1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "indvars" 58 59 STATISTIC(NumWidened , "Number of indvars widened"); 60 STATISTIC(NumReplaced , "Number of exit values replaced"); 61 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 62 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 63 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 73 cl::desc("Reduce live induction variables.")); 74 75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 76 77 static cl::opt<ReplaceExitVal> ReplaceExitValue( 78 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 79 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 80 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 81 clEnumValN(OnlyCheapRepl, "cheap", 82 "only replace exit value when the cost is cheap"), 83 clEnumValN(AlwaysRepl, "always", 84 "always replace exit value whenever possible"), 85 clEnumValEnd)); 86 87 namespace { 88 struct RewritePhi; 89 90 class IndVarSimplify : public LoopPass { 91 LoopInfo *LI; 92 ScalarEvolution *SE; 93 DominatorTree *DT; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed; 99 public: 100 101 static char ID; // Pass identification, replacement for typeid 102 IndVarSimplify() 103 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 104 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addRequired<LoopInfoWrapperPass>(); 112 AU.addRequired<ScalarEvolutionWrapperPass>(); 113 AU.addRequiredID(LoopSimplifyID); 114 AU.addRequiredID(LCSSAID); 115 AU.addPreserved<GlobalsAAWrapperPass>(); 116 AU.addPreserved<ScalarEvolutionWrapperPass>(); 117 AU.addPreservedID(LoopSimplifyID); 118 AU.addPreservedID(LCSSAID); 119 AU.setPreservesCFG(); 120 } 121 122 private: 123 void releaseMemory() override { 124 DeadInsts.clear(); 125 } 126 127 bool isValidRewrite(Value *FromVal, Value *ToVal); 128 129 void handleFloatingPointIV(Loop *L, PHINode *PH); 130 void rewriteNonIntegerIVs(Loop *L); 131 132 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 133 134 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 135 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 136 137 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 138 PHINode *IndVar, SCEVExpander &Rewriter); 139 140 void sinkUnusedInvariants(Loop *L); 141 142 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 143 Instruction *InsertPt, Type *Ty); 144 }; 145 } 146 147 char IndVarSimplify::ID = 0; 148 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 149 "Induction Variable Simplification", false, false) 150 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 154 INITIALIZE_PASS_DEPENDENCY(LCSSA) 155 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 156 "Induction Variable Simplification", false, false) 157 158 Pass *llvm::createIndVarSimplifyPass() { 159 return new IndVarSimplify(); 160 } 161 162 /// Return true if the SCEV expansion generated by the rewriter can replace the 163 /// original value. SCEV guarantees that it produces the same value, but the way 164 /// it is produced may be illegal IR. Ideally, this function will only be 165 /// called for verification. 166 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 167 // If an SCEV expression subsumed multiple pointers, its expansion could 168 // reassociate the GEP changing the base pointer. This is illegal because the 169 // final address produced by a GEP chain must be inbounds relative to its 170 // underlying object. Otherwise basic alias analysis, among other things, 171 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 172 // producing an expression involving multiple pointers. Until then, we must 173 // bail out here. 174 // 175 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 176 // because it understands lcssa phis while SCEV does not. 177 Value *FromPtr = FromVal; 178 Value *ToPtr = ToVal; 179 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 180 FromPtr = GEP->getPointerOperand(); 181 } 182 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 183 ToPtr = GEP->getPointerOperand(); 184 } 185 if (FromPtr != FromVal || ToPtr != ToVal) { 186 // Quickly check the common case 187 if (FromPtr == ToPtr) 188 return true; 189 190 // SCEV may have rewritten an expression that produces the GEP's pointer 191 // operand. That's ok as long as the pointer operand has the same base 192 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 193 // base of a recurrence. This handles the case in which SCEV expansion 194 // converts a pointer type recurrence into a nonrecurrent pointer base 195 // indexed by an integer recurrence. 196 197 // If the GEP base pointer is a vector of pointers, abort. 198 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 199 return false; 200 201 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 202 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 203 if (FromBase == ToBase) 204 return true; 205 206 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 207 << *FromBase << " != " << *ToBase << "\n"); 208 209 return false; 210 } 211 return true; 212 } 213 214 /// Determine the insertion point for this user. By default, insert immediately 215 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 216 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 217 /// common dominator for the incoming blocks. 218 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 219 DominatorTree *DT, LoopInfo *LI) { 220 PHINode *PHI = dyn_cast<PHINode>(User); 221 if (!PHI) 222 return User; 223 224 Instruction *InsertPt = nullptr; 225 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 226 if (PHI->getIncomingValue(i) != Def) 227 continue; 228 229 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 230 if (!InsertPt) { 231 InsertPt = InsertBB->getTerminator(); 232 continue; 233 } 234 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 235 InsertPt = InsertBB->getTerminator(); 236 } 237 assert(InsertPt && "Missing phi operand"); 238 239 auto *DefI = dyn_cast<Instruction>(Def); 240 if (!DefI) 241 return InsertPt; 242 243 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 244 245 auto *L = LI->getLoopFor(DefI->getParent()); 246 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 247 248 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 249 if (LI->getLoopFor(DTN->getBlock()) == L) 250 return DTN->getBlock()->getTerminator(); 251 252 llvm_unreachable("DefI dominates InsertPt!"); 253 } 254 255 //===----------------------------------------------------------------------===// 256 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 257 //===----------------------------------------------------------------------===// 258 259 /// Convert APF to an integer, if possible. 260 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 261 bool isExact = false; 262 // See if we can convert this to an int64_t 263 uint64_t UIntVal; 264 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 265 &isExact) != APFloat::opOK || !isExact) 266 return false; 267 IntVal = UIntVal; 268 return true; 269 } 270 271 /// If the loop has floating induction variable then insert corresponding 272 /// integer induction variable if possible. 273 /// For example, 274 /// for(double i = 0; i < 10000; ++i) 275 /// bar(i) 276 /// is converted into 277 /// for(int i = 0; i < 10000; ++i) 278 /// bar((double)i); 279 /// 280 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 281 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 282 unsigned BackEdge = IncomingEdge^1; 283 284 // Check incoming value. 285 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 286 287 int64_t InitValue; 288 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 289 return; 290 291 // Check IV increment. Reject this PN if increment operation is not 292 // an add or increment value can not be represented by an integer. 293 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 294 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 295 296 // If this is not an add of the PHI with a constantfp, or if the constant fp 297 // is not an integer, bail out. 298 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 299 int64_t IncValue; 300 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 301 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 302 return; 303 304 // Check Incr uses. One user is PN and the other user is an exit condition 305 // used by the conditional terminator. 306 Value::user_iterator IncrUse = Incr->user_begin(); 307 Instruction *U1 = cast<Instruction>(*IncrUse++); 308 if (IncrUse == Incr->user_end()) return; 309 Instruction *U2 = cast<Instruction>(*IncrUse++); 310 if (IncrUse != Incr->user_end()) return; 311 312 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 313 // only used by a branch, we can't transform it. 314 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 315 if (!Compare) 316 Compare = dyn_cast<FCmpInst>(U2); 317 if (!Compare || !Compare->hasOneUse() || 318 !isa<BranchInst>(Compare->user_back())) 319 return; 320 321 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 322 323 // We need to verify that the branch actually controls the iteration count 324 // of the loop. If not, the new IV can overflow and no one will notice. 325 // The branch block must be in the loop and one of the successors must be out 326 // of the loop. 327 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 328 if (!L->contains(TheBr->getParent()) || 329 (L->contains(TheBr->getSuccessor(0)) && 330 L->contains(TheBr->getSuccessor(1)))) 331 return; 332 333 334 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 335 // transform it. 336 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 337 int64_t ExitValue; 338 if (ExitValueVal == nullptr || 339 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 340 return; 341 342 // Find new predicate for integer comparison. 343 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 344 switch (Compare->getPredicate()) { 345 default: return; // Unknown comparison. 346 case CmpInst::FCMP_OEQ: 347 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 348 case CmpInst::FCMP_ONE: 349 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 350 case CmpInst::FCMP_OGT: 351 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 352 case CmpInst::FCMP_OGE: 353 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 354 case CmpInst::FCMP_OLT: 355 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 356 case CmpInst::FCMP_OLE: 357 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 358 } 359 360 // We convert the floating point induction variable to a signed i32 value if 361 // we can. This is only safe if the comparison will not overflow in a way 362 // that won't be trapped by the integer equivalent operations. Check for this 363 // now. 364 // TODO: We could use i64 if it is native and the range requires it. 365 366 // The start/stride/exit values must all fit in signed i32. 367 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 368 return; 369 370 // If not actually striding (add x, 0.0), avoid touching the code. 371 if (IncValue == 0) 372 return; 373 374 // Positive and negative strides have different safety conditions. 375 if (IncValue > 0) { 376 // If we have a positive stride, we require the init to be less than the 377 // exit value. 378 if (InitValue >= ExitValue) 379 return; 380 381 uint32_t Range = uint32_t(ExitValue-InitValue); 382 // Check for infinite loop, either: 383 // while (i <= Exit) or until (i > Exit) 384 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 385 if (++Range == 0) return; // Range overflows. 386 } 387 388 unsigned Leftover = Range % uint32_t(IncValue); 389 390 // If this is an equality comparison, we require that the strided value 391 // exactly land on the exit value, otherwise the IV condition will wrap 392 // around and do things the fp IV wouldn't. 393 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 394 Leftover != 0) 395 return; 396 397 // If the stride would wrap around the i32 before exiting, we can't 398 // transform the IV. 399 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 400 return; 401 402 } else { 403 // If we have a negative stride, we require the init to be greater than the 404 // exit value. 405 if (InitValue <= ExitValue) 406 return; 407 408 uint32_t Range = uint32_t(InitValue-ExitValue); 409 // Check for infinite loop, either: 410 // while (i >= Exit) or until (i < Exit) 411 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 412 if (++Range == 0) return; // Range overflows. 413 } 414 415 unsigned Leftover = Range % uint32_t(-IncValue); 416 417 // If this is an equality comparison, we require that the strided value 418 // exactly land on the exit value, otherwise the IV condition will wrap 419 // around and do things the fp IV wouldn't. 420 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 421 Leftover != 0) 422 return; 423 424 // If the stride would wrap around the i32 before exiting, we can't 425 // transform the IV. 426 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 427 return; 428 } 429 430 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 431 432 // Insert new integer induction variable. 433 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 434 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 435 PN->getIncomingBlock(IncomingEdge)); 436 437 Value *NewAdd = 438 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 439 Incr->getName()+".int", Incr); 440 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 441 442 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 443 ConstantInt::get(Int32Ty, ExitValue), 444 Compare->getName()); 445 446 // In the following deletions, PN may become dead and may be deleted. 447 // Use a WeakVH to observe whether this happens. 448 WeakVH WeakPH = PN; 449 450 // Delete the old floating point exit comparison. The branch starts using the 451 // new comparison. 452 NewCompare->takeName(Compare); 453 Compare->replaceAllUsesWith(NewCompare); 454 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 455 456 // Delete the old floating point increment. 457 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 458 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 459 460 // If the FP induction variable still has uses, this is because something else 461 // in the loop uses its value. In order to canonicalize the induction 462 // variable, we chose to eliminate the IV and rewrite it in terms of an 463 // int->fp cast. 464 // 465 // We give preference to sitofp over uitofp because it is faster on most 466 // platforms. 467 if (WeakPH) { 468 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 469 &*PN->getParent()->getFirstInsertionPt()); 470 PN->replaceAllUsesWith(Conv); 471 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 472 } 473 Changed = true; 474 } 475 476 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 477 // First step. Check to see if there are any floating-point recurrences. 478 // If there are, change them into integer recurrences, permitting analysis by 479 // the SCEV routines. 480 // 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakVH, 8> PHIs; 484 for (BasicBlock::iterator I = Header->begin(); 485 PHINode *PN = dyn_cast<PHINode>(I); ++I) 486 PHIs.push_back(PN); 487 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 } 498 499 namespace { 500 // Collect information about PHI nodes which can be transformed in 501 // rewriteLoopExitValues. 502 struct RewritePhi { 503 PHINode *PN; 504 unsigned Ith; // Ith incoming value. 505 Value *Val; // Exit value after expansion. 506 bool HighCost; // High Cost when expansion. 507 508 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 509 : PN(P), Ith(I), Val(V), HighCost(H) {} 510 }; 511 } 512 513 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 514 Loop *L, Instruction *InsertPt, 515 Type *ResultTy) { 516 // Before expanding S into an expensive LLVM expression, see if we can use an 517 // already existing value as the expansion for S. 518 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 519 if (ExistingValue->getType() == ResultTy) 520 return ExistingValue; 521 522 // We didn't find anything, fall back to using SCEVExpander. 523 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 524 } 525 526 //===----------------------------------------------------------------------===// 527 // rewriteLoopExitValues - Optimize IV users outside the loop. 528 // As a side effect, reduces the amount of IV processing within the loop. 529 //===----------------------------------------------------------------------===// 530 531 /// Check to see if this loop has a computable loop-invariant execution count. 532 /// If so, this means that we can compute the final value of any expressions 533 /// that are recurrent in the loop, and substitute the exit values from the loop 534 /// into any instructions outside of the loop that use the final values of the 535 /// current expressions. 536 /// 537 /// This is mostly redundant with the regular IndVarSimplify activities that 538 /// happen later, except that it's more powerful in some cases, because it's 539 /// able to brute-force evaluate arbitrary instructions as long as they have 540 /// constant operands at the beginning of the loop. 541 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 542 // Check a pre-condition. 543 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 544 545 SmallVector<BasicBlock*, 8> ExitBlocks; 546 L->getUniqueExitBlocks(ExitBlocks); 547 548 SmallVector<RewritePhi, 8> RewritePhiSet; 549 // Find all values that are computed inside the loop, but used outside of it. 550 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 551 // the exit blocks of the loop to find them. 552 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 553 BasicBlock *ExitBB = ExitBlocks[i]; 554 555 // If there are no PHI nodes in this exit block, then no values defined 556 // inside the loop are used on this path, skip it. 557 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 558 if (!PN) continue; 559 560 unsigned NumPreds = PN->getNumIncomingValues(); 561 562 // Iterate over all of the PHI nodes. 563 BasicBlock::iterator BBI = ExitBB->begin(); 564 while ((PN = dyn_cast<PHINode>(BBI++))) { 565 if (PN->use_empty()) 566 continue; // dead use, don't replace it 567 568 // SCEV only supports integer expressions for now. 569 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 570 continue; 571 572 // It's necessary to tell ScalarEvolution about this explicitly so that 573 // it can walk the def-use list and forget all SCEVs, as it may not be 574 // watching the PHI itself. Once the new exit value is in place, there 575 // may not be a def-use connection between the loop and every instruction 576 // which got a SCEVAddRecExpr for that loop. 577 SE->forgetValue(PN); 578 579 // Iterate over all of the values in all the PHI nodes. 580 for (unsigned i = 0; i != NumPreds; ++i) { 581 // If the value being merged in is not integer or is not defined 582 // in the loop, skip it. 583 Value *InVal = PN->getIncomingValue(i); 584 if (!isa<Instruction>(InVal)) 585 continue; 586 587 // If this pred is for a subloop, not L itself, skip it. 588 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 589 continue; // The Block is in a subloop, skip it. 590 591 // Check that InVal is defined in the loop. 592 Instruction *Inst = cast<Instruction>(InVal); 593 if (!L->contains(Inst)) 594 continue; 595 596 // Okay, this instruction has a user outside of the current loop 597 // and varies predictably *inside* the loop. Evaluate the value it 598 // contains when the loop exits, if possible. 599 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 600 if (!SE->isLoopInvariant(ExitValue, L) || 601 !isSafeToExpand(ExitValue, *SE)) 602 continue; 603 604 // Computing the value outside of the loop brings no benefit if : 605 // - it is definitely used inside the loop in a way which can not be 606 // optimized away. 607 // - no use outside of the loop can take advantage of hoisting the 608 // computation out of the loop 609 if (ExitValue->getSCEVType()>=scMulExpr) { 610 unsigned NumHardInternalUses = 0; 611 unsigned NumSoftExternalUses = 0; 612 unsigned NumUses = 0; 613 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 614 IB != IE && NumUses <= 6; ++IB) { 615 Instruction *UseInstr = cast<Instruction>(*IB); 616 unsigned Opc = UseInstr->getOpcode(); 617 NumUses++; 618 if (L->contains(UseInstr)) { 619 if (Opc == Instruction::Call || Opc == Instruction::Ret) 620 NumHardInternalUses++; 621 } else { 622 if (Opc == Instruction::PHI) { 623 // Do not count the Phi as a use. LCSSA may have inserted 624 // plenty of trivial ones. 625 NumUses--; 626 for (auto PB = UseInstr->user_begin(), 627 PE = UseInstr->user_end(); 628 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 629 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 630 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 631 NumSoftExternalUses++; 632 } 633 continue; 634 } 635 if (Opc != Instruction::Call && Opc != Instruction::Ret) 636 NumSoftExternalUses++; 637 } 638 } 639 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 640 continue; 641 } 642 643 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 644 Value *ExitVal = 645 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 646 647 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 648 << " LoopVal = " << *Inst << "\n"); 649 650 if (!isValidRewrite(Inst, ExitVal)) { 651 DeadInsts.push_back(ExitVal); 652 continue; 653 } 654 655 // Collect all the candidate PHINodes to be rewritten. 656 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 657 } 658 } 659 } 660 661 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 662 663 // Transformation. 664 for (const RewritePhi &Phi : RewritePhiSet) { 665 PHINode *PN = Phi.PN; 666 Value *ExitVal = Phi.Val; 667 668 // Only do the rewrite when the ExitValue can be expanded cheaply. 669 // If LoopCanBeDel is true, rewrite exit value aggressively. 670 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 671 DeadInsts.push_back(ExitVal); 672 continue; 673 } 674 675 Changed = true; 676 ++NumReplaced; 677 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 678 PN->setIncomingValue(Phi.Ith, ExitVal); 679 680 // If this instruction is dead now, delete it. Don't do it now to avoid 681 // invalidating iterators. 682 if (isInstructionTriviallyDead(Inst, TLI)) 683 DeadInsts.push_back(Inst); 684 685 // Replace PN with ExitVal if that is legal and does not break LCSSA. 686 if (PN->getNumIncomingValues() == 1 && 687 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 688 PN->replaceAllUsesWith(ExitVal); 689 PN->eraseFromParent(); 690 } 691 } 692 693 // The insertion point instruction may have been deleted; clear it out 694 // so that the rewriter doesn't trip over it later. 695 Rewriter.clearInsertPoint(); 696 } 697 698 /// Check whether it is possible to delete the loop after rewriting exit 699 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 700 /// aggressively. 701 bool IndVarSimplify::canLoopBeDeleted( 702 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 703 704 BasicBlock *Preheader = L->getLoopPreheader(); 705 // If there is no preheader, the loop will not be deleted. 706 if (!Preheader) 707 return false; 708 709 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 710 // We obviate multiple ExitingBlocks case for simplicity. 711 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 712 // after exit value rewriting, we can enhance the logic here. 713 SmallVector<BasicBlock *, 4> ExitingBlocks; 714 L->getExitingBlocks(ExitingBlocks); 715 SmallVector<BasicBlock *, 8> ExitBlocks; 716 L->getUniqueExitBlocks(ExitBlocks); 717 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 718 return false; 719 720 BasicBlock *ExitBlock = ExitBlocks[0]; 721 BasicBlock::iterator BI = ExitBlock->begin(); 722 while (PHINode *P = dyn_cast<PHINode>(BI)) { 723 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 724 725 // If the Incoming value of P is found in RewritePhiSet, we know it 726 // could be rewritten to use a loop invariant value in transformation 727 // phase later. Skip it in the loop invariant check below. 728 bool found = false; 729 for (const RewritePhi &Phi : RewritePhiSet) { 730 unsigned i = Phi.Ith; 731 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 732 found = true; 733 break; 734 } 735 } 736 737 Instruction *I; 738 if (!found && (I = dyn_cast<Instruction>(Incoming))) 739 if (!L->hasLoopInvariantOperands(I)) 740 return false; 741 742 ++BI; 743 } 744 745 for (auto *BB : L->blocks()) 746 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 747 return false; 748 749 return true; 750 } 751 752 //===----------------------------------------------------------------------===// 753 // IV Widening - Extend the width of an IV to cover its widest uses. 754 //===----------------------------------------------------------------------===// 755 756 namespace { 757 // Collect information about induction variables that are used by sign/zero 758 // extend operations. This information is recorded by CollectExtend and provides 759 // the input to WidenIV. 760 struct WideIVInfo { 761 PHINode *NarrowIV = nullptr; 762 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 763 bool IsSigned = false; // Was a sext user seen before a zext? 764 }; 765 } 766 767 /// Update information about the induction variable that is extended by this 768 /// sign or zero extend operation. This is used to determine the final width of 769 /// the IV before actually widening it. 770 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 771 const TargetTransformInfo *TTI) { 772 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 773 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 774 return; 775 776 Type *Ty = Cast->getType(); 777 uint64_t Width = SE->getTypeSizeInBits(Ty); 778 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 779 return; 780 781 // Cast is either an sext or zext up to this point. 782 // We should not widen an indvar if arithmetics on the wider indvar are more 783 // expensive than those on the narrower indvar. We check only the cost of ADD 784 // because at least an ADD is required to increment the induction variable. We 785 // could compute more comprehensively the cost of all instructions on the 786 // induction variable when necessary. 787 if (TTI && 788 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 789 TTI->getArithmeticInstrCost(Instruction::Add, 790 Cast->getOperand(0)->getType())) { 791 return; 792 } 793 794 if (!WI.WidestNativeType) { 795 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 796 WI.IsSigned = IsSigned; 797 return; 798 } 799 800 // We extend the IV to satisfy the sign of its first user, arbitrarily. 801 if (WI.IsSigned != IsSigned) 802 return; 803 804 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 805 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 806 } 807 808 namespace { 809 810 /// Record a link in the Narrow IV def-use chain along with the WideIV that 811 /// computes the same value as the Narrow IV def. This avoids caching Use* 812 /// pointers. 813 struct NarrowIVDefUse { 814 Instruction *NarrowDef = nullptr; 815 Instruction *NarrowUse = nullptr; 816 Instruction *WideDef = nullptr; 817 818 // True if the narrow def is never negative. Tracking this information lets 819 // us use a sign extension instead of a zero extension or vice versa, when 820 // profitable and legal. 821 bool NeverNegative = false; 822 823 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 824 bool NeverNegative) 825 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 826 NeverNegative(NeverNegative) {} 827 }; 828 829 /// The goal of this transform is to remove sign and zero extends without 830 /// creating any new induction variables. To do this, it creates a new phi of 831 /// the wider type and redirects all users, either removing extends or inserting 832 /// truncs whenever we stop propagating the type. 833 /// 834 class WidenIV { 835 // Parameters 836 PHINode *OrigPhi; 837 Type *WideType; 838 bool IsSigned; 839 840 // Context 841 LoopInfo *LI; 842 Loop *L; 843 ScalarEvolution *SE; 844 DominatorTree *DT; 845 846 // Result 847 PHINode *WidePhi; 848 Instruction *WideInc; 849 const SCEV *WideIncExpr; 850 SmallVectorImpl<WeakVH> &DeadInsts; 851 852 SmallPtrSet<Instruction*,16> Widened; 853 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 854 855 public: 856 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 857 ScalarEvolution *SEv, DominatorTree *DTree, 858 SmallVectorImpl<WeakVH> &DI) : 859 OrigPhi(WI.NarrowIV), 860 WideType(WI.WidestNativeType), 861 IsSigned(WI.IsSigned), 862 LI(LInfo), 863 L(LI->getLoopFor(OrigPhi->getParent())), 864 SE(SEv), 865 DT(DTree), 866 WidePhi(nullptr), 867 WideInc(nullptr), 868 WideIncExpr(nullptr), 869 DeadInsts(DI) { 870 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 871 } 872 873 PHINode *createWideIV(SCEVExpander &Rewriter); 874 875 protected: 876 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 877 Instruction *Use); 878 879 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 880 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 881 const SCEVAddRecExpr *WideAR); 882 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 883 884 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 885 886 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 887 888 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 889 unsigned OpCode) const; 890 891 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 892 893 bool widenLoopCompare(NarrowIVDefUse DU); 894 895 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 896 }; 897 } // anonymous namespace 898 899 /// Perform a quick domtree based check for loop invariance assuming that V is 900 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 901 /// purpose. 902 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 903 Instruction *Inst = dyn_cast<Instruction>(V); 904 if (!Inst) 905 return true; 906 907 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 908 } 909 910 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 911 bool IsSigned, Instruction *Use) { 912 // Set the debug location and conservative insertion point. 913 IRBuilder<> Builder(Use); 914 // Hoist the insertion point into loop preheaders as far as possible. 915 for (const Loop *L = LI->getLoopFor(Use->getParent()); 916 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 917 L = L->getParentLoop()) 918 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 919 920 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 921 Builder.CreateZExt(NarrowOper, WideType); 922 } 923 924 /// Instantiate a wide operation to replace a narrow operation. This only needs 925 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 926 /// 0 for any operation we decide not to clone. 927 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 928 const SCEVAddRecExpr *WideAR) { 929 unsigned Opcode = DU.NarrowUse->getOpcode(); 930 switch (Opcode) { 931 default: 932 return nullptr; 933 case Instruction::Add: 934 case Instruction::Mul: 935 case Instruction::UDiv: 936 case Instruction::Sub: 937 return cloneArithmeticIVUser(DU, WideAR); 938 939 case Instruction::And: 940 case Instruction::Or: 941 case Instruction::Xor: 942 case Instruction::Shl: 943 case Instruction::LShr: 944 case Instruction::AShr: 945 return cloneBitwiseIVUser(DU); 946 } 947 } 948 949 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 950 Instruction *NarrowUse = DU.NarrowUse; 951 Instruction *NarrowDef = DU.NarrowDef; 952 Instruction *WideDef = DU.WideDef; 953 954 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 955 956 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 957 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 958 // invariant and will be folded or hoisted. If it actually comes from a 959 // widened IV, it should be removed during a future call to widenIVUse. 960 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 961 ? WideDef 962 : createExtendInst(NarrowUse->getOperand(0), WideType, 963 IsSigned, NarrowUse); 964 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 965 ? WideDef 966 : createExtendInst(NarrowUse->getOperand(1), WideType, 967 IsSigned, NarrowUse); 968 969 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 970 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 971 NarrowBO->getName()); 972 IRBuilder<> Builder(NarrowUse); 973 Builder.Insert(WideBO); 974 WideBO->copyIRFlags(NarrowBO); 975 return WideBO; 976 } 977 978 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 979 const SCEVAddRecExpr *WideAR) { 980 Instruction *NarrowUse = DU.NarrowUse; 981 Instruction *NarrowDef = DU.NarrowDef; 982 Instruction *WideDef = DU.WideDef; 983 984 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 985 986 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 987 988 // We're trying to find X such that 989 // 990 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 991 // 992 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 993 // and check using SCEV if any of them are correct. 994 995 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 996 // correct solution to X. 997 auto GuessNonIVOperand = [&](bool SignExt) { 998 const SCEV *WideLHS; 999 const SCEV *WideRHS; 1000 1001 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1002 if (SignExt) 1003 return SE->getSignExtendExpr(S, Ty); 1004 return SE->getZeroExtendExpr(S, Ty); 1005 }; 1006 1007 if (IVOpIdx == 0) { 1008 WideLHS = SE->getSCEV(WideDef); 1009 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1010 WideRHS = GetExtend(NarrowRHS, WideType); 1011 } else { 1012 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1013 WideLHS = GetExtend(NarrowLHS, WideType); 1014 WideRHS = SE->getSCEV(WideDef); 1015 } 1016 1017 // WideUse is "WideDef `op.wide` X" as described in the comment. 1018 const SCEV *WideUse = nullptr; 1019 1020 switch (NarrowUse->getOpcode()) { 1021 default: 1022 llvm_unreachable("No other possibility!"); 1023 1024 case Instruction::Add: 1025 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1026 break; 1027 1028 case Instruction::Mul: 1029 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1030 break; 1031 1032 case Instruction::UDiv: 1033 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1034 break; 1035 1036 case Instruction::Sub: 1037 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1038 break; 1039 } 1040 1041 return WideUse == WideAR; 1042 }; 1043 1044 bool SignExtend = IsSigned; 1045 if (!GuessNonIVOperand(SignExtend)) { 1046 SignExtend = !SignExtend; 1047 if (!GuessNonIVOperand(SignExtend)) 1048 return nullptr; 1049 } 1050 1051 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1052 ? WideDef 1053 : createExtendInst(NarrowUse->getOperand(0), WideType, 1054 SignExtend, NarrowUse); 1055 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1056 ? WideDef 1057 : createExtendInst(NarrowUse->getOperand(1), WideType, 1058 SignExtend, NarrowUse); 1059 1060 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1061 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1062 NarrowBO->getName()); 1063 1064 IRBuilder<> Builder(NarrowUse); 1065 Builder.Insert(WideBO); 1066 WideBO->copyIRFlags(NarrowBO); 1067 return WideBO; 1068 } 1069 1070 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1071 unsigned OpCode) const { 1072 if (OpCode == Instruction::Add) 1073 return SE->getAddExpr(LHS, RHS); 1074 if (OpCode == Instruction::Sub) 1075 return SE->getMinusSCEV(LHS, RHS); 1076 if (OpCode == Instruction::Mul) 1077 return SE->getMulExpr(LHS, RHS); 1078 1079 llvm_unreachable("Unsupported opcode."); 1080 } 1081 1082 /// No-wrap operations can transfer sign extension of their result to their 1083 /// operands. Generate the SCEV value for the widened operation without 1084 /// actually modifying the IR yet. If the expression after extending the 1085 /// operands is an AddRec for this loop, return it. 1086 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1087 1088 // Handle the common case of add<nsw/nuw> 1089 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1090 // Only Add/Sub/Mul instructions supported yet. 1091 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1092 OpCode != Instruction::Mul) 1093 return nullptr; 1094 1095 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1096 // if extending the other will lead to a recurrence. 1097 const unsigned ExtendOperIdx = 1098 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1099 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1100 1101 const SCEV *ExtendOperExpr = nullptr; 1102 const OverflowingBinaryOperator *OBO = 1103 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1104 if (IsSigned && OBO->hasNoSignedWrap()) 1105 ExtendOperExpr = SE->getSignExtendExpr( 1106 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1107 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1108 ExtendOperExpr = SE->getZeroExtendExpr( 1109 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1110 else 1111 return nullptr; 1112 1113 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1114 // flags. This instruction may be guarded by control flow that the no-wrap 1115 // behavior depends on. Non-control-equivalent instructions can be mapped to 1116 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1117 // semantics to those operations. 1118 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1119 const SCEV *rhs = ExtendOperExpr; 1120 1121 // Let's swap operands to the initial order for the case of non-commutative 1122 // operations, like SUB. See PR21014. 1123 if (ExtendOperIdx == 0) 1124 std::swap(lhs, rhs); 1125 const SCEVAddRecExpr *AddRec = 1126 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1127 1128 if (!AddRec || AddRec->getLoop() != L) 1129 return nullptr; 1130 return AddRec; 1131 } 1132 1133 /// Is this instruction potentially interesting for further simplification after 1134 /// widening it's type? In other words, can the extend be safely hoisted out of 1135 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1136 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1137 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1138 if (!SE->isSCEVable(NarrowUse->getType())) 1139 return nullptr; 1140 1141 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1142 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1143 >= SE->getTypeSizeInBits(WideType)) { 1144 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1145 // index. So don't follow this use. 1146 return nullptr; 1147 } 1148 1149 const SCEV *WideExpr = IsSigned ? 1150 SE->getSignExtendExpr(NarrowExpr, WideType) : 1151 SE->getZeroExtendExpr(NarrowExpr, WideType); 1152 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1153 if (!AddRec || AddRec->getLoop() != L) 1154 return nullptr; 1155 return AddRec; 1156 } 1157 1158 /// This IV user cannot be widen. Replace this use of the original narrow IV 1159 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1160 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1161 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1162 << " for user " << *DU.NarrowUse << "\n"); 1163 IRBuilder<> Builder( 1164 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1165 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1166 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1167 } 1168 1169 /// If the narrow use is a compare instruction, then widen the compare 1170 // (and possibly the other operand). The extend operation is hoisted into the 1171 // loop preheader as far as possible. 1172 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1173 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1174 if (!Cmp) 1175 return false; 1176 1177 // We can legally widen the comparison in the following two cases: 1178 // 1179 // - The signedness of the IV extension and comparison match 1180 // 1181 // - The narrow IV is always positive (and thus its sign extension is equal 1182 // to its zero extension). For instance, let's say we're zero extending 1183 // %narrow for the following use 1184 // 1185 // icmp slt i32 %narrow, %val ... (A) 1186 // 1187 // and %narrow is always positive. Then 1188 // 1189 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1190 // == icmp slt i32 zext(%narrow), sext(%val) 1191 1192 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1193 return false; 1194 1195 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1196 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1197 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1198 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1199 1200 // Widen the compare instruction. 1201 IRBuilder<> Builder( 1202 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1203 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1204 1205 // Widen the other operand of the compare, if necessary. 1206 if (CastWidth < IVWidth) { 1207 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1208 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1209 } 1210 return true; 1211 } 1212 1213 /// Determine whether an individual user of the narrow IV can be widened. If so, 1214 /// return the wide clone of the user. 1215 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1216 1217 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1218 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1219 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1220 // For LCSSA phis, sink the truncate outside the loop. 1221 // After SimplifyCFG most loop exit targets have a single predecessor. 1222 // Otherwise fall back to a truncate within the loop. 1223 if (UsePhi->getNumOperands() != 1) 1224 truncateIVUse(DU, DT, LI); 1225 else { 1226 PHINode *WidePhi = 1227 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1228 UsePhi); 1229 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1230 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1231 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1232 UsePhi->replaceAllUsesWith(Trunc); 1233 DeadInsts.emplace_back(UsePhi); 1234 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1235 << " to " << *WidePhi << "\n"); 1236 } 1237 return nullptr; 1238 } 1239 } 1240 // Our raison d'etre! Eliminate sign and zero extension. 1241 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1242 Value *NewDef = DU.WideDef; 1243 if (DU.NarrowUse->getType() != WideType) { 1244 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1245 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1246 if (CastWidth < IVWidth) { 1247 // The cast isn't as wide as the IV, so insert a Trunc. 1248 IRBuilder<> Builder(DU.NarrowUse); 1249 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1250 } 1251 else { 1252 // A wider extend was hidden behind a narrower one. This may induce 1253 // another round of IV widening in which the intermediate IV becomes 1254 // dead. It should be very rare. 1255 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1256 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1257 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1258 NewDef = DU.NarrowUse; 1259 } 1260 } 1261 if (NewDef != DU.NarrowUse) { 1262 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1263 << " replaced by " << *DU.WideDef << "\n"); 1264 ++NumElimExt; 1265 DU.NarrowUse->replaceAllUsesWith(NewDef); 1266 DeadInsts.emplace_back(DU.NarrowUse); 1267 } 1268 // Now that the extend is gone, we want to expose it's uses for potential 1269 // further simplification. We don't need to directly inform SimplifyIVUsers 1270 // of the new users, because their parent IV will be processed later as a 1271 // new loop phi. If we preserved IVUsers analysis, we would also want to 1272 // push the uses of WideDef here. 1273 1274 // No further widening is needed. The deceased [sz]ext had done it for us. 1275 return nullptr; 1276 } 1277 1278 // Does this user itself evaluate to a recurrence after widening? 1279 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1280 if (!WideAddRec) 1281 WideAddRec = getExtendedOperandRecurrence(DU); 1282 1283 if (!WideAddRec) { 1284 // If use is a loop condition, try to promote the condition instead of 1285 // truncating the IV first. 1286 if (widenLoopCompare(DU)) 1287 return nullptr; 1288 1289 // This user does not evaluate to a recurence after widening, so don't 1290 // follow it. Instead insert a Trunc to kill off the original use, 1291 // eventually isolating the original narrow IV so it can be removed. 1292 truncateIVUse(DU, DT, LI); 1293 return nullptr; 1294 } 1295 // Assume block terminators cannot evaluate to a recurrence. We can't to 1296 // insert a Trunc after a terminator if there happens to be a critical edge. 1297 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1298 "SCEV is not expected to evaluate a block terminator"); 1299 1300 // Reuse the IV increment that SCEVExpander created as long as it dominates 1301 // NarrowUse. 1302 Instruction *WideUse = nullptr; 1303 if (WideAddRec == WideIncExpr 1304 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1305 WideUse = WideInc; 1306 else { 1307 WideUse = cloneIVUser(DU, WideAddRec); 1308 if (!WideUse) 1309 return nullptr; 1310 } 1311 // Evaluation of WideAddRec ensured that the narrow expression could be 1312 // extended outside the loop without overflow. This suggests that the wide use 1313 // evaluates to the same expression as the extended narrow use, but doesn't 1314 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1315 // where it fails, we simply throw away the newly created wide use. 1316 if (WideAddRec != SE->getSCEV(WideUse)) { 1317 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1318 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1319 DeadInsts.emplace_back(WideUse); 1320 return nullptr; 1321 } 1322 1323 // Returning WideUse pushes it on the worklist. 1324 return WideUse; 1325 } 1326 1327 /// Add eligible users of NarrowDef to NarrowIVUsers. 1328 /// 1329 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1330 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1331 bool NeverNegative = 1332 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1333 SE->getConstant(NarrowSCEV->getType(), 0)); 1334 for (User *U : NarrowDef->users()) { 1335 Instruction *NarrowUser = cast<Instruction>(U); 1336 1337 // Handle data flow merges and bizarre phi cycles. 1338 if (!Widened.insert(NarrowUser).second) 1339 continue; 1340 1341 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1342 } 1343 } 1344 1345 /// Process a single induction variable. First use the SCEVExpander to create a 1346 /// wide induction variable that evaluates to the same recurrence as the 1347 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1348 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1349 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1350 /// 1351 /// It would be simpler to delete uses as they are processed, but we must avoid 1352 /// invalidating SCEV expressions. 1353 /// 1354 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1355 // Is this phi an induction variable? 1356 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1357 if (!AddRec) 1358 return nullptr; 1359 1360 // Widen the induction variable expression. 1361 const SCEV *WideIVExpr = IsSigned ? 1362 SE->getSignExtendExpr(AddRec, WideType) : 1363 SE->getZeroExtendExpr(AddRec, WideType); 1364 1365 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1366 "Expect the new IV expression to preserve its type"); 1367 1368 // Can the IV be extended outside the loop without overflow? 1369 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1370 if (!AddRec || AddRec->getLoop() != L) 1371 return nullptr; 1372 1373 // An AddRec must have loop-invariant operands. Since this AddRec is 1374 // materialized by a loop header phi, the expression cannot have any post-loop 1375 // operands, so they must dominate the loop header. 1376 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1377 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1378 && "Loop header phi recurrence inputs do not dominate the loop"); 1379 1380 // The rewriter provides a value for the desired IV expression. This may 1381 // either find an existing phi or materialize a new one. Either way, we 1382 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1383 // of the phi-SCC dominates the loop entry. 1384 Instruction *InsertPt = &L->getHeader()->front(); 1385 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1386 1387 // Remembering the WideIV increment generated by SCEVExpander allows 1388 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1389 // employ a general reuse mechanism because the call above is the only call to 1390 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1391 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1392 WideInc = 1393 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1394 WideIncExpr = SE->getSCEV(WideInc); 1395 } 1396 1397 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1398 ++NumWidened; 1399 1400 // Traverse the def-use chain using a worklist starting at the original IV. 1401 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1402 1403 Widened.insert(OrigPhi); 1404 pushNarrowIVUsers(OrigPhi, WidePhi); 1405 1406 while (!NarrowIVUsers.empty()) { 1407 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1408 1409 // Process a def-use edge. This may replace the use, so don't hold a 1410 // use_iterator across it. 1411 Instruction *WideUse = widenIVUse(DU, Rewriter); 1412 1413 // Follow all def-use edges from the previous narrow use. 1414 if (WideUse) 1415 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1416 1417 // widenIVUse may have removed the def-use edge. 1418 if (DU.NarrowDef->use_empty()) 1419 DeadInsts.emplace_back(DU.NarrowDef); 1420 } 1421 return WidePhi; 1422 } 1423 1424 //===----------------------------------------------------------------------===// 1425 // Live IV Reduction - Minimize IVs live across the loop. 1426 //===----------------------------------------------------------------------===// 1427 1428 1429 //===----------------------------------------------------------------------===// 1430 // Simplification of IV users based on SCEV evaluation. 1431 //===----------------------------------------------------------------------===// 1432 1433 namespace { 1434 class IndVarSimplifyVisitor : public IVVisitor { 1435 ScalarEvolution *SE; 1436 const TargetTransformInfo *TTI; 1437 PHINode *IVPhi; 1438 1439 public: 1440 WideIVInfo WI; 1441 1442 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1443 const TargetTransformInfo *TTI, 1444 const DominatorTree *DTree) 1445 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1446 DT = DTree; 1447 WI.NarrowIV = IVPhi; 1448 if (ReduceLiveIVs) 1449 setSplitOverflowIntrinsics(); 1450 } 1451 1452 // Implement the interface used by simplifyUsersOfIV. 1453 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1454 }; 1455 } 1456 1457 /// Iteratively perform simplification on a worklist of IV users. Each 1458 /// successive simplification may push more users which may themselves be 1459 /// candidates for simplification. 1460 /// 1461 /// Sign/Zero extend elimination is interleaved with IV simplification. 1462 /// 1463 void IndVarSimplify::simplifyAndExtend(Loop *L, 1464 SCEVExpander &Rewriter, 1465 LoopInfo *LI) { 1466 SmallVector<WideIVInfo, 8> WideIVs; 1467 1468 SmallVector<PHINode*, 8> LoopPhis; 1469 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1470 LoopPhis.push_back(cast<PHINode>(I)); 1471 } 1472 // Each round of simplification iterates through the SimplifyIVUsers worklist 1473 // for all current phis, then determines whether any IVs can be 1474 // widened. Widening adds new phis to LoopPhis, inducing another round of 1475 // simplification on the wide IVs. 1476 while (!LoopPhis.empty()) { 1477 // Evaluate as many IV expressions as possible before widening any IVs. This 1478 // forces SCEV to set no-wrap flags before evaluating sign/zero 1479 // extension. The first time SCEV attempts to normalize sign/zero extension, 1480 // the result becomes final. So for the most predictable results, we delay 1481 // evaluation of sign/zero extend evaluation until needed, and avoid running 1482 // other SCEV based analysis prior to simplifyAndExtend. 1483 do { 1484 PHINode *CurrIV = LoopPhis.pop_back_val(); 1485 1486 // Information about sign/zero extensions of CurrIV. 1487 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1488 1489 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1490 1491 if (Visitor.WI.WidestNativeType) { 1492 WideIVs.push_back(Visitor.WI); 1493 } 1494 } while(!LoopPhis.empty()); 1495 1496 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1497 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1498 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1499 Changed = true; 1500 LoopPhis.push_back(WidePhi); 1501 } 1502 } 1503 } 1504 } 1505 1506 //===----------------------------------------------------------------------===// 1507 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1508 //===----------------------------------------------------------------------===// 1509 1510 /// Return true if this loop's backedge taken count expression can be safely and 1511 /// cheaply expanded into an instruction sequence that can be used by 1512 /// linearFunctionTestReplace. 1513 /// 1514 /// TODO: This fails for pointer-type loop counters with greater than one byte 1515 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1516 /// we could skip this check in the case that the LFTR loop counter (chosen by 1517 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1518 /// the loop test to an inequality test by checking the target data's alignment 1519 /// of element types (given that the initial pointer value originates from or is 1520 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1521 /// However, we don't yet have a strong motivation for converting loop tests 1522 /// into inequality tests. 1523 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1524 SCEVExpander &Rewriter) { 1525 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1526 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1527 BackedgeTakenCount->isZero()) 1528 return false; 1529 1530 if (!L->getExitingBlock()) 1531 return false; 1532 1533 // Can't rewrite non-branch yet. 1534 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1535 return false; 1536 1537 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1538 return false; 1539 1540 return true; 1541 } 1542 1543 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1544 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1545 Instruction *IncI = dyn_cast<Instruction>(IncV); 1546 if (!IncI) 1547 return nullptr; 1548 1549 switch (IncI->getOpcode()) { 1550 case Instruction::Add: 1551 case Instruction::Sub: 1552 break; 1553 case Instruction::GetElementPtr: 1554 // An IV counter must preserve its type. 1555 if (IncI->getNumOperands() == 2) 1556 break; 1557 default: 1558 return nullptr; 1559 } 1560 1561 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1562 if (Phi && Phi->getParent() == L->getHeader()) { 1563 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1564 return Phi; 1565 return nullptr; 1566 } 1567 if (IncI->getOpcode() == Instruction::GetElementPtr) 1568 return nullptr; 1569 1570 // Allow add/sub to be commuted. 1571 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1572 if (Phi && Phi->getParent() == L->getHeader()) { 1573 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1574 return Phi; 1575 } 1576 return nullptr; 1577 } 1578 1579 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1580 static ICmpInst *getLoopTest(Loop *L) { 1581 assert(L->getExitingBlock() && "expected loop exit"); 1582 1583 BasicBlock *LatchBlock = L->getLoopLatch(); 1584 // Don't bother with LFTR if the loop is not properly simplified. 1585 if (!LatchBlock) 1586 return nullptr; 1587 1588 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1589 assert(BI && "expected exit branch"); 1590 1591 return dyn_cast<ICmpInst>(BI->getCondition()); 1592 } 1593 1594 /// linearFunctionTestReplace policy. Return true unless we can show that the 1595 /// current exit test is already sufficiently canonical. 1596 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1597 // Do LFTR to simplify the exit condition to an ICMP. 1598 ICmpInst *Cond = getLoopTest(L); 1599 if (!Cond) 1600 return true; 1601 1602 // Do LFTR to simplify the exit ICMP to EQ/NE 1603 ICmpInst::Predicate Pred = Cond->getPredicate(); 1604 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1605 return true; 1606 1607 // Look for a loop invariant RHS 1608 Value *LHS = Cond->getOperand(0); 1609 Value *RHS = Cond->getOperand(1); 1610 if (!isLoopInvariant(RHS, L, DT)) { 1611 if (!isLoopInvariant(LHS, L, DT)) 1612 return true; 1613 std::swap(LHS, RHS); 1614 } 1615 // Look for a simple IV counter LHS 1616 PHINode *Phi = dyn_cast<PHINode>(LHS); 1617 if (!Phi) 1618 Phi = getLoopPhiForCounter(LHS, L, DT); 1619 1620 if (!Phi) 1621 return true; 1622 1623 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1624 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1625 if (Idx < 0) 1626 return true; 1627 1628 // Do LFTR if the exit condition's IV is *not* a simple counter. 1629 Value *IncV = Phi->getIncomingValue(Idx); 1630 return Phi != getLoopPhiForCounter(IncV, L, DT); 1631 } 1632 1633 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1634 /// down to checking that all operands are constant and listing instructions 1635 /// that may hide undef. 1636 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1637 unsigned Depth) { 1638 if (isa<Constant>(V)) 1639 return !isa<UndefValue>(V); 1640 1641 if (Depth >= 6) 1642 return false; 1643 1644 // Conservatively handle non-constant non-instructions. For example, Arguments 1645 // may be undef. 1646 Instruction *I = dyn_cast<Instruction>(V); 1647 if (!I) 1648 return false; 1649 1650 // Load and return values may be undef. 1651 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1652 return false; 1653 1654 // Optimistically handle other instructions. 1655 for (Value *Op : I->operands()) { 1656 if (!Visited.insert(Op).second) 1657 continue; 1658 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1659 return false; 1660 } 1661 return true; 1662 } 1663 1664 /// Return true if the given value is concrete. We must prove that undef can 1665 /// never reach it. 1666 /// 1667 /// TODO: If we decide that this is a good approach to checking for undef, we 1668 /// may factor it into a common location. 1669 static bool hasConcreteDef(Value *V) { 1670 SmallPtrSet<Value*, 8> Visited; 1671 Visited.insert(V); 1672 return hasConcreteDefImpl(V, Visited, 0); 1673 } 1674 1675 /// Return true if this IV has any uses other than the (soon to be rewritten) 1676 /// loop exit test. 1677 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1678 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1679 Value *IncV = Phi->getIncomingValue(LatchIdx); 1680 1681 for (User *U : Phi->users()) 1682 if (U != Cond && U != IncV) return false; 1683 1684 for (User *U : IncV->users()) 1685 if (U != Cond && U != Phi) return false; 1686 return true; 1687 } 1688 1689 /// Find an affine IV in canonical form. 1690 /// 1691 /// BECount may be an i8* pointer type. The pointer difference is already 1692 /// valid count without scaling the address stride, so it remains a pointer 1693 /// expression as far as SCEV is concerned. 1694 /// 1695 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1696 /// 1697 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1698 /// 1699 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1700 /// This is difficult in general for SCEV because of potential overflow. But we 1701 /// could at least handle constant BECounts. 1702 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1703 ScalarEvolution *SE, DominatorTree *DT) { 1704 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1705 1706 Value *Cond = 1707 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1708 1709 // Loop over all of the PHI nodes, looking for a simple counter. 1710 PHINode *BestPhi = nullptr; 1711 const SCEV *BestInit = nullptr; 1712 BasicBlock *LatchBlock = L->getLoopLatch(); 1713 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1714 1715 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1716 PHINode *Phi = cast<PHINode>(I); 1717 if (!SE->isSCEVable(Phi->getType())) 1718 continue; 1719 1720 // Avoid comparing an integer IV against a pointer Limit. 1721 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1722 continue; 1723 1724 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1725 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1726 continue; 1727 1728 // AR may be a pointer type, while BECount is an integer type. 1729 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1730 // AR may not be a narrower type, or we may never exit. 1731 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1732 if (PhiWidth < BCWidth || 1733 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1734 continue; 1735 1736 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1737 if (!Step || !Step->isOne()) 1738 continue; 1739 1740 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1741 Value *IncV = Phi->getIncomingValue(LatchIdx); 1742 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1743 continue; 1744 1745 // Avoid reusing a potentially undef value to compute other values that may 1746 // have originally had a concrete definition. 1747 if (!hasConcreteDef(Phi)) { 1748 // We explicitly allow unknown phis as long as they are already used by 1749 // the loop test. In this case we assume that performing LFTR could not 1750 // increase the number of undef users. 1751 if (ICmpInst *Cond = getLoopTest(L)) { 1752 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1753 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1754 continue; 1755 } 1756 } 1757 } 1758 const SCEV *Init = AR->getStart(); 1759 1760 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1761 // Don't force a live loop counter if another IV can be used. 1762 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1763 continue; 1764 1765 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1766 // also prefers integer to pointer IVs. 1767 if (BestInit->isZero() != Init->isZero()) { 1768 if (BestInit->isZero()) 1769 continue; 1770 } 1771 // If two IVs both count from zero or both count from nonzero then the 1772 // narrower is likely a dead phi that has been widened. Use the wider phi 1773 // to allow the other to be eliminated. 1774 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1775 continue; 1776 } 1777 BestPhi = Phi; 1778 BestInit = Init; 1779 } 1780 return BestPhi; 1781 } 1782 1783 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1784 /// the new loop test. 1785 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1786 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1787 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1788 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1789 const SCEV *IVInit = AR->getStart(); 1790 1791 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1792 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1793 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1794 // the existing GEPs whenever possible. 1795 if (IndVar->getType()->isPointerTy() 1796 && !IVCount->getType()->isPointerTy()) { 1797 1798 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1799 // signed value. IVCount on the other hand represents the loop trip count, 1800 // which is an unsigned value. FindLoopCounter only allows induction 1801 // variables that have a positive unit stride of one. This means we don't 1802 // have to handle the case of negative offsets (yet) and just need to zero 1803 // extend IVCount. 1804 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1805 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1806 1807 // Expand the code for the iteration count. 1808 assert(SE->isLoopInvariant(IVOffset, L) && 1809 "Computed iteration count is not loop invariant!"); 1810 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1811 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1812 1813 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1814 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1815 // We could handle pointer IVs other than i8*, but we need to compensate for 1816 // gep index scaling. See canExpandBackedgeTakenCount comments. 1817 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1818 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1819 && "unit stride pointer IV must be i8*"); 1820 1821 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1822 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1823 } 1824 else { 1825 // In any other case, convert both IVInit and IVCount to integers before 1826 // comparing. This may result in SCEV expension of pointers, but in practice 1827 // SCEV will fold the pointer arithmetic away as such: 1828 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1829 // 1830 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1831 // for simple memset-style loops. 1832 // 1833 // IVInit integer and IVCount pointer would only occur if a canonical IV 1834 // were generated on top of case #2, which is not expected. 1835 1836 const SCEV *IVLimit = nullptr; 1837 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1838 // For non-zero Start, compute IVCount here. 1839 if (AR->getStart()->isZero()) 1840 IVLimit = IVCount; 1841 else { 1842 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1843 const SCEV *IVInit = AR->getStart(); 1844 1845 // For integer IVs, truncate the IV before computing IVInit + BECount. 1846 if (SE->getTypeSizeInBits(IVInit->getType()) 1847 > SE->getTypeSizeInBits(IVCount->getType())) 1848 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1849 1850 IVLimit = SE->getAddExpr(IVInit, IVCount); 1851 } 1852 // Expand the code for the iteration count. 1853 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1854 IRBuilder<> Builder(BI); 1855 assert(SE->isLoopInvariant(IVLimit, L) && 1856 "Computed iteration count is not loop invariant!"); 1857 // Ensure that we generate the same type as IndVar, or a smaller integer 1858 // type. In the presence of null pointer values, we have an integer type 1859 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1860 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1861 IndVar->getType() : IVCount->getType(); 1862 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1863 } 1864 } 1865 1866 /// This method rewrites the exit condition of the loop to be a canonical != 1867 /// comparison against the incremented loop induction variable. This pass is 1868 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1869 /// determine a loop-invariant trip count of the loop, which is actually a much 1870 /// broader range than just linear tests. 1871 Value *IndVarSimplify:: 1872 linearFunctionTestReplace(Loop *L, 1873 const SCEV *BackedgeTakenCount, 1874 PHINode *IndVar, 1875 SCEVExpander &Rewriter) { 1876 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1877 1878 // Initialize CmpIndVar and IVCount to their preincremented values. 1879 Value *CmpIndVar = IndVar; 1880 const SCEV *IVCount = BackedgeTakenCount; 1881 1882 // If the exiting block is the same as the backedge block, we prefer to 1883 // compare against the post-incremented value, otherwise we must compare 1884 // against the preincremented value. 1885 if (L->getExitingBlock() == L->getLoopLatch()) { 1886 // Add one to the "backedge-taken" count to get the trip count. 1887 // This addition may overflow, which is valid as long as the comparison is 1888 // truncated to BackedgeTakenCount->getType(). 1889 IVCount = SE->getAddExpr(BackedgeTakenCount, 1890 SE->getOne(BackedgeTakenCount->getType())); 1891 // The BackedgeTaken expression contains the number of times that the 1892 // backedge branches to the loop header. This is one less than the 1893 // number of times the loop executes, so use the incremented indvar. 1894 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1895 } 1896 1897 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1898 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1899 && "genLoopLimit missed a cast"); 1900 1901 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1902 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1903 ICmpInst::Predicate P; 1904 if (L->contains(BI->getSuccessor(0))) 1905 P = ICmpInst::ICMP_NE; 1906 else 1907 P = ICmpInst::ICMP_EQ; 1908 1909 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1910 << " LHS:" << *CmpIndVar << '\n' 1911 << " op:\t" 1912 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1913 << " RHS:\t" << *ExitCnt << "\n" 1914 << " IVCount:\t" << *IVCount << "\n"); 1915 1916 IRBuilder<> Builder(BI); 1917 1918 // LFTR can ignore IV overflow and truncate to the width of 1919 // BECount. This avoids materializing the add(zext(add)) expression. 1920 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1921 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1922 if (CmpIndVarSize > ExitCntSize) { 1923 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1924 const SCEV *ARStart = AR->getStart(); 1925 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1926 // For constant IVCount, avoid truncation. 1927 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1928 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 1929 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 1930 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1931 // above such that IVCount is now zero. 1932 if (IVCount != BackedgeTakenCount && Count == 0) { 1933 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1934 ++Count; 1935 } 1936 else 1937 Count = Count.zext(CmpIndVarSize); 1938 APInt NewLimit; 1939 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1940 NewLimit = Start - Count; 1941 else 1942 NewLimit = Start + Count; 1943 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1944 1945 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1946 } else { 1947 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1948 "lftr.wideiv"); 1949 } 1950 } 1951 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1952 Value *OrigCond = BI->getCondition(); 1953 // It's tempting to use replaceAllUsesWith here to fully replace the old 1954 // comparison, but that's not immediately safe, since users of the old 1955 // comparison may not be dominated by the new comparison. Instead, just 1956 // update the branch to use the new comparison; in the common case this 1957 // will make old comparison dead. 1958 BI->setCondition(Cond); 1959 DeadInsts.push_back(OrigCond); 1960 1961 ++NumLFTR; 1962 Changed = true; 1963 return Cond; 1964 } 1965 1966 //===----------------------------------------------------------------------===// 1967 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1968 //===----------------------------------------------------------------------===// 1969 1970 /// If there's a single exit block, sink any loop-invariant values that 1971 /// were defined in the preheader but not used inside the loop into the 1972 /// exit block to reduce register pressure in the loop. 1973 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1974 BasicBlock *ExitBlock = L->getExitBlock(); 1975 if (!ExitBlock) return; 1976 1977 BasicBlock *Preheader = L->getLoopPreheader(); 1978 if (!Preheader) return; 1979 1980 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 1981 BasicBlock::iterator I(Preheader->getTerminator()); 1982 while (I != Preheader->begin()) { 1983 --I; 1984 // New instructions were inserted at the end of the preheader. 1985 if (isa<PHINode>(I)) 1986 break; 1987 1988 // Don't move instructions which might have side effects, since the side 1989 // effects need to complete before instructions inside the loop. Also don't 1990 // move instructions which might read memory, since the loop may modify 1991 // memory. Note that it's okay if the instruction might have undefined 1992 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1993 // block. 1994 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1995 continue; 1996 1997 // Skip debug info intrinsics. 1998 if (isa<DbgInfoIntrinsic>(I)) 1999 continue; 2000 2001 // Skip eh pad instructions. 2002 if (I->isEHPad()) 2003 continue; 2004 2005 // Don't sink alloca: we never want to sink static alloca's out of the 2006 // entry block, and correctly sinking dynamic alloca's requires 2007 // checks for stacksave/stackrestore intrinsics. 2008 // FIXME: Refactor this check somehow? 2009 if (isa<AllocaInst>(I)) 2010 continue; 2011 2012 // Determine if there is a use in or before the loop (direct or 2013 // otherwise). 2014 bool UsedInLoop = false; 2015 for (Use &U : I->uses()) { 2016 Instruction *User = cast<Instruction>(U.getUser()); 2017 BasicBlock *UseBB = User->getParent(); 2018 if (PHINode *P = dyn_cast<PHINode>(User)) { 2019 unsigned i = 2020 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2021 UseBB = P->getIncomingBlock(i); 2022 } 2023 if (UseBB == Preheader || L->contains(UseBB)) { 2024 UsedInLoop = true; 2025 break; 2026 } 2027 } 2028 2029 // If there is, the def must remain in the preheader. 2030 if (UsedInLoop) 2031 continue; 2032 2033 // Otherwise, sink it to the exit block. 2034 Instruction *ToMove = &*I; 2035 bool Done = false; 2036 2037 if (I != Preheader->begin()) { 2038 // Skip debug info intrinsics. 2039 do { 2040 --I; 2041 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2042 2043 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2044 Done = true; 2045 } else { 2046 Done = true; 2047 } 2048 2049 ToMove->moveBefore(InsertPt); 2050 if (Done) break; 2051 InsertPt = ToMove; 2052 } 2053 } 2054 2055 //===----------------------------------------------------------------------===// 2056 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2057 //===----------------------------------------------------------------------===// 2058 2059 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2060 if (skipOptnoneFunction(L)) 2061 return false; 2062 2063 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2064 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2065 // canonicalization can be a pessimization without LSR to "clean up" 2066 // afterwards. 2067 // - We depend on having a preheader; in particular, 2068 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2069 // and we're in trouble if we can't find the induction variable even when 2070 // we've manually inserted one. 2071 if (!L->isLoopSimplifyForm()) 2072 return false; 2073 2074 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2075 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2076 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2077 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2078 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2079 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2080 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2081 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2082 2083 DeadInsts.clear(); 2084 Changed = false; 2085 2086 // If there are any floating-point recurrences, attempt to 2087 // transform them to use integer recurrences. 2088 rewriteNonIntegerIVs(L); 2089 2090 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2091 2092 // Create a rewriter object which we'll use to transform the code with. 2093 SCEVExpander Rewriter(*SE, DL, "indvars"); 2094 #ifndef NDEBUG 2095 Rewriter.setDebugType(DEBUG_TYPE); 2096 #endif 2097 2098 // Eliminate redundant IV users. 2099 // 2100 // Simplification works best when run before other consumers of SCEV. We 2101 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2102 // other expressions involving loop IVs have been evaluated. This helps SCEV 2103 // set no-wrap flags before normalizing sign/zero extension. 2104 Rewriter.disableCanonicalMode(); 2105 simplifyAndExtend(L, Rewriter, LI); 2106 2107 // Check to see if this loop has a computable loop-invariant execution count. 2108 // If so, this means that we can compute the final value of any expressions 2109 // that are recurrent in the loop, and substitute the exit values from the 2110 // loop into any instructions outside of the loop that use the final values of 2111 // the current expressions. 2112 // 2113 if (ReplaceExitValue != NeverRepl && 2114 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2115 rewriteLoopExitValues(L, Rewriter); 2116 2117 // Eliminate redundant IV cycles. 2118 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2119 2120 // If we have a trip count expression, rewrite the loop's exit condition 2121 // using it. We can currently only handle loops with a single exit. 2122 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2123 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2124 if (IndVar) { 2125 // Check preconditions for proper SCEVExpander operation. SCEV does not 2126 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2127 // pass that uses the SCEVExpander must do it. This does not work well for 2128 // loop passes because SCEVExpander makes assumptions about all loops, 2129 // while LoopPassManager only forces the current loop to be simplified. 2130 // 2131 // FIXME: SCEV expansion has no way to bail out, so the caller must 2132 // explicitly check any assumptions made by SCEV. Brittle. 2133 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2134 if (!AR || AR->getLoop()->getLoopPreheader()) 2135 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2136 Rewriter); 2137 } 2138 } 2139 // Clear the rewriter cache, because values that are in the rewriter's cache 2140 // can be deleted in the loop below, causing the AssertingVH in the cache to 2141 // trigger. 2142 Rewriter.clear(); 2143 2144 // Now that we're done iterating through lists, clean up any instructions 2145 // which are now dead. 2146 while (!DeadInsts.empty()) 2147 if (Instruction *Inst = 2148 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2149 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2150 2151 // The Rewriter may not be used from this point on. 2152 2153 // Loop-invariant instructions in the preheader that aren't used in the 2154 // loop may be sunk below the loop to reduce register pressure. 2155 sinkUnusedInvariants(L); 2156 2157 // Clean up dead instructions. 2158 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2159 2160 // Check a post-condition. 2161 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2162 2163 // Verify that LFTR, and any other change have not interfered with SCEV's 2164 // ability to compute trip count. 2165 #ifndef NDEBUG 2166 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2167 SE->forgetLoop(L); 2168 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2169 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2170 SE->getTypeSizeInBits(NewBECount->getType())) 2171 NewBECount = SE->getTruncateOrNoop(NewBECount, 2172 BackedgeTakenCount->getType()); 2173 else 2174 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2175 NewBECount->getType()); 2176 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2177 } 2178 #endif 2179 2180 return Changed; 2181 } 2182