690       // Normalize SGE -> SGT, check for infinite loop.
1691       if (++Range == 0) return;  // Range overflows.
1692     }
1693 
1694     unsigned Leftover = Range % uint32_t(-IncValue);
1695 
1696     // If this is an equality comparison, we require that the strided value
1697     // exactly land on the exit value, otherwise the IV condition will wrap
1698     // around and do things the fp IV wouldn't.
1699     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1700         Leftover != 0)
1701       return;
1702 
1703     // If the stride would wrap around the i32 before exiting, we can't
1704     // transform the IV.
1705     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1706       return;
1707   }
1708 
1709   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1710 
1711   // Insert new integer induction variable.
1712   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1713   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1714                       PN->getIncomingBlock(IncomingEdge));
1715 
1716   Value *NewAdd =
1717     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1718                               Incr->getName()+".int", Incr);
1719   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1720 
1721   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1722                                       ConstantInt::get(Int32Ty, ExitValue),
1723                                       Compare->getName());
1724 
1725   // In the following deletions, PN may become dead and may be deleted.
1726   // Use a WeakVH to observe whether this happens.
1727   WeakVH WeakPH = PN;
1728 
1729   // Delete the old floating point exit comparison.  The branch starts using the
1730   // new comparison.
1731   NewCompare->takeName(Compare);
1732   Compare->replaceAllUsesWith(NewCompare);
1733   RecursivelyDeleteTriviallyDeadInstructions(Compare);
1734 
1735   // Delete the old floating point increment.
1736   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1737   RecursivelyDeleteTriviallyDeadInstructions(Incr);
1738 
1739   // If the FP induction variable still has uses, this is because something else
1740   // in the loop uses its value.  In order to canonicalize the induction
1741   // variable, we chose to eliminate the IV and rewrite it in terms of an
1742   // int->fp cast.
1743   //
1744   // We give preference to sitofp over uitofp because it is faster on most
1745   // platforms.
1746   if (WeakPH) {
1747     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1748                                  PN->getParent()->getFirstNonPHI());
1749     PN->replaceAllUsesWith(Conv);
1750     RecursivelyDeleteTriviallyDeadInstructions(PN);
1751   }
1752 
1753   // Add a new IVUsers entry for the newly-created integer PHI.
1754   if (IU)
1755     IU->AddUsersIfInteresting(NewPHI);
1756 }
1757