1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // This transformation makes the following changes to each loop with an 15 // identifiable induction variable: 16 // 1. All loops are transformed to have a SINGLE canonical induction variable 17 // which starts at zero and steps by one. 18 // 2. The canonical induction variable is guaranteed to be the first PHI node 19 // in the loop header block. 20 // 3. The canonical induction variable is guaranteed to be in a wide enough 21 // type so that IV expressions need not be (directly) zero-extended or 22 // sign-extended. 23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts. 24 // 25 // If the trip count of a loop is computable, this pass also makes the following 26 // changes: 27 // 1. The exit condition for the loop is canonicalized to compare the 28 // induction value against the exit value. This turns loops like: 29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 30 // 2. Any use outside of the loop of an expression derived from the indvar 31 // is changed to compute the derived value outside of the loop, eliminating 32 // the dependence on the exit value of the induction variable. If the only 33 // purpose of the loop is to compute the exit value of some derived 34 // expression, this transformation will make the loop dead. 35 // 36 // This transformation should be followed by strength reduction after all of the 37 // desired loop transformations have been performed. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #define DEBUG_TYPE "indvars" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/BasicBlock.h" 44 #include "llvm/Constants.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/LLVMContext.h" 48 #include "llvm/Type.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/IVUsers.h" 51 #include "llvm/Analysis/ScalarEvolutionExpander.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Target/TargetData.h" 61 #include "llvm/ADT/SmallVector.h" 62 #include "llvm/ADT/Statistic.h" 63 #include "llvm/ADT/STLExtras.h" 64 using namespace llvm; 65 66 STATISTIC(NumRemoved , "Number of aux indvars removed"); 67 STATISTIC(NumWidened , "Number of indvars widened"); 68 STATISTIC(NumInserted , "Number of canonical indvars added"); 69 STATISTIC(NumReplaced , "Number of exit values replaced"); 70 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 71 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 72 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 73 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 74 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 75 76 static cl::opt<bool> DisableIVRewrite( 77 "disable-iv-rewrite", cl::Hidden, 78 cl::desc("Disable canonical induction variable rewriting")); 79 80 namespace { 81 class IndVarSimplify : public LoopPass { 82 IVUsers *IU; 83 LoopInfo *LI; 84 ScalarEvolution *SE; 85 DominatorTree *DT; 86 TargetData *TD; 87 88 SmallVector<WeakVH, 16> DeadInsts; 89 bool Changed; 90 public: 91 92 static char ID; // Pass identification, replacement for typeid 93 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 94 Changed(false) { 95 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 96 } 97 98 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 99 100 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 101 AU.addRequired<DominatorTree>(); 102 AU.addRequired<LoopInfo>(); 103 AU.addRequired<ScalarEvolution>(); 104 AU.addRequiredID(LoopSimplifyID); 105 AU.addRequiredID(LCSSAID); 106 if (!DisableIVRewrite) 107 AU.addRequired<IVUsers>(); 108 AU.addPreserved<ScalarEvolution>(); 109 AU.addPreservedID(LoopSimplifyID); 110 AU.addPreservedID(LCSSAID); 111 if (!DisableIVRewrite) 112 AU.addPreserved<IVUsers>(); 113 AU.setPreservesCFG(); 114 } 115 116 private: 117 bool isValidRewrite(Value *FromVal, Value *ToVal); 118 119 void SimplifyIVUsers(SCEVExpander &Rewriter); 120 void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter); 121 122 bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 123 void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 124 void EliminateIVRemainder(BinaryOperator *Rem, 125 Value *IVOperand, 126 bool IsSigned); 127 bool isSimpleIVUser(Instruction *I, const Loop *L); 128 void RewriteNonIntegerIVs(Loop *L); 129 130 ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 131 PHINode *IndVar, 132 SCEVExpander &Rewriter); 133 134 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 135 136 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 137 138 void SinkUnusedInvariants(Loop *L); 139 140 void HandleFloatingPointIV(Loop *L, PHINode *PH); 141 }; 142 } 143 144 char IndVarSimplify::ID = 0; 145 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 146 "Induction Variable Simplification", false, false) 147 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 148 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 149 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 150 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 151 INITIALIZE_PASS_DEPENDENCY(LCSSA) 152 INITIALIZE_PASS_DEPENDENCY(IVUsers) 153 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 154 "Induction Variable Simplification", false, false) 155 156 Pass *llvm::createIndVarSimplifyPass() { 157 return new IndVarSimplify(); 158 } 159 160 /// isValidRewrite - Return true if the SCEV expansion generated by the 161 /// rewriter can replace the original value. SCEV guarantees that it 162 /// produces the same value, but the way it is produced may be illegal IR. 163 /// Ideally, this function will only be called for verification. 164 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 165 // If an SCEV expression subsumed multiple pointers, its expansion could 166 // reassociate the GEP changing the base pointer. This is illegal because the 167 // final address produced by a GEP chain must be inbounds relative to its 168 // underlying object. Otherwise basic alias analysis, among other things, 169 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 170 // producing an expression involving multiple pointers. Until then, we must 171 // bail out here. 172 // 173 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 174 // because it understands lcssa phis while SCEV does not. 175 Value *FromPtr = FromVal; 176 Value *ToPtr = ToVal; 177 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 178 FromPtr = GEP->getPointerOperand(); 179 } 180 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 181 ToPtr = GEP->getPointerOperand(); 182 } 183 if (FromPtr != FromVal || ToPtr != ToVal) { 184 // Quickly check the common case 185 if (FromPtr == ToPtr) 186 return true; 187 188 // SCEV may have rewritten an expression that produces the GEP's pointer 189 // operand. That's ok as long as the pointer operand has the same base 190 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 191 // base of a recurrence. This handles the case in which SCEV expansion 192 // converts a pointer type recurrence into a nonrecurrent pointer base 193 // indexed by an integer recurrence. 194 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 195 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 196 if (FromBase == ToBase) 197 return true; 198 199 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 200 << *FromBase << " != " << *ToBase << "\n"); 201 202 return false; 203 } 204 return true; 205 } 206 207 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 208 /// count expression can be safely and cheaply expanded into an instruction 209 /// sequence that can be used by LinearFunctionTestReplace. 210 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 211 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 212 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 213 BackedgeTakenCount->isZero()) 214 return false; 215 216 if (!L->getExitingBlock()) 217 return false; 218 219 // Can't rewrite non-branch yet. 220 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 221 if (!BI) 222 return false; 223 224 // Special case: If the backedge-taken count is a UDiv, it's very likely a 225 // UDiv that ScalarEvolution produced in order to compute a precise 226 // expression, rather than a UDiv from the user's code. If we can't find a 227 // UDiv in the code with some simple searching, assume the former and forego 228 // rewriting the loop. 229 if (isa<SCEVUDivExpr>(BackedgeTakenCount)) { 230 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 231 if (!OrigCond) return false; 232 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 233 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 234 if (R != BackedgeTakenCount) { 235 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 236 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 237 if (L != BackedgeTakenCount) 238 return false; 239 } 240 } 241 return true; 242 } 243 244 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 245 /// through Truncs. 246 /// 247 /// TODO: Unnecessary once LinearFunctionTestReplace is removed. 248 static const Type *getBackedgeIVType(Loop *L) { 249 if (!L->getExitingBlock()) 250 return 0; 251 252 // Can't rewrite non-branch yet. 253 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 254 if (!BI) 255 return 0; 256 257 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 258 if (!Cond) 259 return 0; 260 261 const Type *Ty = 0; 262 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 263 OI != OE; ++OI) { 264 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 265 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 266 if (!Trunc) 267 continue; 268 269 return Trunc->getSrcTy(); 270 } 271 return Ty; 272 } 273 274 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 275 /// loop to be a canonical != comparison against the incremented loop induction 276 /// variable. This pass is able to rewrite the exit tests of any loop where the 277 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 278 /// is actually a much broader range than just linear tests. 279 ICmpInst *IndVarSimplify:: 280 LinearFunctionTestReplace(Loop *L, 281 const SCEV *BackedgeTakenCount, 282 PHINode *IndVar, 283 SCEVExpander &Rewriter) { 284 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 285 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 286 287 // If the exiting block is not the same as the backedge block, we must compare 288 // against the preincremented value, otherwise we prefer to compare against 289 // the post-incremented value. 290 Value *CmpIndVar; 291 const SCEV *RHS = BackedgeTakenCount; 292 if (L->getExitingBlock() == L->getLoopLatch()) { 293 // Add one to the "backedge-taken" count to get the trip count. 294 // If this addition may overflow, we have to be more pessimistic and 295 // cast the induction variable before doing the add. 296 const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0); 297 const SCEV *N = 298 SE->getAddExpr(BackedgeTakenCount, 299 SE->getConstant(BackedgeTakenCount->getType(), 1)); 300 if ((isa<SCEVConstant>(N) && !N->isZero()) || 301 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 302 // No overflow. Cast the sum. 303 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); 304 } else { 305 // Potential overflow. Cast before doing the add. 306 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 307 IndVar->getType()); 308 RHS = SE->getAddExpr(RHS, 309 SE->getConstant(IndVar->getType(), 1)); 310 } 311 312 // The BackedgeTaken expression contains the number of times that the 313 // backedge branches to the loop header. This is one less than the 314 // number of times the loop executes, so use the incremented indvar. 315 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 316 } else { 317 // We have to use the preincremented value... 318 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 319 IndVar->getType()); 320 CmpIndVar = IndVar; 321 } 322 323 // Expand the code for the iteration count. 324 assert(SE->isLoopInvariant(RHS, L) && 325 "Computed iteration count is not loop invariant!"); 326 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI); 327 328 // Insert a new icmp_ne or icmp_eq instruction before the branch. 329 ICmpInst::Predicate Opcode; 330 if (L->contains(BI->getSuccessor(0))) 331 Opcode = ICmpInst::ICMP_NE; 332 else 333 Opcode = ICmpInst::ICMP_EQ; 334 335 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 336 << " LHS:" << *CmpIndVar << '\n' 337 << " op:\t" 338 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 339 << " RHS:\t" << *RHS << "\n"); 340 341 ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond"); 342 343 Value *OrigCond = BI->getCondition(); 344 // It's tempting to use replaceAllUsesWith here to fully replace the old 345 // comparison, but that's not immediately safe, since users of the old 346 // comparison may not be dominated by the new comparison. Instead, just 347 // update the branch to use the new comparison; in the common case this 348 // will make old comparison dead. 349 BI->setCondition(Cond); 350 DeadInsts.push_back(OrigCond); 351 352 ++NumLFTR; 353 Changed = true; 354 return Cond; 355 } 356 357 /// RewriteLoopExitValues - Check to see if this loop has a computable 358 /// loop-invariant execution count. If so, this means that we can compute the 359 /// final value of any expressions that are recurrent in the loop, and 360 /// substitute the exit values from the loop into any instructions outside of 361 /// the loop that use the final values of the current expressions. 362 /// 363 /// This is mostly redundant with the regular IndVarSimplify activities that 364 /// happen later, except that it's more powerful in some cases, because it's 365 /// able to brute-force evaluate arbitrary instructions as long as they have 366 /// constant operands at the beginning of the loop. 367 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 368 // Verify the input to the pass in already in LCSSA form. 369 assert(L->isLCSSAForm(*DT)); 370 371 SmallVector<BasicBlock*, 8> ExitBlocks; 372 L->getUniqueExitBlocks(ExitBlocks); 373 374 // Find all values that are computed inside the loop, but used outside of it. 375 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 376 // the exit blocks of the loop to find them. 377 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 378 BasicBlock *ExitBB = ExitBlocks[i]; 379 380 // If there are no PHI nodes in this exit block, then no values defined 381 // inside the loop are used on this path, skip it. 382 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 383 if (!PN) continue; 384 385 unsigned NumPreds = PN->getNumIncomingValues(); 386 387 // Iterate over all of the PHI nodes. 388 BasicBlock::iterator BBI = ExitBB->begin(); 389 while ((PN = dyn_cast<PHINode>(BBI++))) { 390 if (PN->use_empty()) 391 continue; // dead use, don't replace it 392 393 // SCEV only supports integer expressions for now. 394 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 395 continue; 396 397 // It's necessary to tell ScalarEvolution about this explicitly so that 398 // it can walk the def-use list and forget all SCEVs, as it may not be 399 // watching the PHI itself. Once the new exit value is in place, there 400 // may not be a def-use connection between the loop and every instruction 401 // which got a SCEVAddRecExpr for that loop. 402 SE->forgetValue(PN); 403 404 // Iterate over all of the values in all the PHI nodes. 405 for (unsigned i = 0; i != NumPreds; ++i) { 406 // If the value being merged in is not integer or is not defined 407 // in the loop, skip it. 408 Value *InVal = PN->getIncomingValue(i); 409 if (!isa<Instruction>(InVal)) 410 continue; 411 412 // If this pred is for a subloop, not L itself, skip it. 413 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 414 continue; // The Block is in a subloop, skip it. 415 416 // Check that InVal is defined in the loop. 417 Instruction *Inst = cast<Instruction>(InVal); 418 if (!L->contains(Inst)) 419 continue; 420 421 // Okay, this instruction has a user outside of the current loop 422 // and varies predictably *inside* the loop. Evaluate the value it 423 // contains when the loop exits, if possible. 424 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 425 if (!SE->isLoopInvariant(ExitValue, L)) 426 continue; 427 428 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 429 430 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 431 << " LoopVal = " << *Inst << "\n"); 432 433 if (!isValidRewrite(Inst, ExitVal)) { 434 DeadInsts.push_back(ExitVal); 435 continue; 436 } 437 Changed = true; 438 ++NumReplaced; 439 440 PN->setIncomingValue(i, ExitVal); 441 442 // If this instruction is dead now, delete it. 443 RecursivelyDeleteTriviallyDeadInstructions(Inst); 444 445 if (NumPreds == 1) { 446 // Completely replace a single-pred PHI. This is safe, because the 447 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 448 // node anymore. 449 PN->replaceAllUsesWith(ExitVal); 450 RecursivelyDeleteTriviallyDeadInstructions(PN); 451 } 452 } 453 if (NumPreds != 1) { 454 // Clone the PHI and delete the original one. This lets IVUsers and 455 // any other maps purge the original user from their records. 456 PHINode *NewPN = cast<PHINode>(PN->clone()); 457 NewPN->takeName(PN); 458 NewPN->insertBefore(PN); 459 PN->replaceAllUsesWith(NewPN); 460 PN->eraseFromParent(); 461 } 462 } 463 } 464 465 // The insertion point instruction may have been deleted; clear it out 466 // so that the rewriter doesn't trip over it later. 467 Rewriter.clearInsertPoint(); 468 } 469 470 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 471 // First step. Check to see if there are any floating-point recurrences. 472 // If there are, change them into integer recurrences, permitting analysis by 473 // the SCEV routines. 474 // 475 BasicBlock *Header = L->getHeader(); 476 477 SmallVector<WeakVH, 8> PHIs; 478 for (BasicBlock::iterator I = Header->begin(); 479 PHINode *PN = dyn_cast<PHINode>(I); ++I) 480 PHIs.push_back(PN); 481 482 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 483 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 484 HandleFloatingPointIV(L, PN); 485 486 // If the loop previously had floating-point IV, ScalarEvolution 487 // may not have been able to compute a trip count. Now that we've done some 488 // re-writing, the trip count may be computable. 489 if (Changed) 490 SE->forgetLoop(L); 491 } 492 493 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this 494 /// loop. IVUsers is treated as a worklist. Each successive simplification may 495 /// push more users which may themselves be candidates for simplification. 496 /// 497 /// This is the old approach to IV simplification to be replaced by 498 /// SimplifyIVUsersNoRewrite. 499 /// 500 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) { 501 // Each round of simplification involves a round of eliminating operations 502 // followed by a round of widening IVs. A single IVUsers worklist is used 503 // across all rounds. The inner loop advances the user. If widening exposes 504 // more uses, then another pass through the outer loop is triggered. 505 for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) { 506 Instruction *UseInst = I->getUser(); 507 Value *IVOperand = I->getOperandValToReplace(); 508 509 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 510 EliminateIVComparison(ICmp, IVOperand); 511 continue; 512 } 513 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 514 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 515 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 516 EliminateIVRemainder(Rem, IVOperand, IsSigned); 517 continue; 518 } 519 } 520 } 521 } 522 523 namespace { 524 // Collect information about induction variables that are used by sign/zero 525 // extend operations. This information is recorded by CollectExtend and 526 // provides the input to WidenIV. 527 struct WideIVInfo { 528 const Type *WidestNativeType; // Widest integer type created [sz]ext 529 bool IsSigned; // Was an sext user seen before a zext? 530 531 WideIVInfo() : WidestNativeType(0), IsSigned(false) {} 532 }; 533 } 534 535 /// CollectExtend - Update information about the induction variable that is 536 /// extended by this sign or zero extend operation. This is used to determine 537 /// the final width of the IV before actually widening it. 538 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI, 539 ScalarEvolution *SE, const TargetData *TD) { 540 const Type *Ty = Cast->getType(); 541 uint64_t Width = SE->getTypeSizeInBits(Ty); 542 if (TD && !TD->isLegalInteger(Width)) 543 return; 544 545 if (!WI.WidestNativeType) { 546 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 547 WI.IsSigned = IsSigned; 548 return; 549 } 550 551 // We extend the IV to satisfy the sign of its first user, arbitrarily. 552 if (WI.IsSigned != IsSigned) 553 return; 554 555 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 556 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 557 } 558 559 namespace { 560 /// WidenIV - The goal of this transform is to remove sign and zero extends 561 /// without creating any new induction variables. To do this, it creates a new 562 /// phi of the wider type and redirects all users, either removing extends or 563 /// inserting truncs whenever we stop propagating the type. 564 /// 565 class WidenIV { 566 // Parameters 567 PHINode *OrigPhi; 568 const Type *WideType; 569 bool IsSigned; 570 571 // Context 572 LoopInfo *LI; 573 Loop *L; 574 ScalarEvolution *SE; 575 DominatorTree *DT; 576 577 // Result 578 PHINode *WidePhi; 579 Instruction *WideInc; 580 const SCEV *WideIncExpr; 581 SmallVectorImpl<WeakVH> &DeadInsts; 582 583 SmallPtrSet<Instruction*,16> Widened; 584 585 public: 586 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo, 587 ScalarEvolution *SEv, DominatorTree *DTree, 588 SmallVectorImpl<WeakVH> &DI) : 589 OrigPhi(PN), 590 WideType(WI.WidestNativeType), 591 IsSigned(WI.IsSigned), 592 LI(LInfo), 593 L(LI->getLoopFor(OrigPhi->getParent())), 594 SE(SEv), 595 DT(DTree), 596 WidePhi(0), 597 WideInc(0), 598 WideIncExpr(0), 599 DeadInsts(DI) { 600 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 601 } 602 603 PHINode *CreateWideIV(SCEVExpander &Rewriter); 604 605 protected: 606 Instruction *CloneIVUser(Instruction *NarrowUse, 607 Instruction *NarrowDef, 608 Instruction *WideDef); 609 610 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 611 612 Instruction *WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef, 613 Instruction *WideDef); 614 }; 615 } // anonymous namespace 616 617 static Value *getExtend( Value *NarrowOper, const Type *WideType, 618 bool IsSigned, IRBuilder<> &Builder) { 619 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 620 Builder.CreateZExt(NarrowOper, WideType); 621 } 622 623 /// CloneIVUser - Instantiate a wide operation to replace a narrow 624 /// operation. This only needs to handle operations that can evaluation to 625 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 626 Instruction *WidenIV::CloneIVUser(Instruction *NarrowUse, 627 Instruction *NarrowDef, 628 Instruction *WideDef) { 629 unsigned Opcode = NarrowUse->getOpcode(); 630 switch (Opcode) { 631 default: 632 return 0; 633 case Instruction::Add: 634 case Instruction::Mul: 635 case Instruction::UDiv: 636 case Instruction::Sub: 637 case Instruction::And: 638 case Instruction::Or: 639 case Instruction::Xor: 640 case Instruction::Shl: 641 case Instruction::LShr: 642 case Instruction::AShr: 643 DEBUG(dbgs() << "Cloning IVUser: " << *NarrowUse << "\n"); 644 645 IRBuilder<> Builder(NarrowUse); 646 647 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 648 // anything about the narrow operand yet so must insert a [sz]ext. It is 649 // probably loop invariant and will be folded or hoisted. If it actually 650 // comes from a widened IV, it should be removed during a future call to 651 // WidenIVUse. 652 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) ? WideDef : 653 getExtend(NarrowUse->getOperand(0), WideType, IsSigned, Builder); 654 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) ? WideDef : 655 getExtend(NarrowUse->getOperand(1), WideType, IsSigned, Builder); 656 657 BinaryOperator *NarrowBO = cast<BinaryOperator>(NarrowUse); 658 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 659 LHS, RHS, 660 NarrowBO->getName()); 661 Builder.Insert(WideBO); 662 if (NarrowBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 663 if (NarrowBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 664 665 return WideBO; 666 } 667 llvm_unreachable(0); 668 } 669 670 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers' 671 // perspective after widening it's type? In other words, can the extend be 672 // safely hoisted out of the loop with SCEV reducing the value to a recurrence 673 // on the same loop. If so, return the sign or zero extended 674 // recurrence. Otherwise return NULL. 675 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 676 if (!SE->isSCEVable(NarrowUse->getType())) 677 return 0; 678 679 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 680 const SCEV *WideExpr = IsSigned ? 681 SE->getSignExtendExpr(NarrowExpr, WideType) : 682 SE->getZeroExtendExpr(NarrowExpr, WideType); 683 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 684 if (!AddRec || AddRec->getLoop() != L) 685 return 0; 686 687 return AddRec; 688 } 689 690 /// HoistStep - Attempt to hoist an IV increment above a potential use. 691 /// 692 /// To successfully hoist, two criteria must be met: 693 /// - IncV operands dominate InsertPos and 694 /// - InsertPos dominates IncV 695 /// 696 /// Meeting the second condition means that we don't need to check all of IncV's 697 /// existing uses (it's moving up in the domtree). 698 /// 699 /// This does not yet recursively hoist the operands, although that would 700 /// not be difficult. 701 static bool HoistStep(Instruction *IncV, Instruction *InsertPos, 702 const DominatorTree *DT) 703 { 704 if (DT->dominates(IncV, InsertPos)) 705 return true; 706 707 if (!DT->dominates(InsertPos->getParent(), IncV->getParent())) 708 return false; 709 710 if (IncV->mayHaveSideEffects()) 711 return false; 712 713 // Attempt to hoist IncV 714 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end(); 715 OI != OE; ++OI) { 716 Instruction *OInst = dyn_cast<Instruction>(OI); 717 if (OInst && !DT->dominates(OInst, InsertPos)) 718 return false; 719 } 720 IncV->moveBefore(InsertPos); 721 return true; 722 } 723 724 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 725 /// widened. If so, return the wide clone of the user. 726 Instruction *WidenIV::WidenIVUse(Use &NarrowDefUse, Instruction *NarrowDef, 727 Instruction *WideDef) { 728 Instruction *NarrowUse = cast<Instruction>(NarrowDefUse.getUser()); 729 730 // To be consistent with IVUsers, stop traversing the def-use chain at 731 // inner-loop phis or post-loop phis. 732 if (isa<PHINode>(NarrowUse) && LI->getLoopFor(NarrowUse->getParent()) != L) 733 return 0; 734 735 // Handle data flow merges and bizarre phi cycles. 736 if (!Widened.insert(NarrowUse)) 737 return 0; 738 739 // Our raison d'etre! Eliminate sign and zero extension. 740 if (IsSigned ? isa<SExtInst>(NarrowUse) : isa<ZExtInst>(NarrowUse)) { 741 Value *NewDef = WideDef; 742 if (NarrowUse->getType() != WideType) { 743 unsigned CastWidth = SE->getTypeSizeInBits(NarrowUse->getType()); 744 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 745 if (CastWidth < IVWidth) { 746 // The cast isn't as wide as the IV, so insert a Trunc. 747 IRBuilder<> Builder(NarrowDefUse); 748 NewDef = Builder.CreateTrunc(WideDef, NarrowUse->getType()); 749 } 750 else { 751 // A wider extend was hidden behind a narrower one. This may induce 752 // another round of IV widening in which the intermediate IV becomes 753 // dead. It should be very rare. 754 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 755 << " not wide enough to subsume " << *NarrowUse << "\n"); 756 NarrowUse->replaceUsesOfWith(NarrowDef, WideDef); 757 NewDef = NarrowUse; 758 } 759 } 760 if (NewDef != NarrowUse) { 761 DEBUG(dbgs() << "INDVARS: eliminating " << *NarrowUse 762 << " replaced by " << *WideDef << "\n"); 763 ++NumElimExt; 764 NarrowUse->replaceAllUsesWith(NewDef); 765 DeadInsts.push_back(NarrowUse); 766 } 767 // Now that the extend is gone, we want to expose it's uses for potential 768 // further simplification. We don't need to directly inform SimplifyIVUsers 769 // of the new users, because their parent IV will be processed later as a 770 // new loop phi. If we preserved IVUsers analysis, we would also want to 771 // push the uses of WideDef here. 772 773 // No further widening is needed. The deceased [sz]ext had done it for us. 774 return 0; 775 } 776 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(NarrowUse); 777 if (!WideAddRec) { 778 // This user does not evaluate to a recurence after widening, so don't 779 // follow it. Instead insert a Trunc to kill off the original use, 780 // eventually isolating the original narrow IV so it can be removed. 781 IRBuilder<> Builder(NarrowDefUse); 782 Value *Trunc = Builder.CreateTrunc(WideDef, NarrowDef->getType()); 783 NarrowUse->replaceUsesOfWith(NarrowDef, Trunc); 784 return 0; 785 } 786 // We assume that block terminators are not SCEVable. 787 assert(NarrowUse != NarrowUse->getParent()->getTerminator() && 788 "can't split terminators"); 789 790 // Reuse the IV increment that SCEVExpander created as long as it dominates 791 // NarrowUse. 792 Instruction *WideUse = 0; 793 if (WideAddRec == WideIncExpr && HoistStep(WideInc, NarrowUse, DT)) { 794 WideUse = WideInc; 795 } 796 else { 797 WideUse = CloneIVUser(NarrowUse, NarrowDef, WideDef); 798 if (!WideUse) 799 return 0; 800 } 801 // GetWideRecurrence ensured that the narrow expression could be extended 802 // outside the loop without overflow. This suggests that the wide use 803 // evaluates to the same expression as the extended narrow use, but doesn't 804 // absolutely guarantee it. Hence the following failsafe check. In rare cases 805 // where it fails, we simply throw away the newly created wide use. 806 if (WideAddRec != SE->getSCEV(WideUse)) { 807 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 808 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 809 DeadInsts.push_back(WideUse); 810 return 0; 811 } 812 813 // Returning WideUse pushes it on the worklist. 814 return WideUse; 815 } 816 817 /// CreateWideIV - Process a single induction variable. First use the 818 /// SCEVExpander to create a wide induction variable that evaluates to the same 819 /// recurrence as the original narrow IV. Then use a worklist to forward 820 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 821 /// interesting IV users, the narrow IV will be isolated for removal by 822 /// DeleteDeadPHIs. 823 /// 824 /// It would be simpler to delete uses as they are processed, but we must avoid 825 /// invalidating SCEV expressions. 826 /// 827 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 828 // Is this phi an induction variable? 829 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 830 if (!AddRec) 831 return NULL; 832 833 // Widen the induction variable expression. 834 const SCEV *WideIVExpr = IsSigned ? 835 SE->getSignExtendExpr(AddRec, WideType) : 836 SE->getZeroExtendExpr(AddRec, WideType); 837 838 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 839 "Expect the new IV expression to preserve its type"); 840 841 // Can the IV be extended outside the loop without overflow? 842 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 843 if (!AddRec || AddRec->getLoop() != L) 844 return NULL; 845 846 // An AddRec must have loop-invariant operands. Since this AddRec is 847 // materialized by a loop header phi, the expression cannot have any post-loop 848 // operands, so they must dominate the loop header. 849 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 850 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 851 && "Loop header phi recurrence inputs do not dominate the loop"); 852 853 // The rewriter provides a value for the desired IV expression. This may 854 // either find an existing phi or materialize a new one. Either way, we 855 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 856 // of the phi-SCC dominates the loop entry. 857 Instruction *InsertPt = L->getHeader()->begin(); 858 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 859 860 // Remembering the WideIV increment generated by SCEVExpander allows 861 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 862 // employ a general reuse mechanism because the call above is the only call to 863 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 864 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 865 WideInc = 866 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 867 WideIncExpr = SE->getSCEV(WideInc); 868 } 869 870 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 871 ++NumWidened; 872 873 // Traverse the def-use chain using a worklist starting at the original IV. 874 assert(Widened.empty() && "expect initial state" ); 875 876 // Each worklist entry has a Narrow def-use link and Wide def. 877 SmallVector<std::pair<Use *, Instruction *>, 8> NarrowIVUsers; 878 for (Value::use_iterator UI = OrigPhi->use_begin(), 879 UE = OrigPhi->use_end(); UI != UE; ++UI) { 880 NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WidePhi)); 881 } 882 while (!NarrowIVUsers.empty()) { 883 Use *UsePtr; 884 Instruction *WideDef; 885 tie(UsePtr, WideDef) = NarrowIVUsers.pop_back_val(); 886 Use &NarrowDefUse = *UsePtr; 887 888 // Process a def-use edge. This may replace the use, so don't hold a 889 // use_iterator across it. 890 Instruction *NarrowDef = cast<Instruction>(NarrowDefUse.get()); 891 Instruction *WideUse = WidenIVUse(NarrowDefUse, NarrowDef, WideDef); 892 893 // Follow all def-use edges from the previous narrow use. 894 if (WideUse) { 895 for (Value::use_iterator UI = NarrowDefUse.getUser()->use_begin(), 896 UE = NarrowDefUse.getUser()->use_end(); UI != UE; ++UI) { 897 NarrowIVUsers.push_back(std::make_pair(&UI.getUse(), WideUse)); 898 } 899 } 900 // WidenIVUse may have removed the def-use edge. 901 if (NarrowDef->use_empty()) 902 DeadInsts.push_back(NarrowDef); 903 } 904 return WidePhi; 905 } 906 907 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 908 unsigned IVOperIdx = 0; 909 ICmpInst::Predicate Pred = ICmp->getPredicate(); 910 if (IVOperand != ICmp->getOperand(0)) { 911 // Swapped 912 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 913 IVOperIdx = 1; 914 Pred = ICmpInst::getSwappedPredicate(Pred); 915 } 916 917 // Get the SCEVs for the ICmp operands. 918 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 919 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 920 921 // Simplify unnecessary loops away. 922 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 923 S = SE->getSCEVAtScope(S, ICmpLoop); 924 X = SE->getSCEVAtScope(X, ICmpLoop); 925 926 // If the condition is always true or always false, replace it with 927 // a constant value. 928 if (SE->isKnownPredicate(Pred, S, X)) 929 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 930 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 931 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 932 else 933 return; 934 935 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 936 ++NumElimCmp; 937 Changed = true; 938 DeadInsts.push_back(ICmp); 939 } 940 941 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem, 942 Value *IVOperand, 943 bool IsSigned) { 944 // We're only interested in the case where we know something about 945 // the numerator. 946 if (IVOperand != Rem->getOperand(0)) 947 return; 948 949 // Get the SCEVs for the ICmp operands. 950 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 951 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 952 953 // Simplify unnecessary loops away. 954 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 955 S = SE->getSCEVAtScope(S, ICmpLoop); 956 X = SE->getSCEVAtScope(X, ICmpLoop); 957 958 // i % n --> i if i is in [0,n). 959 if ((!IsSigned || SE->isKnownNonNegative(S)) && 960 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 961 S, X)) 962 Rem->replaceAllUsesWith(Rem->getOperand(0)); 963 else { 964 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 965 const SCEV *LessOne = 966 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 967 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 968 return; 969 970 if (!SE->isKnownPredicate(IsSigned ? 971 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 972 LessOne, X)) 973 return; 974 975 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 976 Rem->getOperand(0), Rem->getOperand(1), 977 "tmp"); 978 SelectInst *Sel = 979 SelectInst::Create(ICmp, 980 ConstantInt::get(Rem->getType(), 0), 981 Rem->getOperand(0), "tmp", Rem); 982 Rem->replaceAllUsesWith(Sel); 983 } 984 985 // Inform IVUsers about the new users. 986 if (IU) { 987 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) 988 IU->AddUsersIfInteresting(I); 989 } 990 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 991 ++NumElimRem; 992 Changed = true; 993 DeadInsts.push_back(Rem); 994 } 995 996 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has 997 /// no observable side-effect given the range of IV values. 998 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst, 999 Instruction *IVOperand) { 1000 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1001 EliminateIVComparison(ICmp, IVOperand); 1002 return true; 1003 } 1004 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 1005 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 1006 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 1007 EliminateIVRemainder(Rem, IVOperand, IsSigned); 1008 return true; 1009 } 1010 } 1011 1012 // Eliminate any operation that SCEV can prove is an identity function. 1013 if (!SE->isSCEVable(UseInst->getType()) || 1014 (UseInst->getType() != IVOperand->getType()) || 1015 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 1016 return false; 1017 1018 UseInst->replaceAllUsesWith(IVOperand); 1019 1020 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 1021 ++NumElimIdentity; 1022 Changed = true; 1023 DeadInsts.push_back(UseInst); 1024 return true; 1025 } 1026 1027 /// pushIVUsers - Add all uses of Def to the current IV's worklist. 1028 /// 1029 static void pushIVUsers( 1030 Instruction *Def, 1031 SmallPtrSet<Instruction*,16> &Simplified, 1032 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 1033 1034 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); 1035 UI != E; ++UI) { 1036 Instruction *User = cast<Instruction>(*UI); 1037 1038 // Avoid infinite or exponential worklist processing. 1039 // Also ensure unique worklist users. 1040 if (Simplified.insert(User)) 1041 SimpleIVUsers.push_back(std::make_pair(User, Def)); 1042 } 1043 } 1044 1045 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV 1046 /// expression in terms of that IV. 1047 /// 1048 /// This is similar to IVUsers' isInsteresting() but processes each instruction 1049 /// non-recursively when the operand is already known to be a simpleIVUser. 1050 /// 1051 bool IndVarSimplify::isSimpleIVUser(Instruction *I, const Loop *L) { 1052 if (!SE->isSCEVable(I->getType())) 1053 return false; 1054 1055 // Get the symbolic expression for this instruction. 1056 const SCEV *S = SE->getSCEV(I); 1057 1058 // We assume that terminators are not SCEVable. 1059 assert((!S || I != I->getParent()->getTerminator()) && 1060 "can't fold terminators"); 1061 1062 // Only consider affine recurrences. 1063 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 1064 if (AR && AR->getLoop() == L) 1065 return true; 1066 1067 return false; 1068 } 1069 1070 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist 1071 /// of IV users. Each successive simplification may push more users which may 1072 /// themselves be candidates for simplification. 1073 /// 1074 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it 1075 /// simplifies instructions in-place during analysis. Rather than rewriting 1076 /// induction variables bottom-up from their users, it transforms a chain of 1077 /// IVUsers top-down, updating the IR only when it encouters a clear 1078 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still 1079 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero 1080 /// extend elimination. 1081 /// 1082 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 1083 /// 1084 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) { 1085 std::map<PHINode *, WideIVInfo> WideIVMap; 1086 1087 SmallVector<PHINode*, 8> LoopPhis; 1088 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1089 LoopPhis.push_back(cast<PHINode>(I)); 1090 } 1091 // Each round of simplification iterates through the SimplifyIVUsers worklist 1092 // for all current phis, then determines whether any IVs can be 1093 // widened. Widening adds new phis to LoopPhis, inducing another round of 1094 // simplification on the wide IVs. 1095 while (!LoopPhis.empty()) { 1096 // Evaluate as many IV expressions as possible before widening any IVs. This 1097 // forces SCEV to set no-wrap flags before evaluating sign/zero 1098 // extension. The first time SCEV attempts to normalize sign/zero extension, 1099 // the result becomes final. So for the most predictable results, we delay 1100 // evaluation of sign/zero extend evaluation until needed, and avoid running 1101 // other SCEV based analysis prior to SimplifyIVUsersNoRewrite. 1102 do { 1103 PHINode *CurrIV = LoopPhis.pop_back_val(); 1104 1105 // Information about sign/zero extensions of CurrIV. 1106 WideIVInfo WI; 1107 1108 // Instructions processed by SimplifyIVUsers for CurrIV. 1109 SmallPtrSet<Instruction*,16> Simplified; 1110 1111 // Use-def pairs if IVUsers waiting to be processed for CurrIV. 1112 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 1113 1114 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 1115 1116 while (!SimpleIVUsers.empty()) { 1117 Instruction *UseInst, *Operand; 1118 tie(UseInst, Operand) = SimpleIVUsers.pop_back_val(); 1119 1120 if (EliminateIVUser(UseInst, Operand)) { 1121 pushIVUsers(Operand, Simplified, SimpleIVUsers); 1122 continue; 1123 } 1124 if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) { 1125 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 1126 if (IsSigned || Cast->getOpcode() == Instruction::ZExt) { 1127 CollectExtend(Cast, IsSigned, WI, SE, TD); 1128 } 1129 continue; 1130 } 1131 if (isSimpleIVUser(UseInst, L)) { 1132 pushIVUsers(UseInst, Simplified, SimpleIVUsers); 1133 } 1134 } 1135 if (WI.WidestNativeType) { 1136 WideIVMap[CurrIV] = WI; 1137 } 1138 } while(!LoopPhis.empty()); 1139 1140 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(), 1141 E = WideIVMap.end(); I != E; ++I) { 1142 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts); 1143 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1144 Changed = true; 1145 LoopPhis.push_back(WidePhi); 1146 } 1147 } 1148 WideIVMap.clear(); 1149 } 1150 } 1151 1152 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1153 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1154 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1155 // canonicalization can be a pessimization without LSR to "clean up" 1156 // afterwards. 1157 // - We depend on having a preheader; in particular, 1158 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1159 // and we're in trouble if we can't find the induction variable even when 1160 // we've manually inserted one. 1161 if (!L->isLoopSimplifyForm()) 1162 return false; 1163 1164 if (!DisableIVRewrite) 1165 IU = &getAnalysis<IVUsers>(); 1166 LI = &getAnalysis<LoopInfo>(); 1167 SE = &getAnalysis<ScalarEvolution>(); 1168 DT = &getAnalysis<DominatorTree>(); 1169 TD = getAnalysisIfAvailable<TargetData>(); 1170 1171 DeadInsts.clear(); 1172 Changed = false; 1173 1174 // If there are any floating-point recurrences, attempt to 1175 // transform them to use integer recurrences. 1176 RewriteNonIntegerIVs(L); 1177 1178 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1179 1180 // Create a rewriter object which we'll use to transform the code with. 1181 SCEVExpander Rewriter(*SE, "indvars"); 1182 1183 // Eliminate redundant IV users. 1184 // 1185 // Simplification works best when run before other consumers of SCEV. We 1186 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1187 // other expressions involving loop IVs have been evaluated. This helps SCEV 1188 // set no-wrap flags before normalizing sign/zero extension. 1189 if (DisableIVRewrite) { 1190 Rewriter.disableCanonicalMode(); 1191 SimplifyIVUsersNoRewrite(L, Rewriter); 1192 } 1193 1194 // Check to see if this loop has a computable loop-invariant execution count. 1195 // If so, this means that we can compute the final value of any expressions 1196 // that are recurrent in the loop, and substitute the exit values from the 1197 // loop into any instructions outside of the loop that use the final values of 1198 // the current expressions. 1199 // 1200 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1201 RewriteLoopExitValues(L, Rewriter); 1202 1203 // Eliminate redundant IV users. 1204 if (!DisableIVRewrite) 1205 SimplifyIVUsers(Rewriter); 1206 1207 // Compute the type of the largest recurrence expression, and decide whether 1208 // a canonical induction variable should be inserted. 1209 const Type *LargestType = 0; 1210 bool NeedCannIV = false; 1211 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1212 if (ExpandBECount) { 1213 // If we have a known trip count and a single exit block, we'll be 1214 // rewriting the loop exit test condition below, which requires a 1215 // canonical induction variable. 1216 NeedCannIV = true; 1217 const Type *Ty = BackedgeTakenCount->getType(); 1218 if (DisableIVRewrite) { 1219 // In this mode, SimplifyIVUsers may have already widened the IV used by 1220 // the backedge test and inserted a Trunc on the compare's operand. Get 1221 // the wider type to avoid creating a redundant narrow IV only used by the 1222 // loop test. 1223 LargestType = getBackedgeIVType(L); 1224 } 1225 if (!LargestType || 1226 SE->getTypeSizeInBits(Ty) > 1227 SE->getTypeSizeInBits(LargestType)) 1228 LargestType = SE->getEffectiveSCEVType(Ty); 1229 } 1230 if (!DisableIVRewrite) { 1231 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1232 NeedCannIV = true; 1233 const Type *Ty = 1234 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1235 if (!LargestType || 1236 SE->getTypeSizeInBits(Ty) > 1237 SE->getTypeSizeInBits(LargestType)) 1238 LargestType = Ty; 1239 } 1240 } 1241 1242 // Now that we know the largest of the induction variable expressions 1243 // in this loop, insert a canonical induction variable of the largest size. 1244 PHINode *IndVar = 0; 1245 if (NeedCannIV) { 1246 // Check to see if the loop already has any canonical-looking induction 1247 // variables. If any are present and wider than the planned canonical 1248 // induction variable, temporarily remove them, so that the Rewriter 1249 // doesn't attempt to reuse them. 1250 SmallVector<PHINode *, 2> OldCannIVs; 1251 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1252 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1253 SE->getTypeSizeInBits(LargestType)) 1254 OldCannIV->removeFromParent(); 1255 else 1256 break; 1257 OldCannIVs.push_back(OldCannIV); 1258 } 1259 1260 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1261 1262 ++NumInserted; 1263 Changed = true; 1264 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1265 1266 // Now that the official induction variable is established, reinsert 1267 // any old canonical-looking variables after it so that the IR remains 1268 // consistent. They will be deleted as part of the dead-PHI deletion at 1269 // the end of the pass. 1270 while (!OldCannIVs.empty()) { 1271 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1272 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI()); 1273 } 1274 } 1275 1276 // If we have a trip count expression, rewrite the loop's exit condition 1277 // using it. We can currently only handle loops with a single exit. 1278 ICmpInst *NewICmp = 0; 1279 if (ExpandBECount) { 1280 assert(canExpandBackedgeTakenCount(L, SE) && 1281 "canonical IV disrupted BackedgeTaken expansion"); 1282 assert(NeedCannIV && 1283 "LinearFunctionTestReplace requires a canonical induction variable"); 1284 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1285 Rewriter); 1286 } 1287 // Rewrite IV-derived expressions. 1288 if (!DisableIVRewrite) 1289 RewriteIVExpressions(L, Rewriter); 1290 1291 // Clear the rewriter cache, because values that are in the rewriter's cache 1292 // can be deleted in the loop below, causing the AssertingVH in the cache to 1293 // trigger. 1294 Rewriter.clear(); 1295 1296 // Now that we're done iterating through lists, clean up any instructions 1297 // which are now dead. 1298 while (!DeadInsts.empty()) 1299 if (Instruction *Inst = 1300 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1301 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1302 1303 // The Rewriter may not be used from this point on. 1304 1305 // Loop-invariant instructions in the preheader that aren't used in the 1306 // loop may be sunk below the loop to reduce register pressure. 1307 SinkUnusedInvariants(L); 1308 1309 // For completeness, inform IVUsers of the IV use in the newly-created 1310 // loop exit test instruction. 1311 if (NewICmp && IU) 1312 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0))); 1313 1314 // Clean up dead instructions. 1315 Changed |= DeleteDeadPHIs(L->getHeader()); 1316 // Check a post-condition. 1317 assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!"); 1318 return Changed; 1319 } 1320 1321 // FIXME: It is an extremely bad idea to indvar substitute anything more 1322 // complex than affine induction variables. Doing so will put expensive 1323 // polynomial evaluations inside of the loop, and the str reduction pass 1324 // currently can only reduce affine polynomials. For now just disable 1325 // indvar subst on anything more complex than an affine addrec, unless 1326 // it can be expanded to a trivial value. 1327 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 1328 // Loop-invariant values are safe. 1329 if (SE->isLoopInvariant(S, L)) return true; 1330 1331 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 1332 // to transform them into efficient code. 1333 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 1334 return AR->isAffine(); 1335 1336 // An add is safe it all its operands are safe. 1337 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) { 1338 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 1339 E = Commutative->op_end(); I != E; ++I) 1340 if (!isSafe(*I, L, SE)) return false; 1341 return true; 1342 } 1343 1344 // A cast is safe if its operand is. 1345 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 1346 return isSafe(C->getOperand(), L, SE); 1347 1348 // A udiv is safe if its operands are. 1349 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 1350 return isSafe(UD->getLHS(), L, SE) && 1351 isSafe(UD->getRHS(), L, SE); 1352 1353 // SCEVUnknown is always safe. 1354 if (isa<SCEVUnknown>(S)) 1355 return true; 1356 1357 // Nothing else is safe. 1358 return false; 1359 } 1360 1361 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 1362 // Rewrite all induction variable expressions in terms of the canonical 1363 // induction variable. 1364 // 1365 // If there were induction variables of other sizes or offsets, manually 1366 // add the offsets to the primary induction variable and cast, avoiding 1367 // the need for the code evaluation methods to insert induction variables 1368 // of different sizes. 1369 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 1370 Value *Op = UI->getOperandValToReplace(); 1371 const Type *UseTy = Op->getType(); 1372 Instruction *User = UI->getUser(); 1373 1374 // Compute the final addrec to expand into code. 1375 const SCEV *AR = IU->getReplacementExpr(*UI); 1376 1377 // Evaluate the expression out of the loop, if possible. 1378 if (!L->contains(UI->getUser())) { 1379 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 1380 if (SE->isLoopInvariant(ExitVal, L)) 1381 AR = ExitVal; 1382 } 1383 1384 // FIXME: It is an extremely bad idea to indvar substitute anything more 1385 // complex than affine induction variables. Doing so will put expensive 1386 // polynomial evaluations inside of the loop, and the str reduction pass 1387 // currently can only reduce affine polynomials. For now just disable 1388 // indvar subst on anything more complex than an affine addrec, unless 1389 // it can be expanded to a trivial value. 1390 if (!isSafe(AR, L, SE)) 1391 continue; 1392 1393 // Determine the insertion point for this user. By default, insert 1394 // immediately before the user. The SCEVExpander class will automatically 1395 // hoist loop invariants out of the loop. For PHI nodes, there may be 1396 // multiple uses, so compute the nearest common dominator for the 1397 // incoming blocks. 1398 Instruction *InsertPt = User; 1399 if (PHINode *PHI = dyn_cast<PHINode>(InsertPt)) 1400 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 1401 if (PHI->getIncomingValue(i) == Op) { 1402 if (InsertPt == User) 1403 InsertPt = PHI->getIncomingBlock(i)->getTerminator(); 1404 else 1405 InsertPt = 1406 DT->findNearestCommonDominator(InsertPt->getParent(), 1407 PHI->getIncomingBlock(i)) 1408 ->getTerminator(); 1409 } 1410 1411 // Now expand it into actual Instructions and patch it into place. 1412 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 1413 1414 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 1415 << " into = " << *NewVal << "\n"); 1416 1417 if (!isValidRewrite(Op, NewVal)) { 1418 DeadInsts.push_back(NewVal); 1419 continue; 1420 } 1421 // Inform ScalarEvolution that this value is changing. The change doesn't 1422 // affect its value, but it does potentially affect which use lists the 1423 // value will be on after the replacement, which affects ScalarEvolution's 1424 // ability to walk use lists and drop dangling pointers when a value is 1425 // deleted. 1426 SE->forgetValue(User); 1427 1428 // Patch the new value into place. 1429 if (Op->hasName()) 1430 NewVal->takeName(Op); 1431 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 1432 NewValI->setDebugLoc(User->getDebugLoc()); 1433 User->replaceUsesOfWith(Op, NewVal); 1434 UI->setOperandValToReplace(NewVal); 1435 1436 ++NumRemoved; 1437 Changed = true; 1438 1439 // The old value may be dead now. 1440 DeadInsts.push_back(Op); 1441 } 1442 } 1443 1444 /// If there's a single exit block, sink any loop-invariant values that 1445 /// were defined in the preheader but not used inside the loop into the 1446 /// exit block to reduce register pressure in the loop. 1447 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1448 BasicBlock *ExitBlock = L->getExitBlock(); 1449 if (!ExitBlock) return; 1450 1451 BasicBlock *Preheader = L->getLoopPreheader(); 1452 if (!Preheader) return; 1453 1454 Instruction *InsertPt = ExitBlock->getFirstNonPHI(); 1455 BasicBlock::iterator I = Preheader->getTerminator(); 1456 while (I != Preheader->begin()) { 1457 --I; 1458 // New instructions were inserted at the end of the preheader. 1459 if (isa<PHINode>(I)) 1460 break; 1461 1462 // Don't move instructions which might have side effects, since the side 1463 // effects need to complete before instructions inside the loop. Also don't 1464 // move instructions which might read memory, since the loop may modify 1465 // memory. Note that it's okay if the instruction might have undefined 1466 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1467 // block. 1468 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1469 continue; 1470 1471 // Skip debug info intrinsics. 1472 if (isa<DbgInfoIntrinsic>(I)) 1473 continue; 1474 1475 // Don't sink static AllocaInsts out of the entry block, which would 1476 // turn them into dynamic allocas! 1477 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 1478 if (AI->isStaticAlloca()) 1479 continue; 1480 1481 // Determine if there is a use in or before the loop (direct or 1482 // otherwise). 1483 bool UsedInLoop = false; 1484 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1485 UI != UE; ++UI) { 1486 User *U = *UI; 1487 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1488 if (PHINode *P = dyn_cast<PHINode>(U)) { 1489 unsigned i = 1490 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1491 UseBB = P->getIncomingBlock(i); 1492 } 1493 if (UseBB == Preheader || L->contains(UseBB)) { 1494 UsedInLoop = true; 1495 break; 1496 } 1497 } 1498 1499 // If there is, the def must remain in the preheader. 1500 if (UsedInLoop) 1501 continue; 1502 1503 // Otherwise, sink it to the exit block. 1504 Instruction *ToMove = I; 1505 bool Done = false; 1506 1507 if (I != Preheader->begin()) { 1508 // Skip debug info intrinsics. 1509 do { 1510 --I; 1511 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1512 1513 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1514 Done = true; 1515 } else { 1516 Done = true; 1517 } 1518 1519 ToMove->moveBefore(InsertPt); 1520 if (Done) break; 1521 InsertPt = ToMove; 1522 } 1523 } 1524 1525 /// ConvertToSInt - Convert APF to an integer, if possible. 1526 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 1527 bool isExact = false; 1528 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 1529 return false; 1530 // See if we can convert this to an int64_t 1531 uint64_t UIntVal; 1532 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 1533 &isExact) != APFloat::opOK || !isExact) 1534 return false; 1535 IntVal = UIntVal; 1536 return true; 1537 } 1538 1539 /// HandleFloatingPointIV - If the loop has floating induction variable 1540 /// then insert corresponding integer induction variable if possible. 1541 /// For example, 1542 /// for(double i = 0; i < 10000; ++i) 1543 /// bar(i) 1544 /// is converted into 1545 /// for(int i = 0; i < 10000; ++i) 1546 /// bar((double)i); 1547 /// 1548 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 1549 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 1550 unsigned BackEdge = IncomingEdge^1; 1551 1552 // Check incoming value. 1553 ConstantFP *InitValueVal = 1554 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 1555 1556 int64_t InitValue; 1557 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 1558 return; 1559 1560 // Check IV increment. Reject this PN if increment operation is not 1561 // an add or increment value can not be represented by an integer. 1562 BinaryOperator *Incr = 1563 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 1564 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 1565 1566 // If this is not an add of the PHI with a constantfp, or if the constant fp 1567 // is not an integer, bail out. 1568 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 1569 int64_t IncValue; 1570 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 1571 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 1572 return; 1573 1574 // Check Incr uses. One user is PN and the other user is an exit condition 1575 // used by the conditional terminator. 1576 Value::use_iterator IncrUse = Incr->use_begin(); 1577 Instruction *U1 = cast<Instruction>(*IncrUse++); 1578 if (IncrUse == Incr->use_end()) return; 1579 Instruction *U2 = cast<Instruction>(*IncrUse++); 1580 if (IncrUse != Incr->use_end()) return; 1581 1582 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 1583 // only used by a branch, we can't transform it. 1584 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 1585 if (!Compare) 1586 Compare = dyn_cast<FCmpInst>(U2); 1587 if (Compare == 0 || !Compare->hasOneUse() || 1588 !isa<BranchInst>(Compare->use_back())) 1589 return; 1590 1591 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 1592 1593 // We need to verify that the branch actually controls the iteration count 1594 // of the loop. If not, the new IV can overflow and no one will notice. 1595 // The branch block must be in the loop and one of the successors must be out 1596 // of the loop. 1597 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 1598 if (!L->contains(TheBr->getParent()) || 1599 (L->contains(TheBr->getSuccessor(0)) && 1600 L->contains(TheBr->getSuccessor(1)))) 1601 return; 1602 1603 1604 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 1605 // transform it. 1606 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 1607 int64_t ExitValue; 1608 if (ExitValueVal == 0 || 1609 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 1610 return; 1611 1612 // Find new predicate for integer comparison. 1613 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 1614 switch (Compare->getPredicate()) { 1615 default: return; // Unknown comparison. 1616 case CmpInst::FCMP_OEQ: 1617 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 1618 case CmpInst::FCMP_ONE: 1619 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 1620 case CmpInst::FCMP_OGT: 1621 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 1622 case CmpInst::FCMP_OGE: 1623 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 1624 case CmpInst::FCMP_OLT: 1625 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 1626 case CmpInst::FCMP_OLE: 1627 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 1628 } 1629 1630 // We convert the floating point induction variable to a signed i32 value if 1631 // we can. This is only safe if the comparison will not overflow in a way 1632 // that won't be trapped by the integer equivalent operations. Check for this 1633 // now. 1634 // TODO: We could use i64 if it is native and the range requires it. 1635 1636 // The start/stride/exit values must all fit in signed i32. 1637 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 1638 return; 1639 1640 // If not actually striding (add x, 0.0), avoid touching the code. 1641 if (IncValue == 0) 1642 return; 1643 1644 // Positive and negative strides have different safety conditions. 1645 if (IncValue > 0) { 1646 // If we have a positive stride, we require the init to be less than the 1647 // exit value and an equality or less than comparison. 1648 if (InitValue >= ExitValue || 1649 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) 1650 return; 1651 1652 uint32_t Range = uint32_t(ExitValue-InitValue); 1653 if (NewPred == CmpInst::ICMP_SLE) { 1654 // Normalize SLE -> SLT, check for infinite loop. 1655 if (++Range == 0) return; // Range overflows. 1656 } 1657 1658 unsigned Leftover = Range % uint32_t(IncValue); 1659 1660 // If this is an equality comparison, we require that the strided value 1661 // exactly land on the exit value, otherwise the IV condition will wrap 1662 // around and do things the fp IV wouldn't. 1663 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 1664 Leftover != 0) 1665 return; 1666 1667 // If the stride would wrap around the i32 before exiting, we can't 1668 // transform the IV. 1669 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 1670 return; 1671 1672 } else { 1673 // If we have a negative stride, we require the init to be greater than the 1674 // exit value and an equality or greater than comparison. 1675 if (InitValue >= ExitValue || 1676 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) 1677 return; 1678 1679 uint32_t Range = uint32_t(InitValue-ExitValue); 1680 if (NewPred == CmpInst::ICMP_SGE) { 1681 // Normalize SGE -> SGT, check for infinite loop. 1682 if (++Range == 0) return; // Range overflows. 1683 } 1684 1685 unsigned Leftover = Range % uint32_t(-IncValue); 1686 1687 // If this is an equality comparison, we require that the strided value 1688 // exactly land on the exit value, otherwise the IV condition will wrap 1689 // around and do things the fp IV wouldn't. 1690 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 1691 Leftover != 0) 1692 return; 1693 1694 // If the stride would wrap around the i32 before exiting, we can't 1695 // transform the IV. 1696 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 1697 return; 1698 } 1699 1700 const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 1701 1702 // Insert new integer induction variable. 1703 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 1704 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 1705 PN->getIncomingBlock(IncomingEdge)); 1706 1707 Value *NewAdd = 1708 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 1709 Incr->getName()+".int", Incr); 1710 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 1711 1712 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 1713 ConstantInt::get(Int32Ty, ExitValue), 1714 Compare->getName()); 1715 1716 // In the following deletions, PN may become dead and may be deleted. 1717 // Use a WeakVH to observe whether this happens. 1718 WeakVH WeakPH = PN; 1719 1720 // Delete the old floating point exit comparison. The branch starts using the 1721 // new comparison. 1722 NewCompare->takeName(Compare); 1723 Compare->replaceAllUsesWith(NewCompare); 1724 RecursivelyDeleteTriviallyDeadInstructions(Compare); 1725 1726 // Delete the old floating point increment. 1727 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 1728 RecursivelyDeleteTriviallyDeadInstructions(Incr); 1729 1730 // If the FP induction variable still has uses, this is because something else 1731 // in the loop uses its value. In order to canonicalize the induction 1732 // variable, we chose to eliminate the IV and rewrite it in terms of an 1733 // int->fp cast. 1734 // 1735 // We give preference to sitofp over uitofp because it is faster on most 1736 // platforms. 1737 if (WeakPH) { 1738 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 1739 PN->getParent()->getFirstNonPHI()); 1740 PN->replaceAllUsesWith(Conv); 1741 RecursivelyDeleteTriviallyDeadInstructions(PN); 1742 } 1743 1744 // Add a new IVUsers entry for the newly-created integer PHI. 1745 if (IU) 1746 IU->AddUsersIfInteresting(NewPHI); 1747 } 1748