xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision ecdd6e4c67bdfffd6ef7ff07e2ac3e36785b7118)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/ADT/Statistic.h"
63 #include "llvm/ADT/STLExtras.h"
64 using namespace llvm;
65 
66 STATISTIC(NumRemoved     , "Number of aux indvars removed");
67 STATISTIC(NumWidened     , "Number of indvars widened");
68 STATISTIC(NumInserted    , "Number of canonical indvars added");
69 STATISTIC(NumReplaced    , "Number of exit values replaced");
70 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
71 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
72 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
74 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
75 
76 static cl::opt<bool> DisableIVRewrite(
77   "disable-iv-rewrite", cl::Hidden,
78   cl::desc("Disable canonical induction variable rewriting"));
79 
80 namespace {
81   class IndVarSimplify : public LoopPass {
82     IVUsers         *IU;
83     LoopInfo        *LI;
84     ScalarEvolution *SE;
85     DominatorTree   *DT;
86     TargetData      *TD;
87 
88     SmallVector<WeakVH, 16> DeadInsts;
89     bool Changed;
90   public:
91 
92     static char ID; // Pass identification, replacement for typeid
93     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
94                        Changed(false) {
95       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
96     }
97 
98     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
99 
100     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
101       AU.addRequired<DominatorTree>();
102       AU.addRequired<LoopInfo>();
103       AU.addRequired<ScalarEvolution>();
104       AU.addRequiredID(LoopSimplifyID);
105       AU.addRequiredID(LCSSAID);
106       if (!DisableIVRewrite)
107         AU.addRequired<IVUsers>();
108       AU.addPreserved<ScalarEvolution>();
109       AU.addPreservedID(LoopSimplifyID);
110       AU.addPreservedID(LCSSAID);
111       if (!DisableIVRewrite)
112         AU.addPreserved<IVUsers>();
113       AU.setPreservesCFG();
114     }
115 
116   private:
117     bool isValidRewrite(Value *FromVal, Value *ToVal);
118 
119     void SimplifyIVUsers(SCEVExpander &Rewriter);
120     void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
121 
122     bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
123     void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
124     void EliminateIVRemainder(BinaryOperator *Rem,
125                               Value *IVOperand,
126                               bool IsSigned);
127     bool isSimpleIVUser(Instruction *I, const Loop *L);
128     void RewriteNonIntegerIVs(Loop *L);
129 
130     ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                         PHINode *IndVar,
132                                         SCEVExpander &Rewriter);
133 
134     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
135 
136     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
137 
138     void SinkUnusedInvariants(Loop *L);
139 
140     void HandleFloatingPointIV(Loop *L, PHINode *PH);
141   };
142 }
143 
144 char IndVarSimplify::ID = 0;
145 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
146                 "Induction Variable Simplification", false, false)
147 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
148 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
149 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
150 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
151 INITIALIZE_PASS_DEPENDENCY(LCSSA)
152 INITIALIZE_PASS_DEPENDENCY(IVUsers)
153 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
154                 "Induction Variable Simplification", false, false)
155 
156 Pass *llvm::createIndVarSimplifyPass() {
157   return new IndVarSimplify();
158 }
159 
160 /// isValidRewrite - Return true if the SCEV expansion generated by the
161 /// rewriter can replace the original value. SCEV guarantees that it
162 /// produces the same value, but the way it is produced may be illegal IR.
163 /// Ideally, this function will only be called for verification.
164 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
165   // If an SCEV expression subsumed multiple pointers, its expansion could
166   // reassociate the GEP changing the base pointer. This is illegal because the
167   // final address produced by a GEP chain must be inbounds relative to its
168   // underlying object. Otherwise basic alias analysis, among other things,
169   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
170   // producing an expression involving multiple pointers. Until then, we must
171   // bail out here.
172   //
173   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
174   // because it understands lcssa phis while SCEV does not.
175   Value *FromPtr = FromVal;
176   Value *ToPtr = ToVal;
177   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
178     FromPtr = GEP->getPointerOperand();
179   }
180   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
181     ToPtr = GEP->getPointerOperand();
182   }
183   if (FromPtr != FromVal || ToPtr != ToVal) {
184     // Quickly check the common case
185     if (FromPtr == ToPtr)
186       return true;
187 
188     // SCEV may have rewritten an expression that produces the GEP's pointer
189     // operand. That's ok as long as the pointer operand has the same base
190     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
191     // base of a recurrence. This handles the case in which SCEV expansion
192     // converts a pointer type recurrence into a nonrecurrent pointer base
193     // indexed by an integer recurrence.
194     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
195     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
196     if (FromBase == ToBase)
197       return true;
198 
199     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
200           << *FromBase << " != " << *ToBase << "\n");
201 
202     return false;
203   }
204   return true;
205 }
206 
207 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
208 /// count expression can be safely and cheaply expanded into an instruction
209 /// sequence that can be used by LinearFunctionTestReplace.
210 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
211   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
212   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
213       BackedgeTakenCount->isZero())
214     return false;
215 
216   if (!L->getExitingBlock())
217     return false;
218 
219   // Can't rewrite non-branch yet.
220   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
221   if (!BI)
222     return false;
223 
224   // Special case: If the backedge-taken count is a UDiv, it's very likely a
225   // UDiv that ScalarEvolution produced in order to compute a precise
226   // expression, rather than a UDiv from the user's code. If we can't find a
227   // UDiv in the code with some simple searching, assume the former and forego
228   // rewriting the loop.
229   if (isa<SCEVUDivExpr>(BackedgeTakenCount)) {
230     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
231     if (!OrigCond) return false;
232     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
233     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
234     if (R != BackedgeTakenCount) {
235       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
236       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
237       if (L != BackedgeTakenCount)
238         return false;
239     }
240   }
241   return true;
242 }
243 
244 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
245 /// through Truncs.
246 ///
247 /// TODO: Unnecessary once LinearFunctionTestReplace is removed.
248 static const Type *getBackedgeIVType(Loop *L) {
249   if (!L->getExitingBlock())
250     return 0;
251 
252   // Can't rewrite non-branch yet.
253   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
254   if (!BI)
255     return 0;
256 
257   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
258   if (!Cond)
259     return 0;
260 
261   const Type *Ty = 0;
262   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
263       OI != OE; ++OI) {
264     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
265     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
266     if (!Trunc)
267       continue;
268 
269     return Trunc->getSrcTy();
270   }
271   return Ty;
272 }
273 
274 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
275 /// loop to be a canonical != comparison against the incremented loop induction
276 /// variable.  This pass is able to rewrite the exit tests of any loop where the
277 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
278 /// is actually a much broader range than just linear tests.
279 ICmpInst *IndVarSimplify::
280 LinearFunctionTestReplace(Loop *L,
281                           const SCEV *BackedgeTakenCount,
282                           PHINode *IndVar,
283                           SCEVExpander &Rewriter) {
284   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
285   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
286 
287   // If the exiting block is not the same as the backedge block, we must compare
288   // against the preincremented value, otherwise we prefer to compare against
289   // the post-incremented value.
290   Value *CmpIndVar;
291   const SCEV *RHS = BackedgeTakenCount;
292   if (L->getExitingBlock() == L->getLoopLatch()) {
293     // Add one to the "backedge-taken" count to get the trip count.
294     // If this addition may overflow, we have to be more pessimistic and
295     // cast the induction variable before doing the add.
296     const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0);
297     const SCEV *N =
298       SE->getAddExpr(BackedgeTakenCount,
299                      SE->getConstant(BackedgeTakenCount->getType(), 1));
300     if ((isa<SCEVConstant>(N) && !N->isZero()) ||
301         SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
302       // No overflow. Cast the sum.
303       RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
304     } else {
305       // Potential overflow. Cast before doing the add.
306       RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
307                                         IndVar->getType());
308       RHS = SE->getAddExpr(RHS,
309                            SE->getConstant(IndVar->getType(), 1));
310     }
311 
312     // The BackedgeTaken expression contains the number of times that the
313     // backedge branches to the loop header.  This is one less than the
314     // number of times the loop executes, so use the incremented indvar.
315     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
316   } else {
317     // We have to use the preincremented value...
318     RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
319                                       IndVar->getType());
320     CmpIndVar = IndVar;
321   }
322 
323   // Expand the code for the iteration count.
324   assert(SE->isLoopInvariant(RHS, L) &&
325          "Computed iteration count is not loop invariant!");
326   Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
327 
328   // Insert a new icmp_ne or icmp_eq instruction before the branch.
329   ICmpInst::Predicate Opcode;
330   if (L->contains(BI->getSuccessor(0)))
331     Opcode = ICmpInst::ICMP_NE;
332   else
333     Opcode = ICmpInst::ICMP_EQ;
334 
335   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
336                << "      LHS:" << *CmpIndVar << '\n'
337                << "       op:\t"
338                << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
339                << "      RHS:\t" << *RHS << "\n");
340 
341   ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
342 
343   Value *OrigCond = BI->getCondition();
344   // It's tempting to use replaceAllUsesWith here to fully replace the old
345   // comparison, but that's not immediately safe, since users of the old
346   // comparison may not be dominated by the new comparison. Instead, just
347   // update the branch to use the new comparison; in the common case this
348   // will make old comparison dead.
349   BI->setCondition(Cond);
350   DeadInsts.push_back(OrigCond);
351 
352   ++NumLFTR;
353   Changed = true;
354   return Cond;
355 }
356 
357 /// RewriteLoopExitValues - Check to see if this loop has a computable
358 /// loop-invariant execution count.  If so, this means that we can compute the
359 /// final value of any expressions that are recurrent in the loop, and
360 /// substitute the exit values from the loop into any instructions outside of
361 /// the loop that use the final values of the current expressions.
362 ///
363 /// This is mostly redundant with the regular IndVarSimplify activities that
364 /// happen later, except that it's more powerful in some cases, because it's
365 /// able to brute-force evaluate arbitrary instructions as long as they have
366 /// constant operands at the beginning of the loop.
367 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
368   // Verify the input to the pass in already in LCSSA form.
369   assert(L->isLCSSAForm(*DT));
370 
371   SmallVector<BasicBlock*, 8> ExitBlocks;
372   L->getUniqueExitBlocks(ExitBlocks);
373 
374   // Find all values that are computed inside the loop, but used outside of it.
375   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
376   // the exit blocks of the loop to find them.
377   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
378     BasicBlock *ExitBB = ExitBlocks[i];
379 
380     // If there are no PHI nodes in this exit block, then no values defined
381     // inside the loop are used on this path, skip it.
382     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
383     if (!PN) continue;
384 
385     unsigned NumPreds = PN->getNumIncomingValues();
386 
387     // Iterate over all of the PHI nodes.
388     BasicBlock::iterator BBI = ExitBB->begin();
389     while ((PN = dyn_cast<PHINode>(BBI++))) {
390       if (PN->use_empty())
391         continue; // dead use, don't replace it
392 
393       // SCEV only supports integer expressions for now.
394       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
395         continue;
396 
397       // It's necessary to tell ScalarEvolution about this explicitly so that
398       // it can walk the def-use list and forget all SCEVs, as it may not be
399       // watching the PHI itself. Once the new exit value is in place, there
400       // may not be a def-use connection between the loop and every instruction
401       // which got a SCEVAddRecExpr for that loop.
402       SE->forgetValue(PN);
403 
404       // Iterate over all of the values in all the PHI nodes.
405       for (unsigned i = 0; i != NumPreds; ++i) {
406         // If the value being merged in is not integer or is not defined
407         // in the loop, skip it.
408         Value *InVal = PN->getIncomingValue(i);
409         if (!isa<Instruction>(InVal))
410           continue;
411 
412         // If this pred is for a subloop, not L itself, skip it.
413         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
414           continue; // The Block is in a subloop, skip it.
415 
416         // Check that InVal is defined in the loop.
417         Instruction *Inst = cast<Instruction>(InVal);
418         if (!L->contains(Inst))
419           continue;
420 
421         // Okay, this instruction has a user outside of the current loop
422         // and varies predictably *inside* the loop.  Evaluate the value it
423         // contains when the loop exits, if possible.
424         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
425         if (!SE->isLoopInvariant(ExitValue, L))
426           continue;
427 
428         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
429 
430         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
431                      << "  LoopVal = " << *Inst << "\n");
432 
433         if (!isValidRewrite(Inst, ExitVal)) {
434           DeadInsts.push_back(ExitVal);
435           continue;
436         }
437         Changed = true;
438         ++NumReplaced;
439 
440         PN->setIncomingValue(i, ExitVal);
441 
442         // If this instruction is dead now, delete it.
443         RecursivelyDeleteTriviallyDeadInstructions(Inst);
444 
445         if (NumPreds == 1) {
446           // Completely replace a single-pred PHI. This is safe, because the
447           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
448           // node anymore.
449           PN->replaceAllUsesWith(ExitVal);
450           RecursivelyDeleteTriviallyDeadInstructions(PN);
451         }
452       }
453       if (NumPreds != 1) {
454         // Clone the PHI and delete the original one. This lets IVUsers and
455         // any other maps purge the original user from their records.
456         PHINode *NewPN = cast<PHINode>(PN->clone());
457         NewPN->takeName(PN);
458         NewPN->insertBefore(PN);
459         PN->replaceAllUsesWith(NewPN);
460         PN->eraseFromParent();
461       }
462     }
463   }
464 
465   // The insertion point instruction may have been deleted; clear it out
466   // so that the rewriter doesn't trip over it later.
467   Rewriter.clearInsertPoint();
468 }
469 
470 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
471   // First step.  Check to see if there are any floating-point recurrences.
472   // If there are, change them into integer recurrences, permitting analysis by
473   // the SCEV routines.
474   //
475   BasicBlock *Header = L->getHeader();
476 
477   SmallVector<WeakVH, 8> PHIs;
478   for (BasicBlock::iterator I = Header->begin();
479        PHINode *PN = dyn_cast<PHINode>(I); ++I)
480     PHIs.push_back(PN);
481 
482   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
483     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
484       HandleFloatingPointIV(L, PN);
485 
486   // If the loop previously had floating-point IV, ScalarEvolution
487   // may not have been able to compute a trip count. Now that we've done some
488   // re-writing, the trip count may be computable.
489   if (Changed)
490     SE->forgetLoop(L);
491 }
492 
493 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
494 /// loop. IVUsers is treated as a worklist. Each successive simplification may
495 /// push more users which may themselves be candidates for simplification.
496 ///
497 /// This is the old approach to IV simplification to be replaced by
498 /// SimplifyIVUsersNoRewrite.
499 ///
500 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
501   // Each round of simplification involves a round of eliminating operations
502   // followed by a round of widening IVs. A single IVUsers worklist is used
503   // across all rounds. The inner loop advances the user. If widening exposes
504   // more uses, then another pass through the outer loop is triggered.
505   for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
506     Instruction *UseInst = I->getUser();
507     Value *IVOperand = I->getOperandValToReplace();
508 
509     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
510       EliminateIVComparison(ICmp, IVOperand);
511       continue;
512     }
513     if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
514       bool IsSigned = Rem->getOpcode() == Instruction::SRem;
515       if (IsSigned || Rem->getOpcode() == Instruction::URem) {
516         EliminateIVRemainder(Rem, IVOperand, IsSigned);
517         continue;
518       }
519     }
520   }
521 }
522 
523 namespace {
524   // Collect information about induction variables that are used by sign/zero
525   // extend operations. This information is recorded by CollectExtend and
526   // provides the input to WidenIV.
527   struct WideIVInfo {
528     const Type *WidestNativeType; // Widest integer type created [sz]ext
529     bool IsSigned;                // Was an sext user seen before a zext?
530 
531     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
532   };
533 }
534 
535 /// CollectExtend - Update information about the induction variable that is
536 /// extended by this sign or zero extend operation. This is used to determine
537 /// the final width of the IV before actually widening it.
538 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
539                           ScalarEvolution *SE, const TargetData *TD) {
540   const Type *Ty = Cast->getType();
541   uint64_t Width = SE->getTypeSizeInBits(Ty);
542   if (TD && !TD->isLegalInteger(Width))
543     return;
544 
545   if (!WI.WidestNativeType) {
546     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
547     WI.IsSigned = IsSigned;
548     return;
549   }
550 
551   // We extend the IV to satisfy the sign of its first user, arbitrarily.
552   if (WI.IsSigned != IsSigned)
553     return;
554 
555   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
556     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
557 }
558 
559 namespace {
560 /// WidenIV - The goal of this transform is to remove sign and zero extends
561 /// without creating any new induction variables. To do this, it creates a new
562 /// phi of the wider type and redirects all users, either removing extends or
563 /// inserting truncs whenever we stop propagating the type.
564 ///
565 class WidenIV {
566   // Parameters
567   PHINode *OrigPhi;
568   const Type *WideType;
569   bool IsSigned;
570 
571   // Context
572   LoopInfo        *LI;
573   Loop            *L;
574   ScalarEvolution *SE;
575   DominatorTree   *DT;
576 
577   // Result
578   PHINode *WidePhi;
579   Instruction *WideInc;
580   const SCEV *WideIncExpr;
581   SmallVectorImpl<WeakVH> &DeadInsts;
582 
583   SmallPtrSet<Instruction*,16> Widened;
584 
585 public:
586   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
587           ScalarEvolution *SEv, DominatorTree *DTree,
588           SmallVectorImpl<WeakVH> &DI) :
589     OrigPhi(PN),
590     WideType(WI.WidestNativeType),
591     IsSigned(WI.IsSigned),
592     LI(LInfo),
593     L(LI->getLoopFor(OrigPhi->getParent())),
594     SE(SEv),
595     DT(DTree),
596     WidePhi(0),
597     WideInc(0),
598     WideIncExpr(0),
599     DeadInsts(DI) {
600     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
601   }
602 
603   PHINode *CreateWideIV(SCEVExpander &Rewriter);
604 
605 protected:
606   Instruction *CloneIVUser(Instruction *NarrowUse,
607                            Instruction *NarrowDef,
608                            Instruction *WideDef);
609 
610   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
611 
612   Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
613                           Instruction *WideDef);
614 };
615 } // anonymous namespace
616 
617 static Value *getExtend( Value *NarrowOper, const Type *WideType,
618                                bool IsSigned, IRBuilder<> &Builder) {
619   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
620                     Builder.CreateZExt(NarrowOper, WideType);
621 }
622 
623 /// CloneIVUser - Instantiate a wide operation to replace a narrow
624 /// operation. This only needs to handle operations that can evaluation to
625 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
626 Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse,
627                                   Instruction *NarrowDef,
628                                   Instruction *WideDef) {
629   unsigned Opcode = NarrowUse->getOpcode();
630   switch (Opcode) {
631   default:
632     return 0;
633   case Instruction::Add:
634   case Instruction::Mul:
635   case Instruction::UDiv:
636   case Instruction::Sub:
637   case Instruction::And:
638   case Instruction::Or:
639   case Instruction::Xor:
640   case Instruction::Shl:
641   case Instruction::LShr:
642   case Instruction::AShr:
643     DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n");
644 
645     IRBuilder<> Builder(NarrowUse);
646 
647     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
648     // anything about the narrow operand yet so must insert a [sz]ext. It is
649     // probably loop invariant and will be folded or hoisted. If it actually
650     // comes from a widened IV, it should be removed during a future call to
651     // WidenIVUse.
652     Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef :
653       getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder);
654     Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef :
655       getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder);
656 
657     BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse);
658     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
659                                                     LHS, RHS,
660                                                     NarrowBO->getName());
661     Builder.Insert(WideBO);
662     if (NarrowBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
663     if (NarrowBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
664 
665     return WideBO;
666   }
667   llvm_unreachable(0);
668 }
669 
670 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
671 // perspective after widening it's type? In other words, can the extend be
672 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
673 // on the same loop. If so, return the sign or zero extended
674 // recurrence. Otherwise return NULL.
675 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
676   if (!SE->isSCEVable(NarrowUse->getType()))
677     return 0;
678 
679   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
680   const SCEV *WideExpr = IsSigned ?
681     SE->getSignExtendExpr(NarrowExpr, WideType) :
682     SE->getZeroExtendExpr(NarrowExpr, WideType);
683   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
684   if (!AddRec || AddRec->getLoop() != L)
685     return 0;
686 
687   return AddRec;
688 }
689 
690 /// HoistStep - Attempt to hoist an IV increment above a potential use.
691 ///
692 /// To successfully hoist, two criteria must be met:
693 /// - IncV operands dominate InsertPos and
694 /// - InsertPos dominates IncV
695 ///
696 /// Meeting the second condition means that we don't need to check all of IncV's
697 /// existing uses (it's moving up in the domtree).
698 ///
699 /// This does not yet recursively hoist the operands, although that would
700 /// not be difficult.
701 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
702                       const DominatorTree *DT)
703 {
704   if (DT->dominates(IncV, InsertPos))
705     return true;
706 
707   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
708     return false;
709 
710   if (IncV->mayHaveSideEffects())
711     return false;
712 
713   // Attempt to hoist IncV
714   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
715        OI != OE; ++OI) {
716     Instruction *OInst = dyn_cast<Instruction>(OI);
717     if (OInst && !DT->dominates(OInst, InsertPos))
718       return false;
719   }
720   IncV->moveBefore(InsertPos);
721   return true;
722 }
723 
724 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
725 /// widened. If so, return the wide clone of the user.
726 Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef,
727                                  Instruction *WideDef) {
728   Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser());
729 
730   // To be consistent with IVUsers, stop traversing the def-use chain at
731   // inner-loop phis or post-loop phis.
732   if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L)
733     return 0;
734 
735   // Handle data flow merges and bizarre phi cycles.
736   if (!Widened.insert(NarrowUse))
737     return 0;
738 
739   // Our raison d'etre! Eliminate sign and zero extension.
740   if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) {
741     Value *NewDef = WideDef;
742     if (NarrowUse->getType() != WideType) {
743       unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType());
744       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
745       if (CastWidth < IVWidth) {
746         // The cast isn't as wide as the IV, so insert a Trunc.
747         IRBuilder<> Builder(NarrowDefUse);
748         NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType());
749       }
750       else {
751         // A wider extend was hidden behind a narrower one. This may induce
752         // another round of IV widening in which the intermediate IV becomes
753         // dead. It should be very rare.
754         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
755               << " not wide enough to subsume " << *NarrowUse << "\n");
756         NarrowUse->replaceUsesOfWith(NarrowDef, WideDef);
757         NewDef = NarrowUse;
758       }
759     }
760     if (NewDef != NarrowUse) {
761       DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse
762             << " replaced by " << *WideDef << "\n");
763       ++NumElimExt;
764       NarrowUse->replaceAllUsesWith(NewDef);
765       DeadInsts.push_back(NarrowUse);
766     }
767     // Now that the extend is gone, we want to expose it's uses for potential
768     // further simplification. We don't need to directly inform SimplifyIVUsers
769     // of the new users, because their parent IV will be processed later as a
770     // new loop phi. If we preserved IVUsers analysis, we would also want to
771     // push the uses of WideDef here.
772 
773     // No further widening is needed. The deceased [sz]ext had done it for us.
774     return 0;
775   }
776   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse);
777   if (!WideAddRec) {
778     // This user does not evaluate to a recurence after widening, so don't
779     // follow it. Instead insert a Trunc to kill off the original use,
780     // eventually isolating the original narrow IV so it can be removed.
781     IRBuilder<> Builder(NarrowDefUse);
782     Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType());
783     NarrowUse->replaceUsesOfWith(NarrowDef, Trunc);
784     return 0;
785   }
786   // We assume that block terminators are not SCEVable.
787   assert(NarrowUse != NarrowUse->getParent()->getTerminator() &&
788          "can't split terminators");
789 
790   // Reuse the IV increment that SCEVExpander created as long as it dominates
791   // NarrowUse.
792   Instruction *WideUse = 0;
793   if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) {
794     WideUse = WideInc;
795   }
796   else {
797     WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef);
798     if (!WideUse)
799       return 0;
800   }
801   // GetWideRecurrence ensured that the narrow expression could be extended
802   // outside the loop without overflow. This suggests that the wide use
803   // evaluates to the same expression as the extended narrow use, but doesn't
804   // absolutely guarantee it. Hence the following failsafe check. In rare cases
805   // where it fails, we simply throw away the newly created wide use.
806   if (WideAddRec != SE->getSCEV(WideUse)) {
807     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
808           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
809     DeadInsts.push_back(WideUse);
810     return 0;
811   }
812 
813   // Returning WideUse pushes it on the worklist.
814   return WideUse;
815 }
816 
817 /// CreateWideIV - Process a single induction variable. First use the
818 /// SCEVExpander to create a wide induction variable that evaluates to the same
819 /// recurrence as the original narrow IV. Then use a worklist to forward
820 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
821 /// interesting IV users, the narrow IV will be isolated for removal by
822 /// DeleteDeadPHIs.
823 ///
824 /// It would be simpler to delete uses as they are processed, but we must avoid
825 /// invalidating SCEV expressions.
826 ///
827 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
828   // Is this phi an induction variable?
829   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
830   if (!AddRec)
831     return NULL;
832 
833   // Widen the induction variable expression.
834   const SCEV *WideIVExpr = IsSigned ?
835     SE->getSignExtendExpr(AddRec, WideType) :
836     SE->getZeroExtendExpr(AddRec, WideType);
837 
838   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
839          "Expect the new IV expression to preserve its type");
840 
841   // Can the IV be extended outside the loop without overflow?
842   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
843   if (!AddRec || AddRec->getLoop() != L)
844     return NULL;
845 
846   // An AddRec must have loop-invariant operands. Since this AddRec is
847   // materialized by a loop header phi, the expression cannot have any post-loop
848   // operands, so they must dominate the loop header.
849   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
850          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
851          && "Loop header phi recurrence inputs do not dominate the loop");
852 
853   // The rewriter provides a value for the desired IV expression. This may
854   // either find an existing phi or materialize a new one. Either way, we
855   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
856   // of the phi-SCC dominates the loop entry.
857   Instruction *InsertPt = L->getHeader()->begin();
858   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
859 
860   // Remembering the WideIV increment generated by SCEVExpander allows
861   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
862   // employ a general reuse mechanism because the call above is the only call to
863   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
864   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
865     WideInc =
866       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
867     WideIncExpr = SE->getSCEV(WideInc);
868   }
869 
870   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
871   ++NumWidened;
872 
873   // Traverse the def-use chain using a worklist starting at the original IV.
874   assert(Widened.empty() && "expect initial state" );
875 
876   // Each worklist entry has a Narrow def-use link and Wide def.
877   SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers;
878   for (Value::use_iterator UI = OrigPhi->use_begin(),
879          UE = OrigPhi->use_end(); UI != UE; ++UI) {
880     NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WidePhi));
881   }
882   while (!NarrowIVUsers.empty()) {
883     Use *UsePtr;
884     Instruction *WideDef;
885     tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val();
886     Use &NarrowDefUse = *UsePtr;
887 
888     // Process a def-use edge. This may replace the use, so don't hold a
889     // use_iterator across it.
890     Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get());
891     Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef);
892 
893     // Follow all def-use edges from the previous narrow use.
894     if (WideUse) {
895       for (Value::use_iterator UI = NarrowDefUse.getUser()->use_begin(),
896              UE = NarrowDefUse.getUser()->use_end(); UI != UE; ++UI) {
897         NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideUse));
898       }
899     }
900     // WidenIVUse may have removed the def-use edge.
901     if (NarrowDef->use_empty())
902       DeadInsts.push_back(NarrowDef);
903   }
904   return WidePhi;
905 }
906 
907 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
908   unsigned IVOperIdx = 0;
909   ICmpInst::Predicate Pred = ICmp->getPredicate();
910   if (IVOperand != ICmp->getOperand(0)) {
911     // Swapped
912     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
913     IVOperIdx = 1;
914     Pred = ICmpInst::getSwappedPredicate(Pred);
915   }
916 
917   // Get the SCEVs for the ICmp operands.
918   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
919   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
920 
921   // Simplify unnecessary loops away.
922   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
923   S = SE->getSCEVAtScope(S, ICmpLoop);
924   X = SE->getSCEVAtScope(X, ICmpLoop);
925 
926   // If the condition is always true or always false, replace it with
927   // a constant value.
928   if (SE->isKnownPredicate(Pred, S, X))
929     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
930   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
931     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
932   else
933     return;
934 
935   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
936   ++NumElimCmp;
937   Changed = true;
938   DeadInsts.push_back(ICmp);
939 }
940 
941 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
942                                           Value *IVOperand,
943                                           bool IsSigned) {
944   // We're only interested in the case where we know something about
945   // the numerator.
946   if (IVOperand != Rem->getOperand(0))
947     return;
948 
949   // Get the SCEVs for the ICmp operands.
950   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
951   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
952 
953   // Simplify unnecessary loops away.
954   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
955   S = SE->getSCEVAtScope(S, ICmpLoop);
956   X = SE->getSCEVAtScope(X, ICmpLoop);
957 
958   // i % n  -->  i  if i is in [0,n).
959   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
960       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
961                            S, X))
962     Rem->replaceAllUsesWith(Rem->getOperand(0));
963   else {
964     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
965     const SCEV *LessOne =
966       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
967     if (IsSigned && !SE->isKnownNonNegative(LessOne))
968       return;
969 
970     if (!SE->isKnownPredicate(IsSigned ?
971                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
972                               LessOne, X))
973       return;
974 
975     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
976                                   Rem->getOperand(0), Rem->getOperand(1),
977                                   "tmp");
978     SelectInst *Sel =
979       SelectInst::Create(ICmp,
980                          ConstantInt::get(Rem->getType(), 0),
981                          Rem->getOperand(0), "tmp", Rem);
982     Rem->replaceAllUsesWith(Sel);
983   }
984 
985   // Inform IVUsers about the new users.
986   if (IU) {
987     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
988       IU->AddUsersIfInteresting(I);
989   }
990   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
991   ++NumElimRem;
992   Changed = true;
993   DeadInsts.push_back(Rem);
994 }
995 
996 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
997 /// no observable side-effect given the range of IV values.
998 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
999                                      Instruction *IVOperand) {
1000   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1001     EliminateIVComparison(ICmp, IVOperand);
1002     return true;
1003   }
1004   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1005     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1006     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1007       EliminateIVRemainder(Rem, IVOperand, IsSigned);
1008       return true;
1009     }
1010   }
1011 
1012   // Eliminate any operation that SCEV can prove is an identity function.
1013   if (!SE->isSCEVable(UseInst->getType()) ||
1014       (UseInst->getType() != IVOperand->getType()) ||
1015       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1016     return false;
1017 
1018   UseInst->replaceAllUsesWith(IVOperand);
1019 
1020   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1021   ++NumElimIdentity;
1022   Changed = true;
1023   DeadInsts.push_back(UseInst);
1024   return true;
1025 }
1026 
1027 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1028 ///
1029 static void pushIVUsers(
1030   Instruction *Def,
1031   SmallPtrSet<Instruction*,16> &Simplified,
1032   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1033 
1034   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1035        UI != E; ++UI) {
1036     Instruction *User = cast<Instruction>(*UI);
1037 
1038     // Avoid infinite or exponential worklist processing.
1039     // Also ensure unique worklist users.
1040     if (Simplified.insert(User))
1041       SimpleIVUsers.push_back(std::make_pair(User, Def));
1042   }
1043 }
1044 
1045 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1046 /// expression in terms of that IV.
1047 ///
1048 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1049 /// non-recursively when the operand is already known to be a simpleIVUser.
1050 ///
1051 bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) {
1052   if (!SE->isSCEVable(I->getType()))
1053     return false;
1054 
1055   // Get the symbolic expression for this instruction.
1056   const SCEV *S = SE->getSCEV(I);
1057 
1058   // We assume that terminators are not SCEVable.
1059   assert((!S || I != I->getParent()->getTerminator()) &&
1060          "can't fold terminators");
1061 
1062   // Only consider affine recurrences.
1063   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1064   if (AR && AR->getLoop() == L)
1065     return true;
1066 
1067   return false;
1068 }
1069 
1070 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1071 /// of IV users. Each successive simplification may push more users which may
1072 /// themselves be candidates for simplification.
1073 ///
1074 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1075 /// simplifies instructions in-place during analysis. Rather than rewriting
1076 /// induction variables bottom-up from their users, it transforms a chain of
1077 /// IVUsers top-down, updating the IR only when it encouters a clear
1078 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1079 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1080 /// extend elimination.
1081 ///
1082 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1083 ///
1084 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1085   std::map<PHINode *, WideIVInfo> WideIVMap;
1086 
1087   SmallVector<PHINode*, 8> LoopPhis;
1088   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1089     LoopPhis.push_back(cast<PHINode>(I));
1090   }
1091   // Each round of simplification iterates through the SimplifyIVUsers worklist
1092   // for all current phis, then determines whether any IVs can be
1093   // widened. Widening adds new phis to LoopPhis, inducing another round of
1094   // simplification on the wide IVs.
1095   while (!LoopPhis.empty()) {
1096     // Evaluate as many IV expressions as possible before widening any IVs. This
1097     // forces SCEV to set no-wrap flags before evaluating sign/zero
1098     // extension. The first time SCEV attempts to normalize sign/zero extension,
1099     // the result becomes final. So for the most predictable results, we delay
1100     // evaluation of sign/zero extend evaluation until needed, and avoid running
1101     // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1102     do {
1103       PHINode *CurrIV = LoopPhis.pop_back_val();
1104 
1105       // Information about sign/zero extensions of CurrIV.
1106       WideIVInfo WI;
1107 
1108       // Instructions processed by SimplifyIVUsers for CurrIV.
1109       SmallPtrSet<Instruction*,16> Simplified;
1110 
1111       // Use-def pairs if IVUsers waiting to be processed for CurrIV.
1112       SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1113 
1114       pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1115 
1116       while (!SimpleIVUsers.empty()) {
1117         Instruction *UseInst, *Operand;
1118         tie(UseInst, Operand) = SimpleIVUsers.pop_back_val();
1119 
1120         if (EliminateIVUser(UseInst, Operand)) {
1121           pushIVUsers(Operand, Simplified, SimpleIVUsers);
1122           continue;
1123         }
1124         if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) {
1125           bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1126           if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1127             CollectExtend(Cast, IsSigned, WI, SE, TD);
1128           }
1129           continue;
1130         }
1131         if (isSimpleIVUser(UseInst, L)) {
1132           pushIVUsers(UseInst, Simplified, SimpleIVUsers);
1133         }
1134       }
1135       if (WI.WidestNativeType) {
1136         WideIVMap[CurrIV] = WI;
1137       }
1138     } while(!LoopPhis.empty());
1139 
1140     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1141            E = WideIVMap.end(); I != E; ++I) {
1142       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1143       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1144         Changed = true;
1145         LoopPhis.push_back(WidePhi);
1146       }
1147     }
1148     WideIVMap.clear();
1149   }
1150 }
1151 
1152 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1153   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1154   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1155   //    canonicalization can be a pessimization without LSR to "clean up"
1156   //    afterwards.
1157   //  - We depend on having a preheader; in particular,
1158   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1159   //    and we're in trouble if we can't find the induction variable even when
1160   //    we've manually inserted one.
1161   if (!L->isLoopSimplifyForm())
1162     return false;
1163 
1164   if (!DisableIVRewrite)
1165     IU = &getAnalysis<IVUsers>();
1166   LI = &getAnalysis<LoopInfo>();
1167   SE = &getAnalysis<ScalarEvolution>();
1168   DT = &getAnalysis<DominatorTree>();
1169   TD = getAnalysisIfAvailable<TargetData>();
1170 
1171   DeadInsts.clear();
1172   Changed = false;
1173 
1174   // If there are any floating-point recurrences, attempt to
1175   // transform them to use integer recurrences.
1176   RewriteNonIntegerIVs(L);
1177 
1178   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1179 
1180   // Create a rewriter object which we'll use to transform the code with.
1181   SCEVExpander Rewriter(*SE, "indvars");
1182 
1183   // Eliminate redundant IV users.
1184   //
1185   // Simplification works best when run before other consumers of SCEV. We
1186   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1187   // other expressions involving loop IVs have been evaluated. This helps SCEV
1188   // set no-wrap flags before normalizing sign/zero extension.
1189   if (DisableIVRewrite) {
1190     Rewriter.disableCanonicalMode();
1191     SimplifyIVUsersNoRewrite(L, Rewriter);
1192   }
1193 
1194   // Check to see if this loop has a computable loop-invariant execution count.
1195   // If so, this means that we can compute the final value of any expressions
1196   // that are recurrent in the loop, and substitute the exit values from the
1197   // loop into any instructions outside of the loop that use the final values of
1198   // the current expressions.
1199   //
1200   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1201     RewriteLoopExitValues(L, Rewriter);
1202 
1203   // Eliminate redundant IV users.
1204   if (!DisableIVRewrite)
1205     SimplifyIVUsers(Rewriter);
1206 
1207   // Compute the type of the largest recurrence expression, and decide whether
1208   // a canonical induction variable should be inserted.
1209   const Type *LargestType = 0;
1210   bool NeedCannIV = false;
1211   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1212   if (ExpandBECount) {
1213     // If we have a known trip count and a single exit block, we'll be
1214     // rewriting the loop exit test condition below, which requires a
1215     // canonical induction variable.
1216     NeedCannIV = true;
1217     const Type *Ty = BackedgeTakenCount->getType();
1218     if (DisableIVRewrite) {
1219       // In this mode, SimplifyIVUsers may have already widened the IV used by
1220       // the backedge test and inserted a Trunc on the compare's operand. Get
1221       // the wider type to avoid creating a redundant narrow IV only used by the
1222       // loop test.
1223       LargestType = getBackedgeIVType(L);
1224     }
1225     if (!LargestType ||
1226         SE->getTypeSizeInBits(Ty) >
1227         SE->getTypeSizeInBits(LargestType))
1228       LargestType = SE->getEffectiveSCEVType(Ty);
1229   }
1230   if (!DisableIVRewrite) {
1231     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1232       NeedCannIV = true;
1233       const Type *Ty =
1234         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1235       if (!LargestType ||
1236           SE->getTypeSizeInBits(Ty) >
1237           SE->getTypeSizeInBits(LargestType))
1238         LargestType = Ty;
1239     }
1240   }
1241 
1242   // Now that we know the largest of the induction variable expressions
1243   // in this loop, insert a canonical induction variable of the largest size.
1244   PHINode *IndVar = 0;
1245   if (NeedCannIV) {
1246     // Check to see if the loop already has any canonical-looking induction
1247     // variables. If any are present and wider than the planned canonical
1248     // induction variable, temporarily remove them, so that the Rewriter
1249     // doesn't attempt to reuse them.
1250     SmallVector<PHINode *, 2> OldCannIVs;
1251     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1252       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1253           SE->getTypeSizeInBits(LargestType))
1254         OldCannIV->removeFromParent();
1255       else
1256         break;
1257       OldCannIVs.push_back(OldCannIV);
1258     }
1259 
1260     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1261 
1262     ++NumInserted;
1263     Changed = true;
1264     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1265 
1266     // Now that the official induction variable is established, reinsert
1267     // any old canonical-looking variables after it so that the IR remains
1268     // consistent. They will be deleted as part of the dead-PHI deletion at
1269     // the end of the pass.
1270     while (!OldCannIVs.empty()) {
1271       PHINode *OldCannIV = OldCannIVs.pop_back_val();
1272       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
1273     }
1274   }
1275 
1276   // If we have a trip count expression, rewrite the loop's exit condition
1277   // using it.  We can currently only handle loops with a single exit.
1278   ICmpInst *NewICmp = 0;
1279   if (ExpandBECount) {
1280     assert(canExpandBackedgeTakenCount(L, SE) &&
1281            "canonical IV disrupted BackedgeTaken expansion");
1282     assert(NeedCannIV &&
1283            "LinearFunctionTestReplace requires a canonical induction variable");
1284     NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1285                                         Rewriter);
1286   }
1287   // Rewrite IV-derived expressions.
1288   if (!DisableIVRewrite)
1289     RewriteIVExpressions(L, Rewriter);
1290 
1291   // Clear the rewriter cache, because values that are in the rewriter's cache
1292   // can be deleted in the loop below, causing the AssertingVH in the cache to
1293   // trigger.
1294   Rewriter.clear();
1295 
1296   // Now that we're done iterating through lists, clean up any instructions
1297   // which are now dead.
1298   while (!DeadInsts.empty())
1299     if (Instruction *Inst =
1300           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1301       RecursivelyDeleteTriviallyDeadInstructions(Inst);
1302 
1303   // The Rewriter may not be used from this point on.
1304 
1305   // Loop-invariant instructions in the preheader that aren't used in the
1306   // loop may be sunk below the loop to reduce register pressure.
1307   SinkUnusedInvariants(L);
1308 
1309   // For completeness, inform IVUsers of the IV use in the newly-created
1310   // loop exit test instruction.
1311   if (NewICmp && IU)
1312     IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
1313 
1314   // Clean up dead instructions.
1315   Changed |= DeleteDeadPHIs(L->getHeader());
1316   // Check a post-condition.
1317   assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!");
1318   return Changed;
1319 }
1320 
1321 // FIXME: It is an extremely bad idea to indvar substitute anything more
1322 // complex than affine induction variables.  Doing so will put expensive
1323 // polynomial evaluations inside of the loop, and the str reduction pass
1324 // currently can only reduce affine polynomials.  For now just disable
1325 // indvar subst on anything more complex than an affine addrec, unless
1326 // it can be expanded to a trivial value.
1327 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
1328   // Loop-invariant values are safe.
1329   if (SE->isLoopInvariant(S, L)) return true;
1330 
1331   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
1332   // to transform them into efficient code.
1333   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
1334     return AR->isAffine();
1335 
1336   // An add is safe it all its operands are safe.
1337   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
1338     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
1339          E = Commutative->op_end(); I != E; ++I)
1340       if (!isSafe(*I, L, SE)) return false;
1341     return true;
1342   }
1343 
1344   // A cast is safe if its operand is.
1345   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
1346     return isSafe(C->getOperand(), L, SE);
1347 
1348   // A udiv is safe if its operands are.
1349   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
1350     return isSafe(UD->getLHS(), L, SE) &&
1351            isSafe(UD->getRHS(), L, SE);
1352 
1353   // SCEVUnknown is always safe.
1354   if (isa<SCEVUnknown>(S))
1355     return true;
1356 
1357   // Nothing else is safe.
1358   return false;
1359 }
1360 
1361 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
1362   // Rewrite all induction variable expressions in terms of the canonical
1363   // induction variable.
1364   //
1365   // If there were induction variables of other sizes or offsets, manually
1366   // add the offsets to the primary induction variable and cast, avoiding
1367   // the need for the code evaluation methods to insert induction variables
1368   // of different sizes.
1369   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
1370     Value *Op = UI->getOperandValToReplace();
1371     const Type *UseTy = Op->getType();
1372     Instruction *User = UI->getUser();
1373 
1374     // Compute the final addrec to expand into code.
1375     const SCEV *AR = IU->getReplacementExpr(*UI);
1376 
1377     // Evaluate the expression out of the loop, if possible.
1378     if (!L->contains(UI->getUser())) {
1379       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
1380       if (SE->isLoopInvariant(ExitVal, L))
1381         AR = ExitVal;
1382     }
1383 
1384     // FIXME: It is an extremely bad idea to indvar substitute anything more
1385     // complex than affine induction variables.  Doing so will put expensive
1386     // polynomial evaluations inside of the loop, and the str reduction pass
1387     // currently can only reduce affine polynomials.  For now just disable
1388     // indvar subst on anything more complex than an affine addrec, unless
1389     // it can be expanded to a trivial value.
1390     if (!isSafe(AR, L, SE))
1391       continue;
1392 
1393     // Determine the insertion point for this user. By default, insert
1394     // immediately before the user. The SCEVExpander class will automatically
1395     // hoist loop invariants out of the loop. For PHI nodes, there may be
1396     // multiple uses, so compute the nearest common dominator for the
1397     // incoming blocks.
1398     Instruction *InsertPt = User;
1399     if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
1400       for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
1401         if (PHI->getIncomingValue(i) == Op) {
1402           if (InsertPt == User)
1403             InsertPt = PHI->getIncomingBlock(i)->getTerminator();
1404           else
1405             InsertPt =
1406               DT->findNearestCommonDominator(InsertPt->getParent(),
1407                                              PHI->getIncomingBlock(i))
1408                     ->getTerminator();
1409         }
1410 
1411     // Now expand it into actual Instructions and patch it into place.
1412     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
1413 
1414     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
1415                  << "   into = " << *NewVal << "\n");
1416 
1417     if (!isValidRewrite(Op, NewVal)) {
1418       DeadInsts.push_back(NewVal);
1419       continue;
1420     }
1421     // Inform ScalarEvolution that this value is changing. The change doesn't
1422     // affect its value, but it does potentially affect which use lists the
1423     // value will be on after the replacement, which affects ScalarEvolution's
1424     // ability to walk use lists and drop dangling pointers when a value is
1425     // deleted.
1426     SE->forgetValue(User);
1427 
1428     // Patch the new value into place.
1429     if (Op->hasName())
1430       NewVal->takeName(Op);
1431     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
1432       NewValI->setDebugLoc(User->getDebugLoc());
1433     User->replaceUsesOfWith(Op, NewVal);
1434     UI->setOperandValToReplace(NewVal);
1435 
1436     ++NumRemoved;
1437     Changed = true;
1438 
1439     // The old value may be dead now.
1440     DeadInsts.push_back(Op);
1441   }
1442 }
1443 
1444 /// If there's a single exit block, sink any loop-invariant values that
1445 /// were defined in the preheader but not used inside the loop into the
1446 /// exit block to reduce register pressure in the loop.
1447 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1448   BasicBlock *ExitBlock = L->getExitBlock();
1449   if (!ExitBlock) return;
1450 
1451   BasicBlock *Preheader = L->getLoopPreheader();
1452   if (!Preheader) return;
1453 
1454   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1455   BasicBlock::iterator I = Preheader->getTerminator();
1456   while (I != Preheader->begin()) {
1457     --I;
1458     // New instructions were inserted at the end of the preheader.
1459     if (isa<PHINode>(I))
1460       break;
1461 
1462     // Don't move instructions which might have side effects, since the side
1463     // effects need to complete before instructions inside the loop.  Also don't
1464     // move instructions which might read memory, since the loop may modify
1465     // memory. Note that it's okay if the instruction might have undefined
1466     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1467     // block.
1468     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1469       continue;
1470 
1471     // Skip debug info intrinsics.
1472     if (isa<DbgInfoIntrinsic>(I))
1473       continue;
1474 
1475     // Don't sink static AllocaInsts out of the entry block, which would
1476     // turn them into dynamic allocas!
1477     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1478       if (AI->isStaticAlloca())
1479         continue;
1480 
1481     // Determine if there is a use in or before the loop (direct or
1482     // otherwise).
1483     bool UsedInLoop = false;
1484     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1485          UI != UE; ++UI) {
1486       User *U = *UI;
1487       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1488       if (PHINode *P = dyn_cast<PHINode>(U)) {
1489         unsigned i =
1490           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1491         UseBB = P->getIncomingBlock(i);
1492       }
1493       if (UseBB == Preheader || L->contains(UseBB)) {
1494         UsedInLoop = true;
1495         break;
1496       }
1497     }
1498 
1499     // If there is, the def must remain in the preheader.
1500     if (UsedInLoop)
1501       continue;
1502 
1503     // Otherwise, sink it to the exit block.
1504     Instruction *ToMove = I;
1505     bool Done = false;
1506 
1507     if (I != Preheader->begin()) {
1508       // Skip debug info intrinsics.
1509       do {
1510         --I;
1511       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1512 
1513       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1514         Done = true;
1515     } else {
1516       Done = true;
1517     }
1518 
1519     ToMove->moveBefore(InsertPt);
1520     if (Done) break;
1521     InsertPt = ToMove;
1522   }
1523 }
1524 
1525 /// ConvertToSInt - Convert APF to an integer, if possible.
1526 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
1527   bool isExact = false;
1528   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
1529     return false;
1530   // See if we can convert this to an int64_t
1531   uint64_t UIntVal;
1532   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
1533                            &isExact) != APFloat::opOK || !isExact)
1534     return false;
1535   IntVal = UIntVal;
1536   return true;
1537 }
1538 
1539 /// HandleFloatingPointIV - If the loop has floating induction variable
1540 /// then insert corresponding integer induction variable if possible.
1541 /// For example,
1542 /// for(double i = 0; i < 10000; ++i)
1543 ///   bar(i)
1544 /// is converted into
1545 /// for(int i = 0; i < 10000; ++i)
1546 ///   bar((double)i);
1547 ///
1548 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
1549   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1550   unsigned BackEdge     = IncomingEdge^1;
1551 
1552   // Check incoming value.
1553   ConstantFP *InitValueVal =
1554     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
1555 
1556   int64_t InitValue;
1557   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
1558     return;
1559 
1560   // Check IV increment. Reject this PN if increment operation is not
1561   // an add or increment value can not be represented by an integer.
1562   BinaryOperator *Incr =
1563     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
1564   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
1565 
1566   // If this is not an add of the PHI with a constantfp, or if the constant fp
1567   // is not an integer, bail out.
1568   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
1569   int64_t IncValue;
1570   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
1571       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
1572     return;
1573 
1574   // Check Incr uses. One user is PN and the other user is an exit condition
1575   // used by the conditional terminator.
1576   Value::use_iterator IncrUse = Incr->use_begin();
1577   Instruction *U1 = cast<Instruction>(*IncrUse++);
1578   if (IncrUse == Incr->use_end()) return;
1579   Instruction *U2 = cast<Instruction>(*IncrUse++);
1580   if (IncrUse != Incr->use_end()) return;
1581 
1582   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
1583   // only used by a branch, we can't transform it.
1584   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
1585   if (!Compare)
1586     Compare = dyn_cast<FCmpInst>(U2);
1587   if (Compare == 0 || !Compare->hasOneUse() ||
1588       !isa<BranchInst>(Compare->use_back()))
1589     return;
1590 
1591   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
1592 
1593   // We need to verify that the branch actually controls the iteration count
1594   // of the loop.  If not, the new IV can overflow and no one will notice.
1595   // The branch block must be in the loop and one of the successors must be out
1596   // of the loop.
1597   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
1598   if (!L->contains(TheBr->getParent()) ||
1599       (L->contains(TheBr->getSuccessor(0)) &&
1600        L->contains(TheBr->getSuccessor(1))))
1601     return;
1602 
1603 
1604   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
1605   // transform it.
1606   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
1607   int64_t ExitValue;
1608   if (ExitValueVal == 0 ||
1609       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
1610     return;
1611 
1612   // Find new predicate for integer comparison.
1613   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
1614   switch (Compare->getPredicate()) {
1615   default: return;  // Unknown comparison.
1616   case CmpInst::FCMP_OEQ:
1617   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
1618   case CmpInst::FCMP_ONE:
1619   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
1620   case CmpInst::FCMP_OGT:
1621   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
1622   case CmpInst::FCMP_OGE:
1623   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
1624   case CmpInst::FCMP_OLT:
1625   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
1626   case CmpInst::FCMP_OLE:
1627   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
1628   }
1629 
1630   // We convert the floating point induction variable to a signed i32 value if
1631   // we can.  This is only safe if the comparison will not overflow in a way
1632   // that won't be trapped by the integer equivalent operations.  Check for this
1633   // now.
1634   // TODO: We could use i64 if it is native and the range requires it.
1635 
1636   // The start/stride/exit values must all fit in signed i32.
1637   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
1638     return;
1639 
1640   // If not actually striding (add x, 0.0), avoid touching the code.
1641   if (IncValue == 0)
1642     return;
1643 
1644   // Positive and negative strides have different safety conditions.
1645   if (IncValue > 0) {
1646     // If we have a positive stride, we require the init to be less than the
1647     // exit value and an equality or less than comparison.
1648     if (InitValue >= ExitValue ||
1649         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
1650       return;
1651 
1652     uint32_t Range = uint32_t(ExitValue-InitValue);
1653     if (NewPred == CmpInst::ICMP_SLE) {
1654       // Normalize SLE -> SLT, check for infinite loop.
1655       if (++Range == 0) return;  // Range overflows.
1656     }
1657 
1658     unsigned Leftover = Range % uint32_t(IncValue);
1659 
1660     // If this is an equality comparison, we require that the strided value
1661     // exactly land on the exit value, otherwise the IV condition will wrap
1662     // around and do things the fp IV wouldn't.
1663     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1664         Leftover != 0)
1665       return;
1666 
1667     // If the stride would wrap around the i32 before exiting, we can't
1668     // transform the IV.
1669     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
1670       return;
1671 
1672   } else {
1673     // If we have a negative stride, we require the init to be greater than the
1674     // exit value and an equality or greater than comparison.
1675     if (InitValue >= ExitValue ||
1676         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
1677       return;
1678 
1679     uint32_t Range = uint32_t(InitValue-ExitValue);
1680     if (NewPred == CmpInst::ICMP_SGE) {
1681       // Normalize SGE -> SGT, check for infinite loop.
1682       if (++Range == 0) return;  // Range overflows.
1683     }
1684 
1685     unsigned Leftover = Range % uint32_t(-IncValue);
1686 
1687     // If this is an equality comparison, we require that the strided value
1688     // exactly land on the exit value, otherwise the IV condition will wrap
1689     // around and do things the fp IV wouldn't.
1690     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
1691         Leftover != 0)
1692       return;
1693 
1694     // If the stride would wrap around the i32 before exiting, we can't
1695     // transform the IV.
1696     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
1697       return;
1698   }
1699 
1700   const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
1701 
1702   // Insert new integer induction variable.
1703   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
1704   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
1705                       PN->getIncomingBlock(IncomingEdge));
1706 
1707   Value *NewAdd =
1708     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
1709                               Incr->getName()+".int", Incr);
1710   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
1711 
1712   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
1713                                       ConstantInt::get(Int32Ty, ExitValue),
1714                                       Compare->getName());
1715 
1716   // In the following deletions, PN may become dead and may be deleted.
1717   // Use a WeakVH to observe whether this happens.
1718   WeakVH WeakPH = PN;
1719 
1720   // Delete the old floating point exit comparison.  The branch starts using the
1721   // new comparison.
1722   NewCompare->takeName(Compare);
1723   Compare->replaceAllUsesWith(NewCompare);
1724   RecursivelyDeleteTriviallyDeadInstructions(Compare);
1725 
1726   // Delete the old floating point increment.
1727   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
1728   RecursivelyDeleteTriviallyDeadInstructions(Incr);
1729 
1730   // If the FP induction variable still has uses, this is because something else
1731   // in the loop uses its value.  In order to canonicalize the induction
1732   // variable, we chose to eliminate the IV and rewrite it in terms of an
1733   // int->fp cast.
1734   //
1735   // We give preference to sitofp over uitofp because it is faster on most
1736   // platforms.
1737   if (WeakPH) {
1738     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
1739                                  PN->getParent()->getFirstNonPHI());
1740     PN->replaceAllUsesWith(Conv);
1741     RecursivelyDeleteTriviallyDeadInstructions(PN);
1742   }
1743 
1744   // Add a new IVUsers entry for the newly-created integer PHI.
1745   if (IU)
1746     IU->AddUsersIfInteresting(NewPHI);
1747 }
1748