xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision e6413919cec6ac5e50d85103ef27a9b0c6ed57b0)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantRange.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/IR/ValueHandle.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/LoopPassManager.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/LoopUtils.h"
82 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101   "verify-indvars", cl::Hidden,
102   cl::desc("Verify the ScalarEvolution result after running indvars"));
103 
104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
110                clEnumValN(OnlyCheapRepl, "cheap",
111                           "only replace exit value when the cost is cheap"),
112                clEnumValN(AlwaysRepl, "always",
113                           "always replace exit value whenever possible")));
114 
115 static cl::opt<bool> UsePostIncrementRanges(
116   "indvars-post-increment-ranges", cl::Hidden,
117   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
118   cl::init(true));
119 
120 static cl::opt<bool>
121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
122             cl::desc("Disable Linear Function Test Replace optimization"));
123 
124 namespace {
125 
126 struct RewritePhi;
127 
128 class IndVarSimplify {
129   LoopInfo *LI;
130   ScalarEvolution *SE;
131   DominatorTree *DT;
132   const DataLayout &DL;
133   TargetLibraryInfo *TLI;
134   const TargetTransformInfo *TTI;
135 
136   SmallVector<WeakTrackingVH, 16> DeadInsts;
137 
138   bool isValidRewrite(Value *FromVal, Value *ToVal);
139 
140   bool handleFloatingPointIV(Loop *L, PHINode *PH);
141   bool rewriteNonIntegerIVs(Loop *L);
142 
143   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
144 
145   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
146   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
147   bool rewriteFirstIterationLoopExitValues(Loop *L);
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks.
221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
222                                           DominatorTree *DT, LoopInfo *LI) {
223   PHINode *PHI = dyn_cast<PHINode>(User);
224   if (!PHI)
225     return User;
226 
227   Instruction *InsertPt = nullptr;
228   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
229     if (PHI->getIncomingValue(i) != Def)
230       continue;
231 
232     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
233     if (!InsertPt) {
234       InsertPt = InsertBB->getTerminator();
235       continue;
236     }
237     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
238     InsertPt = InsertBB->getTerminator();
239   }
240   assert(InsertPt && "Missing phi operand");
241 
242   auto *DefI = dyn_cast<Instruction>(Def);
243   if (!DefI)
244     return InsertPt;
245 
246   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
247 
248   auto *L = LI->getLoopFor(DefI->getParent());
249   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
250 
251   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
252     if (LI->getLoopFor(DTN->getBlock()) == L)
253       return DTN->getBlock()->getTerminator();
254 
255   llvm_unreachable("DefI dominates InsertPt!");
256 }
257 
258 //===----------------------------------------------------------------------===//
259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
260 //===----------------------------------------------------------------------===//
261 
262 /// Convert APF to an integer, if possible.
263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
264   bool isExact = false;
265   // See if we can convert this to an int64_t
266   uint64_t UIntVal;
267   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
268                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
269       !isExact)
270     return false;
271   IntVal = UIntVal;
272   return true;
273 }
274 
275 /// If the loop has floating induction variable then insert corresponding
276 /// integer induction variable if possible.
277 /// For example,
278 /// for(double i = 0; i < 10000; ++i)
279 ///   bar(i)
280 /// is converted into
281 /// for(int i = 0; i < 10000; ++i)
282 ///   bar((double)i);
283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
284   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
285   unsigned BackEdge     = IncomingEdge^1;
286 
287   // Check incoming value.
288   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
289 
290   int64_t InitValue;
291   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
292     return false;
293 
294   // Check IV increment. Reject this PN if increment operation is not
295   // an add or increment value can not be represented by an integer.
296   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
297   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
298 
299   // If this is not an add of the PHI with a constantfp, or if the constant fp
300   // is not an integer, bail out.
301   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
302   int64_t IncValue;
303   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
304       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
305     return false;
306 
307   // Check Incr uses. One user is PN and the other user is an exit condition
308   // used by the conditional terminator.
309   Value::user_iterator IncrUse = Incr->user_begin();
310   Instruction *U1 = cast<Instruction>(*IncrUse++);
311   if (IncrUse == Incr->user_end()) return false;
312   Instruction *U2 = cast<Instruction>(*IncrUse++);
313   if (IncrUse != Incr->user_end()) return false;
314 
315   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
316   // only used by a branch, we can't transform it.
317   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
318   if (!Compare)
319     Compare = dyn_cast<FCmpInst>(U2);
320   if (!Compare || !Compare->hasOneUse() ||
321       !isa<BranchInst>(Compare->user_back()))
322     return false;
323 
324   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
325 
326   // We need to verify that the branch actually controls the iteration count
327   // of the loop.  If not, the new IV can overflow and no one will notice.
328   // The branch block must be in the loop and one of the successors must be out
329   // of the loop.
330   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
331   if (!L->contains(TheBr->getParent()) ||
332       (L->contains(TheBr->getSuccessor(0)) &&
333        L->contains(TheBr->getSuccessor(1))))
334     return false;
335 
336   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
337   // transform it.
338   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
339   int64_t ExitValue;
340   if (ExitValueVal == nullptr ||
341       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
342     return false;
343 
344   // Find new predicate for integer comparison.
345   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
346   switch (Compare->getPredicate()) {
347   default: return false;  // Unknown comparison.
348   case CmpInst::FCMP_OEQ:
349   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
350   case CmpInst::FCMP_ONE:
351   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
352   case CmpInst::FCMP_OGT:
353   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
354   case CmpInst::FCMP_OGE:
355   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
356   case CmpInst::FCMP_OLT:
357   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
358   case CmpInst::FCMP_OLE:
359   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
360   }
361 
362   // We convert the floating point induction variable to a signed i32 value if
363   // we can.  This is only safe if the comparison will not overflow in a way
364   // that won't be trapped by the integer equivalent operations.  Check for this
365   // now.
366   // TODO: We could use i64 if it is native and the range requires it.
367 
368   // The start/stride/exit values must all fit in signed i32.
369   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
370     return false;
371 
372   // If not actually striding (add x, 0.0), avoid touching the code.
373   if (IncValue == 0)
374     return false;
375 
376   // Positive and negative strides have different safety conditions.
377   if (IncValue > 0) {
378     // If we have a positive stride, we require the init to be less than the
379     // exit value.
380     if (InitValue >= ExitValue)
381       return false;
382 
383     uint32_t Range = uint32_t(ExitValue-InitValue);
384     // Check for infinite loop, either:
385     // while (i <= Exit) or until (i > Exit)
386     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
387       if (++Range == 0) return false;  // Range overflows.
388     }
389 
390     unsigned Leftover = Range % uint32_t(IncValue);
391 
392     // If this is an equality comparison, we require that the strided value
393     // exactly land on the exit value, otherwise the IV condition will wrap
394     // around and do things the fp IV wouldn't.
395     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396         Leftover != 0)
397       return false;
398 
399     // If the stride would wrap around the i32 before exiting, we can't
400     // transform the IV.
401     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
402       return false;
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return false;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return false;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return false;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return false;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakTrackingVH to observe whether this happens.
449   WeakTrackingVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   return true;
475 }
476 
477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   BasicBlock *Header = L->getHeader();
482 
483   SmallVector<WeakTrackingVH, 8> PHIs;
484   for (PHINode &PN : Header->phis())
485     PHIs.push_back(&PN);
486 
487   bool Changed = false;
488   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490       Changed |= handleFloatingPointIV(L, PN);
491 
492   // If the loop previously had floating-point IV, ScalarEvolution
493   // may not have been able to compute a trip count. Now that we've done some
494   // re-writing, the trip count may be computable.
495   if (Changed)
496     SE->forgetLoop(L);
497   return Changed;
498 }
499 
500 namespace {
501 
502 // Collect information about PHI nodes which can be transformed in
503 // rewriteLoopExitValues.
504 struct RewritePhi {
505   PHINode *PN;
506 
507   // Ith incoming value.
508   unsigned Ith;
509 
510   // Exit value after expansion.
511   Value *Val;
512 
513   // High Cost when expansion.
514   bool HighCost;
515 
516   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
517       : PN(P), Ith(I), Val(V), HighCost(H) {}
518 };
519 
520 } // end anonymous namespace
521 
522 //===----------------------------------------------------------------------===//
523 // rewriteLoopExitValues - Optimize IV users outside the loop.
524 // As a side effect, reduces the amount of IV processing within the loop.
525 //===----------------------------------------------------------------------===//
526 
527 /// Check to see if this loop has a computable loop-invariant execution count.
528 /// If so, this means that we can compute the final value of any expressions
529 /// that are recurrent in the loop, and substitute the exit values from the loop
530 /// into any instructions outside of the loop that use the final values of the
531 /// current expressions.
532 ///
533 /// This is mostly redundant with the regular IndVarSimplify activities that
534 /// happen later, except that it's more powerful in some cases, because it's
535 /// able to brute-force evaluate arbitrary instructions as long as they have
536 /// constant operands at the beginning of the loop.
537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
538   // Check a pre-condition.
539   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
540          "Indvars did not preserve LCSSA!");
541 
542   SmallVector<BasicBlock*, 8> ExitBlocks;
543   L->getUniqueExitBlocks(ExitBlocks);
544 
545   SmallVector<RewritePhi, 8> RewritePhiSet;
546   // Find all values that are computed inside the loop, but used outside of it.
547   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
548   // the exit blocks of the loop to find them.
549   for (BasicBlock *ExitBB : ExitBlocks) {
550     // If there are no PHI nodes in this exit block, then no values defined
551     // inside the loop are used on this path, skip it.
552     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
553     if (!PN) continue;
554 
555     unsigned NumPreds = PN->getNumIncomingValues();
556 
557     // Iterate over all of the PHI nodes.
558     BasicBlock::iterator BBI = ExitBB->begin();
559     while ((PN = dyn_cast<PHINode>(BBI++))) {
560       if (PN->use_empty())
561         continue; // dead use, don't replace it
562 
563       if (!SE->isSCEVable(PN->getType()))
564         continue;
565 
566       // It's necessary to tell ScalarEvolution about this explicitly so that
567       // it can walk the def-use list and forget all SCEVs, as it may not be
568       // watching the PHI itself. Once the new exit value is in place, there
569       // may not be a def-use connection between the loop and every instruction
570       // which got a SCEVAddRecExpr for that loop.
571       SE->forgetValue(PN);
572 
573       // Iterate over all of the values in all the PHI nodes.
574       for (unsigned i = 0; i != NumPreds; ++i) {
575         // If the value being merged in is not integer or is not defined
576         // in the loop, skip it.
577         Value *InVal = PN->getIncomingValue(i);
578         if (!isa<Instruction>(InVal))
579           continue;
580 
581         // If this pred is for a subloop, not L itself, skip it.
582         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
583           continue; // The Block is in a subloop, skip it.
584 
585         // Check that InVal is defined in the loop.
586         Instruction *Inst = cast<Instruction>(InVal);
587         if (!L->contains(Inst))
588           continue;
589 
590         // Okay, this instruction has a user outside of the current loop
591         // and varies predictably *inside* the loop.  Evaluate the value it
592         // contains when the loop exits, if possible.
593         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
594         if (!SE->isLoopInvariant(ExitValue, L) ||
595             !isSafeToExpand(ExitValue, *SE))
596           continue;
597 
598         // Computing the value outside of the loop brings no benefit if :
599         //  - it is definitely used inside the loop in a way which can not be
600         //    optimized away.
601         //  - no use outside of the loop can take advantage of hoisting the
602         //    computation out of the loop
603         if (ExitValue->getSCEVType()>=scMulExpr) {
604           unsigned NumHardInternalUses = 0;
605           unsigned NumSoftExternalUses = 0;
606           unsigned NumUses = 0;
607           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
608                IB != IE && NumUses <= 6; ++IB) {
609             Instruction *UseInstr = cast<Instruction>(*IB);
610             unsigned Opc = UseInstr->getOpcode();
611             NumUses++;
612             if (L->contains(UseInstr)) {
613               if (Opc == Instruction::Call)
614                 NumHardInternalUses++;
615             } else {
616               if (Opc == Instruction::PHI) {
617                 // Do not count the Phi as a use. LCSSA may have inserted
618                 // plenty of trivial ones.
619                 NumUses--;
620                 for (auto PB = UseInstr->user_begin(),
621                           PE = UseInstr->user_end();
622                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
623                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
624                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
625                     NumSoftExternalUses++;
626                 }
627                 continue;
628               }
629               if (Opc != Instruction::Call && Opc != Instruction::Ret)
630                 NumSoftExternalUses++;
631             }
632           }
633           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
634             continue;
635         }
636 
637         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
638         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
639 
640         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
641                           << '\n'
642                           << "  LoopVal = " << *Inst << "\n");
643 
644         if (!isValidRewrite(Inst, ExitVal)) {
645           DeadInsts.push_back(ExitVal);
646           continue;
647         }
648 
649 #ifndef NDEBUG
650         // If we reuse an instruction from a loop which is neither L nor one of
651         // its containing loops, we end up breaking LCSSA form for this loop by
652         // creating a new use of its instruction.
653         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
654           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
655             if (EVL != L)
656               assert(EVL->contains(L) && "LCSSA breach detected!");
657 #endif
658 
659         // Collect all the candidate PHINodes to be rewritten.
660         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
661       }
662     }
663   }
664 
665   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
666 
667   bool Changed = false;
668   // Transformation.
669   for (const RewritePhi &Phi : RewritePhiSet) {
670     PHINode *PN = Phi.PN;
671     Value *ExitVal = Phi.Val;
672 
673     // Only do the rewrite when the ExitValue can be expanded cheaply.
674     // If LoopCanBeDel is true, rewrite exit value aggressively.
675     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
676       DeadInsts.push_back(ExitVal);
677       continue;
678     }
679 
680     Changed = true;
681     ++NumReplaced;
682     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
683     PN->setIncomingValue(Phi.Ith, ExitVal);
684 
685     // If this instruction is dead now, delete it. Don't do it now to avoid
686     // invalidating iterators.
687     if (isInstructionTriviallyDead(Inst, TLI))
688       DeadInsts.push_back(Inst);
689 
690     // Replace PN with ExitVal if that is legal and does not break LCSSA.
691     if (PN->getNumIncomingValues() == 1 &&
692         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
693       PN->replaceAllUsesWith(ExitVal);
694       PN->eraseFromParent();
695     }
696   }
697 
698   // The insertion point instruction may have been deleted; clear it out
699   // so that the rewriter doesn't trip over it later.
700   Rewriter.clearInsertPoint();
701   return Changed;
702 }
703 
704 //===---------------------------------------------------------------------===//
705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
706 // they will exit at the first iteration.
707 //===---------------------------------------------------------------------===//
708 
709 /// Check to see if this loop has loop invariant conditions which lead to loop
710 /// exits. If so, we know that if the exit path is taken, it is at the first
711 /// loop iteration. This lets us predict exit values of PHI nodes that live in
712 /// loop header.
713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
714   // Verify the input to the pass is already in LCSSA form.
715   assert(L->isLCSSAForm(*DT));
716 
717   SmallVector<BasicBlock *, 8> ExitBlocks;
718   L->getUniqueExitBlocks(ExitBlocks);
719   auto *LoopHeader = L->getHeader();
720   assert(LoopHeader && "Invalid loop");
721 
722   bool MadeAnyChanges = false;
723   for (auto *ExitBB : ExitBlocks) {
724     // If there are no more PHI nodes in this exit block, then no more
725     // values defined inside the loop are used on this path.
726     for (PHINode &PN : ExitBB->phis()) {
727       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
728            IncomingValIdx != E; ++IncomingValIdx) {
729         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
730 
731         // We currently only support loop exits from loop header. If the
732         // incoming block is not loop header, we need to recursively check
733         // all conditions starting from loop header are loop invariants.
734         // Additional support might be added in the future.
735         if (IncomingBB != LoopHeader)
736           continue;
737 
738         // Get condition that leads to the exit path.
739         auto *TermInst = IncomingBB->getTerminator();
740 
741         Value *Cond = nullptr;
742         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
743           // Must be a conditional branch, otherwise the block
744           // should not be in the loop.
745           Cond = BI->getCondition();
746         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
747           Cond = SI->getCondition();
748         else
749           continue;
750 
751         if (!L->isLoopInvariant(Cond))
752           continue;
753 
754         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
755 
756         // Only deal with PHIs.
757         if (!ExitVal)
758           continue;
759 
760         // If ExitVal is a PHI on the loop header, then we know its
761         // value along this exit because the exit can only be taken
762         // on the first iteration.
763         auto *LoopPreheader = L->getLoopPreheader();
764         assert(LoopPreheader && "Invalid loop");
765         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
766         if (PreheaderIdx != -1) {
767           assert(ExitVal->getParent() == LoopHeader &&
768                  "ExitVal must be in loop header");
769           MadeAnyChanges = true;
770           PN.setIncomingValue(IncomingValIdx,
771                               ExitVal->getIncomingValue(PreheaderIdx));
772         }
773       }
774     }
775   }
776   return MadeAnyChanges;
777 }
778 
779 /// Check whether it is possible to delete the loop after rewriting exit
780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
781 /// aggressively.
782 bool IndVarSimplify::canLoopBeDeleted(
783     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
784   BasicBlock *Preheader = L->getLoopPreheader();
785   // If there is no preheader, the loop will not be deleted.
786   if (!Preheader)
787     return false;
788 
789   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
790   // We obviate multiple ExitingBlocks case for simplicity.
791   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
792   // after exit value rewriting, we can enhance the logic here.
793   SmallVector<BasicBlock *, 4> ExitingBlocks;
794   L->getExitingBlocks(ExitingBlocks);
795   SmallVector<BasicBlock *, 8> ExitBlocks;
796   L->getUniqueExitBlocks(ExitBlocks);
797   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
798     return false;
799 
800   BasicBlock *ExitBlock = ExitBlocks[0];
801   BasicBlock::iterator BI = ExitBlock->begin();
802   while (PHINode *P = dyn_cast<PHINode>(BI)) {
803     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
804 
805     // If the Incoming value of P is found in RewritePhiSet, we know it
806     // could be rewritten to use a loop invariant value in transformation
807     // phase later. Skip it in the loop invariant check below.
808     bool found = false;
809     for (const RewritePhi &Phi : RewritePhiSet) {
810       unsigned i = Phi.Ith;
811       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
812         found = true;
813         break;
814       }
815     }
816 
817     Instruction *I;
818     if (!found && (I = dyn_cast<Instruction>(Incoming)))
819       if (!L->hasLoopInvariantOperands(I))
820         return false;
821 
822     ++BI;
823   }
824 
825   for (auto *BB : L->blocks())
826     if (llvm::any_of(*BB, [](Instruction &I) {
827           return I.mayHaveSideEffects();
828         }))
829       return false;
830 
831   return true;
832 }
833 
834 //===----------------------------------------------------------------------===//
835 //  IV Widening - Extend the width of an IV to cover its widest uses.
836 //===----------------------------------------------------------------------===//
837 
838 namespace {
839 
840 // Collect information about induction variables that are used by sign/zero
841 // extend operations. This information is recorded by CollectExtend and provides
842 // the input to WidenIV.
843 struct WideIVInfo {
844   PHINode *NarrowIV = nullptr;
845 
846   // Widest integer type created [sz]ext
847   Type *WidestNativeType = nullptr;
848 
849   // Was a sext user seen before a zext?
850   bool IsSigned = false;
851 };
852 
853 } // end anonymous namespace
854 
855 /// Update information about the induction variable that is extended by this
856 /// sign or zero extend operation. This is used to determine the final width of
857 /// the IV before actually widening it.
858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
859                         const TargetTransformInfo *TTI) {
860   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
861   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
862     return;
863 
864   Type *Ty = Cast->getType();
865   uint64_t Width = SE->getTypeSizeInBits(Ty);
866   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
867     return;
868 
869   // Check that `Cast` actually extends the induction variable (we rely on this
870   // later).  This takes care of cases where `Cast` is extending a truncation of
871   // the narrow induction variable, and thus can end up being narrower than the
872   // "narrow" induction variable.
873   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
874   if (NarrowIVWidth >= Width)
875     return;
876 
877   // Cast is either an sext or zext up to this point.
878   // We should not widen an indvar if arithmetics on the wider indvar are more
879   // expensive than those on the narrower indvar. We check only the cost of ADD
880   // because at least an ADD is required to increment the induction variable. We
881   // could compute more comprehensively the cost of all instructions on the
882   // induction variable when necessary.
883   if (TTI &&
884       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
885           TTI->getArithmeticInstrCost(Instruction::Add,
886                                       Cast->getOperand(0)->getType())) {
887     return;
888   }
889 
890   if (!WI.WidestNativeType) {
891     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
892     WI.IsSigned = IsSigned;
893     return;
894   }
895 
896   // We extend the IV to satisfy the sign of its first user, arbitrarily.
897   if (WI.IsSigned != IsSigned)
898     return;
899 
900   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
901     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
902 }
903 
904 namespace {
905 
906 /// Record a link in the Narrow IV def-use chain along with the WideIV that
907 /// computes the same value as the Narrow IV def.  This avoids caching Use*
908 /// pointers.
909 struct NarrowIVDefUse {
910   Instruction *NarrowDef = nullptr;
911   Instruction *NarrowUse = nullptr;
912   Instruction *WideDef = nullptr;
913 
914   // True if the narrow def is never negative.  Tracking this information lets
915   // us use a sign extension instead of a zero extension or vice versa, when
916   // profitable and legal.
917   bool NeverNegative = false;
918 
919   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
920                  bool NeverNegative)
921       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
922         NeverNegative(NeverNegative) {}
923 };
924 
925 /// The goal of this transform is to remove sign and zero extends without
926 /// creating any new induction variables. To do this, it creates a new phi of
927 /// the wider type and redirects all users, either removing extends or inserting
928 /// truncs whenever we stop propagating the type.
929 class WidenIV {
930   // Parameters
931   PHINode *OrigPhi;
932   Type *WideType;
933 
934   // Context
935   LoopInfo        *LI;
936   Loop            *L;
937   ScalarEvolution *SE;
938   DominatorTree   *DT;
939 
940   // Does the module have any calls to the llvm.experimental.guard intrinsic
941   // at all? If not we can avoid scanning instructions looking for guards.
942   bool HasGuards;
943 
944   // Result
945   PHINode *WidePhi = nullptr;
946   Instruction *WideInc = nullptr;
947   const SCEV *WideIncExpr = nullptr;
948   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
949 
950   SmallPtrSet<Instruction *,16> Widened;
951   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
952 
953   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
954 
955   // A map tracking the kind of extension used to widen each narrow IV
956   // and narrow IV user.
957   // Key: pointer to a narrow IV or IV user.
958   // Value: the kind of extension used to widen this Instruction.
959   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
960 
961   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
962 
963   // A map with control-dependent ranges for post increment IV uses. The key is
964   // a pair of IV def and a use of this def denoting the context. The value is
965   // a ConstantRange representing possible values of the def at the given
966   // context.
967   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
968 
969   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
970                                               Instruction *UseI) {
971     DefUserPair Key(Def, UseI);
972     auto It = PostIncRangeInfos.find(Key);
973     return It == PostIncRangeInfos.end()
974                ? Optional<ConstantRange>(None)
975                : Optional<ConstantRange>(It->second);
976   }
977 
978   void calculatePostIncRanges(PHINode *OrigPhi);
979   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
980 
981   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
982     DefUserPair Key(Def, UseI);
983     auto It = PostIncRangeInfos.find(Key);
984     if (It == PostIncRangeInfos.end())
985       PostIncRangeInfos.insert({Key, R});
986     else
987       It->second = R.intersectWith(It->second);
988   }
989 
990 public:
991   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
992           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
993           bool HasGuards)
994       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
995         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
996         HasGuards(HasGuards), DeadInsts(DI) {
997     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
998     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
999   }
1000 
1001   PHINode *createWideIV(SCEVExpander &Rewriter);
1002 
1003 protected:
1004   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1005                           Instruction *Use);
1006 
1007   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1008   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1009                                      const SCEVAddRecExpr *WideAR);
1010   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1011 
1012   ExtendKind getExtendKind(Instruction *I);
1013 
1014   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1015 
1016   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1017 
1018   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1019 
1020   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1021                               unsigned OpCode) const;
1022 
1023   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1024 
1025   bool widenLoopCompare(NarrowIVDefUse DU);
1026   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1027   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1028 
1029   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1030 };
1031 
1032 } // end anonymous namespace
1033 
1034 /// Perform a quick domtree based check for loop invariance assuming that V is
1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1036 /// purpose.
1037 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1038   Instruction *Inst = dyn_cast<Instruction>(V);
1039   if (!Inst)
1040     return true;
1041 
1042   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1043 }
1044 
1045 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1046                                  bool IsSigned, Instruction *Use) {
1047   // Set the debug location and conservative insertion point.
1048   IRBuilder<> Builder(Use);
1049   // Hoist the insertion point into loop preheaders as far as possible.
1050   for (const Loop *L = LI->getLoopFor(Use->getParent());
1051        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1052        L = L->getParentLoop())
1053     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1054 
1055   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1056                     Builder.CreateZExt(NarrowOper, WideType);
1057 }
1058 
1059 /// Instantiate a wide operation to replace a narrow operation. This only needs
1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1061 /// 0 for any operation we decide not to clone.
1062 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1063                                   const SCEVAddRecExpr *WideAR) {
1064   unsigned Opcode = DU.NarrowUse->getOpcode();
1065   switch (Opcode) {
1066   default:
1067     return nullptr;
1068   case Instruction::Add:
1069   case Instruction::Mul:
1070   case Instruction::UDiv:
1071   case Instruction::Sub:
1072     return cloneArithmeticIVUser(DU, WideAR);
1073 
1074   case Instruction::And:
1075   case Instruction::Or:
1076   case Instruction::Xor:
1077   case Instruction::Shl:
1078   case Instruction::LShr:
1079   case Instruction::AShr:
1080     return cloneBitwiseIVUser(DU);
1081   }
1082 }
1083 
1084 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1085   Instruction *NarrowUse = DU.NarrowUse;
1086   Instruction *NarrowDef = DU.NarrowDef;
1087   Instruction *WideDef = DU.WideDef;
1088 
1089   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1090 
1091   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1092   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1093   // invariant and will be folded or hoisted. If it actually comes from a
1094   // widened IV, it should be removed during a future call to widenIVUse.
1095   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1096   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1097                    ? WideDef
1098                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1099                                       IsSigned, NarrowUse);
1100   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1101                    ? WideDef
1102                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1103                                       IsSigned, NarrowUse);
1104 
1105   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1106   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1107                                         NarrowBO->getName());
1108   IRBuilder<> Builder(NarrowUse);
1109   Builder.Insert(WideBO);
1110   WideBO->copyIRFlags(NarrowBO);
1111   return WideBO;
1112 }
1113 
1114 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1115                                             const SCEVAddRecExpr *WideAR) {
1116   Instruction *NarrowUse = DU.NarrowUse;
1117   Instruction *NarrowDef = DU.NarrowDef;
1118   Instruction *WideDef = DU.WideDef;
1119 
1120   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1121 
1122   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1123 
1124   // We're trying to find X such that
1125   //
1126   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1127   //
1128   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1129   // and check using SCEV if any of them are correct.
1130 
1131   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1132   // correct solution to X.
1133   auto GuessNonIVOperand = [&](bool SignExt) {
1134     const SCEV *WideLHS;
1135     const SCEV *WideRHS;
1136 
1137     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1138       if (SignExt)
1139         return SE->getSignExtendExpr(S, Ty);
1140       return SE->getZeroExtendExpr(S, Ty);
1141     };
1142 
1143     if (IVOpIdx == 0) {
1144       WideLHS = SE->getSCEV(WideDef);
1145       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1146       WideRHS = GetExtend(NarrowRHS, WideType);
1147     } else {
1148       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1149       WideLHS = GetExtend(NarrowLHS, WideType);
1150       WideRHS = SE->getSCEV(WideDef);
1151     }
1152 
1153     // WideUse is "WideDef `op.wide` X" as described in the comment.
1154     const SCEV *WideUse = nullptr;
1155 
1156     switch (NarrowUse->getOpcode()) {
1157     default:
1158       llvm_unreachable("No other possibility!");
1159 
1160     case Instruction::Add:
1161       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1162       break;
1163 
1164     case Instruction::Mul:
1165       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1166       break;
1167 
1168     case Instruction::UDiv:
1169       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1170       break;
1171 
1172     case Instruction::Sub:
1173       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1174       break;
1175     }
1176 
1177     return WideUse == WideAR;
1178   };
1179 
1180   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1181   if (!GuessNonIVOperand(SignExtend)) {
1182     SignExtend = !SignExtend;
1183     if (!GuessNonIVOperand(SignExtend))
1184       return nullptr;
1185   }
1186 
1187   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1188                    ? WideDef
1189                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1190                                       SignExtend, NarrowUse);
1191   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1192                    ? WideDef
1193                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1194                                       SignExtend, NarrowUse);
1195 
1196   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1197   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1198                                         NarrowBO->getName());
1199 
1200   IRBuilder<> Builder(NarrowUse);
1201   Builder.Insert(WideBO);
1202   WideBO->copyIRFlags(NarrowBO);
1203   return WideBO;
1204 }
1205 
1206 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1207   auto It = ExtendKindMap.find(I);
1208   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1209   return It->second;
1210 }
1211 
1212 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1213                                      unsigned OpCode) const {
1214   if (OpCode == Instruction::Add)
1215     return SE->getAddExpr(LHS, RHS);
1216   if (OpCode == Instruction::Sub)
1217     return SE->getMinusSCEV(LHS, RHS);
1218   if (OpCode == Instruction::Mul)
1219     return SE->getMulExpr(LHS, RHS);
1220 
1221   llvm_unreachable("Unsupported opcode.");
1222 }
1223 
1224 /// No-wrap operations can transfer sign extension of their result to their
1225 /// operands. Generate the SCEV value for the widened operation without
1226 /// actually modifying the IR yet. If the expression after extending the
1227 /// operands is an AddRec for this loop, return the AddRec and the kind of
1228 /// extension used.
1229 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1230   // Handle the common case of add<nsw/nuw>
1231   const unsigned OpCode = DU.NarrowUse->getOpcode();
1232   // Only Add/Sub/Mul instructions supported yet.
1233   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1234       OpCode != Instruction::Mul)
1235     return {nullptr, Unknown};
1236 
1237   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1238   // if extending the other will lead to a recurrence.
1239   const unsigned ExtendOperIdx =
1240       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1241   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1242 
1243   const SCEV *ExtendOperExpr = nullptr;
1244   const OverflowingBinaryOperator *OBO =
1245     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1246   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1247   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1248     ExtendOperExpr = SE->getSignExtendExpr(
1249       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1250   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1251     ExtendOperExpr = SE->getZeroExtendExpr(
1252       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1253   else
1254     return {nullptr, Unknown};
1255 
1256   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1257   // flags. This instruction may be guarded by control flow that the no-wrap
1258   // behavior depends on. Non-control-equivalent instructions can be mapped to
1259   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1260   // semantics to those operations.
1261   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1262   const SCEV *rhs = ExtendOperExpr;
1263 
1264   // Let's swap operands to the initial order for the case of non-commutative
1265   // operations, like SUB. See PR21014.
1266   if (ExtendOperIdx == 0)
1267     std::swap(lhs, rhs);
1268   const SCEVAddRecExpr *AddRec =
1269       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1270 
1271   if (!AddRec || AddRec->getLoop() != L)
1272     return {nullptr, Unknown};
1273 
1274   return {AddRec, ExtKind};
1275 }
1276 
1277 /// Is this instruction potentially interesting for further simplification after
1278 /// widening it's type? In other words, can the extend be safely hoisted out of
1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1280 /// so, return the extended recurrence and the kind of extension used. Otherwise
1281 /// return {nullptr, Unknown}.
1282 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1283   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1284     return {nullptr, Unknown};
1285 
1286   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1287   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1288       SE->getTypeSizeInBits(WideType)) {
1289     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1290     // index. So don't follow this use.
1291     return {nullptr, Unknown};
1292   }
1293 
1294   const SCEV *WideExpr;
1295   ExtendKind ExtKind;
1296   if (DU.NeverNegative) {
1297     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1298     if (isa<SCEVAddRecExpr>(WideExpr))
1299       ExtKind = SignExtended;
1300     else {
1301       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1302       ExtKind = ZeroExtended;
1303     }
1304   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1305     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1306     ExtKind = SignExtended;
1307   } else {
1308     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1309     ExtKind = ZeroExtended;
1310   }
1311   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1312   if (!AddRec || AddRec->getLoop() != L)
1313     return {nullptr, Unknown};
1314   return {AddRec, ExtKind};
1315 }
1316 
1317 /// This IV user cannot be widen. Replace this use of the original narrow IV
1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1319 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1320   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1321                     << *DU.NarrowUse << "\n");
1322   IRBuilder<> Builder(
1323       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1324   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1325   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1326 }
1327 
1328 /// If the narrow use is a compare instruction, then widen the compare
1329 //  (and possibly the other operand).  The extend operation is hoisted into the
1330 // loop preheader as far as possible.
1331 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1332   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1333   if (!Cmp)
1334     return false;
1335 
1336   // We can legally widen the comparison in the following two cases:
1337   //
1338   //  - The signedness of the IV extension and comparison match
1339   //
1340   //  - The narrow IV is always positive (and thus its sign extension is equal
1341   //    to its zero extension).  For instance, let's say we're zero extending
1342   //    %narrow for the following use
1343   //
1344   //      icmp slt i32 %narrow, %val   ... (A)
1345   //
1346   //    and %narrow is always positive.  Then
1347   //
1348   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1349   //          == icmp slt i32 zext(%narrow), sext(%val)
1350   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1351   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1352     return false;
1353 
1354   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1355   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1356   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1357   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1358 
1359   // Widen the compare instruction.
1360   IRBuilder<> Builder(
1361       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1362   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1363 
1364   // Widen the other operand of the compare, if necessary.
1365   if (CastWidth < IVWidth) {
1366     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1367     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1368   }
1369   return true;
1370 }
1371 
1372 /// If the narrow use is an instruction whose two operands are the defining
1373 /// instruction of DU and a load instruction, then we have the following:
1374 /// if the load is hoisted outside the loop, then we do not reach this function
1375 /// as scalar evolution analysis works fine in widenIVUse with variables
1376 /// hoisted outside the loop and efficient code is subsequently generated by
1377 /// not emitting truncate instructions. But when the load is not hoisted
1378 /// (whether due to limitation in alias analysis or due to a true legality),
1379 /// then scalar evolution can not proceed with loop variant values and
1380 /// inefficient code is generated. This function handles the non-hoisted load
1381 /// special case by making the optimization generate the same type of code for
1382 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1383 /// instruction). This special case is important especially when the induction
1384 /// variables are affecting addressing mode in code generation.
1385 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1386   Instruction *NarrowUse = DU.NarrowUse;
1387   Instruction *NarrowDef = DU.NarrowDef;
1388   Instruction *WideDef = DU.WideDef;
1389 
1390   // Handle the common case of add<nsw/nuw>
1391   const unsigned OpCode = NarrowUse->getOpcode();
1392   // Only Add/Sub/Mul instructions are supported.
1393   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1394       OpCode != Instruction::Mul)
1395     return false;
1396 
1397   // The operand that is not defined by NarrowDef of DU. Let's call it the
1398   // other operand.
1399   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1400   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1401          "bad DU");
1402 
1403   const SCEV *ExtendOperExpr = nullptr;
1404   const OverflowingBinaryOperator *OBO =
1405     cast<OverflowingBinaryOperator>(NarrowUse);
1406   ExtendKind ExtKind = getExtendKind(NarrowDef);
1407   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1408     ExtendOperExpr = SE->getSignExtendExpr(
1409       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1410   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1411     ExtendOperExpr = SE->getZeroExtendExpr(
1412       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1413   else
1414     return false;
1415 
1416   // We are interested in the other operand being a load instruction.
1417   // But, we should look into relaxing this restriction later on.
1418   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1419   if (I && I->getOpcode() != Instruction::Load)
1420     return false;
1421 
1422   // Verifying that Defining operand is an AddRec
1423   const SCEV *Op1 = SE->getSCEV(WideDef);
1424   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1425   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1426     return false;
1427   // Verifying that other operand is an Extend.
1428   if (ExtKind == SignExtended) {
1429     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1430       return false;
1431   } else {
1432     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1433       return false;
1434   }
1435 
1436   if (ExtKind == SignExtended) {
1437     for (Use &U : NarrowUse->uses()) {
1438       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1439       if (!User || User->getType() != WideType)
1440         return false;
1441     }
1442   } else { // ExtKind == ZeroExtended
1443     for (Use &U : NarrowUse->uses()) {
1444       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1445       if (!User || User->getType() != WideType)
1446         return false;
1447     }
1448   }
1449 
1450   return true;
1451 }
1452 
1453 /// Special Case for widening with variant Loads (see
1454 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1455 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1456   Instruction *NarrowUse = DU.NarrowUse;
1457   Instruction *NarrowDef = DU.NarrowDef;
1458   Instruction *WideDef = DU.WideDef;
1459 
1460   ExtendKind ExtKind = getExtendKind(NarrowDef);
1461 
1462   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1463 
1464   // Generating a widening use instruction.
1465   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1466                    ? WideDef
1467                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1468                                       ExtKind, NarrowUse);
1469   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1470                    ? WideDef
1471                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1472                                       ExtKind, NarrowUse);
1473 
1474   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1475   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1476                                         NarrowBO->getName());
1477   IRBuilder<> Builder(NarrowUse);
1478   Builder.Insert(WideBO);
1479   WideBO->copyIRFlags(NarrowBO);
1480 
1481   if (ExtKind == SignExtended)
1482     ExtendKindMap[NarrowUse] = SignExtended;
1483   else
1484     ExtendKindMap[NarrowUse] = ZeroExtended;
1485 
1486   // Update the Use.
1487   if (ExtKind == SignExtended) {
1488     for (Use &U : NarrowUse->uses()) {
1489       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1490       if (User && User->getType() == WideType) {
1491         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1492                           << *WideBO << "\n");
1493         ++NumElimExt;
1494         User->replaceAllUsesWith(WideBO);
1495         DeadInsts.emplace_back(User);
1496       }
1497     }
1498   } else { // ExtKind == ZeroExtended
1499     for (Use &U : NarrowUse->uses()) {
1500       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1501       if (User && User->getType() == WideType) {
1502         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1503                           << *WideBO << "\n");
1504         ++NumElimExt;
1505         User->replaceAllUsesWith(WideBO);
1506         DeadInsts.emplace_back(User);
1507       }
1508     }
1509   }
1510 }
1511 
1512 /// Determine whether an individual user of the narrow IV can be widened. If so,
1513 /// return the wide clone of the user.
1514 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1515   assert(ExtendKindMap.count(DU.NarrowDef) &&
1516          "Should already know the kind of extension used to widen NarrowDef");
1517 
1518   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1519   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1520     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1521       // For LCSSA phis, sink the truncate outside the loop.
1522       // After SimplifyCFG most loop exit targets have a single predecessor.
1523       // Otherwise fall back to a truncate within the loop.
1524       if (UsePhi->getNumOperands() != 1)
1525         truncateIVUse(DU, DT, LI);
1526       else {
1527         // Widening the PHI requires us to insert a trunc.  The logical place
1528         // for this trunc is in the same BB as the PHI.  This is not possible if
1529         // the BB is terminated by a catchswitch.
1530         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1531           return nullptr;
1532 
1533         PHINode *WidePhi =
1534           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1535                           UsePhi);
1536         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1537         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1538         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1539         UsePhi->replaceAllUsesWith(Trunc);
1540         DeadInsts.emplace_back(UsePhi);
1541         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1542                           << *WidePhi << "\n");
1543       }
1544       return nullptr;
1545     }
1546   }
1547 
1548   // This narrow use can be widened by a sext if it's non-negative or its narrow
1549   // def was widended by a sext. Same for zext.
1550   auto canWidenBySExt = [&]() {
1551     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1552   };
1553   auto canWidenByZExt = [&]() {
1554     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1555   };
1556 
1557   // Our raison d'etre! Eliminate sign and zero extension.
1558   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1559       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1560     Value *NewDef = DU.WideDef;
1561     if (DU.NarrowUse->getType() != WideType) {
1562       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1563       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1564       if (CastWidth < IVWidth) {
1565         // The cast isn't as wide as the IV, so insert a Trunc.
1566         IRBuilder<> Builder(DU.NarrowUse);
1567         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1568       }
1569       else {
1570         // A wider extend was hidden behind a narrower one. This may induce
1571         // another round of IV widening in which the intermediate IV becomes
1572         // dead. It should be very rare.
1573         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1574                           << " not wide enough to subsume " << *DU.NarrowUse
1575                           << "\n");
1576         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1577         NewDef = DU.NarrowUse;
1578       }
1579     }
1580     if (NewDef != DU.NarrowUse) {
1581       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1582                         << " replaced by " << *DU.WideDef << "\n");
1583       ++NumElimExt;
1584       DU.NarrowUse->replaceAllUsesWith(NewDef);
1585       DeadInsts.emplace_back(DU.NarrowUse);
1586     }
1587     // Now that the extend is gone, we want to expose it's uses for potential
1588     // further simplification. We don't need to directly inform SimplifyIVUsers
1589     // of the new users, because their parent IV will be processed later as a
1590     // new loop phi. If we preserved IVUsers analysis, we would also want to
1591     // push the uses of WideDef here.
1592 
1593     // No further widening is needed. The deceased [sz]ext had done it for us.
1594     return nullptr;
1595   }
1596 
1597   // Does this user itself evaluate to a recurrence after widening?
1598   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1599   if (!WideAddRec.first)
1600     WideAddRec = getWideRecurrence(DU);
1601 
1602   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1603   if (!WideAddRec.first) {
1604     // If use is a loop condition, try to promote the condition instead of
1605     // truncating the IV first.
1606     if (widenLoopCompare(DU))
1607       return nullptr;
1608 
1609     // We are here about to generate a truncate instruction that may hurt
1610     // performance because the scalar evolution expression computed earlier
1611     // in WideAddRec.first does not indicate a polynomial induction expression.
1612     // In that case, look at the operands of the use instruction to determine
1613     // if we can still widen the use instead of truncating its operand.
1614     if (widenWithVariantLoadUse(DU)) {
1615       widenWithVariantLoadUseCodegen(DU);
1616       return nullptr;
1617     }
1618 
1619     // This user does not evaluate to a recurrence after widening, so don't
1620     // follow it. Instead insert a Trunc to kill off the original use,
1621     // eventually isolating the original narrow IV so it can be removed.
1622     truncateIVUse(DU, DT, LI);
1623     return nullptr;
1624   }
1625   // Assume block terminators cannot evaluate to a recurrence. We can't to
1626   // insert a Trunc after a terminator if there happens to be a critical edge.
1627   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1628          "SCEV is not expected to evaluate a block terminator");
1629 
1630   // Reuse the IV increment that SCEVExpander created as long as it dominates
1631   // NarrowUse.
1632   Instruction *WideUse = nullptr;
1633   if (WideAddRec.first == WideIncExpr &&
1634       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1635     WideUse = WideInc;
1636   else {
1637     WideUse = cloneIVUser(DU, WideAddRec.first);
1638     if (!WideUse)
1639       return nullptr;
1640   }
1641   // Evaluation of WideAddRec ensured that the narrow expression could be
1642   // extended outside the loop without overflow. This suggests that the wide use
1643   // evaluates to the same expression as the extended narrow use, but doesn't
1644   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1645   // where it fails, we simply throw away the newly created wide use.
1646   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1647     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1648                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1649                       << "\n");
1650     DeadInsts.emplace_back(WideUse);
1651     return nullptr;
1652   }
1653 
1654   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1655   // Returning WideUse pushes it on the worklist.
1656   return WideUse;
1657 }
1658 
1659 /// Add eligible users of NarrowDef to NarrowIVUsers.
1660 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1661   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1662   bool NonNegativeDef =
1663       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1664                            SE->getConstant(NarrowSCEV->getType(), 0));
1665   for (User *U : NarrowDef->users()) {
1666     Instruction *NarrowUser = cast<Instruction>(U);
1667 
1668     // Handle data flow merges and bizarre phi cycles.
1669     if (!Widened.insert(NarrowUser).second)
1670       continue;
1671 
1672     bool NonNegativeUse = false;
1673     if (!NonNegativeDef) {
1674       // We might have a control-dependent range information for this context.
1675       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1676         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1677     }
1678 
1679     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1680                                NonNegativeDef || NonNegativeUse);
1681   }
1682 }
1683 
1684 /// Process a single induction variable. First use the SCEVExpander to create a
1685 /// wide induction variable that evaluates to the same recurrence as the
1686 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1687 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1688 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1689 ///
1690 /// It would be simpler to delete uses as they are processed, but we must avoid
1691 /// invalidating SCEV expressions.
1692 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1693   // Is this phi an induction variable?
1694   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1695   if (!AddRec)
1696     return nullptr;
1697 
1698   // Widen the induction variable expression.
1699   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1700                                ? SE->getSignExtendExpr(AddRec, WideType)
1701                                : SE->getZeroExtendExpr(AddRec, WideType);
1702 
1703   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1704          "Expect the new IV expression to preserve its type");
1705 
1706   // Can the IV be extended outside the loop without overflow?
1707   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1708   if (!AddRec || AddRec->getLoop() != L)
1709     return nullptr;
1710 
1711   // An AddRec must have loop-invariant operands. Since this AddRec is
1712   // materialized by a loop header phi, the expression cannot have any post-loop
1713   // operands, so they must dominate the loop header.
1714   assert(
1715       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1716       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1717       "Loop header phi recurrence inputs do not dominate the loop");
1718 
1719   // Iterate over IV uses (including transitive ones) looking for IV increments
1720   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1721   // the increment calculate control-dependent range information basing on
1722   // dominating conditions inside of the loop (e.g. a range check inside of the
1723   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1724   //
1725   // Control-dependent range information is later used to prove that a narrow
1726   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1727   // this on demand because when pushNarrowIVUsers needs this information some
1728   // of the dominating conditions might be already widened.
1729   if (UsePostIncrementRanges)
1730     calculatePostIncRanges(OrigPhi);
1731 
1732   // The rewriter provides a value for the desired IV expression. This may
1733   // either find an existing phi or materialize a new one. Either way, we
1734   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1735   // of the phi-SCC dominates the loop entry.
1736   Instruction *InsertPt = &L->getHeader()->front();
1737   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1738 
1739   // Remembering the WideIV increment generated by SCEVExpander allows
1740   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1741   // employ a general reuse mechanism because the call above is the only call to
1742   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1743   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1744     WideInc =
1745       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1746     WideIncExpr = SE->getSCEV(WideInc);
1747     // Propagate the debug location associated with the original loop increment
1748     // to the new (widened) increment.
1749     auto *OrigInc =
1750       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1751     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1752   }
1753 
1754   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1755   ++NumWidened;
1756 
1757   // Traverse the def-use chain using a worklist starting at the original IV.
1758   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1759 
1760   Widened.insert(OrigPhi);
1761   pushNarrowIVUsers(OrigPhi, WidePhi);
1762 
1763   while (!NarrowIVUsers.empty()) {
1764     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1765 
1766     // Process a def-use edge. This may replace the use, so don't hold a
1767     // use_iterator across it.
1768     Instruction *WideUse = widenIVUse(DU, Rewriter);
1769 
1770     // Follow all def-use edges from the previous narrow use.
1771     if (WideUse)
1772       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1773 
1774     // widenIVUse may have removed the def-use edge.
1775     if (DU.NarrowDef->use_empty())
1776       DeadInsts.emplace_back(DU.NarrowDef);
1777   }
1778 
1779   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1780   // evaluate the same recurrence, we can just copy the debug info over.
1781   SmallVector<DbgValueInst *, 1> DbgValues;
1782   llvm::findDbgValues(DbgValues, OrigPhi);
1783   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1784                                      ValueAsMetadata::get(WidePhi));
1785   for (auto &DbgValue : DbgValues)
1786     DbgValue->setOperand(0, MDPhi);
1787   return WidePhi;
1788 }
1789 
1790 /// Calculates control-dependent range for the given def at the given context
1791 /// by looking at dominating conditions inside of the loop
1792 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1793                                     Instruction *NarrowUser) {
1794   using namespace llvm::PatternMatch;
1795 
1796   Value *NarrowDefLHS;
1797   const APInt *NarrowDefRHS;
1798   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1799                                  m_APInt(NarrowDefRHS))) ||
1800       !NarrowDefRHS->isNonNegative())
1801     return;
1802 
1803   auto UpdateRangeFromCondition = [&] (Value *Condition,
1804                                        bool TrueDest) {
1805     CmpInst::Predicate Pred;
1806     Value *CmpRHS;
1807     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1808                                  m_Value(CmpRHS))))
1809       return;
1810 
1811     CmpInst::Predicate P =
1812             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1813 
1814     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1815     auto CmpConstrainedLHSRange =
1816             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1817     auto NarrowDefRange =
1818             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1819 
1820     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1821   };
1822 
1823   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1824     if (!HasGuards)
1825       return;
1826 
1827     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1828                                      Ctx->getParent()->rend())) {
1829       Value *C = nullptr;
1830       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1831         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1832     }
1833   };
1834 
1835   UpdateRangeFromGuards(NarrowUser);
1836 
1837   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1838   // If NarrowUserBB is statically unreachable asking dominator queries may
1839   // yield surprising results. (e.g. the block may not have a dom tree node)
1840   if (!DT->isReachableFromEntry(NarrowUserBB))
1841     return;
1842 
1843   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1844        L->contains(DTB->getBlock());
1845        DTB = DTB->getIDom()) {
1846     auto *BB = DTB->getBlock();
1847     auto *TI = BB->getTerminator();
1848     UpdateRangeFromGuards(TI);
1849 
1850     auto *BI = dyn_cast<BranchInst>(TI);
1851     if (!BI || !BI->isConditional())
1852       continue;
1853 
1854     auto *TrueSuccessor = BI->getSuccessor(0);
1855     auto *FalseSuccessor = BI->getSuccessor(1);
1856 
1857     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1858       return BBE.isSingleEdge() &&
1859              DT->dominates(BBE, NarrowUser->getParent());
1860     };
1861 
1862     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1863       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1864 
1865     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1866       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1867   }
1868 }
1869 
1870 /// Calculates PostIncRangeInfos map for the given IV
1871 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1872   SmallPtrSet<Instruction *, 16> Visited;
1873   SmallVector<Instruction *, 6> Worklist;
1874   Worklist.push_back(OrigPhi);
1875   Visited.insert(OrigPhi);
1876 
1877   while (!Worklist.empty()) {
1878     Instruction *NarrowDef = Worklist.pop_back_val();
1879 
1880     for (Use &U : NarrowDef->uses()) {
1881       auto *NarrowUser = cast<Instruction>(U.getUser());
1882 
1883       // Don't go looking outside the current loop.
1884       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1885       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1886         continue;
1887 
1888       if (!Visited.insert(NarrowUser).second)
1889         continue;
1890 
1891       Worklist.push_back(NarrowUser);
1892 
1893       calculatePostIncRange(NarrowDef, NarrowUser);
1894     }
1895   }
1896 }
1897 
1898 //===----------------------------------------------------------------------===//
1899 //  Live IV Reduction - Minimize IVs live across the loop.
1900 //===----------------------------------------------------------------------===//
1901 
1902 //===----------------------------------------------------------------------===//
1903 //  Simplification of IV users based on SCEV evaluation.
1904 //===----------------------------------------------------------------------===//
1905 
1906 namespace {
1907 
1908 class IndVarSimplifyVisitor : public IVVisitor {
1909   ScalarEvolution *SE;
1910   const TargetTransformInfo *TTI;
1911   PHINode *IVPhi;
1912 
1913 public:
1914   WideIVInfo WI;
1915 
1916   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1917                         const TargetTransformInfo *TTI,
1918                         const DominatorTree *DTree)
1919     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1920     DT = DTree;
1921     WI.NarrowIV = IVPhi;
1922   }
1923 
1924   // Implement the interface used by simplifyUsersOfIV.
1925   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1926 };
1927 
1928 } // end anonymous namespace
1929 
1930 /// Iteratively perform simplification on a worklist of IV users. Each
1931 /// successive simplification may push more users which may themselves be
1932 /// candidates for simplification.
1933 ///
1934 /// Sign/Zero extend elimination is interleaved with IV simplification.
1935 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1936                                        SCEVExpander &Rewriter,
1937                                        LoopInfo *LI) {
1938   SmallVector<WideIVInfo, 8> WideIVs;
1939 
1940   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1941           Intrinsic::getName(Intrinsic::experimental_guard));
1942   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1943 
1944   SmallVector<PHINode*, 8> LoopPhis;
1945   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1946     LoopPhis.push_back(cast<PHINode>(I));
1947   }
1948   // Each round of simplification iterates through the SimplifyIVUsers worklist
1949   // for all current phis, then determines whether any IVs can be
1950   // widened. Widening adds new phis to LoopPhis, inducing another round of
1951   // simplification on the wide IVs.
1952   bool Changed = false;
1953   while (!LoopPhis.empty()) {
1954     // Evaluate as many IV expressions as possible before widening any IVs. This
1955     // forces SCEV to set no-wrap flags before evaluating sign/zero
1956     // extension. The first time SCEV attempts to normalize sign/zero extension,
1957     // the result becomes final. So for the most predictable results, we delay
1958     // evaluation of sign/zero extend evaluation until needed, and avoid running
1959     // other SCEV based analysis prior to simplifyAndExtend.
1960     do {
1961       PHINode *CurrIV = LoopPhis.pop_back_val();
1962 
1963       // Information about sign/zero extensions of CurrIV.
1964       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1965 
1966       Changed |=
1967           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1968 
1969       if (Visitor.WI.WidestNativeType) {
1970         WideIVs.push_back(Visitor.WI);
1971       }
1972     } while(!LoopPhis.empty());
1973 
1974     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1975       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1976       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1977         Changed = true;
1978         LoopPhis.push_back(WidePhi);
1979       }
1980     }
1981   }
1982   return Changed;
1983 }
1984 
1985 //===----------------------------------------------------------------------===//
1986 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1987 //===----------------------------------------------------------------------===//
1988 
1989 /// Return true if this loop's backedge taken count expression can be safely and
1990 /// cheaply expanded into an instruction sequence that can be used by
1991 /// linearFunctionTestReplace.
1992 ///
1993 /// TODO: This fails for pointer-type loop counters with greater than one byte
1994 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1995 /// we could skip this check in the case that the LFTR loop counter (chosen by
1996 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1997 /// the loop test to an inequality test by checking the target data's alignment
1998 /// of element types (given that the initial pointer value originates from or is
1999 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2000 /// However, we don't yet have a strong motivation for converting loop tests
2001 /// into inequality tests.
2002 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2003                                         SCEVExpander &Rewriter) {
2004   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2005   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2006       BackedgeTakenCount->isZero())
2007     return false;
2008 
2009   if (!L->getExitingBlock())
2010     return false;
2011 
2012   // Can't rewrite non-branch yet.
2013   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2014     return false;
2015 
2016   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2017     return false;
2018 
2019   return true;
2020 }
2021 
2022 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2023 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2024   Instruction *IncI = dyn_cast<Instruction>(IncV);
2025   if (!IncI)
2026     return nullptr;
2027 
2028   switch (IncI->getOpcode()) {
2029   case Instruction::Add:
2030   case Instruction::Sub:
2031     break;
2032   case Instruction::GetElementPtr:
2033     // An IV counter must preserve its type.
2034     if (IncI->getNumOperands() == 2)
2035       break;
2036     LLVM_FALLTHROUGH;
2037   default:
2038     return nullptr;
2039   }
2040 
2041   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2042   if (Phi && Phi->getParent() == L->getHeader()) {
2043     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2044       return Phi;
2045     return nullptr;
2046   }
2047   if (IncI->getOpcode() == Instruction::GetElementPtr)
2048     return nullptr;
2049 
2050   // Allow add/sub to be commuted.
2051   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2052   if (Phi && Phi->getParent() == L->getHeader()) {
2053     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2054       return Phi;
2055   }
2056   return nullptr;
2057 }
2058 
2059 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2060 static ICmpInst *getLoopTest(Loop *L) {
2061   assert(L->getExitingBlock() && "expected loop exit");
2062 
2063   BasicBlock *LatchBlock = L->getLoopLatch();
2064   // Don't bother with LFTR if the loop is not properly simplified.
2065   if (!LatchBlock)
2066     return nullptr;
2067 
2068   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2069   assert(BI && "expected exit branch");
2070 
2071   return dyn_cast<ICmpInst>(BI->getCondition());
2072 }
2073 
2074 /// linearFunctionTestReplace policy. Return true unless we can show that the
2075 /// current exit test is already sufficiently canonical.
2076 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2077   // Do LFTR to simplify the exit condition to an ICMP.
2078   ICmpInst *Cond = getLoopTest(L);
2079   if (!Cond)
2080     return true;
2081 
2082   // Do LFTR to simplify the exit ICMP to EQ/NE
2083   ICmpInst::Predicate Pred = Cond->getPredicate();
2084   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2085     return true;
2086 
2087   // Look for a loop invariant RHS
2088   Value *LHS = Cond->getOperand(0);
2089   Value *RHS = Cond->getOperand(1);
2090   if (!isLoopInvariant(RHS, L, DT)) {
2091     if (!isLoopInvariant(LHS, L, DT))
2092       return true;
2093     std::swap(LHS, RHS);
2094   }
2095   // Look for a simple IV counter LHS
2096   PHINode *Phi = dyn_cast<PHINode>(LHS);
2097   if (!Phi)
2098     Phi = getLoopPhiForCounter(LHS, L, DT);
2099 
2100   if (!Phi)
2101     return true;
2102 
2103   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2104   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2105   if (Idx < 0)
2106     return true;
2107 
2108   // Do LFTR if the exit condition's IV is *not* a simple counter.
2109   Value *IncV = Phi->getIncomingValue(Idx);
2110   return Phi != getLoopPhiForCounter(IncV, L, DT);
2111 }
2112 
2113 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2114 /// down to checking that all operands are constant and listing instructions
2115 /// that may hide undef.
2116 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2117                                unsigned Depth) {
2118   if (isa<Constant>(V))
2119     return !isa<UndefValue>(V);
2120 
2121   if (Depth >= 6)
2122     return false;
2123 
2124   // Conservatively handle non-constant non-instructions. For example, Arguments
2125   // may be undef.
2126   Instruction *I = dyn_cast<Instruction>(V);
2127   if (!I)
2128     return false;
2129 
2130   // Load and return values may be undef.
2131   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2132     return false;
2133 
2134   // Optimistically handle other instructions.
2135   for (Value *Op : I->operands()) {
2136     if (!Visited.insert(Op).second)
2137       continue;
2138     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2139       return false;
2140   }
2141   return true;
2142 }
2143 
2144 /// Return true if the given value is concrete. We must prove that undef can
2145 /// never reach it.
2146 ///
2147 /// TODO: If we decide that this is a good approach to checking for undef, we
2148 /// may factor it into a common location.
2149 static bool hasConcreteDef(Value *V) {
2150   SmallPtrSet<Value*, 8> Visited;
2151   Visited.insert(V);
2152   return hasConcreteDefImpl(V, Visited, 0);
2153 }
2154 
2155 /// Return true if this IV has any uses other than the (soon to be rewritten)
2156 /// loop exit test.
2157 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2158   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2159   Value *IncV = Phi->getIncomingValue(LatchIdx);
2160 
2161   for (User *U : Phi->users())
2162     if (U != Cond && U != IncV) return false;
2163 
2164   for (User *U : IncV->users())
2165     if (U != Cond && U != Phi) return false;
2166   return true;
2167 }
2168 
2169 /// Find an affine IV in canonical form.
2170 ///
2171 /// BECount may be an i8* pointer type. The pointer difference is already
2172 /// valid count without scaling the address stride, so it remains a pointer
2173 /// expression as far as SCEV is concerned.
2174 ///
2175 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2176 ///
2177 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2178 ///
2179 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2180 /// This is difficult in general for SCEV because of potential overflow. But we
2181 /// could at least handle constant BECounts.
2182 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2183                                 ScalarEvolution *SE, DominatorTree *DT) {
2184   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2185 
2186   Value *Cond =
2187     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2188 
2189   // Loop over all of the PHI nodes, looking for a simple counter.
2190   PHINode *BestPhi = nullptr;
2191   const SCEV *BestInit = nullptr;
2192   BasicBlock *LatchBlock = L->getLoopLatch();
2193   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2194   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2195 
2196   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2197     PHINode *Phi = cast<PHINode>(I);
2198     if (!SE->isSCEVable(Phi->getType()))
2199       continue;
2200 
2201     // Avoid comparing an integer IV against a pointer Limit.
2202     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2203       continue;
2204 
2205     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2206     if (!AR || AR->getLoop() != L || !AR->isAffine())
2207       continue;
2208 
2209     // AR may be a pointer type, while BECount is an integer type.
2210     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2211     // AR may not be a narrower type, or we may never exit.
2212     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2213     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2214       continue;
2215 
2216     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2217     if (!Step || !Step->isOne())
2218       continue;
2219 
2220     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2221     Value *IncV = Phi->getIncomingValue(LatchIdx);
2222     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2223       continue;
2224 
2225     // Avoid reusing a potentially undef value to compute other values that may
2226     // have originally had a concrete definition.
2227     if (!hasConcreteDef(Phi)) {
2228       // We explicitly allow unknown phis as long as they are already used by
2229       // the loop test. In this case we assume that performing LFTR could not
2230       // increase the number of undef users.
2231       if (ICmpInst *Cond = getLoopTest(L)) {
2232         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2233             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2234           continue;
2235         }
2236       }
2237     }
2238     const SCEV *Init = AR->getStart();
2239 
2240     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2241       // Don't force a live loop counter if another IV can be used.
2242       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2243         continue;
2244 
2245       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2246       // also prefers integer to pointer IVs.
2247       if (BestInit->isZero() != Init->isZero()) {
2248         if (BestInit->isZero())
2249           continue;
2250       }
2251       // If two IVs both count from zero or both count from nonzero then the
2252       // narrower is likely a dead phi that has been widened. Use the wider phi
2253       // to allow the other to be eliminated.
2254       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2255         continue;
2256     }
2257     BestPhi = Phi;
2258     BestInit = Init;
2259   }
2260   return BestPhi;
2261 }
2262 
2263 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2264 /// the new loop test.
2265 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2266                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2267   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2268   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2269   const SCEV *IVInit = AR->getStart();
2270 
2271   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2272   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2273   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2274   // the existing GEPs whenever possible.
2275   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2276     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2277     // signed value. IVCount on the other hand represents the loop trip count,
2278     // which is an unsigned value. FindLoopCounter only allows induction
2279     // variables that have a positive unit stride of one. This means we don't
2280     // have to handle the case of negative offsets (yet) and just need to zero
2281     // extend IVCount.
2282     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2283     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2284 
2285     // Expand the code for the iteration count.
2286     assert(SE->isLoopInvariant(IVOffset, L) &&
2287            "Computed iteration count is not loop invariant!");
2288     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2289     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2290 
2291     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2292     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2293     // We could handle pointer IVs other than i8*, but we need to compensate for
2294     // gep index scaling. See canExpandBackedgeTakenCount comments.
2295     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2296                              cast<PointerType>(GEPBase->getType())
2297                                  ->getElementType())->isOne() &&
2298            "unit stride pointer IV must be i8*");
2299 
2300     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2301     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2302   } else {
2303     // In any other case, convert both IVInit and IVCount to integers before
2304     // comparing. This may result in SCEV expansion of pointers, but in practice
2305     // SCEV will fold the pointer arithmetic away as such:
2306     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2307     //
2308     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2309     // for simple memset-style loops.
2310     //
2311     // IVInit integer and IVCount pointer would only occur if a canonical IV
2312     // were generated on top of case #2, which is not expected.
2313 
2314     const SCEV *IVLimit = nullptr;
2315     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2316     // For non-zero Start, compute IVCount here.
2317     if (AR->getStart()->isZero())
2318       IVLimit = IVCount;
2319     else {
2320       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2321       const SCEV *IVInit = AR->getStart();
2322 
2323       // For integer IVs, truncate the IV before computing IVInit + BECount.
2324       if (SE->getTypeSizeInBits(IVInit->getType())
2325           > SE->getTypeSizeInBits(IVCount->getType()))
2326         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2327 
2328       IVLimit = SE->getAddExpr(IVInit, IVCount);
2329     }
2330     // Expand the code for the iteration count.
2331     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2332     IRBuilder<> Builder(BI);
2333     assert(SE->isLoopInvariant(IVLimit, L) &&
2334            "Computed iteration count is not loop invariant!");
2335     // Ensure that we generate the same type as IndVar, or a smaller integer
2336     // type. In the presence of null pointer values, we have an integer type
2337     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2338     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2339       IndVar->getType() : IVCount->getType();
2340     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2341   }
2342 }
2343 
2344 /// This method rewrites the exit condition of the loop to be a canonical !=
2345 /// comparison against the incremented loop induction variable.  This pass is
2346 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2347 /// determine a loop-invariant trip count of the loop, which is actually a much
2348 /// broader range than just linear tests.
2349 bool IndVarSimplify::
2350 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2351                           PHINode *IndVar, SCEVExpander &Rewriter) {
2352   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2353 
2354   // Initialize CmpIndVar and IVCount to their preincremented values.
2355   Value *CmpIndVar = IndVar;
2356   const SCEV *IVCount = BackedgeTakenCount;
2357 
2358   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2359 
2360   // If the exiting block is the same as the backedge block, we prefer to
2361   // compare against the post-incremented value, otherwise we must compare
2362   // against the preincremented value.
2363   if (L->getExitingBlock() == L->getLoopLatch()) {
2364     // Add one to the "backedge-taken" count to get the trip count.
2365     // This addition may overflow, which is valid as long as the comparison is
2366     // truncated to BackedgeTakenCount->getType().
2367     IVCount = SE->getAddExpr(BackedgeTakenCount,
2368                              SE->getOne(BackedgeTakenCount->getType()));
2369     // The BackedgeTaken expression contains the number of times that the
2370     // backedge branches to the loop header.  This is one less than the
2371     // number of times the loop executes, so use the incremented indvar.
2372     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2373   }
2374 
2375   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2376   assert(ExitCnt->getType()->isPointerTy() ==
2377              IndVar->getType()->isPointerTy() &&
2378          "genLoopLimit missed a cast");
2379 
2380   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2381   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2382   ICmpInst::Predicate P;
2383   if (L->contains(BI->getSuccessor(0)))
2384     P = ICmpInst::ICMP_NE;
2385   else
2386     P = ICmpInst::ICMP_EQ;
2387 
2388   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2389                     << "      LHS:" << *CmpIndVar << '\n'
2390                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2391                     << "\n"
2392                     << "      RHS:\t" << *ExitCnt << "\n"
2393                     << "  IVCount:\t" << *IVCount << "\n");
2394 
2395   IRBuilder<> Builder(BI);
2396 
2397   // The new loop exit condition should reuse the debug location of the
2398   // original loop exit condition.
2399   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2400     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2401 
2402   // LFTR can ignore IV overflow and truncate to the width of
2403   // BECount. This avoids materializing the add(zext(add)) expression.
2404   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2405   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2406   if (CmpIndVarSize > ExitCntSize) {
2407     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2408     const SCEV *ARStart = AR->getStart();
2409     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2410     // For constant IVCount, avoid truncation.
2411     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2412       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2413       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2414       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2415       // above such that IVCount is now zero.
2416       if (IVCount != BackedgeTakenCount && Count == 0) {
2417         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2418         ++Count;
2419       }
2420       else
2421         Count = Count.zext(CmpIndVarSize);
2422       APInt NewLimit;
2423       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2424         NewLimit = Start - Count;
2425       else
2426         NewLimit = Start + Count;
2427       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2428 
2429       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2430     } else {
2431       // We try to extend trip count first. If that doesn't work we truncate IV.
2432       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2433       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2434       // one of the two holds, extend the trip count, otherwise we truncate IV.
2435       bool Extended = false;
2436       const SCEV *IV = SE->getSCEV(CmpIndVar);
2437       const SCEV *ZExtTrunc =
2438            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2439                                                      ExitCnt->getType()),
2440                                  CmpIndVar->getType());
2441 
2442       if (ZExtTrunc == IV) {
2443         Extended = true;
2444         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2445                                      "wide.trip.count");
2446       } else {
2447         const SCEV *SExtTrunc =
2448           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2449                                                     ExitCnt->getType()),
2450                                 CmpIndVar->getType());
2451         if (SExtTrunc == IV) {
2452           Extended = true;
2453           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2454                                        "wide.trip.count");
2455         }
2456       }
2457 
2458       if (!Extended)
2459         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2460                                         "lftr.wideiv");
2461     }
2462   }
2463   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2464   Value *OrigCond = BI->getCondition();
2465   // It's tempting to use replaceAllUsesWith here to fully replace the old
2466   // comparison, but that's not immediately safe, since users of the old
2467   // comparison may not be dominated by the new comparison. Instead, just
2468   // update the branch to use the new comparison; in the common case this
2469   // will make old comparison dead.
2470   BI->setCondition(Cond);
2471   DeadInsts.push_back(OrigCond);
2472 
2473   ++NumLFTR;
2474   return true;
2475 }
2476 
2477 //===----------------------------------------------------------------------===//
2478 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2479 //===----------------------------------------------------------------------===//
2480 
2481 /// If there's a single exit block, sink any loop-invariant values that
2482 /// were defined in the preheader but not used inside the loop into the
2483 /// exit block to reduce register pressure in the loop.
2484 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2485   BasicBlock *ExitBlock = L->getExitBlock();
2486   if (!ExitBlock) return false;
2487 
2488   BasicBlock *Preheader = L->getLoopPreheader();
2489   if (!Preheader) return false;
2490 
2491   bool MadeAnyChanges = false;
2492   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2493   BasicBlock::iterator I(Preheader->getTerminator());
2494   while (I != Preheader->begin()) {
2495     --I;
2496     // New instructions were inserted at the end of the preheader.
2497     if (isa<PHINode>(I))
2498       break;
2499 
2500     // Don't move instructions which might have side effects, since the side
2501     // effects need to complete before instructions inside the loop.  Also don't
2502     // move instructions which might read memory, since the loop may modify
2503     // memory. Note that it's okay if the instruction might have undefined
2504     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2505     // block.
2506     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2507       continue;
2508 
2509     // Skip debug info intrinsics.
2510     if (isa<DbgInfoIntrinsic>(I))
2511       continue;
2512 
2513     // Skip eh pad instructions.
2514     if (I->isEHPad())
2515       continue;
2516 
2517     // Don't sink alloca: we never want to sink static alloca's out of the
2518     // entry block, and correctly sinking dynamic alloca's requires
2519     // checks for stacksave/stackrestore intrinsics.
2520     // FIXME: Refactor this check somehow?
2521     if (isa<AllocaInst>(I))
2522       continue;
2523 
2524     // Determine if there is a use in or before the loop (direct or
2525     // otherwise).
2526     bool UsedInLoop = false;
2527     for (Use &U : I->uses()) {
2528       Instruction *User = cast<Instruction>(U.getUser());
2529       BasicBlock *UseBB = User->getParent();
2530       if (PHINode *P = dyn_cast<PHINode>(User)) {
2531         unsigned i =
2532           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2533         UseBB = P->getIncomingBlock(i);
2534       }
2535       if (UseBB == Preheader || L->contains(UseBB)) {
2536         UsedInLoop = true;
2537         break;
2538       }
2539     }
2540 
2541     // If there is, the def must remain in the preheader.
2542     if (UsedInLoop)
2543       continue;
2544 
2545     // Otherwise, sink it to the exit block.
2546     Instruction *ToMove = &*I;
2547     bool Done = false;
2548 
2549     if (I != Preheader->begin()) {
2550       // Skip debug info intrinsics.
2551       do {
2552         --I;
2553       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2554 
2555       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2556         Done = true;
2557     } else {
2558       Done = true;
2559     }
2560 
2561     MadeAnyChanges = true;
2562     ToMove->moveBefore(*ExitBlock, InsertPt);
2563     if (Done) break;
2564     InsertPt = ToMove->getIterator();
2565   }
2566 
2567   return MadeAnyChanges;
2568 }
2569 
2570 //===----------------------------------------------------------------------===//
2571 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2572 //===----------------------------------------------------------------------===//
2573 
2574 bool IndVarSimplify::run(Loop *L) {
2575   // We need (and expect!) the incoming loop to be in LCSSA.
2576   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2577          "LCSSA required to run indvars!");
2578   bool Changed = false;
2579 
2580   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2581   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2582   //    canonicalization can be a pessimization without LSR to "clean up"
2583   //    afterwards.
2584   //  - We depend on having a preheader; in particular,
2585   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2586   //    and we're in trouble if we can't find the induction variable even when
2587   //    we've manually inserted one.
2588   //  - LFTR relies on having a single backedge.
2589   if (!L->isLoopSimplifyForm())
2590     return false;
2591 
2592   // If there are any floating-point recurrences, attempt to
2593   // transform them to use integer recurrences.
2594   Changed |= rewriteNonIntegerIVs(L);
2595 
2596   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2597 
2598   // Create a rewriter object which we'll use to transform the code with.
2599   SCEVExpander Rewriter(*SE, DL, "indvars");
2600 #ifndef NDEBUG
2601   Rewriter.setDebugType(DEBUG_TYPE);
2602 #endif
2603 
2604   // Eliminate redundant IV users.
2605   //
2606   // Simplification works best when run before other consumers of SCEV. We
2607   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2608   // other expressions involving loop IVs have been evaluated. This helps SCEV
2609   // set no-wrap flags before normalizing sign/zero extension.
2610   Rewriter.disableCanonicalMode();
2611   Changed |= simplifyAndExtend(L, Rewriter, LI);
2612 
2613   // Check to see if this loop has a computable loop-invariant execution count.
2614   // If so, this means that we can compute the final value of any expressions
2615   // that are recurrent in the loop, and substitute the exit values from the
2616   // loop into any instructions outside of the loop that use the final values of
2617   // the current expressions.
2618   //
2619   if (ReplaceExitValue != NeverRepl &&
2620       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2621     Changed |= rewriteLoopExitValues(L, Rewriter);
2622 
2623   // Eliminate redundant IV cycles.
2624   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2625 
2626   // If we have a trip count expression, rewrite the loop's exit condition
2627   // using it.  We can currently only handle loops with a single exit.
2628   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2629       needsLFTR(L, DT)) {
2630     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2631     if (IndVar) {
2632       // Check preconditions for proper SCEVExpander operation. SCEV does not
2633       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2634       // pass that uses the SCEVExpander must do it. This does not work well for
2635       // loop passes because SCEVExpander makes assumptions about all loops,
2636       // while LoopPassManager only forces the current loop to be simplified.
2637       //
2638       // FIXME: SCEV expansion has no way to bail out, so the caller must
2639       // explicitly check any assumptions made by SCEV. Brittle.
2640       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2641       if (!AR || AR->getLoop()->getLoopPreheader())
2642         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2643                                              Rewriter);
2644     }
2645   }
2646   // Clear the rewriter cache, because values that are in the rewriter's cache
2647   // can be deleted in the loop below, causing the AssertingVH in the cache to
2648   // trigger.
2649   Rewriter.clear();
2650 
2651   // Now that we're done iterating through lists, clean up any instructions
2652   // which are now dead.
2653   while (!DeadInsts.empty())
2654     if (Instruction *Inst =
2655             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2656       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2657 
2658   // The Rewriter may not be used from this point on.
2659 
2660   // Loop-invariant instructions in the preheader that aren't used in the
2661   // loop may be sunk below the loop to reduce register pressure.
2662   Changed |= sinkUnusedInvariants(L);
2663 
2664   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2665   // trip count and therefore can further simplify exit values in addition to
2666   // rewriteLoopExitValues.
2667   Changed |= rewriteFirstIterationLoopExitValues(L);
2668 
2669   // Clean up dead instructions.
2670   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2671 
2672   // Check a post-condition.
2673   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2674          "Indvars did not preserve LCSSA!");
2675 
2676   // Verify that LFTR, and any other change have not interfered with SCEV's
2677   // ability to compute trip count.
2678 #ifndef NDEBUG
2679   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2680     SE->forgetLoop(L);
2681     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2682     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2683         SE->getTypeSizeInBits(NewBECount->getType()))
2684       NewBECount = SE->getTruncateOrNoop(NewBECount,
2685                                          BackedgeTakenCount->getType());
2686     else
2687       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2688                                                  NewBECount->getType());
2689     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2690   }
2691 #endif
2692 
2693   return Changed;
2694 }
2695 
2696 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2697                                           LoopStandardAnalysisResults &AR,
2698                                           LPMUpdater &) {
2699   Function *F = L.getHeader()->getParent();
2700   const DataLayout &DL = F->getParent()->getDataLayout();
2701 
2702   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2703   if (!IVS.run(&L))
2704     return PreservedAnalyses::all();
2705 
2706   auto PA = getLoopPassPreservedAnalyses();
2707   PA.preserveSet<CFGAnalyses>();
2708   return PA;
2709 }
2710 
2711 namespace {
2712 
2713 struct IndVarSimplifyLegacyPass : public LoopPass {
2714   static char ID; // Pass identification, replacement for typeid
2715 
2716   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2717     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2718   }
2719 
2720   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2721     if (skipLoop(L))
2722       return false;
2723 
2724     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2725     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2726     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2727     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2728     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2729     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2730     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2731     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2732 
2733     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2734     return IVS.run(L);
2735   }
2736 
2737   void getAnalysisUsage(AnalysisUsage &AU) const override {
2738     AU.setPreservesCFG();
2739     getLoopAnalysisUsage(AU);
2740   }
2741 };
2742 
2743 } // end anonymous namespace
2744 
2745 char IndVarSimplifyLegacyPass::ID = 0;
2746 
2747 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2748                       "Induction Variable Simplification", false, false)
2749 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2750 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2751                     "Induction Variable Simplification", false, false)
2752 
2753 Pass *llvm::createIndVarSimplifyPass() {
2754   return new IndVarSimplifyLegacyPass();
2755 }
2756