1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 138 bool isValidRewrite(Value *FromVal, Value *ToVal); 139 140 bool handleFloatingPointIV(Loop *L, PHINode *PH); 141 bool rewriteNonIntegerIVs(Loop *L); 142 143 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 144 145 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 146 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 147 bool rewriteFirstIterationLoopExitValues(Loop *L); 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. 221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 222 DominatorTree *DT, LoopInfo *LI) { 223 PHINode *PHI = dyn_cast<PHINode>(User); 224 if (!PHI) 225 return User; 226 227 Instruction *InsertPt = nullptr; 228 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 229 if (PHI->getIncomingValue(i) != Def) 230 continue; 231 232 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 233 if (!InsertPt) { 234 InsertPt = InsertBB->getTerminator(); 235 continue; 236 } 237 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 238 InsertPt = InsertBB->getTerminator(); 239 } 240 assert(InsertPt && "Missing phi operand"); 241 242 auto *DefI = dyn_cast<Instruction>(Def); 243 if (!DefI) 244 return InsertPt; 245 246 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 247 248 auto *L = LI->getLoopFor(DefI->getParent()); 249 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 250 251 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 252 if (LI->getLoopFor(DTN->getBlock()) == L) 253 return DTN->getBlock()->getTerminator(); 254 255 llvm_unreachable("DefI dominates InsertPt!"); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 260 //===----------------------------------------------------------------------===// 261 262 /// Convert APF to an integer, if possible. 263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 264 bool isExact = false; 265 // See if we can convert this to an int64_t 266 uint64_t UIntVal; 267 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 268 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 269 !isExact) 270 return false; 271 IntVal = UIntVal; 272 return true; 273 } 274 275 /// If the loop has floating induction variable then insert corresponding 276 /// integer induction variable if possible. 277 /// For example, 278 /// for(double i = 0; i < 10000; ++i) 279 /// bar(i) 280 /// is converted into 281 /// for(int i = 0; i < 10000; ++i) 282 /// bar((double)i); 283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 284 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 285 unsigned BackEdge = IncomingEdge^1; 286 287 // Check incoming value. 288 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 289 290 int64_t InitValue; 291 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 292 return false; 293 294 // Check IV increment. Reject this PN if increment operation is not 295 // an add or increment value can not be represented by an integer. 296 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 297 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 298 299 // If this is not an add of the PHI with a constantfp, or if the constant fp 300 // is not an integer, bail out. 301 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 302 int64_t IncValue; 303 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 304 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 305 return false; 306 307 // Check Incr uses. One user is PN and the other user is an exit condition 308 // used by the conditional terminator. 309 Value::user_iterator IncrUse = Incr->user_begin(); 310 Instruction *U1 = cast<Instruction>(*IncrUse++); 311 if (IncrUse == Incr->user_end()) return false; 312 Instruction *U2 = cast<Instruction>(*IncrUse++); 313 if (IncrUse != Incr->user_end()) return false; 314 315 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 316 // only used by a branch, we can't transform it. 317 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 318 if (!Compare) 319 Compare = dyn_cast<FCmpInst>(U2); 320 if (!Compare || !Compare->hasOneUse() || 321 !isa<BranchInst>(Compare->user_back())) 322 return false; 323 324 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 325 326 // We need to verify that the branch actually controls the iteration count 327 // of the loop. If not, the new IV can overflow and no one will notice. 328 // The branch block must be in the loop and one of the successors must be out 329 // of the loop. 330 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 331 if (!L->contains(TheBr->getParent()) || 332 (L->contains(TheBr->getSuccessor(0)) && 333 L->contains(TheBr->getSuccessor(1)))) 334 return false; 335 336 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 337 // transform it. 338 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 339 int64_t ExitValue; 340 if (ExitValueVal == nullptr || 341 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 342 return false; 343 344 // Find new predicate for integer comparison. 345 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 346 switch (Compare->getPredicate()) { 347 default: return false; // Unknown comparison. 348 case CmpInst::FCMP_OEQ: 349 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 350 case CmpInst::FCMP_ONE: 351 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 352 case CmpInst::FCMP_OGT: 353 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 354 case CmpInst::FCMP_OGE: 355 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 356 case CmpInst::FCMP_OLT: 357 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 358 case CmpInst::FCMP_OLE: 359 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 360 } 361 362 // We convert the floating point induction variable to a signed i32 value if 363 // we can. This is only safe if the comparison will not overflow in a way 364 // that won't be trapped by the integer equivalent operations. Check for this 365 // now. 366 // TODO: We could use i64 if it is native and the range requires it. 367 368 // The start/stride/exit values must all fit in signed i32. 369 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 370 return false; 371 372 // If not actually striding (add x, 0.0), avoid touching the code. 373 if (IncValue == 0) 374 return false; 375 376 // Positive and negative strides have different safety conditions. 377 if (IncValue > 0) { 378 // If we have a positive stride, we require the init to be less than the 379 // exit value. 380 if (InitValue >= ExitValue) 381 return false; 382 383 uint32_t Range = uint32_t(ExitValue-InitValue); 384 // Check for infinite loop, either: 385 // while (i <= Exit) or until (i > Exit) 386 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 387 if (++Range == 0) return false; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return false; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 402 return false; 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return false; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return false; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return false; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return false; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakTrackingVH to observe whether this happens. 449 WeakTrackingVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 return true; 475 } 476 477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakTrackingVH, 8> PHIs; 484 for (PHINode &PN : Header->phis()) 485 PHIs.push_back(&PN); 486 487 bool Changed = false; 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 Changed |= handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 return Changed; 498 } 499 500 namespace { 501 502 // Collect information about PHI nodes which can be transformed in 503 // rewriteLoopExitValues. 504 struct RewritePhi { 505 PHINode *PN; 506 507 // Ith incoming value. 508 unsigned Ith; 509 510 // Exit value after expansion. 511 Value *Val; 512 513 // High Cost when expansion. 514 bool HighCost; 515 516 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 517 : PN(P), Ith(I), Val(V), HighCost(H) {} 518 }; 519 520 } // end anonymous namespace 521 522 //===----------------------------------------------------------------------===// 523 // rewriteLoopExitValues - Optimize IV users outside the loop. 524 // As a side effect, reduces the amount of IV processing within the loop. 525 //===----------------------------------------------------------------------===// 526 527 /// Check to see if this loop has a computable loop-invariant execution count. 528 /// If so, this means that we can compute the final value of any expressions 529 /// that are recurrent in the loop, and substitute the exit values from the loop 530 /// into any instructions outside of the loop that use the final values of the 531 /// current expressions. 532 /// 533 /// This is mostly redundant with the regular IndVarSimplify activities that 534 /// happen later, except that it's more powerful in some cases, because it's 535 /// able to brute-force evaluate arbitrary instructions as long as they have 536 /// constant operands at the beginning of the loop. 537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 538 // Check a pre-condition. 539 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 540 "Indvars did not preserve LCSSA!"); 541 542 SmallVector<BasicBlock*, 8> ExitBlocks; 543 L->getUniqueExitBlocks(ExitBlocks); 544 545 SmallVector<RewritePhi, 8> RewritePhiSet; 546 // Find all values that are computed inside the loop, but used outside of it. 547 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 548 // the exit blocks of the loop to find them. 549 for (BasicBlock *ExitBB : ExitBlocks) { 550 // If there are no PHI nodes in this exit block, then no values defined 551 // inside the loop are used on this path, skip it. 552 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 553 if (!PN) continue; 554 555 unsigned NumPreds = PN->getNumIncomingValues(); 556 557 // Iterate over all of the PHI nodes. 558 BasicBlock::iterator BBI = ExitBB->begin(); 559 while ((PN = dyn_cast<PHINode>(BBI++))) { 560 if (PN->use_empty()) 561 continue; // dead use, don't replace it 562 563 if (!SE->isSCEVable(PN->getType())) 564 continue; 565 566 // It's necessary to tell ScalarEvolution about this explicitly so that 567 // it can walk the def-use list and forget all SCEVs, as it may not be 568 // watching the PHI itself. Once the new exit value is in place, there 569 // may not be a def-use connection between the loop and every instruction 570 // which got a SCEVAddRecExpr for that loop. 571 SE->forgetValue(PN); 572 573 // Iterate over all of the values in all the PHI nodes. 574 for (unsigned i = 0; i != NumPreds; ++i) { 575 // If the value being merged in is not integer or is not defined 576 // in the loop, skip it. 577 Value *InVal = PN->getIncomingValue(i); 578 if (!isa<Instruction>(InVal)) 579 continue; 580 581 // If this pred is for a subloop, not L itself, skip it. 582 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 583 continue; // The Block is in a subloop, skip it. 584 585 // Check that InVal is defined in the loop. 586 Instruction *Inst = cast<Instruction>(InVal); 587 if (!L->contains(Inst)) 588 continue; 589 590 // Okay, this instruction has a user outside of the current loop 591 // and varies predictably *inside* the loop. Evaluate the value it 592 // contains when the loop exits, if possible. 593 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 594 if (!SE->isLoopInvariant(ExitValue, L) || 595 !isSafeToExpand(ExitValue, *SE)) 596 continue; 597 598 // Computing the value outside of the loop brings no benefit if : 599 // - it is definitely used inside the loop in a way which can not be 600 // optimized away. 601 // - no use outside of the loop can take advantage of hoisting the 602 // computation out of the loop 603 if (ExitValue->getSCEVType()>=scMulExpr) { 604 unsigned NumHardInternalUses = 0; 605 unsigned NumSoftExternalUses = 0; 606 unsigned NumUses = 0; 607 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 608 IB != IE && NumUses <= 6; ++IB) { 609 Instruction *UseInstr = cast<Instruction>(*IB); 610 unsigned Opc = UseInstr->getOpcode(); 611 NumUses++; 612 if (L->contains(UseInstr)) { 613 if (Opc == Instruction::Call) 614 NumHardInternalUses++; 615 } else { 616 if (Opc == Instruction::PHI) { 617 // Do not count the Phi as a use. LCSSA may have inserted 618 // plenty of trivial ones. 619 NumUses--; 620 for (auto PB = UseInstr->user_begin(), 621 PE = UseInstr->user_end(); 622 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 623 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 624 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 625 NumSoftExternalUses++; 626 } 627 continue; 628 } 629 if (Opc != Instruction::Call && Opc != Instruction::Ret) 630 NumSoftExternalUses++; 631 } 632 } 633 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 634 continue; 635 } 636 637 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 638 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 639 640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 641 << '\n' 642 << " LoopVal = " << *Inst << "\n"); 643 644 if (!isValidRewrite(Inst, ExitVal)) { 645 DeadInsts.push_back(ExitVal); 646 continue; 647 } 648 649 #ifndef NDEBUG 650 // If we reuse an instruction from a loop which is neither L nor one of 651 // its containing loops, we end up breaking LCSSA form for this loop by 652 // creating a new use of its instruction. 653 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 654 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 655 if (EVL != L) 656 assert(EVL->contains(L) && "LCSSA breach detected!"); 657 #endif 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 661 } 662 } 663 } 664 665 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 666 667 bool Changed = false; 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // Replace PN with ExitVal if that is legal and does not break LCSSA. 691 if (PN->getNumIncomingValues() == 1 && 692 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 return Changed; 702 } 703 704 //===---------------------------------------------------------------------===// 705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 706 // they will exit at the first iteration. 707 //===---------------------------------------------------------------------===// 708 709 /// Check to see if this loop has loop invariant conditions which lead to loop 710 /// exits. If so, we know that if the exit path is taken, it is at the first 711 /// loop iteration. This lets us predict exit values of PHI nodes that live in 712 /// loop header. 713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 714 // Verify the input to the pass is already in LCSSA form. 715 assert(L->isLCSSAForm(*DT)); 716 717 SmallVector<BasicBlock *, 8> ExitBlocks; 718 L->getUniqueExitBlocks(ExitBlocks); 719 auto *LoopHeader = L->getHeader(); 720 assert(LoopHeader && "Invalid loop"); 721 722 bool MadeAnyChanges = false; 723 for (auto *ExitBB : ExitBlocks) { 724 // If there are no more PHI nodes in this exit block, then no more 725 // values defined inside the loop are used on this path. 726 for (PHINode &PN : ExitBB->phis()) { 727 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 728 IncomingValIdx != E; ++IncomingValIdx) { 729 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 730 731 // We currently only support loop exits from loop header. If the 732 // incoming block is not loop header, we need to recursively check 733 // all conditions starting from loop header are loop invariants. 734 // Additional support might be added in the future. 735 if (IncomingBB != LoopHeader) 736 continue; 737 738 // Get condition that leads to the exit path. 739 auto *TermInst = IncomingBB->getTerminator(); 740 741 Value *Cond = nullptr; 742 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 743 // Must be a conditional branch, otherwise the block 744 // should not be in the loop. 745 Cond = BI->getCondition(); 746 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 747 Cond = SI->getCondition(); 748 else 749 continue; 750 751 if (!L->isLoopInvariant(Cond)) 752 continue; 753 754 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 755 756 // Only deal with PHIs. 757 if (!ExitVal) 758 continue; 759 760 // If ExitVal is a PHI on the loop header, then we know its 761 // value along this exit because the exit can only be taken 762 // on the first iteration. 763 auto *LoopPreheader = L->getLoopPreheader(); 764 assert(LoopPreheader && "Invalid loop"); 765 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 766 if (PreheaderIdx != -1) { 767 assert(ExitVal->getParent() == LoopHeader && 768 "ExitVal must be in loop header"); 769 MadeAnyChanges = true; 770 PN.setIncomingValue(IncomingValIdx, 771 ExitVal->getIncomingValue(PreheaderIdx)); 772 } 773 } 774 } 775 } 776 return MadeAnyChanges; 777 } 778 779 /// Check whether it is possible to delete the loop after rewriting exit 780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 781 /// aggressively. 782 bool IndVarSimplify::canLoopBeDeleted( 783 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 784 BasicBlock *Preheader = L->getLoopPreheader(); 785 // If there is no preheader, the loop will not be deleted. 786 if (!Preheader) 787 return false; 788 789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 790 // We obviate multiple ExitingBlocks case for simplicity. 791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 792 // after exit value rewriting, we can enhance the logic here. 793 SmallVector<BasicBlock *, 4> ExitingBlocks; 794 L->getExitingBlocks(ExitingBlocks); 795 SmallVector<BasicBlock *, 8> ExitBlocks; 796 L->getUniqueExitBlocks(ExitBlocks); 797 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 798 return false; 799 800 BasicBlock *ExitBlock = ExitBlocks[0]; 801 BasicBlock::iterator BI = ExitBlock->begin(); 802 while (PHINode *P = dyn_cast<PHINode>(BI)) { 803 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 804 805 // If the Incoming value of P is found in RewritePhiSet, we know it 806 // could be rewritten to use a loop invariant value in transformation 807 // phase later. Skip it in the loop invariant check below. 808 bool found = false; 809 for (const RewritePhi &Phi : RewritePhiSet) { 810 unsigned i = Phi.Ith; 811 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 812 found = true; 813 break; 814 } 815 } 816 817 Instruction *I; 818 if (!found && (I = dyn_cast<Instruction>(Incoming))) 819 if (!L->hasLoopInvariantOperands(I)) 820 return false; 821 822 ++BI; 823 } 824 825 for (auto *BB : L->blocks()) 826 if (llvm::any_of(*BB, [](Instruction &I) { 827 return I.mayHaveSideEffects(); 828 })) 829 return false; 830 831 return true; 832 } 833 834 //===----------------------------------------------------------------------===// 835 // IV Widening - Extend the width of an IV to cover its widest uses. 836 //===----------------------------------------------------------------------===// 837 838 namespace { 839 840 // Collect information about induction variables that are used by sign/zero 841 // extend operations. This information is recorded by CollectExtend and provides 842 // the input to WidenIV. 843 struct WideIVInfo { 844 PHINode *NarrowIV = nullptr; 845 846 // Widest integer type created [sz]ext 847 Type *WidestNativeType = nullptr; 848 849 // Was a sext user seen before a zext? 850 bool IsSigned = false; 851 }; 852 853 } // end anonymous namespace 854 855 /// Update information about the induction variable that is extended by this 856 /// sign or zero extend operation. This is used to determine the final width of 857 /// the IV before actually widening it. 858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 859 const TargetTransformInfo *TTI) { 860 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 861 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 862 return; 863 864 Type *Ty = Cast->getType(); 865 uint64_t Width = SE->getTypeSizeInBits(Ty); 866 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 867 return; 868 869 // Check that `Cast` actually extends the induction variable (we rely on this 870 // later). This takes care of cases where `Cast` is extending a truncation of 871 // the narrow induction variable, and thus can end up being narrower than the 872 // "narrow" induction variable. 873 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 874 if (NarrowIVWidth >= Width) 875 return; 876 877 // Cast is either an sext or zext up to this point. 878 // We should not widen an indvar if arithmetics on the wider indvar are more 879 // expensive than those on the narrower indvar. We check only the cost of ADD 880 // because at least an ADD is required to increment the induction variable. We 881 // could compute more comprehensively the cost of all instructions on the 882 // induction variable when necessary. 883 if (TTI && 884 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 885 TTI->getArithmeticInstrCost(Instruction::Add, 886 Cast->getOperand(0)->getType())) { 887 return; 888 } 889 890 if (!WI.WidestNativeType) { 891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 892 WI.IsSigned = IsSigned; 893 return; 894 } 895 896 // We extend the IV to satisfy the sign of its first user, arbitrarily. 897 if (WI.IsSigned != IsSigned) 898 return; 899 900 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 901 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 902 } 903 904 namespace { 905 906 /// Record a link in the Narrow IV def-use chain along with the WideIV that 907 /// computes the same value as the Narrow IV def. This avoids caching Use* 908 /// pointers. 909 struct NarrowIVDefUse { 910 Instruction *NarrowDef = nullptr; 911 Instruction *NarrowUse = nullptr; 912 Instruction *WideDef = nullptr; 913 914 // True if the narrow def is never negative. Tracking this information lets 915 // us use a sign extension instead of a zero extension or vice versa, when 916 // profitable and legal. 917 bool NeverNegative = false; 918 919 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 920 bool NeverNegative) 921 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 922 NeverNegative(NeverNegative) {} 923 }; 924 925 /// The goal of this transform is to remove sign and zero extends without 926 /// creating any new induction variables. To do this, it creates a new phi of 927 /// the wider type and redirects all users, either removing extends or inserting 928 /// truncs whenever we stop propagating the type. 929 class WidenIV { 930 // Parameters 931 PHINode *OrigPhi; 932 Type *WideType; 933 934 // Context 935 LoopInfo *LI; 936 Loop *L; 937 ScalarEvolution *SE; 938 DominatorTree *DT; 939 940 // Does the module have any calls to the llvm.experimental.guard intrinsic 941 // at all? If not we can avoid scanning instructions looking for guards. 942 bool HasGuards; 943 944 // Result 945 PHINode *WidePhi = nullptr; 946 Instruction *WideInc = nullptr; 947 const SCEV *WideIncExpr = nullptr; 948 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 949 950 SmallPtrSet<Instruction *,16> Widened; 951 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 952 953 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 954 955 // A map tracking the kind of extension used to widen each narrow IV 956 // and narrow IV user. 957 // Key: pointer to a narrow IV or IV user. 958 // Value: the kind of extension used to widen this Instruction. 959 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 960 961 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 962 963 // A map with control-dependent ranges for post increment IV uses. The key is 964 // a pair of IV def and a use of this def denoting the context. The value is 965 // a ConstantRange representing possible values of the def at the given 966 // context. 967 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 968 969 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 970 Instruction *UseI) { 971 DefUserPair Key(Def, UseI); 972 auto It = PostIncRangeInfos.find(Key); 973 return It == PostIncRangeInfos.end() 974 ? Optional<ConstantRange>(None) 975 : Optional<ConstantRange>(It->second); 976 } 977 978 void calculatePostIncRanges(PHINode *OrigPhi); 979 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 980 981 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 982 DefUserPair Key(Def, UseI); 983 auto It = PostIncRangeInfos.find(Key); 984 if (It == PostIncRangeInfos.end()) 985 PostIncRangeInfos.insert({Key, R}); 986 else 987 It->second = R.intersectWith(It->second); 988 } 989 990 public: 991 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 992 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 993 bool HasGuards) 994 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 995 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 996 HasGuards(HasGuards), DeadInsts(DI) { 997 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 998 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 999 } 1000 1001 PHINode *createWideIV(SCEVExpander &Rewriter); 1002 1003 protected: 1004 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1005 Instruction *Use); 1006 1007 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1008 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1009 const SCEVAddRecExpr *WideAR); 1010 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1011 1012 ExtendKind getExtendKind(Instruction *I); 1013 1014 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1015 1016 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1017 1018 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1019 1020 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1021 unsigned OpCode) const; 1022 1023 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1024 1025 bool widenLoopCompare(NarrowIVDefUse DU); 1026 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1027 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1028 1029 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 /// Perform a quick domtree based check for loop invariance assuming that V is 1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1036 /// purpose. 1037 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1038 Instruction *Inst = dyn_cast<Instruction>(V); 1039 if (!Inst) 1040 return true; 1041 1042 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1043 } 1044 1045 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1046 bool IsSigned, Instruction *Use) { 1047 // Set the debug location and conservative insertion point. 1048 IRBuilder<> Builder(Use); 1049 // Hoist the insertion point into loop preheaders as far as possible. 1050 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1051 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1052 L = L->getParentLoop()) 1053 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1054 1055 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1056 Builder.CreateZExt(NarrowOper, WideType); 1057 } 1058 1059 /// Instantiate a wide operation to replace a narrow operation. This only needs 1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1061 /// 0 for any operation we decide not to clone. 1062 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1063 const SCEVAddRecExpr *WideAR) { 1064 unsigned Opcode = DU.NarrowUse->getOpcode(); 1065 switch (Opcode) { 1066 default: 1067 return nullptr; 1068 case Instruction::Add: 1069 case Instruction::Mul: 1070 case Instruction::UDiv: 1071 case Instruction::Sub: 1072 return cloneArithmeticIVUser(DU, WideAR); 1073 1074 case Instruction::And: 1075 case Instruction::Or: 1076 case Instruction::Xor: 1077 case Instruction::Shl: 1078 case Instruction::LShr: 1079 case Instruction::AShr: 1080 return cloneBitwiseIVUser(DU); 1081 } 1082 } 1083 1084 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1085 Instruction *NarrowUse = DU.NarrowUse; 1086 Instruction *NarrowDef = DU.NarrowDef; 1087 Instruction *WideDef = DU.WideDef; 1088 1089 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1090 1091 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1092 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1093 // invariant and will be folded or hoisted. If it actually comes from a 1094 // widened IV, it should be removed during a future call to widenIVUse. 1095 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1096 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1097 ? WideDef 1098 : createExtendInst(NarrowUse->getOperand(0), WideType, 1099 IsSigned, NarrowUse); 1100 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1101 ? WideDef 1102 : createExtendInst(NarrowUse->getOperand(1), WideType, 1103 IsSigned, NarrowUse); 1104 1105 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1106 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1107 NarrowBO->getName()); 1108 IRBuilder<> Builder(NarrowUse); 1109 Builder.Insert(WideBO); 1110 WideBO->copyIRFlags(NarrowBO); 1111 return WideBO; 1112 } 1113 1114 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1115 const SCEVAddRecExpr *WideAR) { 1116 Instruction *NarrowUse = DU.NarrowUse; 1117 Instruction *NarrowDef = DU.NarrowDef; 1118 Instruction *WideDef = DU.WideDef; 1119 1120 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1121 1122 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1123 1124 // We're trying to find X such that 1125 // 1126 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1127 // 1128 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1129 // and check using SCEV if any of them are correct. 1130 1131 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1132 // correct solution to X. 1133 auto GuessNonIVOperand = [&](bool SignExt) { 1134 const SCEV *WideLHS; 1135 const SCEV *WideRHS; 1136 1137 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1138 if (SignExt) 1139 return SE->getSignExtendExpr(S, Ty); 1140 return SE->getZeroExtendExpr(S, Ty); 1141 }; 1142 1143 if (IVOpIdx == 0) { 1144 WideLHS = SE->getSCEV(WideDef); 1145 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1146 WideRHS = GetExtend(NarrowRHS, WideType); 1147 } else { 1148 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1149 WideLHS = GetExtend(NarrowLHS, WideType); 1150 WideRHS = SE->getSCEV(WideDef); 1151 } 1152 1153 // WideUse is "WideDef `op.wide` X" as described in the comment. 1154 const SCEV *WideUse = nullptr; 1155 1156 switch (NarrowUse->getOpcode()) { 1157 default: 1158 llvm_unreachable("No other possibility!"); 1159 1160 case Instruction::Add: 1161 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1162 break; 1163 1164 case Instruction::Mul: 1165 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1166 break; 1167 1168 case Instruction::UDiv: 1169 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1170 break; 1171 1172 case Instruction::Sub: 1173 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1174 break; 1175 } 1176 1177 return WideUse == WideAR; 1178 }; 1179 1180 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1181 if (!GuessNonIVOperand(SignExtend)) { 1182 SignExtend = !SignExtend; 1183 if (!GuessNonIVOperand(SignExtend)) 1184 return nullptr; 1185 } 1186 1187 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1188 ? WideDef 1189 : createExtendInst(NarrowUse->getOperand(0), WideType, 1190 SignExtend, NarrowUse); 1191 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1192 ? WideDef 1193 : createExtendInst(NarrowUse->getOperand(1), WideType, 1194 SignExtend, NarrowUse); 1195 1196 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1197 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1198 NarrowBO->getName()); 1199 1200 IRBuilder<> Builder(NarrowUse); 1201 Builder.Insert(WideBO); 1202 WideBO->copyIRFlags(NarrowBO); 1203 return WideBO; 1204 } 1205 1206 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1207 auto It = ExtendKindMap.find(I); 1208 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1209 return It->second; 1210 } 1211 1212 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1213 unsigned OpCode) const { 1214 if (OpCode == Instruction::Add) 1215 return SE->getAddExpr(LHS, RHS); 1216 if (OpCode == Instruction::Sub) 1217 return SE->getMinusSCEV(LHS, RHS); 1218 if (OpCode == Instruction::Mul) 1219 return SE->getMulExpr(LHS, RHS); 1220 1221 llvm_unreachable("Unsupported opcode."); 1222 } 1223 1224 /// No-wrap operations can transfer sign extension of their result to their 1225 /// operands. Generate the SCEV value for the widened operation without 1226 /// actually modifying the IR yet. If the expression after extending the 1227 /// operands is an AddRec for this loop, return the AddRec and the kind of 1228 /// extension used. 1229 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1230 // Handle the common case of add<nsw/nuw> 1231 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1232 // Only Add/Sub/Mul instructions supported yet. 1233 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1234 OpCode != Instruction::Mul) 1235 return {nullptr, Unknown}; 1236 1237 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1238 // if extending the other will lead to a recurrence. 1239 const unsigned ExtendOperIdx = 1240 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1241 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1242 1243 const SCEV *ExtendOperExpr = nullptr; 1244 const OverflowingBinaryOperator *OBO = 1245 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1246 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1247 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1248 ExtendOperExpr = SE->getSignExtendExpr( 1249 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1250 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1251 ExtendOperExpr = SE->getZeroExtendExpr( 1252 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1253 else 1254 return {nullptr, Unknown}; 1255 1256 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1257 // flags. This instruction may be guarded by control flow that the no-wrap 1258 // behavior depends on. Non-control-equivalent instructions can be mapped to 1259 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1260 // semantics to those operations. 1261 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1262 const SCEV *rhs = ExtendOperExpr; 1263 1264 // Let's swap operands to the initial order for the case of non-commutative 1265 // operations, like SUB. See PR21014. 1266 if (ExtendOperIdx == 0) 1267 std::swap(lhs, rhs); 1268 const SCEVAddRecExpr *AddRec = 1269 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1270 1271 if (!AddRec || AddRec->getLoop() != L) 1272 return {nullptr, Unknown}; 1273 1274 return {AddRec, ExtKind}; 1275 } 1276 1277 /// Is this instruction potentially interesting for further simplification after 1278 /// widening it's type? In other words, can the extend be safely hoisted out of 1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1280 /// so, return the extended recurrence and the kind of extension used. Otherwise 1281 /// return {nullptr, Unknown}. 1282 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1283 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1284 return {nullptr, Unknown}; 1285 1286 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1287 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1288 SE->getTypeSizeInBits(WideType)) { 1289 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1290 // index. So don't follow this use. 1291 return {nullptr, Unknown}; 1292 } 1293 1294 const SCEV *WideExpr; 1295 ExtendKind ExtKind; 1296 if (DU.NeverNegative) { 1297 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1298 if (isa<SCEVAddRecExpr>(WideExpr)) 1299 ExtKind = SignExtended; 1300 else { 1301 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1302 ExtKind = ZeroExtended; 1303 } 1304 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1305 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1306 ExtKind = SignExtended; 1307 } else { 1308 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1309 ExtKind = ZeroExtended; 1310 } 1311 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1312 if (!AddRec || AddRec->getLoop() != L) 1313 return {nullptr, Unknown}; 1314 return {AddRec, ExtKind}; 1315 } 1316 1317 /// This IV user cannot be widen. Replace this use of the original narrow IV 1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1319 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1320 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1321 << *DU.NarrowUse << "\n"); 1322 IRBuilder<> Builder( 1323 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1324 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1325 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1326 } 1327 1328 /// If the narrow use is a compare instruction, then widen the compare 1329 // (and possibly the other operand). The extend operation is hoisted into the 1330 // loop preheader as far as possible. 1331 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1332 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1333 if (!Cmp) 1334 return false; 1335 1336 // We can legally widen the comparison in the following two cases: 1337 // 1338 // - The signedness of the IV extension and comparison match 1339 // 1340 // - The narrow IV is always positive (and thus its sign extension is equal 1341 // to its zero extension). For instance, let's say we're zero extending 1342 // %narrow for the following use 1343 // 1344 // icmp slt i32 %narrow, %val ... (A) 1345 // 1346 // and %narrow is always positive. Then 1347 // 1348 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1349 // == icmp slt i32 zext(%narrow), sext(%val) 1350 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1351 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1352 return false; 1353 1354 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1355 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1356 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1357 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1358 1359 // Widen the compare instruction. 1360 IRBuilder<> Builder( 1361 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1362 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1363 1364 // Widen the other operand of the compare, if necessary. 1365 if (CastWidth < IVWidth) { 1366 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1367 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1368 } 1369 return true; 1370 } 1371 1372 /// If the narrow use is an instruction whose two operands are the defining 1373 /// instruction of DU and a load instruction, then we have the following: 1374 /// if the load is hoisted outside the loop, then we do not reach this function 1375 /// as scalar evolution analysis works fine in widenIVUse with variables 1376 /// hoisted outside the loop and efficient code is subsequently generated by 1377 /// not emitting truncate instructions. But when the load is not hoisted 1378 /// (whether due to limitation in alias analysis or due to a true legality), 1379 /// then scalar evolution can not proceed with loop variant values and 1380 /// inefficient code is generated. This function handles the non-hoisted load 1381 /// special case by making the optimization generate the same type of code for 1382 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1383 /// instruction). This special case is important especially when the induction 1384 /// variables are affecting addressing mode in code generation. 1385 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1386 Instruction *NarrowUse = DU.NarrowUse; 1387 Instruction *NarrowDef = DU.NarrowDef; 1388 Instruction *WideDef = DU.WideDef; 1389 1390 // Handle the common case of add<nsw/nuw> 1391 const unsigned OpCode = NarrowUse->getOpcode(); 1392 // Only Add/Sub/Mul instructions are supported. 1393 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1394 OpCode != Instruction::Mul) 1395 return false; 1396 1397 // The operand that is not defined by NarrowDef of DU. Let's call it the 1398 // other operand. 1399 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1400 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1401 "bad DU"); 1402 1403 const SCEV *ExtendOperExpr = nullptr; 1404 const OverflowingBinaryOperator *OBO = 1405 cast<OverflowingBinaryOperator>(NarrowUse); 1406 ExtendKind ExtKind = getExtendKind(NarrowDef); 1407 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1408 ExtendOperExpr = SE->getSignExtendExpr( 1409 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1410 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1411 ExtendOperExpr = SE->getZeroExtendExpr( 1412 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1413 else 1414 return false; 1415 1416 // We are interested in the other operand being a load instruction. 1417 // But, we should look into relaxing this restriction later on. 1418 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1419 if (I && I->getOpcode() != Instruction::Load) 1420 return false; 1421 1422 // Verifying that Defining operand is an AddRec 1423 const SCEV *Op1 = SE->getSCEV(WideDef); 1424 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1425 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1426 return false; 1427 // Verifying that other operand is an Extend. 1428 if (ExtKind == SignExtended) { 1429 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1430 return false; 1431 } else { 1432 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1433 return false; 1434 } 1435 1436 if (ExtKind == SignExtended) { 1437 for (Use &U : NarrowUse->uses()) { 1438 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1439 if (!User || User->getType() != WideType) 1440 return false; 1441 } 1442 } else { // ExtKind == ZeroExtended 1443 for (Use &U : NarrowUse->uses()) { 1444 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1445 if (!User || User->getType() != WideType) 1446 return false; 1447 } 1448 } 1449 1450 return true; 1451 } 1452 1453 /// Special Case for widening with variant Loads (see 1454 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1455 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1456 Instruction *NarrowUse = DU.NarrowUse; 1457 Instruction *NarrowDef = DU.NarrowDef; 1458 Instruction *WideDef = DU.WideDef; 1459 1460 ExtendKind ExtKind = getExtendKind(NarrowDef); 1461 1462 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1463 1464 // Generating a widening use instruction. 1465 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1466 ? WideDef 1467 : createExtendInst(NarrowUse->getOperand(0), WideType, 1468 ExtKind, NarrowUse); 1469 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1470 ? WideDef 1471 : createExtendInst(NarrowUse->getOperand(1), WideType, 1472 ExtKind, NarrowUse); 1473 1474 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1475 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1476 NarrowBO->getName()); 1477 IRBuilder<> Builder(NarrowUse); 1478 Builder.Insert(WideBO); 1479 WideBO->copyIRFlags(NarrowBO); 1480 1481 if (ExtKind == SignExtended) 1482 ExtendKindMap[NarrowUse] = SignExtended; 1483 else 1484 ExtendKindMap[NarrowUse] = ZeroExtended; 1485 1486 // Update the Use. 1487 if (ExtKind == SignExtended) { 1488 for (Use &U : NarrowUse->uses()) { 1489 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1490 if (User && User->getType() == WideType) { 1491 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1492 << *WideBO << "\n"); 1493 ++NumElimExt; 1494 User->replaceAllUsesWith(WideBO); 1495 DeadInsts.emplace_back(User); 1496 } 1497 } 1498 } else { // ExtKind == ZeroExtended 1499 for (Use &U : NarrowUse->uses()) { 1500 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1501 if (User && User->getType() == WideType) { 1502 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1503 << *WideBO << "\n"); 1504 ++NumElimExt; 1505 User->replaceAllUsesWith(WideBO); 1506 DeadInsts.emplace_back(User); 1507 } 1508 } 1509 } 1510 } 1511 1512 /// Determine whether an individual user of the narrow IV can be widened. If so, 1513 /// return the wide clone of the user. 1514 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1515 assert(ExtendKindMap.count(DU.NarrowDef) && 1516 "Should already know the kind of extension used to widen NarrowDef"); 1517 1518 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1519 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1520 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1521 // For LCSSA phis, sink the truncate outside the loop. 1522 // After SimplifyCFG most loop exit targets have a single predecessor. 1523 // Otherwise fall back to a truncate within the loop. 1524 if (UsePhi->getNumOperands() != 1) 1525 truncateIVUse(DU, DT, LI); 1526 else { 1527 // Widening the PHI requires us to insert a trunc. The logical place 1528 // for this trunc is in the same BB as the PHI. This is not possible if 1529 // the BB is terminated by a catchswitch. 1530 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1531 return nullptr; 1532 1533 PHINode *WidePhi = 1534 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1535 UsePhi); 1536 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1537 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1538 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1539 UsePhi->replaceAllUsesWith(Trunc); 1540 DeadInsts.emplace_back(UsePhi); 1541 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1542 << *WidePhi << "\n"); 1543 } 1544 return nullptr; 1545 } 1546 } 1547 1548 // This narrow use can be widened by a sext if it's non-negative or its narrow 1549 // def was widended by a sext. Same for zext. 1550 auto canWidenBySExt = [&]() { 1551 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1552 }; 1553 auto canWidenByZExt = [&]() { 1554 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1555 }; 1556 1557 // Our raison d'etre! Eliminate sign and zero extension. 1558 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1559 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1560 Value *NewDef = DU.WideDef; 1561 if (DU.NarrowUse->getType() != WideType) { 1562 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1563 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1564 if (CastWidth < IVWidth) { 1565 // The cast isn't as wide as the IV, so insert a Trunc. 1566 IRBuilder<> Builder(DU.NarrowUse); 1567 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1568 } 1569 else { 1570 // A wider extend was hidden behind a narrower one. This may induce 1571 // another round of IV widening in which the intermediate IV becomes 1572 // dead. It should be very rare. 1573 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1574 << " not wide enough to subsume " << *DU.NarrowUse 1575 << "\n"); 1576 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1577 NewDef = DU.NarrowUse; 1578 } 1579 } 1580 if (NewDef != DU.NarrowUse) { 1581 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1582 << " replaced by " << *DU.WideDef << "\n"); 1583 ++NumElimExt; 1584 DU.NarrowUse->replaceAllUsesWith(NewDef); 1585 DeadInsts.emplace_back(DU.NarrowUse); 1586 } 1587 // Now that the extend is gone, we want to expose it's uses for potential 1588 // further simplification. We don't need to directly inform SimplifyIVUsers 1589 // of the new users, because their parent IV will be processed later as a 1590 // new loop phi. If we preserved IVUsers analysis, we would also want to 1591 // push the uses of WideDef here. 1592 1593 // No further widening is needed. The deceased [sz]ext had done it for us. 1594 return nullptr; 1595 } 1596 1597 // Does this user itself evaluate to a recurrence after widening? 1598 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1599 if (!WideAddRec.first) 1600 WideAddRec = getWideRecurrence(DU); 1601 1602 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1603 if (!WideAddRec.first) { 1604 // If use is a loop condition, try to promote the condition instead of 1605 // truncating the IV first. 1606 if (widenLoopCompare(DU)) 1607 return nullptr; 1608 1609 // We are here about to generate a truncate instruction that may hurt 1610 // performance because the scalar evolution expression computed earlier 1611 // in WideAddRec.first does not indicate a polynomial induction expression. 1612 // In that case, look at the operands of the use instruction to determine 1613 // if we can still widen the use instead of truncating its operand. 1614 if (widenWithVariantLoadUse(DU)) { 1615 widenWithVariantLoadUseCodegen(DU); 1616 return nullptr; 1617 } 1618 1619 // This user does not evaluate to a recurrence after widening, so don't 1620 // follow it. Instead insert a Trunc to kill off the original use, 1621 // eventually isolating the original narrow IV so it can be removed. 1622 truncateIVUse(DU, DT, LI); 1623 return nullptr; 1624 } 1625 // Assume block terminators cannot evaluate to a recurrence. We can't to 1626 // insert a Trunc after a terminator if there happens to be a critical edge. 1627 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1628 "SCEV is not expected to evaluate a block terminator"); 1629 1630 // Reuse the IV increment that SCEVExpander created as long as it dominates 1631 // NarrowUse. 1632 Instruction *WideUse = nullptr; 1633 if (WideAddRec.first == WideIncExpr && 1634 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1635 WideUse = WideInc; 1636 else { 1637 WideUse = cloneIVUser(DU, WideAddRec.first); 1638 if (!WideUse) 1639 return nullptr; 1640 } 1641 // Evaluation of WideAddRec ensured that the narrow expression could be 1642 // extended outside the loop without overflow. This suggests that the wide use 1643 // evaluates to the same expression as the extended narrow use, but doesn't 1644 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1645 // where it fails, we simply throw away the newly created wide use. 1646 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1647 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1648 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1649 << "\n"); 1650 DeadInsts.emplace_back(WideUse); 1651 return nullptr; 1652 } 1653 1654 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1655 // Returning WideUse pushes it on the worklist. 1656 return WideUse; 1657 } 1658 1659 /// Add eligible users of NarrowDef to NarrowIVUsers. 1660 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1661 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1662 bool NonNegativeDef = 1663 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1664 SE->getConstant(NarrowSCEV->getType(), 0)); 1665 for (User *U : NarrowDef->users()) { 1666 Instruction *NarrowUser = cast<Instruction>(U); 1667 1668 // Handle data flow merges and bizarre phi cycles. 1669 if (!Widened.insert(NarrowUser).second) 1670 continue; 1671 1672 bool NonNegativeUse = false; 1673 if (!NonNegativeDef) { 1674 // We might have a control-dependent range information for this context. 1675 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1676 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1677 } 1678 1679 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1680 NonNegativeDef || NonNegativeUse); 1681 } 1682 } 1683 1684 /// Process a single induction variable. First use the SCEVExpander to create a 1685 /// wide induction variable that evaluates to the same recurrence as the 1686 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1687 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1688 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1689 /// 1690 /// It would be simpler to delete uses as they are processed, but we must avoid 1691 /// invalidating SCEV expressions. 1692 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1693 // Is this phi an induction variable? 1694 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1695 if (!AddRec) 1696 return nullptr; 1697 1698 // Widen the induction variable expression. 1699 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1700 ? SE->getSignExtendExpr(AddRec, WideType) 1701 : SE->getZeroExtendExpr(AddRec, WideType); 1702 1703 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1704 "Expect the new IV expression to preserve its type"); 1705 1706 // Can the IV be extended outside the loop without overflow? 1707 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1708 if (!AddRec || AddRec->getLoop() != L) 1709 return nullptr; 1710 1711 // An AddRec must have loop-invariant operands. Since this AddRec is 1712 // materialized by a loop header phi, the expression cannot have any post-loop 1713 // operands, so they must dominate the loop header. 1714 assert( 1715 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1716 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1717 "Loop header phi recurrence inputs do not dominate the loop"); 1718 1719 // Iterate over IV uses (including transitive ones) looking for IV increments 1720 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1721 // the increment calculate control-dependent range information basing on 1722 // dominating conditions inside of the loop (e.g. a range check inside of the 1723 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1724 // 1725 // Control-dependent range information is later used to prove that a narrow 1726 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1727 // this on demand because when pushNarrowIVUsers needs this information some 1728 // of the dominating conditions might be already widened. 1729 if (UsePostIncrementRanges) 1730 calculatePostIncRanges(OrigPhi); 1731 1732 // The rewriter provides a value for the desired IV expression. This may 1733 // either find an existing phi or materialize a new one. Either way, we 1734 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1735 // of the phi-SCC dominates the loop entry. 1736 Instruction *InsertPt = &L->getHeader()->front(); 1737 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1738 1739 // Remembering the WideIV increment generated by SCEVExpander allows 1740 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1741 // employ a general reuse mechanism because the call above is the only call to 1742 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1743 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1744 WideInc = 1745 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1746 WideIncExpr = SE->getSCEV(WideInc); 1747 // Propagate the debug location associated with the original loop increment 1748 // to the new (widened) increment. 1749 auto *OrigInc = 1750 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1751 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1752 } 1753 1754 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1755 ++NumWidened; 1756 1757 // Traverse the def-use chain using a worklist starting at the original IV. 1758 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1759 1760 Widened.insert(OrigPhi); 1761 pushNarrowIVUsers(OrigPhi, WidePhi); 1762 1763 while (!NarrowIVUsers.empty()) { 1764 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1765 1766 // Process a def-use edge. This may replace the use, so don't hold a 1767 // use_iterator across it. 1768 Instruction *WideUse = widenIVUse(DU, Rewriter); 1769 1770 // Follow all def-use edges from the previous narrow use. 1771 if (WideUse) 1772 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1773 1774 // widenIVUse may have removed the def-use edge. 1775 if (DU.NarrowDef->use_empty()) 1776 DeadInsts.emplace_back(DU.NarrowDef); 1777 } 1778 1779 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1780 // evaluate the same recurrence, we can just copy the debug info over. 1781 SmallVector<DbgValueInst *, 1> DbgValues; 1782 llvm::findDbgValues(DbgValues, OrigPhi); 1783 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1784 ValueAsMetadata::get(WidePhi)); 1785 for (auto &DbgValue : DbgValues) 1786 DbgValue->setOperand(0, MDPhi); 1787 return WidePhi; 1788 } 1789 1790 /// Calculates control-dependent range for the given def at the given context 1791 /// by looking at dominating conditions inside of the loop 1792 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1793 Instruction *NarrowUser) { 1794 using namespace llvm::PatternMatch; 1795 1796 Value *NarrowDefLHS; 1797 const APInt *NarrowDefRHS; 1798 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1799 m_APInt(NarrowDefRHS))) || 1800 !NarrowDefRHS->isNonNegative()) 1801 return; 1802 1803 auto UpdateRangeFromCondition = [&] (Value *Condition, 1804 bool TrueDest) { 1805 CmpInst::Predicate Pred; 1806 Value *CmpRHS; 1807 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1808 m_Value(CmpRHS)))) 1809 return; 1810 1811 CmpInst::Predicate P = 1812 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1813 1814 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1815 auto CmpConstrainedLHSRange = 1816 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1817 auto NarrowDefRange = 1818 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1819 1820 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1821 }; 1822 1823 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1824 if (!HasGuards) 1825 return; 1826 1827 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1828 Ctx->getParent()->rend())) { 1829 Value *C = nullptr; 1830 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1831 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1832 } 1833 }; 1834 1835 UpdateRangeFromGuards(NarrowUser); 1836 1837 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1838 // If NarrowUserBB is statically unreachable asking dominator queries may 1839 // yield surprising results. (e.g. the block may not have a dom tree node) 1840 if (!DT->isReachableFromEntry(NarrowUserBB)) 1841 return; 1842 1843 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1844 L->contains(DTB->getBlock()); 1845 DTB = DTB->getIDom()) { 1846 auto *BB = DTB->getBlock(); 1847 auto *TI = BB->getTerminator(); 1848 UpdateRangeFromGuards(TI); 1849 1850 auto *BI = dyn_cast<BranchInst>(TI); 1851 if (!BI || !BI->isConditional()) 1852 continue; 1853 1854 auto *TrueSuccessor = BI->getSuccessor(0); 1855 auto *FalseSuccessor = BI->getSuccessor(1); 1856 1857 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1858 return BBE.isSingleEdge() && 1859 DT->dominates(BBE, NarrowUser->getParent()); 1860 }; 1861 1862 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1863 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1864 1865 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1866 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1867 } 1868 } 1869 1870 /// Calculates PostIncRangeInfos map for the given IV 1871 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1872 SmallPtrSet<Instruction *, 16> Visited; 1873 SmallVector<Instruction *, 6> Worklist; 1874 Worklist.push_back(OrigPhi); 1875 Visited.insert(OrigPhi); 1876 1877 while (!Worklist.empty()) { 1878 Instruction *NarrowDef = Worklist.pop_back_val(); 1879 1880 for (Use &U : NarrowDef->uses()) { 1881 auto *NarrowUser = cast<Instruction>(U.getUser()); 1882 1883 // Don't go looking outside the current loop. 1884 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1885 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1886 continue; 1887 1888 if (!Visited.insert(NarrowUser).second) 1889 continue; 1890 1891 Worklist.push_back(NarrowUser); 1892 1893 calculatePostIncRange(NarrowDef, NarrowUser); 1894 } 1895 } 1896 } 1897 1898 //===----------------------------------------------------------------------===// 1899 // Live IV Reduction - Minimize IVs live across the loop. 1900 //===----------------------------------------------------------------------===// 1901 1902 //===----------------------------------------------------------------------===// 1903 // Simplification of IV users based on SCEV evaluation. 1904 //===----------------------------------------------------------------------===// 1905 1906 namespace { 1907 1908 class IndVarSimplifyVisitor : public IVVisitor { 1909 ScalarEvolution *SE; 1910 const TargetTransformInfo *TTI; 1911 PHINode *IVPhi; 1912 1913 public: 1914 WideIVInfo WI; 1915 1916 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1917 const TargetTransformInfo *TTI, 1918 const DominatorTree *DTree) 1919 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1920 DT = DTree; 1921 WI.NarrowIV = IVPhi; 1922 } 1923 1924 // Implement the interface used by simplifyUsersOfIV. 1925 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1926 }; 1927 1928 } // end anonymous namespace 1929 1930 /// Iteratively perform simplification on a worklist of IV users. Each 1931 /// successive simplification may push more users which may themselves be 1932 /// candidates for simplification. 1933 /// 1934 /// Sign/Zero extend elimination is interleaved with IV simplification. 1935 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1936 SCEVExpander &Rewriter, 1937 LoopInfo *LI) { 1938 SmallVector<WideIVInfo, 8> WideIVs; 1939 1940 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1941 Intrinsic::getName(Intrinsic::experimental_guard)); 1942 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1943 1944 SmallVector<PHINode*, 8> LoopPhis; 1945 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1946 LoopPhis.push_back(cast<PHINode>(I)); 1947 } 1948 // Each round of simplification iterates through the SimplifyIVUsers worklist 1949 // for all current phis, then determines whether any IVs can be 1950 // widened. Widening adds new phis to LoopPhis, inducing another round of 1951 // simplification on the wide IVs. 1952 bool Changed = false; 1953 while (!LoopPhis.empty()) { 1954 // Evaluate as many IV expressions as possible before widening any IVs. This 1955 // forces SCEV to set no-wrap flags before evaluating sign/zero 1956 // extension. The first time SCEV attempts to normalize sign/zero extension, 1957 // the result becomes final. So for the most predictable results, we delay 1958 // evaluation of sign/zero extend evaluation until needed, and avoid running 1959 // other SCEV based analysis prior to simplifyAndExtend. 1960 do { 1961 PHINode *CurrIV = LoopPhis.pop_back_val(); 1962 1963 // Information about sign/zero extensions of CurrIV. 1964 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1965 1966 Changed |= 1967 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1968 1969 if (Visitor.WI.WidestNativeType) { 1970 WideIVs.push_back(Visitor.WI); 1971 } 1972 } while(!LoopPhis.empty()); 1973 1974 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1975 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1976 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1977 Changed = true; 1978 LoopPhis.push_back(WidePhi); 1979 } 1980 } 1981 } 1982 return Changed; 1983 } 1984 1985 //===----------------------------------------------------------------------===// 1986 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1987 //===----------------------------------------------------------------------===// 1988 1989 /// Return true if this loop's backedge taken count expression can be safely and 1990 /// cheaply expanded into an instruction sequence that can be used by 1991 /// linearFunctionTestReplace. 1992 /// 1993 /// TODO: This fails for pointer-type loop counters with greater than one byte 1994 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1995 /// we could skip this check in the case that the LFTR loop counter (chosen by 1996 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1997 /// the loop test to an inequality test by checking the target data's alignment 1998 /// of element types (given that the initial pointer value originates from or is 1999 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 2000 /// However, we don't yet have a strong motivation for converting loop tests 2001 /// into inequality tests. 2002 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 2003 SCEVExpander &Rewriter) { 2004 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2005 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 2006 BackedgeTakenCount->isZero()) 2007 return false; 2008 2009 if (!L->getExitingBlock()) 2010 return false; 2011 2012 // Can't rewrite non-branch yet. 2013 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2014 return false; 2015 2016 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2017 return false; 2018 2019 return true; 2020 } 2021 2022 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2023 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2024 Instruction *IncI = dyn_cast<Instruction>(IncV); 2025 if (!IncI) 2026 return nullptr; 2027 2028 switch (IncI->getOpcode()) { 2029 case Instruction::Add: 2030 case Instruction::Sub: 2031 break; 2032 case Instruction::GetElementPtr: 2033 // An IV counter must preserve its type. 2034 if (IncI->getNumOperands() == 2) 2035 break; 2036 LLVM_FALLTHROUGH; 2037 default: 2038 return nullptr; 2039 } 2040 2041 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2042 if (Phi && Phi->getParent() == L->getHeader()) { 2043 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2044 return Phi; 2045 return nullptr; 2046 } 2047 if (IncI->getOpcode() == Instruction::GetElementPtr) 2048 return nullptr; 2049 2050 // Allow add/sub to be commuted. 2051 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2052 if (Phi && Phi->getParent() == L->getHeader()) { 2053 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2054 return Phi; 2055 } 2056 return nullptr; 2057 } 2058 2059 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2060 static ICmpInst *getLoopTest(Loop *L) { 2061 assert(L->getExitingBlock() && "expected loop exit"); 2062 2063 BasicBlock *LatchBlock = L->getLoopLatch(); 2064 // Don't bother with LFTR if the loop is not properly simplified. 2065 if (!LatchBlock) 2066 return nullptr; 2067 2068 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2069 assert(BI && "expected exit branch"); 2070 2071 return dyn_cast<ICmpInst>(BI->getCondition()); 2072 } 2073 2074 /// linearFunctionTestReplace policy. Return true unless we can show that the 2075 /// current exit test is already sufficiently canonical. 2076 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2077 // Do LFTR to simplify the exit condition to an ICMP. 2078 ICmpInst *Cond = getLoopTest(L); 2079 if (!Cond) 2080 return true; 2081 2082 // Do LFTR to simplify the exit ICMP to EQ/NE 2083 ICmpInst::Predicate Pred = Cond->getPredicate(); 2084 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2085 return true; 2086 2087 // Look for a loop invariant RHS 2088 Value *LHS = Cond->getOperand(0); 2089 Value *RHS = Cond->getOperand(1); 2090 if (!isLoopInvariant(RHS, L, DT)) { 2091 if (!isLoopInvariant(LHS, L, DT)) 2092 return true; 2093 std::swap(LHS, RHS); 2094 } 2095 // Look for a simple IV counter LHS 2096 PHINode *Phi = dyn_cast<PHINode>(LHS); 2097 if (!Phi) 2098 Phi = getLoopPhiForCounter(LHS, L, DT); 2099 2100 if (!Phi) 2101 return true; 2102 2103 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2104 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2105 if (Idx < 0) 2106 return true; 2107 2108 // Do LFTR if the exit condition's IV is *not* a simple counter. 2109 Value *IncV = Phi->getIncomingValue(Idx); 2110 return Phi != getLoopPhiForCounter(IncV, L, DT); 2111 } 2112 2113 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2114 /// down to checking that all operands are constant and listing instructions 2115 /// that may hide undef. 2116 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2117 unsigned Depth) { 2118 if (isa<Constant>(V)) 2119 return !isa<UndefValue>(V); 2120 2121 if (Depth >= 6) 2122 return false; 2123 2124 // Conservatively handle non-constant non-instructions. For example, Arguments 2125 // may be undef. 2126 Instruction *I = dyn_cast<Instruction>(V); 2127 if (!I) 2128 return false; 2129 2130 // Load and return values may be undef. 2131 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2132 return false; 2133 2134 // Optimistically handle other instructions. 2135 for (Value *Op : I->operands()) { 2136 if (!Visited.insert(Op).second) 2137 continue; 2138 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2139 return false; 2140 } 2141 return true; 2142 } 2143 2144 /// Return true if the given value is concrete. We must prove that undef can 2145 /// never reach it. 2146 /// 2147 /// TODO: If we decide that this is a good approach to checking for undef, we 2148 /// may factor it into a common location. 2149 static bool hasConcreteDef(Value *V) { 2150 SmallPtrSet<Value*, 8> Visited; 2151 Visited.insert(V); 2152 return hasConcreteDefImpl(V, Visited, 0); 2153 } 2154 2155 /// Return true if this IV has any uses other than the (soon to be rewritten) 2156 /// loop exit test. 2157 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2158 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2159 Value *IncV = Phi->getIncomingValue(LatchIdx); 2160 2161 for (User *U : Phi->users()) 2162 if (U != Cond && U != IncV) return false; 2163 2164 for (User *U : IncV->users()) 2165 if (U != Cond && U != Phi) return false; 2166 return true; 2167 } 2168 2169 /// Find an affine IV in canonical form. 2170 /// 2171 /// BECount may be an i8* pointer type. The pointer difference is already 2172 /// valid count without scaling the address stride, so it remains a pointer 2173 /// expression as far as SCEV is concerned. 2174 /// 2175 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2176 /// 2177 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2178 /// 2179 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2180 /// This is difficult in general for SCEV because of potential overflow. But we 2181 /// could at least handle constant BECounts. 2182 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2183 ScalarEvolution *SE, DominatorTree *DT) { 2184 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2185 2186 Value *Cond = 2187 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2188 2189 // Loop over all of the PHI nodes, looking for a simple counter. 2190 PHINode *BestPhi = nullptr; 2191 const SCEV *BestInit = nullptr; 2192 BasicBlock *LatchBlock = L->getLoopLatch(); 2193 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2194 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2195 2196 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2197 PHINode *Phi = cast<PHINode>(I); 2198 if (!SE->isSCEVable(Phi->getType())) 2199 continue; 2200 2201 // Avoid comparing an integer IV against a pointer Limit. 2202 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2203 continue; 2204 2205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2206 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2207 continue; 2208 2209 // AR may be a pointer type, while BECount is an integer type. 2210 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2211 // AR may not be a narrower type, or we may never exit. 2212 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2213 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2214 continue; 2215 2216 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2217 if (!Step || !Step->isOne()) 2218 continue; 2219 2220 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2221 Value *IncV = Phi->getIncomingValue(LatchIdx); 2222 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2223 continue; 2224 2225 // Avoid reusing a potentially undef value to compute other values that may 2226 // have originally had a concrete definition. 2227 if (!hasConcreteDef(Phi)) { 2228 // We explicitly allow unknown phis as long as they are already used by 2229 // the loop test. In this case we assume that performing LFTR could not 2230 // increase the number of undef users. 2231 if (ICmpInst *Cond = getLoopTest(L)) { 2232 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2233 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2234 continue; 2235 } 2236 } 2237 } 2238 const SCEV *Init = AR->getStart(); 2239 2240 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2241 // Don't force a live loop counter if another IV can be used. 2242 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2243 continue; 2244 2245 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2246 // also prefers integer to pointer IVs. 2247 if (BestInit->isZero() != Init->isZero()) { 2248 if (BestInit->isZero()) 2249 continue; 2250 } 2251 // If two IVs both count from zero or both count from nonzero then the 2252 // narrower is likely a dead phi that has been widened. Use the wider phi 2253 // to allow the other to be eliminated. 2254 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2255 continue; 2256 } 2257 BestPhi = Phi; 2258 BestInit = Init; 2259 } 2260 return BestPhi; 2261 } 2262 2263 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2264 /// the new loop test. 2265 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2266 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2267 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2268 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2269 const SCEV *IVInit = AR->getStart(); 2270 2271 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2272 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2273 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2274 // the existing GEPs whenever possible. 2275 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2276 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2277 // signed value. IVCount on the other hand represents the loop trip count, 2278 // which is an unsigned value. FindLoopCounter only allows induction 2279 // variables that have a positive unit stride of one. This means we don't 2280 // have to handle the case of negative offsets (yet) and just need to zero 2281 // extend IVCount. 2282 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2283 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2284 2285 // Expand the code for the iteration count. 2286 assert(SE->isLoopInvariant(IVOffset, L) && 2287 "Computed iteration count is not loop invariant!"); 2288 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2289 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2290 2291 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2292 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2293 // We could handle pointer IVs other than i8*, but we need to compensate for 2294 // gep index scaling. See canExpandBackedgeTakenCount comments. 2295 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2296 cast<PointerType>(GEPBase->getType()) 2297 ->getElementType())->isOne() && 2298 "unit stride pointer IV must be i8*"); 2299 2300 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2301 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2302 } else { 2303 // In any other case, convert both IVInit and IVCount to integers before 2304 // comparing. This may result in SCEV expansion of pointers, but in practice 2305 // SCEV will fold the pointer arithmetic away as such: 2306 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2307 // 2308 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2309 // for simple memset-style loops. 2310 // 2311 // IVInit integer and IVCount pointer would only occur if a canonical IV 2312 // were generated on top of case #2, which is not expected. 2313 2314 const SCEV *IVLimit = nullptr; 2315 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2316 // For non-zero Start, compute IVCount here. 2317 if (AR->getStart()->isZero()) 2318 IVLimit = IVCount; 2319 else { 2320 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2321 const SCEV *IVInit = AR->getStart(); 2322 2323 // For integer IVs, truncate the IV before computing IVInit + BECount. 2324 if (SE->getTypeSizeInBits(IVInit->getType()) 2325 > SE->getTypeSizeInBits(IVCount->getType())) 2326 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2327 2328 IVLimit = SE->getAddExpr(IVInit, IVCount); 2329 } 2330 // Expand the code for the iteration count. 2331 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2332 IRBuilder<> Builder(BI); 2333 assert(SE->isLoopInvariant(IVLimit, L) && 2334 "Computed iteration count is not loop invariant!"); 2335 // Ensure that we generate the same type as IndVar, or a smaller integer 2336 // type. In the presence of null pointer values, we have an integer type 2337 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2338 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2339 IndVar->getType() : IVCount->getType(); 2340 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2341 } 2342 } 2343 2344 /// This method rewrites the exit condition of the loop to be a canonical != 2345 /// comparison against the incremented loop induction variable. This pass is 2346 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2347 /// determine a loop-invariant trip count of the loop, which is actually a much 2348 /// broader range than just linear tests. 2349 bool IndVarSimplify:: 2350 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2351 PHINode *IndVar, SCEVExpander &Rewriter) { 2352 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2353 2354 // Initialize CmpIndVar and IVCount to their preincremented values. 2355 Value *CmpIndVar = IndVar; 2356 const SCEV *IVCount = BackedgeTakenCount; 2357 2358 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2359 2360 // If the exiting block is the same as the backedge block, we prefer to 2361 // compare against the post-incremented value, otherwise we must compare 2362 // against the preincremented value. 2363 if (L->getExitingBlock() == L->getLoopLatch()) { 2364 // Add one to the "backedge-taken" count to get the trip count. 2365 // This addition may overflow, which is valid as long as the comparison is 2366 // truncated to BackedgeTakenCount->getType(). 2367 IVCount = SE->getAddExpr(BackedgeTakenCount, 2368 SE->getOne(BackedgeTakenCount->getType())); 2369 // The BackedgeTaken expression contains the number of times that the 2370 // backedge branches to the loop header. This is one less than the 2371 // number of times the loop executes, so use the incremented indvar. 2372 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2373 } 2374 2375 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2376 assert(ExitCnt->getType()->isPointerTy() == 2377 IndVar->getType()->isPointerTy() && 2378 "genLoopLimit missed a cast"); 2379 2380 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2381 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2382 ICmpInst::Predicate P; 2383 if (L->contains(BI->getSuccessor(0))) 2384 P = ICmpInst::ICMP_NE; 2385 else 2386 P = ICmpInst::ICMP_EQ; 2387 2388 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2389 << " LHS:" << *CmpIndVar << '\n' 2390 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2391 << "\n" 2392 << " RHS:\t" << *ExitCnt << "\n" 2393 << " IVCount:\t" << *IVCount << "\n"); 2394 2395 IRBuilder<> Builder(BI); 2396 2397 // The new loop exit condition should reuse the debug location of the 2398 // original loop exit condition. 2399 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2400 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2401 2402 // LFTR can ignore IV overflow and truncate to the width of 2403 // BECount. This avoids materializing the add(zext(add)) expression. 2404 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2405 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2406 if (CmpIndVarSize > ExitCntSize) { 2407 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2408 const SCEV *ARStart = AR->getStart(); 2409 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2410 // For constant IVCount, avoid truncation. 2411 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2412 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2413 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2414 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2415 // above such that IVCount is now zero. 2416 if (IVCount != BackedgeTakenCount && Count == 0) { 2417 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2418 ++Count; 2419 } 2420 else 2421 Count = Count.zext(CmpIndVarSize); 2422 APInt NewLimit; 2423 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2424 NewLimit = Start - Count; 2425 else 2426 NewLimit = Start + Count; 2427 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2428 2429 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2430 } else { 2431 // We try to extend trip count first. If that doesn't work we truncate IV. 2432 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2433 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2434 // one of the two holds, extend the trip count, otherwise we truncate IV. 2435 bool Extended = false; 2436 const SCEV *IV = SE->getSCEV(CmpIndVar); 2437 const SCEV *ZExtTrunc = 2438 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2439 ExitCnt->getType()), 2440 CmpIndVar->getType()); 2441 2442 if (ZExtTrunc == IV) { 2443 Extended = true; 2444 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2445 "wide.trip.count"); 2446 } else { 2447 const SCEV *SExtTrunc = 2448 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2449 ExitCnt->getType()), 2450 CmpIndVar->getType()); 2451 if (SExtTrunc == IV) { 2452 Extended = true; 2453 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2454 "wide.trip.count"); 2455 } 2456 } 2457 2458 if (!Extended) 2459 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2460 "lftr.wideiv"); 2461 } 2462 } 2463 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2464 Value *OrigCond = BI->getCondition(); 2465 // It's tempting to use replaceAllUsesWith here to fully replace the old 2466 // comparison, but that's not immediately safe, since users of the old 2467 // comparison may not be dominated by the new comparison. Instead, just 2468 // update the branch to use the new comparison; in the common case this 2469 // will make old comparison dead. 2470 BI->setCondition(Cond); 2471 DeadInsts.push_back(OrigCond); 2472 2473 ++NumLFTR; 2474 return true; 2475 } 2476 2477 //===----------------------------------------------------------------------===// 2478 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2479 //===----------------------------------------------------------------------===// 2480 2481 /// If there's a single exit block, sink any loop-invariant values that 2482 /// were defined in the preheader but not used inside the loop into the 2483 /// exit block to reduce register pressure in the loop. 2484 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2485 BasicBlock *ExitBlock = L->getExitBlock(); 2486 if (!ExitBlock) return false; 2487 2488 BasicBlock *Preheader = L->getLoopPreheader(); 2489 if (!Preheader) return false; 2490 2491 bool MadeAnyChanges = false; 2492 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2493 BasicBlock::iterator I(Preheader->getTerminator()); 2494 while (I != Preheader->begin()) { 2495 --I; 2496 // New instructions were inserted at the end of the preheader. 2497 if (isa<PHINode>(I)) 2498 break; 2499 2500 // Don't move instructions which might have side effects, since the side 2501 // effects need to complete before instructions inside the loop. Also don't 2502 // move instructions which might read memory, since the loop may modify 2503 // memory. Note that it's okay if the instruction might have undefined 2504 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2505 // block. 2506 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2507 continue; 2508 2509 // Skip debug info intrinsics. 2510 if (isa<DbgInfoIntrinsic>(I)) 2511 continue; 2512 2513 // Skip eh pad instructions. 2514 if (I->isEHPad()) 2515 continue; 2516 2517 // Don't sink alloca: we never want to sink static alloca's out of the 2518 // entry block, and correctly sinking dynamic alloca's requires 2519 // checks for stacksave/stackrestore intrinsics. 2520 // FIXME: Refactor this check somehow? 2521 if (isa<AllocaInst>(I)) 2522 continue; 2523 2524 // Determine if there is a use in or before the loop (direct or 2525 // otherwise). 2526 bool UsedInLoop = false; 2527 for (Use &U : I->uses()) { 2528 Instruction *User = cast<Instruction>(U.getUser()); 2529 BasicBlock *UseBB = User->getParent(); 2530 if (PHINode *P = dyn_cast<PHINode>(User)) { 2531 unsigned i = 2532 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2533 UseBB = P->getIncomingBlock(i); 2534 } 2535 if (UseBB == Preheader || L->contains(UseBB)) { 2536 UsedInLoop = true; 2537 break; 2538 } 2539 } 2540 2541 // If there is, the def must remain in the preheader. 2542 if (UsedInLoop) 2543 continue; 2544 2545 // Otherwise, sink it to the exit block. 2546 Instruction *ToMove = &*I; 2547 bool Done = false; 2548 2549 if (I != Preheader->begin()) { 2550 // Skip debug info intrinsics. 2551 do { 2552 --I; 2553 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2554 2555 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2556 Done = true; 2557 } else { 2558 Done = true; 2559 } 2560 2561 MadeAnyChanges = true; 2562 ToMove->moveBefore(*ExitBlock, InsertPt); 2563 if (Done) break; 2564 InsertPt = ToMove->getIterator(); 2565 } 2566 2567 return MadeAnyChanges; 2568 } 2569 2570 //===----------------------------------------------------------------------===// 2571 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2572 //===----------------------------------------------------------------------===// 2573 2574 bool IndVarSimplify::run(Loop *L) { 2575 // We need (and expect!) the incoming loop to be in LCSSA. 2576 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2577 "LCSSA required to run indvars!"); 2578 bool Changed = false; 2579 2580 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2581 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2582 // canonicalization can be a pessimization without LSR to "clean up" 2583 // afterwards. 2584 // - We depend on having a preheader; in particular, 2585 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2586 // and we're in trouble if we can't find the induction variable even when 2587 // we've manually inserted one. 2588 // - LFTR relies on having a single backedge. 2589 if (!L->isLoopSimplifyForm()) 2590 return false; 2591 2592 // If there are any floating-point recurrences, attempt to 2593 // transform them to use integer recurrences. 2594 Changed |= rewriteNonIntegerIVs(L); 2595 2596 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2597 2598 // Create a rewriter object which we'll use to transform the code with. 2599 SCEVExpander Rewriter(*SE, DL, "indvars"); 2600 #ifndef NDEBUG 2601 Rewriter.setDebugType(DEBUG_TYPE); 2602 #endif 2603 2604 // Eliminate redundant IV users. 2605 // 2606 // Simplification works best when run before other consumers of SCEV. We 2607 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2608 // other expressions involving loop IVs have been evaluated. This helps SCEV 2609 // set no-wrap flags before normalizing sign/zero extension. 2610 Rewriter.disableCanonicalMode(); 2611 Changed |= simplifyAndExtend(L, Rewriter, LI); 2612 2613 // Check to see if this loop has a computable loop-invariant execution count. 2614 // If so, this means that we can compute the final value of any expressions 2615 // that are recurrent in the loop, and substitute the exit values from the 2616 // loop into any instructions outside of the loop that use the final values of 2617 // the current expressions. 2618 // 2619 if (ReplaceExitValue != NeverRepl && 2620 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2621 Changed |= rewriteLoopExitValues(L, Rewriter); 2622 2623 // Eliminate redundant IV cycles. 2624 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2625 2626 // If we have a trip count expression, rewrite the loop's exit condition 2627 // using it. We can currently only handle loops with a single exit. 2628 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2629 needsLFTR(L, DT)) { 2630 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2631 if (IndVar) { 2632 // Check preconditions for proper SCEVExpander operation. SCEV does not 2633 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2634 // pass that uses the SCEVExpander must do it. This does not work well for 2635 // loop passes because SCEVExpander makes assumptions about all loops, 2636 // while LoopPassManager only forces the current loop to be simplified. 2637 // 2638 // FIXME: SCEV expansion has no way to bail out, so the caller must 2639 // explicitly check any assumptions made by SCEV. Brittle. 2640 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2641 if (!AR || AR->getLoop()->getLoopPreheader()) 2642 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2643 Rewriter); 2644 } 2645 } 2646 // Clear the rewriter cache, because values that are in the rewriter's cache 2647 // can be deleted in the loop below, causing the AssertingVH in the cache to 2648 // trigger. 2649 Rewriter.clear(); 2650 2651 // Now that we're done iterating through lists, clean up any instructions 2652 // which are now dead. 2653 while (!DeadInsts.empty()) 2654 if (Instruction *Inst = 2655 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2656 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2657 2658 // The Rewriter may not be used from this point on. 2659 2660 // Loop-invariant instructions in the preheader that aren't used in the 2661 // loop may be sunk below the loop to reduce register pressure. 2662 Changed |= sinkUnusedInvariants(L); 2663 2664 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2665 // trip count and therefore can further simplify exit values in addition to 2666 // rewriteLoopExitValues. 2667 Changed |= rewriteFirstIterationLoopExitValues(L); 2668 2669 // Clean up dead instructions. 2670 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2671 2672 // Check a post-condition. 2673 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2674 "Indvars did not preserve LCSSA!"); 2675 2676 // Verify that LFTR, and any other change have not interfered with SCEV's 2677 // ability to compute trip count. 2678 #ifndef NDEBUG 2679 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2680 SE->forgetLoop(L); 2681 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2682 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2683 SE->getTypeSizeInBits(NewBECount->getType())) 2684 NewBECount = SE->getTruncateOrNoop(NewBECount, 2685 BackedgeTakenCount->getType()); 2686 else 2687 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2688 NewBECount->getType()); 2689 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2690 } 2691 #endif 2692 2693 return Changed; 2694 } 2695 2696 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2697 LoopStandardAnalysisResults &AR, 2698 LPMUpdater &) { 2699 Function *F = L.getHeader()->getParent(); 2700 const DataLayout &DL = F->getParent()->getDataLayout(); 2701 2702 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2703 if (!IVS.run(&L)) 2704 return PreservedAnalyses::all(); 2705 2706 auto PA = getLoopPassPreservedAnalyses(); 2707 PA.preserveSet<CFGAnalyses>(); 2708 return PA; 2709 } 2710 2711 namespace { 2712 2713 struct IndVarSimplifyLegacyPass : public LoopPass { 2714 static char ID; // Pass identification, replacement for typeid 2715 2716 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2717 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2718 } 2719 2720 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2721 if (skipLoop(L)) 2722 return false; 2723 2724 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2725 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2726 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2727 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2728 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2729 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2730 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2731 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2732 2733 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2734 return IVS.run(L); 2735 } 2736 2737 void getAnalysisUsage(AnalysisUsage &AU) const override { 2738 AU.setPreservesCFG(); 2739 getLoopAnalysisUsage(AU); 2740 } 2741 }; 2742 2743 } // end anonymous namespace 2744 2745 char IndVarSimplifyLegacyPass::ID = 0; 2746 2747 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2748 "Induction Variable Simplification", false, false) 2749 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2750 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2751 "Induction Variable Simplification", false, false) 2752 2753 Pass *llvm::createIndVarSimplifyPass() { 2754 return new IndVarSimplifyLegacyPass(); 2755 } 2756