xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision de47590589f8418b942a0ca4576f6ed40ec61c36)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "indvars"
58 
59 STATISTIC(NumWidened     , "Number of indvars widened");
60 STATISTIC(NumReplaced    , "Number of exit values replaced");
61 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64 
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69   "verify-indvars", cl::Hidden,
70   cl::desc("Verify the ScalarEvolution result after running indvars"));
71 
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73   cl::desc("Reduce live induction variables."));
74 
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76 
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81                clEnumValN(OnlyCheapRepl, "cheap",
82                           "only replace exit value when the cost is cheap"),
83                clEnumValN(AlwaysRepl, "always",
84                           "always replace exit value whenever possible"),
85                clEnumValEnd));
86 
87 namespace {
88 struct RewritePhi;
89 
90 class IndVarSimplify : public LoopPass {
91   LoopInfo                  *LI;
92   ScalarEvolution           *SE;
93   DominatorTree             *DT;
94   TargetLibraryInfo         *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed;
99 public:
100 
101   static char ID; // Pass identification, replacement for typeid
102   IndVarSimplify()
103     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108 
109   void getAnalysisUsage(AnalysisUsage &AU) const override {
110     AU.addRequired<DominatorTreeWrapperPass>();
111     AU.addRequired<LoopInfoWrapperPass>();
112     AU.addRequired<ScalarEvolutionWrapperPass>();
113     AU.addRequiredID(LoopSimplifyID);
114     AU.addRequiredID(LCSSAID);
115     AU.addPreserved<GlobalsAAWrapperPass>();
116     AU.addPreserved<ScalarEvolutionWrapperPass>();
117     AU.addPreservedID(LoopSimplifyID);
118     AU.addPreservedID(LCSSAID);
119     AU.setPreservesCFG();
120   }
121 
122 private:
123   void releaseMemory() override {
124     DeadInsts.clear();
125   }
126 
127   bool isValidRewrite(Value *FromVal, Value *ToVal);
128 
129   void handleFloatingPointIV(Loop *L, PHINode *PH);
130   void rewriteNonIntegerIVs(Loop *L);
131 
132   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133 
134   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136 
137   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
138                                    PHINode *IndVar, SCEVExpander &Rewriter);
139 
140   void sinkUnusedInvariants(Loop *L);
141 
142   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
143                             Instruction *InsertPt, Type *Ty);
144 };
145 }
146 
147 char IndVarSimplify::ID = 0;
148 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
149                 "Induction Variable Simplification", false, false)
150 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
154 INITIALIZE_PASS_DEPENDENCY(LCSSA)
155 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
156                 "Induction Variable Simplification", false, false)
157 
158 Pass *llvm::createIndVarSimplifyPass() {
159   return new IndVarSimplify();
160 }
161 
162 /// Return true if the SCEV expansion generated by the rewriter can replace the
163 /// original value. SCEV guarantees that it produces the same value, but the way
164 /// it is produced may be illegal IR.  Ideally, this function will only be
165 /// called for verification.
166 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
167   // If an SCEV expression subsumed multiple pointers, its expansion could
168   // reassociate the GEP changing the base pointer. This is illegal because the
169   // final address produced by a GEP chain must be inbounds relative to its
170   // underlying object. Otherwise basic alias analysis, among other things,
171   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
172   // producing an expression involving multiple pointers. Until then, we must
173   // bail out here.
174   //
175   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
176   // because it understands lcssa phis while SCEV does not.
177   Value *FromPtr = FromVal;
178   Value *ToPtr = ToVal;
179   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
180     FromPtr = GEP->getPointerOperand();
181   }
182   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
183     ToPtr = GEP->getPointerOperand();
184   }
185   if (FromPtr != FromVal || ToPtr != ToVal) {
186     // Quickly check the common case
187     if (FromPtr == ToPtr)
188       return true;
189 
190     // SCEV may have rewritten an expression that produces the GEP's pointer
191     // operand. That's ok as long as the pointer operand has the same base
192     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
193     // base of a recurrence. This handles the case in which SCEV expansion
194     // converts a pointer type recurrence into a nonrecurrent pointer base
195     // indexed by an integer recurrence.
196 
197     // If the GEP base pointer is a vector of pointers, abort.
198     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
199       return false;
200 
201     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
202     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
203     if (FromBase == ToBase)
204       return true;
205 
206     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
207           << *FromBase << " != " << *ToBase << "\n");
208 
209     return false;
210   }
211   return true;
212 }
213 
214 /// Determine the insertion point for this user. By default, insert immediately
215 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
216 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
217 /// common dominator for the incoming blocks.
218 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
219                                           DominatorTree *DT, LoopInfo *LI) {
220   PHINode *PHI = dyn_cast<PHINode>(User);
221   if (!PHI)
222     return User;
223 
224   Instruction *InsertPt = nullptr;
225   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
226     if (PHI->getIncomingValue(i) != Def)
227       continue;
228 
229     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
230     if (!InsertPt) {
231       InsertPt = InsertBB->getTerminator();
232       continue;
233     }
234     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
235     InsertPt = InsertBB->getTerminator();
236   }
237   assert(InsertPt && "Missing phi operand");
238 
239   auto *DefI = dyn_cast<Instruction>(Def);
240   if (!DefI)
241     return InsertPt;
242 
243   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
244 
245   auto *L = LI->getLoopFor(DefI->getParent());
246   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
247 
248   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
249     if (LI->getLoopFor(DTN->getBlock()) == L)
250       return DTN->getBlock()->getTerminator();
251 
252   llvm_unreachable("DefI dominates InsertPt!");
253 }
254 
255 //===----------------------------------------------------------------------===//
256 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
257 //===----------------------------------------------------------------------===//
258 
259 /// Convert APF to an integer, if possible.
260 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
261   bool isExact = false;
262   // See if we can convert this to an int64_t
263   uint64_t UIntVal;
264   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
265                            &isExact) != APFloat::opOK || !isExact)
266     return false;
267   IntVal = UIntVal;
268   return true;
269 }
270 
271 /// If the loop has floating induction variable then insert corresponding
272 /// integer induction variable if possible.
273 /// For example,
274 /// for(double i = 0; i < 10000; ++i)
275 ///   bar(i)
276 /// is converted into
277 /// for(int i = 0; i < 10000; ++i)
278 ///   bar((double)i);
279 ///
280 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
281   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
282   unsigned BackEdge     = IncomingEdge^1;
283 
284   // Check incoming value.
285   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
286 
287   int64_t InitValue;
288   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
289     return;
290 
291   // Check IV increment. Reject this PN if increment operation is not
292   // an add or increment value can not be represented by an integer.
293   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
294   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
295 
296   // If this is not an add of the PHI with a constantfp, or if the constant fp
297   // is not an integer, bail out.
298   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
299   int64_t IncValue;
300   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
301       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
302     return;
303 
304   // Check Incr uses. One user is PN and the other user is an exit condition
305   // used by the conditional terminator.
306   Value::user_iterator IncrUse = Incr->user_begin();
307   Instruction *U1 = cast<Instruction>(*IncrUse++);
308   if (IncrUse == Incr->user_end()) return;
309   Instruction *U2 = cast<Instruction>(*IncrUse++);
310   if (IncrUse != Incr->user_end()) return;
311 
312   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
313   // only used by a branch, we can't transform it.
314   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
315   if (!Compare)
316     Compare = dyn_cast<FCmpInst>(U2);
317   if (!Compare || !Compare->hasOneUse() ||
318       !isa<BranchInst>(Compare->user_back()))
319     return;
320 
321   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
322 
323   // We need to verify that the branch actually controls the iteration count
324   // of the loop.  If not, the new IV can overflow and no one will notice.
325   // The branch block must be in the loop and one of the successors must be out
326   // of the loop.
327   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
328   if (!L->contains(TheBr->getParent()) ||
329       (L->contains(TheBr->getSuccessor(0)) &&
330        L->contains(TheBr->getSuccessor(1))))
331     return;
332 
333 
334   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
335   // transform it.
336   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
337   int64_t ExitValue;
338   if (ExitValueVal == nullptr ||
339       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
340     return;
341 
342   // Find new predicate for integer comparison.
343   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
344   switch (Compare->getPredicate()) {
345   default: return;  // Unknown comparison.
346   case CmpInst::FCMP_OEQ:
347   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
348   case CmpInst::FCMP_ONE:
349   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
350   case CmpInst::FCMP_OGT:
351   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
352   case CmpInst::FCMP_OGE:
353   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
354   case CmpInst::FCMP_OLT:
355   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
356   case CmpInst::FCMP_OLE:
357   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
358   }
359 
360   // We convert the floating point induction variable to a signed i32 value if
361   // we can.  This is only safe if the comparison will not overflow in a way
362   // that won't be trapped by the integer equivalent operations.  Check for this
363   // now.
364   // TODO: We could use i64 if it is native and the range requires it.
365 
366   // The start/stride/exit values must all fit in signed i32.
367   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
368     return;
369 
370   // If not actually striding (add x, 0.0), avoid touching the code.
371   if (IncValue == 0)
372     return;
373 
374   // Positive and negative strides have different safety conditions.
375   if (IncValue > 0) {
376     // If we have a positive stride, we require the init to be less than the
377     // exit value.
378     if (InitValue >= ExitValue)
379       return;
380 
381     uint32_t Range = uint32_t(ExitValue-InitValue);
382     // Check for infinite loop, either:
383     // while (i <= Exit) or until (i > Exit)
384     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
385       if (++Range == 0) return;  // Range overflows.
386     }
387 
388     unsigned Leftover = Range % uint32_t(IncValue);
389 
390     // If this is an equality comparison, we require that the strided value
391     // exactly land on the exit value, otherwise the IV condition will wrap
392     // around and do things the fp IV wouldn't.
393     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
394         Leftover != 0)
395       return;
396 
397     // If the stride would wrap around the i32 before exiting, we can't
398     // transform the IV.
399     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
400       return;
401 
402   } else {
403     // If we have a negative stride, we require the init to be greater than the
404     // exit value.
405     if (InitValue <= ExitValue)
406       return;
407 
408     uint32_t Range = uint32_t(InitValue-ExitValue);
409     // Check for infinite loop, either:
410     // while (i >= Exit) or until (i < Exit)
411     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
412       if (++Range == 0) return;  // Range overflows.
413     }
414 
415     unsigned Leftover = Range % uint32_t(-IncValue);
416 
417     // If this is an equality comparison, we require that the strided value
418     // exactly land on the exit value, otherwise the IV condition will wrap
419     // around and do things the fp IV wouldn't.
420     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
421         Leftover != 0)
422       return;
423 
424     // If the stride would wrap around the i32 before exiting, we can't
425     // transform the IV.
426     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
427       return;
428   }
429 
430   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
431 
432   // Insert new integer induction variable.
433   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
434   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
435                       PN->getIncomingBlock(IncomingEdge));
436 
437   Value *NewAdd =
438     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
439                               Incr->getName()+".int", Incr);
440   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
441 
442   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
443                                       ConstantInt::get(Int32Ty, ExitValue),
444                                       Compare->getName());
445 
446   // In the following deletions, PN may become dead and may be deleted.
447   // Use a WeakVH to observe whether this happens.
448   WeakVH WeakPH = PN;
449 
450   // Delete the old floating point exit comparison.  The branch starts using the
451   // new comparison.
452   NewCompare->takeName(Compare);
453   Compare->replaceAllUsesWith(NewCompare);
454   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
455 
456   // Delete the old floating point increment.
457   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
458   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
459 
460   // If the FP induction variable still has uses, this is because something else
461   // in the loop uses its value.  In order to canonicalize the induction
462   // variable, we chose to eliminate the IV and rewrite it in terms of an
463   // int->fp cast.
464   //
465   // We give preference to sitofp over uitofp because it is faster on most
466   // platforms.
467   if (WeakPH) {
468     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
469                                  &*PN->getParent()->getFirstInsertionPt());
470     PN->replaceAllUsesWith(Conv);
471     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
472   }
473   Changed = true;
474 }
475 
476 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
477   // First step.  Check to see if there are any floating-point recurrences.
478   // If there are, change them into integer recurrences, permitting analysis by
479   // the SCEV routines.
480   //
481   BasicBlock *Header = L->getHeader();
482 
483   SmallVector<WeakVH, 8> PHIs;
484   for (BasicBlock::iterator I = Header->begin();
485        PHINode *PN = dyn_cast<PHINode>(I); ++I)
486     PHIs.push_back(PN);
487 
488   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490       handleFloatingPointIV(L, PN);
491 
492   // If the loop previously had floating-point IV, ScalarEvolution
493   // may not have been able to compute a trip count. Now that we've done some
494   // re-writing, the trip count may be computable.
495   if (Changed)
496     SE->forgetLoop(L);
497 }
498 
499 namespace {
500 // Collect information about PHI nodes which can be transformed in
501 // rewriteLoopExitValues.
502 struct RewritePhi {
503   PHINode *PN;
504   unsigned Ith;  // Ith incoming value.
505   Value *Val;    // Exit value after expansion.
506   bool HighCost; // High Cost when expansion.
507 
508   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
509       : PN(P), Ith(I), Val(V), HighCost(H) {}
510 };
511 }
512 
513 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
514                                           Loop *L, Instruction *InsertPt,
515                                           Type *ResultTy) {
516   // Before expanding S into an expensive LLVM expression, see if we can use an
517   // already existing value as the expansion for S.
518   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
519     if (ExistingValue->getType() == ResultTy)
520       return ExistingValue;
521 
522   // We didn't find anything, fall back to using SCEVExpander.
523   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
524 }
525 
526 //===----------------------------------------------------------------------===//
527 // rewriteLoopExitValues - Optimize IV users outside the loop.
528 // As a side effect, reduces the amount of IV processing within the loop.
529 //===----------------------------------------------------------------------===//
530 
531 /// Check to see if this loop has a computable loop-invariant execution count.
532 /// If so, this means that we can compute the final value of any expressions
533 /// that are recurrent in the loop, and substitute the exit values from the loop
534 /// into any instructions outside of the loop that use the final values of the
535 /// current expressions.
536 ///
537 /// This is mostly redundant with the regular IndVarSimplify activities that
538 /// happen later, except that it's more powerful in some cases, because it's
539 /// able to brute-force evaluate arbitrary instructions as long as they have
540 /// constant operands at the beginning of the loop.
541 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
542   // Check a pre-condition.
543   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
544 
545   SmallVector<BasicBlock*, 8> ExitBlocks;
546   L->getUniqueExitBlocks(ExitBlocks);
547 
548   SmallVector<RewritePhi, 8> RewritePhiSet;
549   // Find all values that are computed inside the loop, but used outside of it.
550   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
551   // the exit blocks of the loop to find them.
552   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
553     BasicBlock *ExitBB = ExitBlocks[i];
554 
555     // If there are no PHI nodes in this exit block, then no values defined
556     // inside the loop are used on this path, skip it.
557     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
558     if (!PN) continue;
559 
560     unsigned NumPreds = PN->getNumIncomingValues();
561 
562     // Iterate over all of the PHI nodes.
563     BasicBlock::iterator BBI = ExitBB->begin();
564     while ((PN = dyn_cast<PHINode>(BBI++))) {
565       if (PN->use_empty())
566         continue; // dead use, don't replace it
567 
568       // SCEV only supports integer expressions for now.
569       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
570         continue;
571 
572       // It's necessary to tell ScalarEvolution about this explicitly so that
573       // it can walk the def-use list and forget all SCEVs, as it may not be
574       // watching the PHI itself. Once the new exit value is in place, there
575       // may not be a def-use connection between the loop and every instruction
576       // which got a SCEVAddRecExpr for that loop.
577       SE->forgetValue(PN);
578 
579       // Iterate over all of the values in all the PHI nodes.
580       for (unsigned i = 0; i != NumPreds; ++i) {
581         // If the value being merged in is not integer or is not defined
582         // in the loop, skip it.
583         Value *InVal = PN->getIncomingValue(i);
584         if (!isa<Instruction>(InVal))
585           continue;
586 
587         // If this pred is for a subloop, not L itself, skip it.
588         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
589           continue; // The Block is in a subloop, skip it.
590 
591         // Check that InVal is defined in the loop.
592         Instruction *Inst = cast<Instruction>(InVal);
593         if (!L->contains(Inst))
594           continue;
595 
596         // Okay, this instruction has a user outside of the current loop
597         // and varies predictably *inside* the loop.  Evaluate the value it
598         // contains when the loop exits, if possible.
599         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
600         if (!SE->isLoopInvariant(ExitValue, L) ||
601             !isSafeToExpand(ExitValue, *SE))
602           continue;
603 
604         // Computing the value outside of the loop brings no benefit if :
605         //  - it is definitely used inside the loop in a way which can not be
606         //    optimized away.
607         //  - no use outside of the loop can take advantage of hoisting the
608         //    computation out of the loop
609         if (ExitValue->getSCEVType()>=scMulExpr) {
610           unsigned NumHardInternalUses = 0;
611           unsigned NumSoftExternalUses = 0;
612           unsigned NumUses = 0;
613           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
614                IB != IE && NumUses <= 6; ++IB) {
615             Instruction *UseInstr = cast<Instruction>(*IB);
616             unsigned Opc = UseInstr->getOpcode();
617             NumUses++;
618             if (L->contains(UseInstr)) {
619               if (Opc == Instruction::Call || Opc == Instruction::Ret)
620                 NumHardInternalUses++;
621             } else {
622               if (Opc == Instruction::PHI) {
623                 // Do not count the Phi as a use. LCSSA may have inserted
624                 // plenty of trivial ones.
625                 NumUses--;
626                 for (auto PB = UseInstr->user_begin(),
627                           PE = UseInstr->user_end();
628                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
629                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
630                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
631                     NumSoftExternalUses++;
632                 }
633                 continue;
634               }
635               if (Opc != Instruction::Call && Opc != Instruction::Ret)
636                 NumSoftExternalUses++;
637             }
638           }
639           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
640             continue;
641         }
642 
643         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
644         Value *ExitVal =
645             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
646 
647         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
648                      << "  LoopVal = " << *Inst << "\n");
649 
650         if (!isValidRewrite(Inst, ExitVal)) {
651           DeadInsts.push_back(ExitVal);
652           continue;
653         }
654 
655         // Collect all the candidate PHINodes to be rewritten.
656         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
657       }
658     }
659   }
660 
661   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
662 
663   // Transformation.
664   for (const RewritePhi &Phi : RewritePhiSet) {
665     PHINode *PN = Phi.PN;
666     Value *ExitVal = Phi.Val;
667 
668     // Only do the rewrite when the ExitValue can be expanded cheaply.
669     // If LoopCanBeDel is true, rewrite exit value aggressively.
670     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
671       DeadInsts.push_back(ExitVal);
672       continue;
673     }
674 
675     Changed = true;
676     ++NumReplaced;
677     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
678     PN->setIncomingValue(Phi.Ith, ExitVal);
679 
680     // If this instruction is dead now, delete it. Don't do it now to avoid
681     // invalidating iterators.
682     if (isInstructionTriviallyDead(Inst, TLI))
683       DeadInsts.push_back(Inst);
684 
685     // Replace PN with ExitVal if that is legal and does not break LCSSA.
686     if (PN->getNumIncomingValues() == 1 &&
687         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
688       PN->replaceAllUsesWith(ExitVal);
689       PN->eraseFromParent();
690     }
691   }
692 
693   // The insertion point instruction may have been deleted; clear it out
694   // so that the rewriter doesn't trip over it later.
695   Rewriter.clearInsertPoint();
696 }
697 
698 /// Check whether it is possible to delete the loop after rewriting exit
699 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
700 /// aggressively.
701 bool IndVarSimplify::canLoopBeDeleted(
702     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
703 
704   BasicBlock *Preheader = L->getLoopPreheader();
705   // If there is no preheader, the loop will not be deleted.
706   if (!Preheader)
707     return false;
708 
709   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
710   // We obviate multiple ExitingBlocks case for simplicity.
711   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
712   // after exit value rewriting, we can enhance the logic here.
713   SmallVector<BasicBlock *, 4> ExitingBlocks;
714   L->getExitingBlocks(ExitingBlocks);
715   SmallVector<BasicBlock *, 8> ExitBlocks;
716   L->getUniqueExitBlocks(ExitBlocks);
717   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
718     return false;
719 
720   BasicBlock *ExitBlock = ExitBlocks[0];
721   BasicBlock::iterator BI = ExitBlock->begin();
722   while (PHINode *P = dyn_cast<PHINode>(BI)) {
723     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
724 
725     // If the Incoming value of P is found in RewritePhiSet, we know it
726     // could be rewritten to use a loop invariant value in transformation
727     // phase later. Skip it in the loop invariant check below.
728     bool found = false;
729     for (const RewritePhi &Phi : RewritePhiSet) {
730       unsigned i = Phi.Ith;
731       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
732         found = true;
733         break;
734       }
735     }
736 
737     Instruction *I;
738     if (!found && (I = dyn_cast<Instruction>(Incoming)))
739       if (!L->hasLoopInvariantOperands(I))
740         return false;
741 
742     ++BI;
743   }
744 
745   for (auto *BB : L->blocks())
746     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
747       return false;
748 
749   return true;
750 }
751 
752 //===----------------------------------------------------------------------===//
753 //  IV Widening - Extend the width of an IV to cover its widest uses.
754 //===----------------------------------------------------------------------===//
755 
756 namespace {
757 // Collect information about induction variables that are used by sign/zero
758 // extend operations. This information is recorded by CollectExtend and provides
759 // the input to WidenIV.
760 struct WideIVInfo {
761   PHINode *NarrowIV = nullptr;
762   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
763   bool IsSigned = false;            // Was a sext user seen before a zext?
764 };
765 }
766 
767 /// Update information about the induction variable that is extended by this
768 /// sign or zero extend operation. This is used to determine the final width of
769 /// the IV before actually widening it.
770 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
771                         const TargetTransformInfo *TTI) {
772   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
773   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
774     return;
775 
776   Type *Ty = Cast->getType();
777   uint64_t Width = SE->getTypeSizeInBits(Ty);
778   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
779     return;
780 
781   // Cast is either an sext or zext up to this point.
782   // We should not widen an indvar if arithmetics on the wider indvar are more
783   // expensive than those on the narrower indvar. We check only the cost of ADD
784   // because at least an ADD is required to increment the induction variable. We
785   // could compute more comprehensively the cost of all instructions on the
786   // induction variable when necessary.
787   if (TTI &&
788       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
789           TTI->getArithmeticInstrCost(Instruction::Add,
790                                       Cast->getOperand(0)->getType())) {
791     return;
792   }
793 
794   if (!WI.WidestNativeType) {
795     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
796     WI.IsSigned = IsSigned;
797     return;
798   }
799 
800   // We extend the IV to satisfy the sign of its first user, arbitrarily.
801   if (WI.IsSigned != IsSigned)
802     return;
803 
804   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
805     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
806 }
807 
808 namespace {
809 
810 /// Record a link in the Narrow IV def-use chain along with the WideIV that
811 /// computes the same value as the Narrow IV def.  This avoids caching Use*
812 /// pointers.
813 struct NarrowIVDefUse {
814   Instruction *NarrowDef = nullptr;
815   Instruction *NarrowUse = nullptr;
816   Instruction *WideDef = nullptr;
817 
818   // True if the narrow def is never negative.  Tracking this information lets
819   // us use a sign extension instead of a zero extension or vice versa, when
820   // profitable and legal.
821   bool NeverNegative = false;
822 
823   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
824                  bool NeverNegative)
825       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
826         NeverNegative(NeverNegative) {}
827 };
828 
829 /// The goal of this transform is to remove sign and zero extends without
830 /// creating any new induction variables. To do this, it creates a new phi of
831 /// the wider type and redirects all users, either removing extends or inserting
832 /// truncs whenever we stop propagating the type.
833 ///
834 class WidenIV {
835   // Parameters
836   PHINode *OrigPhi;
837   Type *WideType;
838   bool IsSigned;
839 
840   // Context
841   LoopInfo        *LI;
842   Loop            *L;
843   ScalarEvolution *SE;
844   DominatorTree   *DT;
845 
846   // Result
847   PHINode *WidePhi;
848   Instruction *WideInc;
849   const SCEV *WideIncExpr;
850   SmallVectorImpl<WeakVH> &DeadInsts;
851 
852   SmallPtrSet<Instruction*,16> Widened;
853   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
854 
855 public:
856   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
857           ScalarEvolution *SEv, DominatorTree *DTree,
858           SmallVectorImpl<WeakVH> &DI) :
859     OrigPhi(WI.NarrowIV),
860     WideType(WI.WidestNativeType),
861     IsSigned(WI.IsSigned),
862     LI(LInfo),
863     L(LI->getLoopFor(OrigPhi->getParent())),
864     SE(SEv),
865     DT(DTree),
866     WidePhi(nullptr),
867     WideInc(nullptr),
868     WideIncExpr(nullptr),
869     DeadInsts(DI) {
870     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
871   }
872 
873   PHINode *createWideIV(SCEVExpander &Rewriter);
874 
875 protected:
876   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
877                           Instruction *Use);
878 
879   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
880   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
881                                      const SCEVAddRecExpr *WideAR);
882   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
883 
884   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
885 
886   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
887 
888   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
889                               unsigned OpCode) const;
890 
891   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
892 
893   bool widenLoopCompare(NarrowIVDefUse DU);
894 
895   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
896 };
897 } // anonymous namespace
898 
899 /// Perform a quick domtree based check for loop invariance assuming that V is
900 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
901 /// purpose.
902 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
903   Instruction *Inst = dyn_cast<Instruction>(V);
904   if (!Inst)
905     return true;
906 
907   return DT->properlyDominates(Inst->getParent(), L->getHeader());
908 }
909 
910 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
911                                  bool IsSigned, Instruction *Use) {
912   // Set the debug location and conservative insertion point.
913   IRBuilder<> Builder(Use);
914   // Hoist the insertion point into loop preheaders as far as possible.
915   for (const Loop *L = LI->getLoopFor(Use->getParent());
916        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
917        L = L->getParentLoop())
918     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
919 
920   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
921                     Builder.CreateZExt(NarrowOper, WideType);
922 }
923 
924 /// Instantiate a wide operation to replace a narrow operation. This only needs
925 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
926 /// 0 for any operation we decide not to clone.
927 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
928                                   const SCEVAddRecExpr *WideAR) {
929   unsigned Opcode = DU.NarrowUse->getOpcode();
930   switch (Opcode) {
931   default:
932     return nullptr;
933   case Instruction::Add:
934   case Instruction::Mul:
935   case Instruction::UDiv:
936   case Instruction::Sub:
937     return cloneArithmeticIVUser(DU, WideAR);
938 
939   case Instruction::And:
940   case Instruction::Or:
941   case Instruction::Xor:
942   case Instruction::Shl:
943   case Instruction::LShr:
944   case Instruction::AShr:
945     return cloneBitwiseIVUser(DU);
946   }
947 }
948 
949 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
950   Instruction *NarrowUse = DU.NarrowUse;
951   Instruction *NarrowDef = DU.NarrowDef;
952   Instruction *WideDef = DU.WideDef;
953 
954   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
955 
956   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
957   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
958   // invariant and will be folded or hoisted. If it actually comes from a
959   // widened IV, it should be removed during a future call to widenIVUse.
960   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
961                    ? WideDef
962                    : createExtendInst(NarrowUse->getOperand(0), WideType,
963                                       IsSigned, NarrowUse);
964   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
965                    ? WideDef
966                    : createExtendInst(NarrowUse->getOperand(1), WideType,
967                                       IsSigned, NarrowUse);
968 
969   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
970   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
971                                         NarrowBO->getName());
972   IRBuilder<> Builder(NarrowUse);
973   Builder.Insert(WideBO);
974   WideBO->copyIRFlags(NarrowBO);
975   return WideBO;
976 }
977 
978 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
979                                             const SCEVAddRecExpr *WideAR) {
980   Instruction *NarrowUse = DU.NarrowUse;
981   Instruction *NarrowDef = DU.NarrowDef;
982   Instruction *WideDef = DU.WideDef;
983 
984   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
985 
986   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
987 
988   // We're trying to find X such that
989   //
990   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
991   //
992   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
993   // and check using SCEV if any of them are correct.
994 
995   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
996   // correct solution to X.
997   auto GuessNonIVOperand = [&](bool SignExt) {
998     const SCEV *WideLHS;
999     const SCEV *WideRHS;
1000 
1001     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1002       if (SignExt)
1003         return SE->getSignExtendExpr(S, Ty);
1004       return SE->getZeroExtendExpr(S, Ty);
1005     };
1006 
1007     if (IVOpIdx == 0) {
1008       WideLHS = SE->getSCEV(WideDef);
1009       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1010       WideRHS = GetExtend(NarrowRHS, WideType);
1011     } else {
1012       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1013       WideLHS = GetExtend(NarrowLHS, WideType);
1014       WideRHS = SE->getSCEV(WideDef);
1015     }
1016 
1017     // WideUse is "WideDef `op.wide` X" as described in the comment.
1018     const SCEV *WideUse = nullptr;
1019 
1020     switch (NarrowUse->getOpcode()) {
1021     default:
1022       llvm_unreachable("No other possibility!");
1023 
1024     case Instruction::Add:
1025       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1026       break;
1027 
1028     case Instruction::Mul:
1029       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1030       break;
1031 
1032     case Instruction::UDiv:
1033       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1034       break;
1035 
1036     case Instruction::Sub:
1037       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1038       break;
1039     }
1040 
1041     return WideUse == WideAR;
1042   };
1043 
1044   bool SignExtend = IsSigned;
1045   if (!GuessNonIVOperand(SignExtend)) {
1046     SignExtend = !SignExtend;
1047     if (!GuessNonIVOperand(SignExtend))
1048       return nullptr;
1049   }
1050 
1051   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1052                    ? WideDef
1053                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1054                                       SignExtend, NarrowUse);
1055   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1056                    ? WideDef
1057                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1058                                       SignExtend, NarrowUse);
1059 
1060   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1061   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1062                                         NarrowBO->getName());
1063 
1064   IRBuilder<> Builder(NarrowUse);
1065   Builder.Insert(WideBO);
1066   WideBO->copyIRFlags(NarrowBO);
1067   return WideBO;
1068 }
1069 
1070 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1071                                      unsigned OpCode) const {
1072   if (OpCode == Instruction::Add)
1073     return SE->getAddExpr(LHS, RHS);
1074   if (OpCode == Instruction::Sub)
1075     return SE->getMinusSCEV(LHS, RHS);
1076   if (OpCode == Instruction::Mul)
1077     return SE->getMulExpr(LHS, RHS);
1078 
1079   llvm_unreachable("Unsupported opcode.");
1080 }
1081 
1082 /// No-wrap operations can transfer sign extension of their result to their
1083 /// operands. Generate the SCEV value for the widened operation without
1084 /// actually modifying the IR yet. If the expression after extending the
1085 /// operands is an AddRec for this loop, return it.
1086 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1087 
1088   // Handle the common case of add<nsw/nuw>
1089   const unsigned OpCode = DU.NarrowUse->getOpcode();
1090   // Only Add/Sub/Mul instructions supported yet.
1091   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1092       OpCode != Instruction::Mul)
1093     return nullptr;
1094 
1095   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1096   // if extending the other will lead to a recurrence.
1097   const unsigned ExtendOperIdx =
1098       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1099   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1100 
1101   const SCEV *ExtendOperExpr = nullptr;
1102   const OverflowingBinaryOperator *OBO =
1103     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1104   if (IsSigned && OBO->hasNoSignedWrap())
1105     ExtendOperExpr = SE->getSignExtendExpr(
1106       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1107   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1108     ExtendOperExpr = SE->getZeroExtendExpr(
1109       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1110   else
1111     return nullptr;
1112 
1113   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1114   // flags. This instruction may be guarded by control flow that the no-wrap
1115   // behavior depends on. Non-control-equivalent instructions can be mapped to
1116   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1117   // semantics to those operations.
1118   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1119   const SCEV *rhs = ExtendOperExpr;
1120 
1121   // Let's swap operands to the initial order for the case of non-commutative
1122   // operations, like SUB. See PR21014.
1123   if (ExtendOperIdx == 0)
1124     std::swap(lhs, rhs);
1125   const SCEVAddRecExpr *AddRec =
1126       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1127 
1128   if (!AddRec || AddRec->getLoop() != L)
1129     return nullptr;
1130   return AddRec;
1131 }
1132 
1133 /// Is this instruction potentially interesting for further simplification after
1134 /// widening it's type? In other words, can the extend be safely hoisted out of
1135 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1136 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1137 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1138   if (!SE->isSCEVable(NarrowUse->getType()))
1139     return nullptr;
1140 
1141   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1142   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1143       >= SE->getTypeSizeInBits(WideType)) {
1144     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1145     // index. So don't follow this use.
1146     return nullptr;
1147   }
1148 
1149   const SCEV *WideExpr = IsSigned ?
1150     SE->getSignExtendExpr(NarrowExpr, WideType) :
1151     SE->getZeroExtendExpr(NarrowExpr, WideType);
1152   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1153   if (!AddRec || AddRec->getLoop() != L)
1154     return nullptr;
1155   return AddRec;
1156 }
1157 
1158 /// This IV user cannot be widen. Replace this use of the original narrow IV
1159 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1160 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1161   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1162         << " for user " << *DU.NarrowUse << "\n");
1163   IRBuilder<> Builder(
1164       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1165   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1166   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1167 }
1168 
1169 /// If the narrow use is a compare instruction, then widen the compare
1170 //  (and possibly the other operand).  The extend operation is hoisted into the
1171 // loop preheader as far as possible.
1172 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1173   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1174   if (!Cmp)
1175     return false;
1176 
1177   // We can legally widen the comparison in the following two cases:
1178   //
1179   //  - The signedness of the IV extension and comparison match
1180   //
1181   //  - The narrow IV is always positive (and thus its sign extension is equal
1182   //    to its zero extension).  For instance, let's say we're zero extending
1183   //    %narrow for the following use
1184   //
1185   //      icmp slt i32 %narrow, %val   ... (A)
1186   //
1187   //    and %narrow is always positive.  Then
1188   //
1189   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1190   //          == icmp slt i32 zext(%narrow), sext(%val)
1191 
1192   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1193     return false;
1194 
1195   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1196   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1197   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1198   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1199 
1200   // Widen the compare instruction.
1201   IRBuilder<> Builder(
1202       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1203   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1204 
1205   // Widen the other operand of the compare, if necessary.
1206   if (CastWidth < IVWidth) {
1207     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1208     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1209   }
1210   return true;
1211 }
1212 
1213 /// Determine whether an individual user of the narrow IV can be widened. If so,
1214 /// return the wide clone of the user.
1215 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1216 
1217   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1218   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1219     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1220       // For LCSSA phis, sink the truncate outside the loop.
1221       // After SimplifyCFG most loop exit targets have a single predecessor.
1222       // Otherwise fall back to a truncate within the loop.
1223       if (UsePhi->getNumOperands() != 1)
1224         truncateIVUse(DU, DT, LI);
1225       else {
1226         PHINode *WidePhi =
1227           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1228                           UsePhi);
1229         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1230         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1231         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1232         UsePhi->replaceAllUsesWith(Trunc);
1233         DeadInsts.emplace_back(UsePhi);
1234         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1235               << " to " << *WidePhi << "\n");
1236       }
1237       return nullptr;
1238     }
1239   }
1240   // Our raison d'etre! Eliminate sign and zero extension.
1241   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1242     Value *NewDef = DU.WideDef;
1243     if (DU.NarrowUse->getType() != WideType) {
1244       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1245       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1246       if (CastWidth < IVWidth) {
1247         // The cast isn't as wide as the IV, so insert a Trunc.
1248         IRBuilder<> Builder(DU.NarrowUse);
1249         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1250       }
1251       else {
1252         // A wider extend was hidden behind a narrower one. This may induce
1253         // another round of IV widening in which the intermediate IV becomes
1254         // dead. It should be very rare.
1255         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1256               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1257         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1258         NewDef = DU.NarrowUse;
1259       }
1260     }
1261     if (NewDef != DU.NarrowUse) {
1262       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1263             << " replaced by " << *DU.WideDef << "\n");
1264       ++NumElimExt;
1265       DU.NarrowUse->replaceAllUsesWith(NewDef);
1266       DeadInsts.emplace_back(DU.NarrowUse);
1267     }
1268     // Now that the extend is gone, we want to expose it's uses for potential
1269     // further simplification. We don't need to directly inform SimplifyIVUsers
1270     // of the new users, because their parent IV will be processed later as a
1271     // new loop phi. If we preserved IVUsers analysis, we would also want to
1272     // push the uses of WideDef here.
1273 
1274     // No further widening is needed. The deceased [sz]ext had done it for us.
1275     return nullptr;
1276   }
1277 
1278   // Does this user itself evaluate to a recurrence after widening?
1279   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1280   if (!WideAddRec)
1281     WideAddRec = getExtendedOperandRecurrence(DU);
1282 
1283   if (!WideAddRec) {
1284     // If use is a loop condition, try to promote the condition instead of
1285     // truncating the IV first.
1286     if (widenLoopCompare(DU))
1287       return nullptr;
1288 
1289     // This user does not evaluate to a recurence after widening, so don't
1290     // follow it. Instead insert a Trunc to kill off the original use,
1291     // eventually isolating the original narrow IV so it can be removed.
1292     truncateIVUse(DU, DT, LI);
1293     return nullptr;
1294   }
1295   // Assume block terminators cannot evaluate to a recurrence. We can't to
1296   // insert a Trunc after a terminator if there happens to be a critical edge.
1297   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1298          "SCEV is not expected to evaluate a block terminator");
1299 
1300   // Reuse the IV increment that SCEVExpander created as long as it dominates
1301   // NarrowUse.
1302   Instruction *WideUse = nullptr;
1303   if (WideAddRec == WideIncExpr
1304       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1305     WideUse = WideInc;
1306   else {
1307     WideUse = cloneIVUser(DU, WideAddRec);
1308     if (!WideUse)
1309       return nullptr;
1310   }
1311   // Evaluation of WideAddRec ensured that the narrow expression could be
1312   // extended outside the loop without overflow. This suggests that the wide use
1313   // evaluates to the same expression as the extended narrow use, but doesn't
1314   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1315   // where it fails, we simply throw away the newly created wide use.
1316   if (WideAddRec != SE->getSCEV(WideUse)) {
1317     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1318           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1319     DeadInsts.emplace_back(WideUse);
1320     return nullptr;
1321   }
1322 
1323   // Returning WideUse pushes it on the worklist.
1324   return WideUse;
1325 }
1326 
1327 /// Add eligible users of NarrowDef to NarrowIVUsers.
1328 ///
1329 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1330   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1331   bool NeverNegative =
1332       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1333                            SE->getConstant(NarrowSCEV->getType(), 0));
1334   for (User *U : NarrowDef->users()) {
1335     Instruction *NarrowUser = cast<Instruction>(U);
1336 
1337     // Handle data flow merges and bizarre phi cycles.
1338     if (!Widened.insert(NarrowUser).second)
1339       continue;
1340 
1341     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1342   }
1343 }
1344 
1345 /// Process a single induction variable. First use the SCEVExpander to create a
1346 /// wide induction variable that evaluates to the same recurrence as the
1347 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1348 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1349 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1350 ///
1351 /// It would be simpler to delete uses as they are processed, but we must avoid
1352 /// invalidating SCEV expressions.
1353 ///
1354 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1355   // Is this phi an induction variable?
1356   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1357   if (!AddRec)
1358     return nullptr;
1359 
1360   // Widen the induction variable expression.
1361   const SCEV *WideIVExpr = IsSigned ?
1362     SE->getSignExtendExpr(AddRec, WideType) :
1363     SE->getZeroExtendExpr(AddRec, WideType);
1364 
1365   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1366          "Expect the new IV expression to preserve its type");
1367 
1368   // Can the IV be extended outside the loop without overflow?
1369   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1370   if (!AddRec || AddRec->getLoop() != L)
1371     return nullptr;
1372 
1373   // An AddRec must have loop-invariant operands. Since this AddRec is
1374   // materialized by a loop header phi, the expression cannot have any post-loop
1375   // operands, so they must dominate the loop header.
1376   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1377          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1378          && "Loop header phi recurrence inputs do not dominate the loop");
1379 
1380   // The rewriter provides a value for the desired IV expression. This may
1381   // either find an existing phi or materialize a new one. Either way, we
1382   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1383   // of the phi-SCC dominates the loop entry.
1384   Instruction *InsertPt = &L->getHeader()->front();
1385   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1386 
1387   // Remembering the WideIV increment generated by SCEVExpander allows
1388   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1389   // employ a general reuse mechanism because the call above is the only call to
1390   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1391   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1392     WideInc =
1393       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1394     WideIncExpr = SE->getSCEV(WideInc);
1395   }
1396 
1397   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1398   ++NumWidened;
1399 
1400   // Traverse the def-use chain using a worklist starting at the original IV.
1401   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1402 
1403   Widened.insert(OrigPhi);
1404   pushNarrowIVUsers(OrigPhi, WidePhi);
1405 
1406   while (!NarrowIVUsers.empty()) {
1407     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1408 
1409     // Process a def-use edge. This may replace the use, so don't hold a
1410     // use_iterator across it.
1411     Instruction *WideUse = widenIVUse(DU, Rewriter);
1412 
1413     // Follow all def-use edges from the previous narrow use.
1414     if (WideUse)
1415       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1416 
1417     // widenIVUse may have removed the def-use edge.
1418     if (DU.NarrowDef->use_empty())
1419       DeadInsts.emplace_back(DU.NarrowDef);
1420   }
1421   return WidePhi;
1422 }
1423 
1424 //===----------------------------------------------------------------------===//
1425 //  Live IV Reduction - Minimize IVs live across the loop.
1426 //===----------------------------------------------------------------------===//
1427 
1428 
1429 //===----------------------------------------------------------------------===//
1430 //  Simplification of IV users based on SCEV evaluation.
1431 //===----------------------------------------------------------------------===//
1432 
1433 namespace {
1434 class IndVarSimplifyVisitor : public IVVisitor {
1435   ScalarEvolution *SE;
1436   const TargetTransformInfo *TTI;
1437   PHINode *IVPhi;
1438 
1439 public:
1440   WideIVInfo WI;
1441 
1442   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1443                         const TargetTransformInfo *TTI,
1444                         const DominatorTree *DTree)
1445     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1446     DT = DTree;
1447     WI.NarrowIV = IVPhi;
1448     if (ReduceLiveIVs)
1449       setSplitOverflowIntrinsics();
1450   }
1451 
1452   // Implement the interface used by simplifyUsersOfIV.
1453   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1454 };
1455 }
1456 
1457 /// Iteratively perform simplification on a worklist of IV users. Each
1458 /// successive simplification may push more users which may themselves be
1459 /// candidates for simplification.
1460 ///
1461 /// Sign/Zero extend elimination is interleaved with IV simplification.
1462 ///
1463 void IndVarSimplify::simplifyAndExtend(Loop *L,
1464                                        SCEVExpander &Rewriter,
1465                                        LoopInfo *LI) {
1466   SmallVector<WideIVInfo, 8> WideIVs;
1467 
1468   SmallVector<PHINode*, 8> LoopPhis;
1469   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1470     LoopPhis.push_back(cast<PHINode>(I));
1471   }
1472   // Each round of simplification iterates through the SimplifyIVUsers worklist
1473   // for all current phis, then determines whether any IVs can be
1474   // widened. Widening adds new phis to LoopPhis, inducing another round of
1475   // simplification on the wide IVs.
1476   while (!LoopPhis.empty()) {
1477     // Evaluate as many IV expressions as possible before widening any IVs. This
1478     // forces SCEV to set no-wrap flags before evaluating sign/zero
1479     // extension. The first time SCEV attempts to normalize sign/zero extension,
1480     // the result becomes final. So for the most predictable results, we delay
1481     // evaluation of sign/zero extend evaluation until needed, and avoid running
1482     // other SCEV based analysis prior to simplifyAndExtend.
1483     do {
1484       PHINode *CurrIV = LoopPhis.pop_back_val();
1485 
1486       // Information about sign/zero extensions of CurrIV.
1487       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1488 
1489       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1490 
1491       if (Visitor.WI.WidestNativeType) {
1492         WideIVs.push_back(Visitor.WI);
1493       }
1494     } while(!LoopPhis.empty());
1495 
1496     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1497       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1498       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1499         Changed = true;
1500         LoopPhis.push_back(WidePhi);
1501       }
1502     }
1503   }
1504 }
1505 
1506 //===----------------------------------------------------------------------===//
1507 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1508 //===----------------------------------------------------------------------===//
1509 
1510 /// Return true if this loop's backedge taken count expression can be safely and
1511 /// cheaply expanded into an instruction sequence that can be used by
1512 /// linearFunctionTestReplace.
1513 ///
1514 /// TODO: This fails for pointer-type loop counters with greater than one byte
1515 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1516 /// we could skip this check in the case that the LFTR loop counter (chosen by
1517 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1518 /// the loop test to an inequality test by checking the target data's alignment
1519 /// of element types (given that the initial pointer value originates from or is
1520 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1521 /// However, we don't yet have a strong motivation for converting loop tests
1522 /// into inequality tests.
1523 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1524                                         SCEVExpander &Rewriter) {
1525   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1526   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1527       BackedgeTakenCount->isZero())
1528     return false;
1529 
1530   if (!L->getExitingBlock())
1531     return false;
1532 
1533   // Can't rewrite non-branch yet.
1534   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1535     return false;
1536 
1537   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1538     return false;
1539 
1540   return true;
1541 }
1542 
1543 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1544 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1545   Instruction *IncI = dyn_cast<Instruction>(IncV);
1546   if (!IncI)
1547     return nullptr;
1548 
1549   switch (IncI->getOpcode()) {
1550   case Instruction::Add:
1551   case Instruction::Sub:
1552     break;
1553   case Instruction::GetElementPtr:
1554     // An IV counter must preserve its type.
1555     if (IncI->getNumOperands() == 2)
1556       break;
1557   default:
1558     return nullptr;
1559   }
1560 
1561   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1562   if (Phi && Phi->getParent() == L->getHeader()) {
1563     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1564       return Phi;
1565     return nullptr;
1566   }
1567   if (IncI->getOpcode() == Instruction::GetElementPtr)
1568     return nullptr;
1569 
1570   // Allow add/sub to be commuted.
1571   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1572   if (Phi && Phi->getParent() == L->getHeader()) {
1573     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1574       return Phi;
1575   }
1576   return nullptr;
1577 }
1578 
1579 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1580 static ICmpInst *getLoopTest(Loop *L) {
1581   assert(L->getExitingBlock() && "expected loop exit");
1582 
1583   BasicBlock *LatchBlock = L->getLoopLatch();
1584   // Don't bother with LFTR if the loop is not properly simplified.
1585   if (!LatchBlock)
1586     return nullptr;
1587 
1588   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1589   assert(BI && "expected exit branch");
1590 
1591   return dyn_cast<ICmpInst>(BI->getCondition());
1592 }
1593 
1594 /// linearFunctionTestReplace policy. Return true unless we can show that the
1595 /// current exit test is already sufficiently canonical.
1596 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1597   // Do LFTR to simplify the exit condition to an ICMP.
1598   ICmpInst *Cond = getLoopTest(L);
1599   if (!Cond)
1600     return true;
1601 
1602   // Do LFTR to simplify the exit ICMP to EQ/NE
1603   ICmpInst::Predicate Pred = Cond->getPredicate();
1604   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1605     return true;
1606 
1607   // Look for a loop invariant RHS
1608   Value *LHS = Cond->getOperand(0);
1609   Value *RHS = Cond->getOperand(1);
1610   if (!isLoopInvariant(RHS, L, DT)) {
1611     if (!isLoopInvariant(LHS, L, DT))
1612       return true;
1613     std::swap(LHS, RHS);
1614   }
1615   // Look for a simple IV counter LHS
1616   PHINode *Phi = dyn_cast<PHINode>(LHS);
1617   if (!Phi)
1618     Phi = getLoopPhiForCounter(LHS, L, DT);
1619 
1620   if (!Phi)
1621     return true;
1622 
1623   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1624   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1625   if (Idx < 0)
1626     return true;
1627 
1628   // Do LFTR if the exit condition's IV is *not* a simple counter.
1629   Value *IncV = Phi->getIncomingValue(Idx);
1630   return Phi != getLoopPhiForCounter(IncV, L, DT);
1631 }
1632 
1633 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1634 /// down to checking that all operands are constant and listing instructions
1635 /// that may hide undef.
1636 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1637                                unsigned Depth) {
1638   if (isa<Constant>(V))
1639     return !isa<UndefValue>(V);
1640 
1641   if (Depth >= 6)
1642     return false;
1643 
1644   // Conservatively handle non-constant non-instructions. For example, Arguments
1645   // may be undef.
1646   Instruction *I = dyn_cast<Instruction>(V);
1647   if (!I)
1648     return false;
1649 
1650   // Load and return values may be undef.
1651   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1652     return false;
1653 
1654   // Optimistically handle other instructions.
1655   for (Value *Op : I->operands()) {
1656     if (!Visited.insert(Op).second)
1657       continue;
1658     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1659       return false;
1660   }
1661   return true;
1662 }
1663 
1664 /// Return true if the given value is concrete. We must prove that undef can
1665 /// never reach it.
1666 ///
1667 /// TODO: If we decide that this is a good approach to checking for undef, we
1668 /// may factor it into a common location.
1669 static bool hasConcreteDef(Value *V) {
1670   SmallPtrSet<Value*, 8> Visited;
1671   Visited.insert(V);
1672   return hasConcreteDefImpl(V, Visited, 0);
1673 }
1674 
1675 /// Return true if this IV has any uses other than the (soon to be rewritten)
1676 /// loop exit test.
1677 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1678   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1679   Value *IncV = Phi->getIncomingValue(LatchIdx);
1680 
1681   for (User *U : Phi->users())
1682     if (U != Cond && U != IncV) return false;
1683 
1684   for (User *U : IncV->users())
1685     if (U != Cond && U != Phi) return false;
1686   return true;
1687 }
1688 
1689 /// Find an affine IV in canonical form.
1690 ///
1691 /// BECount may be an i8* pointer type. The pointer difference is already
1692 /// valid count without scaling the address stride, so it remains a pointer
1693 /// expression as far as SCEV is concerned.
1694 ///
1695 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1696 ///
1697 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1698 ///
1699 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1700 /// This is difficult in general for SCEV because of potential overflow. But we
1701 /// could at least handle constant BECounts.
1702 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1703                                 ScalarEvolution *SE, DominatorTree *DT) {
1704   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1705 
1706   Value *Cond =
1707     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1708 
1709   // Loop over all of the PHI nodes, looking for a simple counter.
1710   PHINode *BestPhi = nullptr;
1711   const SCEV *BestInit = nullptr;
1712   BasicBlock *LatchBlock = L->getLoopLatch();
1713   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1714 
1715   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1716     PHINode *Phi = cast<PHINode>(I);
1717     if (!SE->isSCEVable(Phi->getType()))
1718       continue;
1719 
1720     // Avoid comparing an integer IV against a pointer Limit.
1721     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1722       continue;
1723 
1724     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1725     if (!AR || AR->getLoop() != L || !AR->isAffine())
1726       continue;
1727 
1728     // AR may be a pointer type, while BECount is an integer type.
1729     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1730     // AR may not be a narrower type, or we may never exit.
1731     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1732     if (PhiWidth < BCWidth ||
1733         !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1734       continue;
1735 
1736     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1737     if (!Step || !Step->isOne())
1738       continue;
1739 
1740     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1741     Value *IncV = Phi->getIncomingValue(LatchIdx);
1742     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1743       continue;
1744 
1745     // Avoid reusing a potentially undef value to compute other values that may
1746     // have originally had a concrete definition.
1747     if (!hasConcreteDef(Phi)) {
1748       // We explicitly allow unknown phis as long as they are already used by
1749       // the loop test. In this case we assume that performing LFTR could not
1750       // increase the number of undef users.
1751       if (ICmpInst *Cond = getLoopTest(L)) {
1752         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1753             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1754           continue;
1755         }
1756       }
1757     }
1758     const SCEV *Init = AR->getStart();
1759 
1760     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1761       // Don't force a live loop counter if another IV can be used.
1762       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1763         continue;
1764 
1765       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1766       // also prefers integer to pointer IVs.
1767       if (BestInit->isZero() != Init->isZero()) {
1768         if (BestInit->isZero())
1769           continue;
1770       }
1771       // If two IVs both count from zero or both count from nonzero then the
1772       // narrower is likely a dead phi that has been widened. Use the wider phi
1773       // to allow the other to be eliminated.
1774       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1775         continue;
1776     }
1777     BestPhi = Phi;
1778     BestInit = Init;
1779   }
1780   return BestPhi;
1781 }
1782 
1783 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1784 /// the new loop test.
1785 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1786                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1787   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1788   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1789   const SCEV *IVInit = AR->getStart();
1790 
1791   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1792   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1793   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1794   // the existing GEPs whenever possible.
1795   if (IndVar->getType()->isPointerTy()
1796       && !IVCount->getType()->isPointerTy()) {
1797 
1798     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1799     // signed value. IVCount on the other hand represents the loop trip count,
1800     // which is an unsigned value. FindLoopCounter only allows induction
1801     // variables that have a positive unit stride of one. This means we don't
1802     // have to handle the case of negative offsets (yet) and just need to zero
1803     // extend IVCount.
1804     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1805     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1806 
1807     // Expand the code for the iteration count.
1808     assert(SE->isLoopInvariant(IVOffset, L) &&
1809            "Computed iteration count is not loop invariant!");
1810     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1811     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1812 
1813     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1814     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1815     // We could handle pointer IVs other than i8*, but we need to compensate for
1816     // gep index scaling. See canExpandBackedgeTakenCount comments.
1817     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1818              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1819            && "unit stride pointer IV must be i8*");
1820 
1821     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1822     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1823   }
1824   else {
1825     // In any other case, convert both IVInit and IVCount to integers before
1826     // comparing. This may result in SCEV expension of pointers, but in practice
1827     // SCEV will fold the pointer arithmetic away as such:
1828     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1829     //
1830     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1831     // for simple memset-style loops.
1832     //
1833     // IVInit integer and IVCount pointer would only occur if a canonical IV
1834     // were generated on top of case #2, which is not expected.
1835 
1836     const SCEV *IVLimit = nullptr;
1837     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1838     // For non-zero Start, compute IVCount here.
1839     if (AR->getStart()->isZero())
1840       IVLimit = IVCount;
1841     else {
1842       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1843       const SCEV *IVInit = AR->getStart();
1844 
1845       // For integer IVs, truncate the IV before computing IVInit + BECount.
1846       if (SE->getTypeSizeInBits(IVInit->getType())
1847           > SE->getTypeSizeInBits(IVCount->getType()))
1848         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1849 
1850       IVLimit = SE->getAddExpr(IVInit, IVCount);
1851     }
1852     // Expand the code for the iteration count.
1853     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1854     IRBuilder<> Builder(BI);
1855     assert(SE->isLoopInvariant(IVLimit, L) &&
1856            "Computed iteration count is not loop invariant!");
1857     // Ensure that we generate the same type as IndVar, or a smaller integer
1858     // type. In the presence of null pointer values, we have an integer type
1859     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1860     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1861       IndVar->getType() : IVCount->getType();
1862     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1863   }
1864 }
1865 
1866 /// This method rewrites the exit condition of the loop to be a canonical !=
1867 /// comparison against the incremented loop induction variable.  This pass is
1868 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1869 /// determine a loop-invariant trip count of the loop, which is actually a much
1870 /// broader range than just linear tests.
1871 Value *IndVarSimplify::
1872 linearFunctionTestReplace(Loop *L,
1873                           const SCEV *BackedgeTakenCount,
1874                           PHINode *IndVar,
1875                           SCEVExpander &Rewriter) {
1876   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1877 
1878   // Initialize CmpIndVar and IVCount to their preincremented values.
1879   Value *CmpIndVar = IndVar;
1880   const SCEV *IVCount = BackedgeTakenCount;
1881 
1882   // If the exiting block is the same as the backedge block, we prefer to
1883   // compare against the post-incremented value, otherwise we must compare
1884   // against the preincremented value.
1885   if (L->getExitingBlock() == L->getLoopLatch()) {
1886     // Add one to the "backedge-taken" count to get the trip count.
1887     // This addition may overflow, which is valid as long as the comparison is
1888     // truncated to BackedgeTakenCount->getType().
1889     IVCount = SE->getAddExpr(BackedgeTakenCount,
1890                              SE->getOne(BackedgeTakenCount->getType()));
1891     // The BackedgeTaken expression contains the number of times that the
1892     // backedge branches to the loop header.  This is one less than the
1893     // number of times the loop executes, so use the incremented indvar.
1894     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1895   }
1896 
1897   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1898   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1899          && "genLoopLimit missed a cast");
1900 
1901   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1902   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1903   ICmpInst::Predicate P;
1904   if (L->contains(BI->getSuccessor(0)))
1905     P = ICmpInst::ICMP_NE;
1906   else
1907     P = ICmpInst::ICMP_EQ;
1908 
1909   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1910                << "      LHS:" << *CmpIndVar << '\n'
1911                << "       op:\t"
1912                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1913                << "      RHS:\t" << *ExitCnt << "\n"
1914                << "  IVCount:\t" << *IVCount << "\n");
1915 
1916   IRBuilder<> Builder(BI);
1917 
1918   // LFTR can ignore IV overflow and truncate to the width of
1919   // BECount. This avoids materializing the add(zext(add)) expression.
1920   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1921   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1922   if (CmpIndVarSize > ExitCntSize) {
1923     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1924     const SCEV *ARStart = AR->getStart();
1925     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1926     // For constant IVCount, avoid truncation.
1927     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1928       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1929       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1930       // Note that the post-inc value of BackedgeTakenCount may have overflowed
1931       // above such that IVCount is now zero.
1932       if (IVCount != BackedgeTakenCount && Count == 0) {
1933         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1934         ++Count;
1935       }
1936       else
1937         Count = Count.zext(CmpIndVarSize);
1938       APInt NewLimit;
1939       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1940         NewLimit = Start - Count;
1941       else
1942         NewLimit = Start + Count;
1943       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1944 
1945       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1946     } else {
1947       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1948                                       "lftr.wideiv");
1949     }
1950   }
1951   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1952   Value *OrigCond = BI->getCondition();
1953   // It's tempting to use replaceAllUsesWith here to fully replace the old
1954   // comparison, but that's not immediately safe, since users of the old
1955   // comparison may not be dominated by the new comparison. Instead, just
1956   // update the branch to use the new comparison; in the common case this
1957   // will make old comparison dead.
1958   BI->setCondition(Cond);
1959   DeadInsts.push_back(OrigCond);
1960 
1961   ++NumLFTR;
1962   Changed = true;
1963   return Cond;
1964 }
1965 
1966 //===----------------------------------------------------------------------===//
1967 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1968 //===----------------------------------------------------------------------===//
1969 
1970 /// If there's a single exit block, sink any loop-invariant values that
1971 /// were defined in the preheader but not used inside the loop into the
1972 /// exit block to reduce register pressure in the loop.
1973 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1974   BasicBlock *ExitBlock = L->getExitBlock();
1975   if (!ExitBlock) return;
1976 
1977   BasicBlock *Preheader = L->getLoopPreheader();
1978   if (!Preheader) return;
1979 
1980   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
1981   BasicBlock::iterator I(Preheader->getTerminator());
1982   while (I != Preheader->begin()) {
1983     --I;
1984     // New instructions were inserted at the end of the preheader.
1985     if (isa<PHINode>(I))
1986       break;
1987 
1988     // Don't move instructions which might have side effects, since the side
1989     // effects need to complete before instructions inside the loop.  Also don't
1990     // move instructions which might read memory, since the loop may modify
1991     // memory. Note that it's okay if the instruction might have undefined
1992     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1993     // block.
1994     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1995       continue;
1996 
1997     // Skip debug info intrinsics.
1998     if (isa<DbgInfoIntrinsic>(I))
1999       continue;
2000 
2001     // Skip eh pad instructions.
2002     if (I->isEHPad())
2003       continue;
2004 
2005     // Don't sink alloca: we never want to sink static alloca's out of the
2006     // entry block, and correctly sinking dynamic alloca's requires
2007     // checks for stacksave/stackrestore intrinsics.
2008     // FIXME: Refactor this check somehow?
2009     if (isa<AllocaInst>(I))
2010       continue;
2011 
2012     // Determine if there is a use in or before the loop (direct or
2013     // otherwise).
2014     bool UsedInLoop = false;
2015     for (Use &U : I->uses()) {
2016       Instruction *User = cast<Instruction>(U.getUser());
2017       BasicBlock *UseBB = User->getParent();
2018       if (PHINode *P = dyn_cast<PHINode>(User)) {
2019         unsigned i =
2020           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2021         UseBB = P->getIncomingBlock(i);
2022       }
2023       if (UseBB == Preheader || L->contains(UseBB)) {
2024         UsedInLoop = true;
2025         break;
2026       }
2027     }
2028 
2029     // If there is, the def must remain in the preheader.
2030     if (UsedInLoop)
2031       continue;
2032 
2033     // Otherwise, sink it to the exit block.
2034     Instruction *ToMove = &*I;
2035     bool Done = false;
2036 
2037     if (I != Preheader->begin()) {
2038       // Skip debug info intrinsics.
2039       do {
2040         --I;
2041       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2042 
2043       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2044         Done = true;
2045     } else {
2046       Done = true;
2047     }
2048 
2049     ToMove->moveBefore(InsertPt);
2050     if (Done) break;
2051     InsertPt = ToMove;
2052   }
2053 }
2054 
2055 //===----------------------------------------------------------------------===//
2056 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2057 //===----------------------------------------------------------------------===//
2058 
2059 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2060   if (skipOptnoneFunction(L))
2061     return false;
2062 
2063   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2064   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2065   //    canonicalization can be a pessimization without LSR to "clean up"
2066   //    afterwards.
2067   //  - We depend on having a preheader; in particular,
2068   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2069   //    and we're in trouble if we can't find the induction variable even when
2070   //    we've manually inserted one.
2071   if (!L->isLoopSimplifyForm())
2072     return false;
2073 
2074   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2075   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2076   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2077   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2078   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2079   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2080   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2081   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2082 
2083   DeadInsts.clear();
2084   Changed = false;
2085 
2086   // If there are any floating-point recurrences, attempt to
2087   // transform them to use integer recurrences.
2088   rewriteNonIntegerIVs(L);
2089 
2090   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2091 
2092   // Create a rewriter object which we'll use to transform the code with.
2093   SCEVExpander Rewriter(*SE, DL, "indvars");
2094 #ifndef NDEBUG
2095   Rewriter.setDebugType(DEBUG_TYPE);
2096 #endif
2097 
2098   // Eliminate redundant IV users.
2099   //
2100   // Simplification works best when run before other consumers of SCEV. We
2101   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2102   // other expressions involving loop IVs have been evaluated. This helps SCEV
2103   // set no-wrap flags before normalizing sign/zero extension.
2104   Rewriter.disableCanonicalMode();
2105   simplifyAndExtend(L, Rewriter, LI);
2106 
2107   // Check to see if this loop has a computable loop-invariant execution count.
2108   // If so, this means that we can compute the final value of any expressions
2109   // that are recurrent in the loop, and substitute the exit values from the
2110   // loop into any instructions outside of the loop that use the final values of
2111   // the current expressions.
2112   //
2113   if (ReplaceExitValue != NeverRepl &&
2114       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2115     rewriteLoopExitValues(L, Rewriter);
2116 
2117   // Eliminate redundant IV cycles.
2118   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2119 
2120   // If we have a trip count expression, rewrite the loop's exit condition
2121   // using it.  We can currently only handle loops with a single exit.
2122   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2123     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2124     if (IndVar) {
2125       // Check preconditions for proper SCEVExpander operation. SCEV does not
2126       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2127       // pass that uses the SCEVExpander must do it. This does not work well for
2128       // loop passes because SCEVExpander makes assumptions about all loops,
2129       // while LoopPassManager only forces the current loop to be simplified.
2130       //
2131       // FIXME: SCEV expansion has no way to bail out, so the caller must
2132       // explicitly check any assumptions made by SCEV. Brittle.
2133       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2134       if (!AR || AR->getLoop()->getLoopPreheader())
2135         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2136                                         Rewriter);
2137     }
2138   }
2139   // Clear the rewriter cache, because values that are in the rewriter's cache
2140   // can be deleted in the loop below, causing the AssertingVH in the cache to
2141   // trigger.
2142   Rewriter.clear();
2143 
2144   // Now that we're done iterating through lists, clean up any instructions
2145   // which are now dead.
2146   while (!DeadInsts.empty())
2147     if (Instruction *Inst =
2148             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2149       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2150 
2151   // The Rewriter may not be used from this point on.
2152 
2153   // Loop-invariant instructions in the preheader that aren't used in the
2154   // loop may be sunk below the loop to reduce register pressure.
2155   sinkUnusedInvariants(L);
2156 
2157   // Clean up dead instructions.
2158   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2159 
2160   // Check a post-condition.
2161   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2162 
2163   // Verify that LFTR, and any other change have not interfered with SCEV's
2164   // ability to compute trip count.
2165 #ifndef NDEBUG
2166   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2167     SE->forgetLoop(L);
2168     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2169     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2170         SE->getTypeSizeInBits(NewBECount->getType()))
2171       NewBECount = SE->getTruncateOrNoop(NewBECount,
2172                                          BackedgeTakenCount->getType());
2173     else
2174       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2175                                                  NewBECount->getType());
2176     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2177   }
2178 #endif
2179 
2180   return Changed;
2181 }
2182