1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 } 89 90 namespace { 91 class IndVarSimplify : public LoopPass { 92 LoopInfo *LI; 93 ScalarEvolution *SE; 94 DominatorTree *DT; 95 TargetLibraryInfo *TLI; 96 const TargetTransformInfo *TTI; 97 98 SmallVector<WeakVH, 16> DeadInsts; 99 bool Changed; 100 public: 101 102 static char ID; // Pass identification, replacement for typeid 103 IndVarSimplify() 104 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 105 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.addRequired<DominatorTreeWrapperPass>(); 112 AU.addRequired<LoopInfoWrapperPass>(); 113 AU.addRequired<ScalarEvolutionWrapperPass>(); 114 AU.addRequiredID(LoopSimplifyID); 115 AU.addRequiredID(LCSSAID); 116 AU.addPreserved<GlobalsAAWrapperPass>(); 117 AU.addPreserved<ScalarEvolutionWrapperPass>(); 118 AU.addPreservedID(LoopSimplifyID); 119 AU.addPreservedID(LCSSAID); 120 AU.setPreservesCFG(); 121 } 122 123 private: 124 void releaseMemory() override { 125 DeadInsts.clear(); 126 } 127 128 bool isValidRewrite(Value *FromVal, Value *ToVal); 129 130 void HandleFloatingPointIV(Loop *L, PHINode *PH); 131 void RewriteNonIntegerIVs(Loop *L); 132 133 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 134 135 bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 136 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 137 138 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 139 PHINode *IndVar, SCEVExpander &Rewriter); 140 141 void SinkUnusedInvariants(Loop *L); 142 143 Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 144 Instruction *InsertPt, Type *Ty); 145 }; 146 } 147 148 char IndVarSimplify::ID = 0; 149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 150 "Induction Variable Simplification", false, false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 155 INITIALIZE_PASS_DEPENDENCY(LCSSA) 156 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 157 "Induction Variable Simplification", false, false) 158 159 Pass *llvm::createIndVarSimplifyPass() { 160 return new IndVarSimplify(); 161 } 162 163 /// isValidRewrite - Return true if the SCEV expansion generated by the 164 /// rewriter can replace the original value. SCEV guarantees that it 165 /// produces the same value, but the way it is produced may be illegal IR. 166 /// Ideally, this function will only be called for verification. 167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 168 // If an SCEV expression subsumed multiple pointers, its expansion could 169 // reassociate the GEP changing the base pointer. This is illegal because the 170 // final address produced by a GEP chain must be inbounds relative to its 171 // underlying object. Otherwise basic alias analysis, among other things, 172 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 173 // producing an expression involving multiple pointers. Until then, we must 174 // bail out here. 175 // 176 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 177 // because it understands lcssa phis while SCEV does not. 178 Value *FromPtr = FromVal; 179 Value *ToPtr = ToVal; 180 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 181 FromPtr = GEP->getPointerOperand(); 182 } 183 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 184 ToPtr = GEP->getPointerOperand(); 185 } 186 if (FromPtr != FromVal || ToPtr != ToVal) { 187 // Quickly check the common case 188 if (FromPtr == ToPtr) 189 return true; 190 191 // SCEV may have rewritten an expression that produces the GEP's pointer 192 // operand. That's ok as long as the pointer operand has the same base 193 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 194 // base of a recurrence. This handles the case in which SCEV expansion 195 // converts a pointer type recurrence into a nonrecurrent pointer base 196 // indexed by an integer recurrence. 197 198 // If the GEP base pointer is a vector of pointers, abort. 199 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 200 return false; 201 202 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 203 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 204 if (FromBase == ToBase) 205 return true; 206 207 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 208 << *FromBase << " != " << *ToBase << "\n"); 209 210 return false; 211 } 212 return true; 213 } 214 215 /// Determine the insertion point for this user. By default, insert immediately 216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 218 /// common dominator for the incoming blocks. 219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 220 DominatorTree *DT) { 221 PHINode *PHI = dyn_cast<PHINode>(User); 222 if (!PHI) 223 return User; 224 225 Instruction *InsertPt = nullptr; 226 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 227 if (PHI->getIncomingValue(i) != Def) 228 continue; 229 230 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 231 if (!InsertPt) { 232 InsertPt = InsertBB->getTerminator(); 233 continue; 234 } 235 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 236 InsertPt = InsertBB->getTerminator(); 237 } 238 assert(InsertPt && "Missing phi operand"); 239 assert((!isa<Instruction>(Def) || 240 DT->dominates(cast<Instruction>(Def), InsertPt)) && 241 "def does not dominate all uses"); 242 return InsertPt; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 247 //===----------------------------------------------------------------------===// 248 249 /// ConvertToSInt - Convert APF to an integer, if possible. 250 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 251 bool isExact = false; 252 // See if we can convert this to an int64_t 253 uint64_t UIntVal; 254 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 255 &isExact) != APFloat::opOK || !isExact) 256 return false; 257 IntVal = UIntVal; 258 return true; 259 } 260 261 /// HandleFloatingPointIV - If the loop has floating induction variable 262 /// then insert corresponding integer induction variable if possible. 263 /// For example, 264 /// for(double i = 0; i < 10000; ++i) 265 /// bar(i) 266 /// is converted into 267 /// for(int i = 0; i < 10000; ++i) 268 /// bar((double)i); 269 /// 270 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 271 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 272 unsigned BackEdge = IncomingEdge^1; 273 274 // Check incoming value. 275 ConstantFP *InitValueVal = 276 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 277 278 int64_t InitValue; 279 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 280 return; 281 282 // Check IV increment. Reject this PN if increment operation is not 283 // an add or increment value can not be represented by an integer. 284 BinaryOperator *Incr = 285 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 286 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 287 288 // If this is not an add of the PHI with a constantfp, or if the constant fp 289 // is not an integer, bail out. 290 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 291 int64_t IncValue; 292 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 293 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 294 return; 295 296 // Check Incr uses. One user is PN and the other user is an exit condition 297 // used by the conditional terminator. 298 Value::user_iterator IncrUse = Incr->user_begin(); 299 Instruction *U1 = cast<Instruction>(*IncrUse++); 300 if (IncrUse == Incr->user_end()) return; 301 Instruction *U2 = cast<Instruction>(*IncrUse++); 302 if (IncrUse != Incr->user_end()) return; 303 304 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 305 // only used by a branch, we can't transform it. 306 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 307 if (!Compare) 308 Compare = dyn_cast<FCmpInst>(U2); 309 if (!Compare || !Compare->hasOneUse() || 310 !isa<BranchInst>(Compare->user_back())) 311 return; 312 313 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 314 315 // We need to verify that the branch actually controls the iteration count 316 // of the loop. If not, the new IV can overflow and no one will notice. 317 // The branch block must be in the loop and one of the successors must be out 318 // of the loop. 319 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 320 if (!L->contains(TheBr->getParent()) || 321 (L->contains(TheBr->getSuccessor(0)) && 322 L->contains(TheBr->getSuccessor(1)))) 323 return; 324 325 326 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 327 // transform it. 328 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 329 int64_t ExitValue; 330 if (ExitValueVal == nullptr || 331 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 332 return; 333 334 // Find new predicate for integer comparison. 335 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 336 switch (Compare->getPredicate()) { 337 default: return; // Unknown comparison. 338 case CmpInst::FCMP_OEQ: 339 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 340 case CmpInst::FCMP_ONE: 341 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 342 case CmpInst::FCMP_OGT: 343 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 344 case CmpInst::FCMP_OGE: 345 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 346 case CmpInst::FCMP_OLT: 347 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 348 case CmpInst::FCMP_OLE: 349 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 350 } 351 352 // We convert the floating point induction variable to a signed i32 value if 353 // we can. This is only safe if the comparison will not overflow in a way 354 // that won't be trapped by the integer equivalent operations. Check for this 355 // now. 356 // TODO: We could use i64 if it is native and the range requires it. 357 358 // The start/stride/exit values must all fit in signed i32. 359 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 360 return; 361 362 // If not actually striding (add x, 0.0), avoid touching the code. 363 if (IncValue == 0) 364 return; 365 366 // Positive and negative strides have different safety conditions. 367 if (IncValue > 0) { 368 // If we have a positive stride, we require the init to be less than the 369 // exit value. 370 if (InitValue >= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(ExitValue-InitValue); 374 // Check for infinite loop, either: 375 // while (i <= Exit) or until (i > Exit) 376 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 392 return; 393 394 } else { 395 // If we have a negative stride, we require the init to be greater than the 396 // exit value. 397 if (InitValue <= ExitValue) 398 return; 399 400 uint32_t Range = uint32_t(InitValue-ExitValue); 401 // Check for infinite loop, either: 402 // while (i >= Exit) or until (i < Exit) 403 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 404 if (++Range == 0) return; // Range overflows. 405 } 406 407 unsigned Leftover = Range % uint32_t(-IncValue); 408 409 // If this is an equality comparison, we require that the strided value 410 // exactly land on the exit value, otherwise the IV condition will wrap 411 // around and do things the fp IV wouldn't. 412 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 413 Leftover != 0) 414 return; 415 416 // If the stride would wrap around the i32 before exiting, we can't 417 // transform the IV. 418 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 419 return; 420 } 421 422 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 423 424 // Insert new integer induction variable. 425 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 426 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 427 PN->getIncomingBlock(IncomingEdge)); 428 429 Value *NewAdd = 430 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 431 Incr->getName()+".int", Incr); 432 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 433 434 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 435 ConstantInt::get(Int32Ty, ExitValue), 436 Compare->getName()); 437 438 // In the following deletions, PN may become dead and may be deleted. 439 // Use a WeakVH to observe whether this happens. 440 WeakVH WeakPH = PN; 441 442 // Delete the old floating point exit comparison. The branch starts using the 443 // new comparison. 444 NewCompare->takeName(Compare); 445 Compare->replaceAllUsesWith(NewCompare); 446 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 447 448 // Delete the old floating point increment. 449 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 450 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 451 452 // If the FP induction variable still has uses, this is because something else 453 // in the loop uses its value. In order to canonicalize the induction 454 // variable, we chose to eliminate the IV and rewrite it in terms of an 455 // int->fp cast. 456 // 457 // We give preference to sitofp over uitofp because it is faster on most 458 // platforms. 459 if (WeakPH) { 460 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 461 PN->getParent()->getFirstInsertionPt()); 462 PN->replaceAllUsesWith(Conv); 463 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 464 } 465 Changed = true; 466 } 467 468 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 469 // First step. Check to see if there are any floating-point recurrences. 470 // If there are, change them into integer recurrences, permitting analysis by 471 // the SCEV routines. 472 // 473 BasicBlock *Header = L->getHeader(); 474 475 SmallVector<WeakVH, 8> PHIs; 476 for (BasicBlock::iterator I = Header->begin(); 477 PHINode *PN = dyn_cast<PHINode>(I); ++I) 478 PHIs.push_back(PN); 479 480 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 481 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 482 HandleFloatingPointIV(L, PN); 483 484 // If the loop previously had floating-point IV, ScalarEvolution 485 // may not have been able to compute a trip count. Now that we've done some 486 // re-writing, the trip count may be computable. 487 if (Changed) 488 SE->forgetLoop(L); 489 } 490 491 namespace { 492 // Collect information about PHI nodes which can be transformed in 493 // RewriteLoopExitValues. 494 struct RewritePhi { 495 PHINode *PN; 496 unsigned Ith; // Ith incoming value. 497 Value *Val; // Exit value after expansion. 498 bool HighCost; // High Cost when expansion. 499 bool SafePhi; // LCSSASafePhiForRAUW. 500 501 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 502 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 503 }; 504 } 505 506 Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 507 Loop *L, Instruction *InsertPt, 508 Type *ResultTy) { 509 // Before expanding S into an expensive LLVM expression, see if we can use an 510 // already existing value as the expansion for S. 511 if (Value *RetValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 512 return RetValue; 513 514 // We didn't find anything, fall back to using SCEVExpander. 515 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 516 } 517 518 //===----------------------------------------------------------------------===// 519 // RewriteLoopExitValues - Optimize IV users outside the loop. 520 // As a side effect, reduces the amount of IV processing within the loop. 521 //===----------------------------------------------------------------------===// 522 523 /// RewriteLoopExitValues - Check to see if this loop has a computable 524 /// loop-invariant execution count. If so, this means that we can compute the 525 /// final value of any expressions that are recurrent in the loop, and 526 /// substitute the exit values from the loop into any instructions outside of 527 /// the loop that use the final values of the current expressions. 528 /// 529 /// This is mostly redundant with the regular IndVarSimplify activities that 530 /// happen later, except that it's more powerful in some cases, because it's 531 /// able to brute-force evaluate arbitrary instructions as long as they have 532 /// constant operands at the beginning of the loop. 533 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 534 // Verify the input to the pass in already in LCSSA form. 535 assert(L->isLCSSAForm(*DT)); 536 537 SmallVector<BasicBlock*, 8> ExitBlocks; 538 L->getUniqueExitBlocks(ExitBlocks); 539 540 SmallVector<RewritePhi, 8> RewritePhiSet; 541 // Find all values that are computed inside the loop, but used outside of it. 542 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 543 // the exit blocks of the loop to find them. 544 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 545 BasicBlock *ExitBB = ExitBlocks[i]; 546 547 // If there are no PHI nodes in this exit block, then no values defined 548 // inside the loop are used on this path, skip it. 549 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 550 if (!PN) continue; 551 552 unsigned NumPreds = PN->getNumIncomingValues(); 553 554 // We would like to be able to RAUW single-incoming value PHI nodes. We 555 // have to be certain this is safe even when this is an LCSSA PHI node. 556 // While the computed exit value is no longer varying in *this* loop, the 557 // exit block may be an exit block for an outer containing loop as well, 558 // the exit value may be varying in the outer loop, and thus it may still 559 // require an LCSSA PHI node. The safe case is when this is 560 // single-predecessor PHI node (LCSSA) and the exit block containing it is 561 // part of the enclosing loop, or this is the outer most loop of the nest. 562 // In either case the exit value could (at most) be varying in the same 563 // loop body as the phi node itself. Thus if it is in turn used outside of 564 // an enclosing loop it will only be via a separate LCSSA node. 565 bool LCSSASafePhiForRAUW = 566 NumPreds == 1 && 567 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 568 569 // Iterate over all of the PHI nodes. 570 BasicBlock::iterator BBI = ExitBB->begin(); 571 while ((PN = dyn_cast<PHINode>(BBI++))) { 572 if (PN->use_empty()) 573 continue; // dead use, don't replace it 574 575 // SCEV only supports integer expressions for now. 576 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 577 continue; 578 579 // It's necessary to tell ScalarEvolution about this explicitly so that 580 // it can walk the def-use list and forget all SCEVs, as it may not be 581 // watching the PHI itself. Once the new exit value is in place, there 582 // may not be a def-use connection between the loop and every instruction 583 // which got a SCEVAddRecExpr for that loop. 584 SE->forgetValue(PN); 585 586 // Iterate over all of the values in all the PHI nodes. 587 for (unsigned i = 0; i != NumPreds; ++i) { 588 // If the value being merged in is not integer or is not defined 589 // in the loop, skip it. 590 Value *InVal = PN->getIncomingValue(i); 591 if (!isa<Instruction>(InVal)) 592 continue; 593 594 // If this pred is for a subloop, not L itself, skip it. 595 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 596 continue; // The Block is in a subloop, skip it. 597 598 // Check that InVal is defined in the loop. 599 Instruction *Inst = cast<Instruction>(InVal); 600 if (!L->contains(Inst)) 601 continue; 602 603 // Okay, this instruction has a user outside of the current loop 604 // and varies predictably *inside* the loop. Evaluate the value it 605 // contains when the loop exits, if possible. 606 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 607 if (!SE->isLoopInvariant(ExitValue, L) || 608 !isSafeToExpand(ExitValue, *SE)) 609 continue; 610 611 // Computing the value outside of the loop brings no benefit if : 612 // - it is definitely used inside the loop in a way which can not be 613 // optimized away. 614 // - no use outside of the loop can take advantage of hoisting the 615 // computation out of the loop 616 if (ExitValue->getSCEVType()>=scMulExpr) { 617 unsigned NumHardInternalUses = 0; 618 unsigned NumSoftExternalUses = 0; 619 unsigned NumUses = 0; 620 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 621 IB != IE && NumUses <= 6; ++IB) { 622 Instruction *UseInstr = cast<Instruction>(*IB); 623 unsigned Opc = UseInstr->getOpcode(); 624 NumUses++; 625 if (L->contains(UseInstr)) { 626 if (Opc == Instruction::Call || Opc == Instruction::Ret) 627 NumHardInternalUses++; 628 } else { 629 if (Opc == Instruction::PHI) { 630 // Do not count the Phi as a use. LCSSA may have inserted 631 // plenty of trivial ones. 632 NumUses--; 633 for (auto PB = UseInstr->user_begin(), 634 PE = UseInstr->user_end(); 635 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 636 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 637 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 638 NumSoftExternalUses++; 639 } 640 continue; 641 } 642 if (Opc != Instruction::Call && Opc != Instruction::Ret) 643 NumSoftExternalUses++; 644 } 645 } 646 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 647 continue; 648 } 649 650 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 651 Value *ExitVal = 652 ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 653 654 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 655 << " LoopVal = " << *Inst << "\n"); 656 657 if (!isValidRewrite(Inst, ExitVal)) { 658 DeadInsts.push_back(ExitVal); 659 continue; 660 } 661 662 // Collect all the candidate PHINodes to be rewritten. 663 RewritePhiSet.push_back( 664 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 665 } 666 } 667 } 668 669 bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet); 670 671 // Transformation. 672 for (const RewritePhi &Phi : RewritePhiSet) { 673 PHINode *PN = Phi.PN; 674 Value *ExitVal = Phi.Val; 675 676 // Only do the rewrite when the ExitValue can be expanded cheaply. 677 // If LoopCanBeDel is true, rewrite exit value aggressively. 678 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 679 DeadInsts.push_back(ExitVal); 680 continue; 681 } 682 683 Changed = true; 684 ++NumReplaced; 685 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 686 PN->setIncomingValue(Phi.Ith, ExitVal); 687 688 // If this instruction is dead now, delete it. Don't do it now to avoid 689 // invalidating iterators. 690 if (isInstructionTriviallyDead(Inst, TLI)) 691 DeadInsts.push_back(Inst); 692 693 // If we determined that this PHI is safe to replace even if an LCSSA 694 // PHI, do so. 695 if (Phi.SafePhi) { 696 PN->replaceAllUsesWith(ExitVal); 697 PN->eraseFromParent(); 698 } 699 } 700 701 // The insertion point instruction may have been deleted; clear it out 702 // so that the rewriter doesn't trip over it later. 703 Rewriter.clearInsertPoint(); 704 } 705 706 /// CanLoopBeDeleted - Check whether it is possible to delete the loop after 707 /// rewriting exit value. If it is possible, ignore ReplaceExitValue and 708 /// do rewriting aggressively. 709 bool IndVarSimplify::CanLoopBeDeleted( 710 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 711 712 BasicBlock *Preheader = L->getLoopPreheader(); 713 // If there is no preheader, the loop will not be deleted. 714 if (!Preheader) 715 return false; 716 717 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 718 // We obviate multiple ExitingBlocks case for simplicity. 719 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 720 // after exit value rewriting, we can enhance the logic here. 721 SmallVector<BasicBlock *, 4> ExitingBlocks; 722 L->getExitingBlocks(ExitingBlocks); 723 SmallVector<BasicBlock *, 8> ExitBlocks; 724 L->getUniqueExitBlocks(ExitBlocks); 725 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 726 return false; 727 728 BasicBlock *ExitBlock = ExitBlocks[0]; 729 BasicBlock::iterator BI = ExitBlock->begin(); 730 while (PHINode *P = dyn_cast<PHINode>(BI)) { 731 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 732 733 // If the Incoming value of P is found in RewritePhiSet, we know it 734 // could be rewritten to use a loop invariant value in transformation 735 // phase later. Skip it in the loop invariant check below. 736 bool found = false; 737 for (const RewritePhi &Phi : RewritePhiSet) { 738 unsigned i = Phi.Ith; 739 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 740 found = true; 741 break; 742 } 743 } 744 745 Instruction *I; 746 if (!found && (I = dyn_cast<Instruction>(Incoming))) 747 if (!L->hasLoopInvariantOperands(I)) 748 return false; 749 750 ++BI; 751 } 752 753 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 754 LI != LE; ++LI) { 755 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 756 ++BI) { 757 if (BI->mayHaveSideEffects()) 758 return false; 759 } 760 } 761 762 return true; 763 } 764 765 //===----------------------------------------------------------------------===// 766 // IV Widening - Extend the width of an IV to cover its widest uses. 767 //===----------------------------------------------------------------------===// 768 769 namespace { 770 // Collect information about induction variables that are used by sign/zero 771 // extend operations. This information is recorded by CollectExtend and 772 // provides the input to WidenIV. 773 struct WideIVInfo { 774 PHINode *NarrowIV; 775 Type *WidestNativeType; // Widest integer type created [sz]ext 776 bool IsSigned; // Was a sext user seen before a zext? 777 778 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 779 IsSigned(false) {} 780 }; 781 } 782 783 /// visitCast - Update information about the induction variable that is 784 /// extended by this sign or zero extend operation. This is used to determine 785 /// the final width of the IV before actually widening it. 786 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 787 const TargetTransformInfo *TTI) { 788 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 789 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 790 return; 791 792 Type *Ty = Cast->getType(); 793 uint64_t Width = SE->getTypeSizeInBits(Ty); 794 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 795 return; 796 797 // Cast is either an sext or zext up to this point. 798 // We should not widen an indvar if arithmetics on the wider indvar are more 799 // expensive than those on the narrower indvar. We check only the cost of ADD 800 // because at least an ADD is required to increment the induction variable. We 801 // could compute more comprehensively the cost of all instructions on the 802 // induction variable when necessary. 803 if (TTI && 804 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 805 TTI->getArithmeticInstrCost(Instruction::Add, 806 Cast->getOperand(0)->getType())) { 807 return; 808 } 809 810 if (!WI.WidestNativeType) { 811 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 812 WI.IsSigned = IsSigned; 813 return; 814 } 815 816 // We extend the IV to satisfy the sign of its first user, arbitrarily. 817 if (WI.IsSigned != IsSigned) 818 return; 819 820 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 821 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 822 } 823 824 namespace { 825 826 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 827 /// WideIV that computes the same value as the Narrow IV def. This avoids 828 /// caching Use* pointers. 829 struct NarrowIVDefUse { 830 Instruction *NarrowDef; 831 Instruction *NarrowUse; 832 Instruction *WideDef; 833 834 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 835 836 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 837 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 838 }; 839 840 /// WidenIV - The goal of this transform is to remove sign and zero extends 841 /// without creating any new induction variables. To do this, it creates a new 842 /// phi of the wider type and redirects all users, either removing extends or 843 /// inserting truncs whenever we stop propagating the type. 844 /// 845 class WidenIV { 846 // Parameters 847 PHINode *OrigPhi; 848 Type *WideType; 849 bool IsSigned; 850 851 // Context 852 LoopInfo *LI; 853 Loop *L; 854 ScalarEvolution *SE; 855 DominatorTree *DT; 856 857 // Result 858 PHINode *WidePhi; 859 Instruction *WideInc; 860 const SCEV *WideIncExpr; 861 SmallVectorImpl<WeakVH> &DeadInsts; 862 863 SmallPtrSet<Instruction*,16> Widened; 864 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 865 866 public: 867 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 868 ScalarEvolution *SEv, DominatorTree *DTree, 869 SmallVectorImpl<WeakVH> &DI) : 870 OrigPhi(WI.NarrowIV), 871 WideType(WI.WidestNativeType), 872 IsSigned(WI.IsSigned), 873 LI(LInfo), 874 L(LI->getLoopFor(OrigPhi->getParent())), 875 SE(SEv), 876 DT(DTree), 877 WidePhi(nullptr), 878 WideInc(nullptr), 879 WideIncExpr(nullptr), 880 DeadInsts(DI) { 881 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 882 } 883 884 PHINode *CreateWideIV(SCEVExpander &Rewriter); 885 886 protected: 887 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 888 Instruction *Use); 889 890 Instruction *CloneIVUser(NarrowIVDefUse DU); 891 892 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 893 894 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 895 896 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 897 unsigned OpCode) const; 898 899 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 900 901 bool WidenLoopCompare(NarrowIVDefUse DU); 902 903 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 904 }; 905 } // anonymous namespace 906 907 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 908 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 909 /// gratuitous for this purpose. 910 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 911 Instruction *Inst = dyn_cast<Instruction>(V); 912 if (!Inst) 913 return true; 914 915 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 916 } 917 918 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 919 Instruction *Use) { 920 // Set the debug location and conservative insertion point. 921 IRBuilder<> Builder(Use); 922 // Hoist the insertion point into loop preheaders as far as possible. 923 for (const Loop *L = LI->getLoopFor(Use->getParent()); 924 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 925 L = L->getParentLoop()) 926 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 927 928 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 929 Builder.CreateZExt(NarrowOper, WideType); 930 } 931 932 /// CloneIVUser - Instantiate a wide operation to replace a narrow 933 /// operation. This only needs to handle operations that can evaluation to 934 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 935 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 936 unsigned Opcode = DU.NarrowUse->getOpcode(); 937 switch (Opcode) { 938 default: 939 return nullptr; 940 case Instruction::Add: 941 case Instruction::Mul: 942 case Instruction::UDiv: 943 case Instruction::Sub: 944 case Instruction::And: 945 case Instruction::Or: 946 case Instruction::Xor: 947 case Instruction::Shl: 948 case Instruction::LShr: 949 case Instruction::AShr: 950 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 951 952 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 953 // anything about the narrow operand yet so must insert a [sz]ext. It is 954 // probably loop invariant and will be folded or hoisted. If it actually 955 // comes from a widened IV, it should be removed during a future call to 956 // WidenIVUse. 957 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 958 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 959 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 960 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 961 962 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 963 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 964 LHS, RHS, 965 NarrowBO->getName()); 966 IRBuilder<> Builder(DU.NarrowUse); 967 Builder.Insert(WideBO); 968 if (const OverflowingBinaryOperator *OBO = 969 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 970 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 971 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 972 } 973 return WideBO; 974 } 975 } 976 977 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 978 unsigned OpCode) const { 979 if (OpCode == Instruction::Add) 980 return SE->getAddExpr(LHS, RHS); 981 if (OpCode == Instruction::Sub) 982 return SE->getMinusSCEV(LHS, RHS); 983 if (OpCode == Instruction::Mul) 984 return SE->getMulExpr(LHS, RHS); 985 986 llvm_unreachable("Unsupported opcode."); 987 } 988 989 /// No-wrap operations can transfer sign extension of their result to their 990 /// operands. Generate the SCEV value for the widened operation without 991 /// actually modifying the IR yet. If the expression after extending the 992 /// operands is an AddRec for this loop, return it. 993 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 994 995 // Handle the common case of add<nsw/nuw> 996 const unsigned OpCode = DU.NarrowUse->getOpcode(); 997 // Only Add/Sub/Mul instructions supported yet. 998 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 999 OpCode != Instruction::Mul) 1000 return nullptr; 1001 1002 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1003 // if extending the other will lead to a recurrence. 1004 const unsigned ExtendOperIdx = 1005 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1006 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1007 1008 const SCEV *ExtendOperExpr = nullptr; 1009 const OverflowingBinaryOperator *OBO = 1010 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1011 if (IsSigned && OBO->hasNoSignedWrap()) 1012 ExtendOperExpr = SE->getSignExtendExpr( 1013 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1014 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1015 ExtendOperExpr = SE->getZeroExtendExpr( 1016 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1017 else 1018 return nullptr; 1019 1020 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1021 // flags. This instruction may be guarded by control flow that the no-wrap 1022 // behavior depends on. Non-control-equivalent instructions can be mapped to 1023 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1024 // semantics to those operations. 1025 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1026 const SCEV *rhs = ExtendOperExpr; 1027 1028 // Let's swap operands to the initial order for the case of non-commutative 1029 // operations, like SUB. See PR21014. 1030 if (ExtendOperIdx == 0) 1031 std::swap(lhs, rhs); 1032 const SCEVAddRecExpr *AddRec = 1033 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 1034 1035 if (!AddRec || AddRec->getLoop() != L) 1036 return nullptr; 1037 return AddRec; 1038 } 1039 1040 /// GetWideRecurrence - Is this instruction potentially interesting for further 1041 /// simplification after widening it's type? In other words, can the 1042 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 1043 /// recurrence on the same loop. If so, return the sign or zero extended 1044 /// recurrence. Otherwise return NULL. 1045 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 1046 if (!SE->isSCEVable(NarrowUse->getType())) 1047 return nullptr; 1048 1049 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1050 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1051 >= SE->getTypeSizeInBits(WideType)) { 1052 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1053 // index. So don't follow this use. 1054 return nullptr; 1055 } 1056 1057 const SCEV *WideExpr = IsSigned ? 1058 SE->getSignExtendExpr(NarrowExpr, WideType) : 1059 SE->getZeroExtendExpr(NarrowExpr, WideType); 1060 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1061 if (!AddRec || AddRec->getLoop() != L) 1062 return nullptr; 1063 return AddRec; 1064 } 1065 1066 /// This IV user cannot be widen. Replace this use of the original narrow IV 1067 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1068 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1069 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1070 << " for user " << *DU.NarrowUse << "\n"); 1071 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1072 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1073 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1074 } 1075 1076 /// If the narrow use is a compare instruction, then widen the compare 1077 // (and possibly the other operand). The extend operation is hoisted into the 1078 // loop preheader as far as possible. 1079 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 1080 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1081 if (!Cmp) 1082 return false; 1083 1084 // Sign of IV user and compare must match. 1085 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate())) 1086 return false; 1087 1088 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1089 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1090 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1091 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1092 1093 // Widen the compare instruction. 1094 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1095 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1096 1097 // Widen the other operand of the compare, if necessary. 1098 if (CastWidth < IVWidth) { 1099 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp); 1100 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1101 } 1102 return true; 1103 } 1104 1105 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 1106 /// widened. If so, return the wide clone of the user. 1107 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1108 1109 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1110 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1111 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1112 // For LCSSA phis, sink the truncate outside the loop. 1113 // After SimplifyCFG most loop exit targets have a single predecessor. 1114 // Otherwise fall back to a truncate within the loop. 1115 if (UsePhi->getNumOperands() != 1) 1116 truncateIVUse(DU, DT); 1117 else { 1118 PHINode *WidePhi = 1119 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1120 UsePhi); 1121 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1122 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 1123 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1124 UsePhi->replaceAllUsesWith(Trunc); 1125 DeadInsts.emplace_back(UsePhi); 1126 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1127 << " to " << *WidePhi << "\n"); 1128 } 1129 return nullptr; 1130 } 1131 } 1132 // Our raison d'etre! Eliminate sign and zero extension. 1133 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1134 Value *NewDef = DU.WideDef; 1135 if (DU.NarrowUse->getType() != WideType) { 1136 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1137 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1138 if (CastWidth < IVWidth) { 1139 // The cast isn't as wide as the IV, so insert a Trunc. 1140 IRBuilder<> Builder(DU.NarrowUse); 1141 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1142 } 1143 else { 1144 // A wider extend was hidden behind a narrower one. This may induce 1145 // another round of IV widening in which the intermediate IV becomes 1146 // dead. It should be very rare. 1147 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1148 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1149 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1150 NewDef = DU.NarrowUse; 1151 } 1152 } 1153 if (NewDef != DU.NarrowUse) { 1154 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1155 << " replaced by " << *DU.WideDef << "\n"); 1156 ++NumElimExt; 1157 DU.NarrowUse->replaceAllUsesWith(NewDef); 1158 DeadInsts.emplace_back(DU.NarrowUse); 1159 } 1160 // Now that the extend is gone, we want to expose it's uses for potential 1161 // further simplification. We don't need to directly inform SimplifyIVUsers 1162 // of the new users, because their parent IV will be processed later as a 1163 // new loop phi. If we preserved IVUsers analysis, we would also want to 1164 // push the uses of WideDef here. 1165 1166 // No further widening is needed. The deceased [sz]ext had done it for us. 1167 return nullptr; 1168 } 1169 1170 // Does this user itself evaluate to a recurrence after widening? 1171 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1172 if (!WideAddRec) 1173 WideAddRec = GetExtendedOperandRecurrence(DU); 1174 1175 if (!WideAddRec) { 1176 // If use is a loop condition, try to promote the condition instead of 1177 // truncating the IV first. 1178 if (WidenLoopCompare(DU)) 1179 return nullptr; 1180 1181 // This user does not evaluate to a recurence after widening, so don't 1182 // follow it. Instead insert a Trunc to kill off the original use, 1183 // eventually isolating the original narrow IV so it can be removed. 1184 truncateIVUse(DU, DT); 1185 return nullptr; 1186 } 1187 // Assume block terminators cannot evaluate to a recurrence. We can't to 1188 // insert a Trunc after a terminator if there happens to be a critical edge. 1189 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1190 "SCEV is not expected to evaluate a block terminator"); 1191 1192 // Reuse the IV increment that SCEVExpander created as long as it dominates 1193 // NarrowUse. 1194 Instruction *WideUse = nullptr; 1195 if (WideAddRec == WideIncExpr 1196 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1197 WideUse = WideInc; 1198 else { 1199 WideUse = CloneIVUser(DU); 1200 if (!WideUse) 1201 return nullptr; 1202 } 1203 // Evaluation of WideAddRec ensured that the narrow expression could be 1204 // extended outside the loop without overflow. This suggests that the wide use 1205 // evaluates to the same expression as the extended narrow use, but doesn't 1206 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1207 // where it fails, we simply throw away the newly created wide use. 1208 if (WideAddRec != SE->getSCEV(WideUse)) { 1209 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1210 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1211 DeadInsts.emplace_back(WideUse); 1212 return nullptr; 1213 } 1214 1215 // Returning WideUse pushes it on the worklist. 1216 return WideUse; 1217 } 1218 1219 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1220 /// 1221 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1222 for (User *U : NarrowDef->users()) { 1223 Instruction *NarrowUser = cast<Instruction>(U); 1224 1225 // Handle data flow merges and bizarre phi cycles. 1226 if (!Widened.insert(NarrowUser).second) 1227 continue; 1228 1229 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1230 } 1231 } 1232 1233 /// CreateWideIV - Process a single induction variable. First use the 1234 /// SCEVExpander to create a wide induction variable that evaluates to the same 1235 /// recurrence as the original narrow IV. Then use a worklist to forward 1236 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1237 /// interesting IV users, the narrow IV will be isolated for removal by 1238 /// DeleteDeadPHIs. 1239 /// 1240 /// It would be simpler to delete uses as they are processed, but we must avoid 1241 /// invalidating SCEV expressions. 1242 /// 1243 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1244 // Is this phi an induction variable? 1245 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1246 if (!AddRec) 1247 return nullptr; 1248 1249 // Widen the induction variable expression. 1250 const SCEV *WideIVExpr = IsSigned ? 1251 SE->getSignExtendExpr(AddRec, WideType) : 1252 SE->getZeroExtendExpr(AddRec, WideType); 1253 1254 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1255 "Expect the new IV expression to preserve its type"); 1256 1257 // Can the IV be extended outside the loop without overflow? 1258 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1259 if (!AddRec || AddRec->getLoop() != L) 1260 return nullptr; 1261 1262 // An AddRec must have loop-invariant operands. Since this AddRec is 1263 // materialized by a loop header phi, the expression cannot have any post-loop 1264 // operands, so they must dominate the loop header. 1265 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1266 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1267 && "Loop header phi recurrence inputs do not dominate the loop"); 1268 1269 // The rewriter provides a value for the desired IV expression. This may 1270 // either find an existing phi or materialize a new one. Either way, we 1271 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1272 // of the phi-SCC dominates the loop entry. 1273 Instruction *InsertPt = L->getHeader()->begin(); 1274 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1275 1276 // Remembering the WideIV increment generated by SCEVExpander allows 1277 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1278 // employ a general reuse mechanism because the call above is the only call to 1279 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1280 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1281 WideInc = 1282 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1283 WideIncExpr = SE->getSCEV(WideInc); 1284 } 1285 1286 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1287 ++NumWidened; 1288 1289 // Traverse the def-use chain using a worklist starting at the original IV. 1290 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1291 1292 Widened.insert(OrigPhi); 1293 pushNarrowIVUsers(OrigPhi, WidePhi); 1294 1295 while (!NarrowIVUsers.empty()) { 1296 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1297 1298 // Process a def-use edge. This may replace the use, so don't hold a 1299 // use_iterator across it. 1300 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1301 1302 // Follow all def-use edges from the previous narrow use. 1303 if (WideUse) 1304 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1305 1306 // WidenIVUse may have removed the def-use edge. 1307 if (DU.NarrowDef->use_empty()) 1308 DeadInsts.emplace_back(DU.NarrowDef); 1309 } 1310 return WidePhi; 1311 } 1312 1313 //===----------------------------------------------------------------------===// 1314 // Live IV Reduction - Minimize IVs live across the loop. 1315 //===----------------------------------------------------------------------===// 1316 1317 1318 //===----------------------------------------------------------------------===// 1319 // Simplification of IV users based on SCEV evaluation. 1320 //===----------------------------------------------------------------------===// 1321 1322 namespace { 1323 class IndVarSimplifyVisitor : public IVVisitor { 1324 ScalarEvolution *SE; 1325 const TargetTransformInfo *TTI; 1326 PHINode *IVPhi; 1327 1328 public: 1329 WideIVInfo WI; 1330 1331 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1332 const TargetTransformInfo *TTI, 1333 const DominatorTree *DTree) 1334 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1335 DT = DTree; 1336 WI.NarrowIV = IVPhi; 1337 if (ReduceLiveIVs) 1338 setSplitOverflowIntrinsics(); 1339 } 1340 1341 // Implement the interface used by simplifyUsersOfIV. 1342 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1343 }; 1344 } 1345 1346 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1347 /// users. Each successive simplification may push more users which may 1348 /// themselves be candidates for simplification. 1349 /// 1350 /// Sign/Zero extend elimination is interleaved with IV simplification. 1351 /// 1352 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1353 SCEVExpander &Rewriter, 1354 LPPassManager &LPM) { 1355 SmallVector<WideIVInfo, 8> WideIVs; 1356 1357 SmallVector<PHINode*, 8> LoopPhis; 1358 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1359 LoopPhis.push_back(cast<PHINode>(I)); 1360 } 1361 // Each round of simplification iterates through the SimplifyIVUsers worklist 1362 // for all current phis, then determines whether any IVs can be 1363 // widened. Widening adds new phis to LoopPhis, inducing another round of 1364 // simplification on the wide IVs. 1365 while (!LoopPhis.empty()) { 1366 // Evaluate as many IV expressions as possible before widening any IVs. This 1367 // forces SCEV to set no-wrap flags before evaluating sign/zero 1368 // extension. The first time SCEV attempts to normalize sign/zero extension, 1369 // the result becomes final. So for the most predictable results, we delay 1370 // evaluation of sign/zero extend evaluation until needed, and avoid running 1371 // other SCEV based analysis prior to SimplifyAndExtend. 1372 do { 1373 PHINode *CurrIV = LoopPhis.pop_back_val(); 1374 1375 // Information about sign/zero extensions of CurrIV. 1376 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1377 1378 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1379 1380 if (Visitor.WI.WidestNativeType) { 1381 WideIVs.push_back(Visitor.WI); 1382 } 1383 } while(!LoopPhis.empty()); 1384 1385 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1386 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1387 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1388 Changed = true; 1389 LoopPhis.push_back(WidePhi); 1390 } 1391 } 1392 } 1393 } 1394 1395 //===----------------------------------------------------------------------===// 1396 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1397 //===----------------------------------------------------------------------===// 1398 1399 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1400 /// count expression can be safely and cheaply expanded into an instruction 1401 /// sequence that can be used by LinearFunctionTestReplace. 1402 /// 1403 /// TODO: This fails for pointer-type loop counters with greater than one byte 1404 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1405 /// we could skip this check in the case that the LFTR loop counter (chosen by 1406 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1407 /// the loop test to an inequality test by checking the target data's alignment 1408 /// of element types (given that the initial pointer value originates from or is 1409 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1410 /// However, we don't yet have a strong motivation for converting loop tests 1411 /// into inequality tests. 1412 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1413 SCEVExpander &Rewriter) { 1414 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1415 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1416 BackedgeTakenCount->isZero()) 1417 return false; 1418 1419 if (!L->getExitingBlock()) 1420 return false; 1421 1422 // Can't rewrite non-branch yet. 1423 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1424 return false; 1425 1426 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1427 return false; 1428 1429 return true; 1430 } 1431 1432 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1433 /// invariant value to the phi. 1434 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1435 Instruction *IncI = dyn_cast<Instruction>(IncV); 1436 if (!IncI) 1437 return nullptr; 1438 1439 switch (IncI->getOpcode()) { 1440 case Instruction::Add: 1441 case Instruction::Sub: 1442 break; 1443 case Instruction::GetElementPtr: 1444 // An IV counter must preserve its type. 1445 if (IncI->getNumOperands() == 2) 1446 break; 1447 default: 1448 return nullptr; 1449 } 1450 1451 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1452 if (Phi && Phi->getParent() == L->getHeader()) { 1453 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1454 return Phi; 1455 return nullptr; 1456 } 1457 if (IncI->getOpcode() == Instruction::GetElementPtr) 1458 return nullptr; 1459 1460 // Allow add/sub to be commuted. 1461 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1462 if (Phi && Phi->getParent() == L->getHeader()) { 1463 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1464 return Phi; 1465 } 1466 return nullptr; 1467 } 1468 1469 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1470 static ICmpInst *getLoopTest(Loop *L) { 1471 assert(L->getExitingBlock() && "expected loop exit"); 1472 1473 BasicBlock *LatchBlock = L->getLoopLatch(); 1474 // Don't bother with LFTR if the loop is not properly simplified. 1475 if (!LatchBlock) 1476 return nullptr; 1477 1478 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1479 assert(BI && "expected exit branch"); 1480 1481 return dyn_cast<ICmpInst>(BI->getCondition()); 1482 } 1483 1484 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1485 /// that the current exit test is already sufficiently canonical. 1486 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1487 // Do LFTR to simplify the exit condition to an ICMP. 1488 ICmpInst *Cond = getLoopTest(L); 1489 if (!Cond) 1490 return true; 1491 1492 // Do LFTR to simplify the exit ICMP to EQ/NE 1493 ICmpInst::Predicate Pred = Cond->getPredicate(); 1494 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1495 return true; 1496 1497 // Look for a loop invariant RHS 1498 Value *LHS = Cond->getOperand(0); 1499 Value *RHS = Cond->getOperand(1); 1500 if (!isLoopInvariant(RHS, L, DT)) { 1501 if (!isLoopInvariant(LHS, L, DT)) 1502 return true; 1503 std::swap(LHS, RHS); 1504 } 1505 // Look for a simple IV counter LHS 1506 PHINode *Phi = dyn_cast<PHINode>(LHS); 1507 if (!Phi) 1508 Phi = getLoopPhiForCounter(LHS, L, DT); 1509 1510 if (!Phi) 1511 return true; 1512 1513 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1514 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1515 if (Idx < 0) 1516 return true; 1517 1518 // Do LFTR if the exit condition's IV is *not* a simple counter. 1519 Value *IncV = Phi->getIncomingValue(Idx); 1520 return Phi != getLoopPhiForCounter(IncV, L, DT); 1521 } 1522 1523 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1524 /// down to checking that all operands are constant and listing instructions 1525 /// that may hide undef. 1526 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1527 unsigned Depth) { 1528 if (isa<Constant>(V)) 1529 return !isa<UndefValue>(V); 1530 1531 if (Depth >= 6) 1532 return false; 1533 1534 // Conservatively handle non-constant non-instructions. For example, Arguments 1535 // may be undef. 1536 Instruction *I = dyn_cast<Instruction>(V); 1537 if (!I) 1538 return false; 1539 1540 // Load and return values may be undef. 1541 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1542 return false; 1543 1544 // Optimistically handle other instructions. 1545 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1546 if (!Visited.insert(*OI).second) 1547 continue; 1548 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1549 return false; 1550 } 1551 return true; 1552 } 1553 1554 /// Return true if the given value is concrete. We must prove that undef can 1555 /// never reach it. 1556 /// 1557 /// TODO: If we decide that this is a good approach to checking for undef, we 1558 /// may factor it into a common location. 1559 static bool hasConcreteDef(Value *V) { 1560 SmallPtrSet<Value*, 8> Visited; 1561 Visited.insert(V); 1562 return hasConcreteDefImpl(V, Visited, 0); 1563 } 1564 1565 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1566 /// be rewritten) loop exit test. 1567 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1568 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1569 Value *IncV = Phi->getIncomingValue(LatchIdx); 1570 1571 for (User *U : Phi->users()) 1572 if (U != Cond && U != IncV) return false; 1573 1574 for (User *U : IncV->users()) 1575 if (U != Cond && U != Phi) return false; 1576 return true; 1577 } 1578 1579 /// FindLoopCounter - Find an affine IV in canonical form. 1580 /// 1581 /// BECount may be an i8* pointer type. The pointer difference is already 1582 /// valid count without scaling the address stride, so it remains a pointer 1583 /// expression as far as SCEV is concerned. 1584 /// 1585 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1586 /// 1587 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1588 /// 1589 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1590 /// This is difficult in general for SCEV because of potential overflow. But we 1591 /// could at least handle constant BECounts. 1592 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1593 ScalarEvolution *SE, DominatorTree *DT) { 1594 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1595 1596 Value *Cond = 1597 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1598 1599 // Loop over all of the PHI nodes, looking for a simple counter. 1600 PHINode *BestPhi = nullptr; 1601 const SCEV *BestInit = nullptr; 1602 BasicBlock *LatchBlock = L->getLoopLatch(); 1603 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1604 1605 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1606 PHINode *Phi = cast<PHINode>(I); 1607 if (!SE->isSCEVable(Phi->getType())) 1608 continue; 1609 1610 // Avoid comparing an integer IV against a pointer Limit. 1611 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1612 continue; 1613 1614 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1615 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1616 continue; 1617 1618 // AR may be a pointer type, while BECount is an integer type. 1619 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1620 // AR may not be a narrower type, or we may never exit. 1621 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1622 if (PhiWidth < BCWidth || 1623 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1624 continue; 1625 1626 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1627 if (!Step || !Step->isOne()) 1628 continue; 1629 1630 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1631 Value *IncV = Phi->getIncomingValue(LatchIdx); 1632 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1633 continue; 1634 1635 // Avoid reusing a potentially undef value to compute other values that may 1636 // have originally had a concrete definition. 1637 if (!hasConcreteDef(Phi)) { 1638 // We explicitly allow unknown phis as long as they are already used by 1639 // the loop test. In this case we assume that performing LFTR could not 1640 // increase the number of undef users. 1641 if (ICmpInst *Cond = getLoopTest(L)) { 1642 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1643 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1644 continue; 1645 } 1646 } 1647 } 1648 const SCEV *Init = AR->getStart(); 1649 1650 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1651 // Don't force a live loop counter if another IV can be used. 1652 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1653 continue; 1654 1655 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1656 // also prefers integer to pointer IVs. 1657 if (BestInit->isZero() != Init->isZero()) { 1658 if (BestInit->isZero()) 1659 continue; 1660 } 1661 // If two IVs both count from zero or both count from nonzero then the 1662 // narrower is likely a dead phi that has been widened. Use the wider phi 1663 // to allow the other to be eliminated. 1664 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1665 continue; 1666 } 1667 BestPhi = Phi; 1668 BestInit = Init; 1669 } 1670 return BestPhi; 1671 } 1672 1673 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1674 /// holds the RHS of the new loop test. 1675 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1676 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1677 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1678 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1679 const SCEV *IVInit = AR->getStart(); 1680 1681 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1682 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1683 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1684 // the existing GEPs whenever possible. 1685 if (IndVar->getType()->isPointerTy() 1686 && !IVCount->getType()->isPointerTy()) { 1687 1688 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1689 // signed value. IVCount on the other hand represents the loop trip count, 1690 // which is an unsigned value. FindLoopCounter only allows induction 1691 // variables that have a positive unit stride of one. This means we don't 1692 // have to handle the case of negative offsets (yet) and just need to zero 1693 // extend IVCount. 1694 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1695 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1696 1697 // Expand the code for the iteration count. 1698 assert(SE->isLoopInvariant(IVOffset, L) && 1699 "Computed iteration count is not loop invariant!"); 1700 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1701 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1702 1703 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1704 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1705 // We could handle pointer IVs other than i8*, but we need to compensate for 1706 // gep index scaling. See canExpandBackedgeTakenCount comments. 1707 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1708 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1709 && "unit stride pointer IV must be i8*"); 1710 1711 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1712 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1713 } 1714 else { 1715 // In any other case, convert both IVInit and IVCount to integers before 1716 // comparing. This may result in SCEV expension of pointers, but in practice 1717 // SCEV will fold the pointer arithmetic away as such: 1718 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1719 // 1720 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1721 // for simple memset-style loops. 1722 // 1723 // IVInit integer and IVCount pointer would only occur if a canonical IV 1724 // were generated on top of case #2, which is not expected. 1725 1726 const SCEV *IVLimit = nullptr; 1727 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1728 // For non-zero Start, compute IVCount here. 1729 if (AR->getStart()->isZero()) 1730 IVLimit = IVCount; 1731 else { 1732 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1733 const SCEV *IVInit = AR->getStart(); 1734 1735 // For integer IVs, truncate the IV before computing IVInit + BECount. 1736 if (SE->getTypeSizeInBits(IVInit->getType()) 1737 > SE->getTypeSizeInBits(IVCount->getType())) 1738 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1739 1740 IVLimit = SE->getAddExpr(IVInit, IVCount); 1741 } 1742 // Expand the code for the iteration count. 1743 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1744 IRBuilder<> Builder(BI); 1745 assert(SE->isLoopInvariant(IVLimit, L) && 1746 "Computed iteration count is not loop invariant!"); 1747 // Ensure that we generate the same type as IndVar, or a smaller integer 1748 // type. In the presence of null pointer values, we have an integer type 1749 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1750 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1751 IndVar->getType() : IVCount->getType(); 1752 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1753 } 1754 } 1755 1756 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1757 /// loop to be a canonical != comparison against the incremented loop induction 1758 /// variable. This pass is able to rewrite the exit tests of any loop where the 1759 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1760 /// is actually a much broader range than just linear tests. 1761 Value *IndVarSimplify:: 1762 LinearFunctionTestReplace(Loop *L, 1763 const SCEV *BackedgeTakenCount, 1764 PHINode *IndVar, 1765 SCEVExpander &Rewriter) { 1766 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1767 1768 // Initialize CmpIndVar and IVCount to their preincremented values. 1769 Value *CmpIndVar = IndVar; 1770 const SCEV *IVCount = BackedgeTakenCount; 1771 1772 // If the exiting block is the same as the backedge block, we prefer to 1773 // compare against the post-incremented value, otherwise we must compare 1774 // against the preincremented value. 1775 if (L->getExitingBlock() == L->getLoopLatch()) { 1776 // Add one to the "backedge-taken" count to get the trip count. 1777 // This addition may overflow, which is valid as long as the comparison is 1778 // truncated to BackedgeTakenCount->getType(). 1779 IVCount = SE->getAddExpr(BackedgeTakenCount, 1780 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1781 // The BackedgeTaken expression contains the number of times that the 1782 // backedge branches to the loop header. This is one less than the 1783 // number of times the loop executes, so use the incremented indvar. 1784 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1785 } 1786 1787 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1788 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1789 && "genLoopLimit missed a cast"); 1790 1791 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1792 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1793 ICmpInst::Predicate P; 1794 if (L->contains(BI->getSuccessor(0))) 1795 P = ICmpInst::ICMP_NE; 1796 else 1797 P = ICmpInst::ICMP_EQ; 1798 1799 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1800 << " LHS:" << *CmpIndVar << '\n' 1801 << " op:\t" 1802 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1803 << " RHS:\t" << *ExitCnt << "\n" 1804 << " IVCount:\t" << *IVCount << "\n"); 1805 1806 IRBuilder<> Builder(BI); 1807 1808 // LFTR can ignore IV overflow and truncate to the width of 1809 // BECount. This avoids materializing the add(zext(add)) expression. 1810 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1811 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1812 if (CmpIndVarSize > ExitCntSize) { 1813 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1814 const SCEV *ARStart = AR->getStart(); 1815 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1816 // For constant IVCount, avoid truncation. 1817 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1818 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1819 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1820 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1821 // above such that IVCount is now zero. 1822 if (IVCount != BackedgeTakenCount && Count == 0) { 1823 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1824 ++Count; 1825 } 1826 else 1827 Count = Count.zext(CmpIndVarSize); 1828 APInt NewLimit; 1829 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1830 NewLimit = Start - Count; 1831 else 1832 NewLimit = Start + Count; 1833 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1834 1835 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1836 } else { 1837 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1838 "lftr.wideiv"); 1839 } 1840 } 1841 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1842 Value *OrigCond = BI->getCondition(); 1843 // It's tempting to use replaceAllUsesWith here to fully replace the old 1844 // comparison, but that's not immediately safe, since users of the old 1845 // comparison may not be dominated by the new comparison. Instead, just 1846 // update the branch to use the new comparison; in the common case this 1847 // will make old comparison dead. 1848 BI->setCondition(Cond); 1849 DeadInsts.push_back(OrigCond); 1850 1851 ++NumLFTR; 1852 Changed = true; 1853 return Cond; 1854 } 1855 1856 //===----------------------------------------------------------------------===// 1857 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1858 //===----------------------------------------------------------------------===// 1859 1860 /// If there's a single exit block, sink any loop-invariant values that 1861 /// were defined in the preheader but not used inside the loop into the 1862 /// exit block to reduce register pressure in the loop. 1863 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1864 BasicBlock *ExitBlock = L->getExitBlock(); 1865 if (!ExitBlock) return; 1866 1867 BasicBlock *Preheader = L->getLoopPreheader(); 1868 if (!Preheader) return; 1869 1870 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1871 BasicBlock::iterator I = Preheader->getTerminator(); 1872 while (I != Preheader->begin()) { 1873 --I; 1874 // New instructions were inserted at the end of the preheader. 1875 if (isa<PHINode>(I)) 1876 break; 1877 1878 // Don't move instructions which might have side effects, since the side 1879 // effects need to complete before instructions inside the loop. Also don't 1880 // move instructions which might read memory, since the loop may modify 1881 // memory. Note that it's okay if the instruction might have undefined 1882 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1883 // block. 1884 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1885 continue; 1886 1887 // Skip debug info intrinsics. 1888 if (isa<DbgInfoIntrinsic>(I)) 1889 continue; 1890 1891 // Skip eh pad instructions. 1892 if (I->isEHPad()) 1893 continue; 1894 1895 // Don't sink alloca: we never want to sink static alloca's out of the 1896 // entry block, and correctly sinking dynamic alloca's requires 1897 // checks for stacksave/stackrestore intrinsics. 1898 // FIXME: Refactor this check somehow? 1899 if (isa<AllocaInst>(I)) 1900 continue; 1901 1902 // Determine if there is a use in or before the loop (direct or 1903 // otherwise). 1904 bool UsedInLoop = false; 1905 for (Use &U : I->uses()) { 1906 Instruction *User = cast<Instruction>(U.getUser()); 1907 BasicBlock *UseBB = User->getParent(); 1908 if (PHINode *P = dyn_cast<PHINode>(User)) { 1909 unsigned i = 1910 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1911 UseBB = P->getIncomingBlock(i); 1912 } 1913 if (UseBB == Preheader || L->contains(UseBB)) { 1914 UsedInLoop = true; 1915 break; 1916 } 1917 } 1918 1919 // If there is, the def must remain in the preheader. 1920 if (UsedInLoop) 1921 continue; 1922 1923 // Otherwise, sink it to the exit block. 1924 Instruction *ToMove = I; 1925 bool Done = false; 1926 1927 if (I != Preheader->begin()) { 1928 // Skip debug info intrinsics. 1929 do { 1930 --I; 1931 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1932 1933 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1934 Done = true; 1935 } else { 1936 Done = true; 1937 } 1938 1939 ToMove->moveBefore(InsertPt); 1940 if (Done) break; 1941 InsertPt = ToMove; 1942 } 1943 } 1944 1945 //===----------------------------------------------------------------------===// 1946 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1947 //===----------------------------------------------------------------------===// 1948 1949 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1950 if (skipOptnoneFunction(L)) 1951 return false; 1952 1953 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1954 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1955 // canonicalization can be a pessimization without LSR to "clean up" 1956 // afterwards. 1957 // - We depend on having a preheader; in particular, 1958 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1959 // and we're in trouble if we can't find the induction variable even when 1960 // we've manually inserted one. 1961 if (!L->isLoopSimplifyForm()) 1962 return false; 1963 1964 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1965 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1966 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1967 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1968 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1969 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1970 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1971 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1972 1973 DeadInsts.clear(); 1974 Changed = false; 1975 1976 // If there are any floating-point recurrences, attempt to 1977 // transform them to use integer recurrences. 1978 RewriteNonIntegerIVs(L); 1979 1980 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1981 1982 // Create a rewriter object which we'll use to transform the code with. 1983 SCEVExpander Rewriter(*SE, DL, "indvars"); 1984 #ifndef NDEBUG 1985 Rewriter.setDebugType(DEBUG_TYPE); 1986 #endif 1987 1988 // Eliminate redundant IV users. 1989 // 1990 // Simplification works best when run before other consumers of SCEV. We 1991 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1992 // other expressions involving loop IVs have been evaluated. This helps SCEV 1993 // set no-wrap flags before normalizing sign/zero extension. 1994 Rewriter.disableCanonicalMode(); 1995 SimplifyAndExtend(L, Rewriter, LPM); 1996 1997 // Check to see if this loop has a computable loop-invariant execution count. 1998 // If so, this means that we can compute the final value of any expressions 1999 // that are recurrent in the loop, and substitute the exit values from the 2000 // loop into any instructions outside of the loop that use the final values of 2001 // the current expressions. 2002 // 2003 if (ReplaceExitValue != NeverRepl && 2004 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2005 RewriteLoopExitValues(L, Rewriter); 2006 2007 // Eliminate redundant IV cycles. 2008 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2009 2010 // If we have a trip count expression, rewrite the loop's exit condition 2011 // using it. We can currently only handle loops with a single exit. 2012 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2013 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2014 if (IndVar) { 2015 // Check preconditions for proper SCEVExpander operation. SCEV does not 2016 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2017 // pass that uses the SCEVExpander must do it. This does not work well for 2018 // loop passes because SCEVExpander makes assumptions about all loops, 2019 // while LoopPassManager only forces the current loop to be simplified. 2020 // 2021 // FIXME: SCEV expansion has no way to bail out, so the caller must 2022 // explicitly check any assumptions made by SCEV. Brittle. 2023 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2024 if (!AR || AR->getLoop()->getLoopPreheader()) 2025 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2026 Rewriter); 2027 } 2028 } 2029 // Clear the rewriter cache, because values that are in the rewriter's cache 2030 // can be deleted in the loop below, causing the AssertingVH in the cache to 2031 // trigger. 2032 Rewriter.clear(); 2033 2034 // Now that we're done iterating through lists, clean up any instructions 2035 // which are now dead. 2036 while (!DeadInsts.empty()) 2037 if (Instruction *Inst = 2038 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2039 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2040 2041 // The Rewriter may not be used from this point on. 2042 2043 // Loop-invariant instructions in the preheader that aren't used in the 2044 // loop may be sunk below the loop to reduce register pressure. 2045 SinkUnusedInvariants(L); 2046 2047 // Clean up dead instructions. 2048 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2049 // Check a post-condition. 2050 assert(L->isLCSSAForm(*DT) && 2051 "Indvars did not leave the loop in lcssa form!"); 2052 2053 // Verify that LFTR, and any other change have not interfered with SCEV's 2054 // ability to compute trip count. 2055 #ifndef NDEBUG 2056 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2057 SE->forgetLoop(L); 2058 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2059 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2060 SE->getTypeSizeInBits(NewBECount->getType())) 2061 NewBECount = SE->getTruncateOrNoop(NewBECount, 2062 BackedgeTakenCount->getType()); 2063 else 2064 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2065 NewBECount->getType()); 2066 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2067 } 2068 #endif 2069 2070 return Changed; 2071 } 2072