xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision daf32b13d7009e4c53cad71132564f49bac61cb7)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 using namespace PatternMatch;
93 
94 #define DEBUG_TYPE "indvars"
95 
96 STATISTIC(NumWidened     , "Number of indvars widened");
97 STATISTIC(NumReplaced    , "Number of exit values replaced");
98 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
99 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
100 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
101 
102 // Trip count verification can be enabled by default under NDEBUG if we
103 // implement a strong expression equivalence checker in SCEV. Until then, we
104 // use the verify-indvars flag, which may assert in some cases.
105 static cl::opt<bool> VerifyIndvars(
106     "verify-indvars", cl::Hidden,
107     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
108              "effect in release builds. (Note: this adds additional SCEV "
109              "queries potentially changing the analysis result)"));
110 
111 static cl::opt<ReplaceExitVal> ReplaceExitValue(
112     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
113     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
114     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
115                clEnumValN(OnlyCheapRepl, "cheap",
116                           "only replace exit value when the cost is cheap"),
117                clEnumValN(NoHardUse, "noharduse",
118                           "only replace exit values when loop def likely dead"),
119                clEnumValN(AlwaysRepl, "always",
120                           "always replace exit value whenever possible")));
121 
122 static cl::opt<bool> UsePostIncrementRanges(
123   "indvars-post-increment-ranges", cl::Hidden,
124   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
125   cl::init(true));
126 
127 static cl::opt<bool>
128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
129             cl::desc("Disable Linear Function Test Replace optimization"));
130 
131 static cl::opt<bool>
132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
133                 cl::desc("Predicate conditions in read only loops"));
134 
135 static cl::opt<bool>
136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
137                 cl::desc("Allow widening of indvars to eliminate s/zext"));
138 
139 namespace {
140 
141 struct RewritePhi;
142 
143 class IndVarSimplify {
144   LoopInfo *LI;
145   ScalarEvolution *SE;
146   DominatorTree *DT;
147   const DataLayout &DL;
148   TargetLibraryInfo *TLI;
149   const TargetTransformInfo *TTI;
150   std::unique_ptr<MemorySSAUpdater> MSSAU;
151 
152   SmallVector<WeakTrackingVH, 16> DeadInsts;
153   bool WidenIndVars;
154 
155   bool handleFloatingPointIV(Loop *L, PHINode *PH);
156   bool rewriteNonIntegerIVs(Loop *L);
157 
158   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
159   /// Try to improve our exit conditions by converting condition from signed
160   /// to unsigned or rotating computation out of the loop.
161   /// (See inline comment about why this is duplicated from simplifyAndExtend)
162   bool canonicalizeExitCondition(Loop *L);
163   /// Try to eliminate loop exits based on analyzeable exit counts
164   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
165   /// Try to form loop invariant tests for loop exits by changing how many
166   /// iterations of the loop run when that is unobservable.
167   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
168 
169   bool rewriteFirstIterationLoopExitValues(Loop *L);
170 
171   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
172                                  const SCEV *ExitCount,
173                                  PHINode *IndVar, SCEVExpander &Rewriter);
174 
175   bool sinkUnusedInvariants(Loop *L);
176 
177 public:
178   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
179                  const DataLayout &DL, TargetLibraryInfo *TLI,
180                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
181       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
182         WidenIndVars(WidenIndVars) {
183     if (MSSA)
184       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
185   }
186 
187   bool run(Loop *L);
188 };
189 
190 } // end anonymous namespace
191 
192 //===----------------------------------------------------------------------===//
193 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
194 //===----------------------------------------------------------------------===//
195 
196 /// Convert APF to an integer, if possible.
197 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
198   bool isExact = false;
199   // See if we can convert this to an int64_t
200   uint64_t UIntVal;
201   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
202                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
203       !isExact)
204     return false;
205   IntVal = UIntVal;
206   return true;
207 }
208 
209 /// If the loop has floating induction variable then insert corresponding
210 /// integer induction variable if possible.
211 /// For example,
212 /// for(double i = 0; i < 10000; ++i)
213 ///   bar(i)
214 /// is converted into
215 /// for(int i = 0; i < 10000; ++i)
216 ///   bar((double)i);
217 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
218   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
219   unsigned BackEdge     = IncomingEdge^1;
220 
221   // Check incoming value.
222   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
223 
224   int64_t InitValue;
225   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
226     return false;
227 
228   // Check IV increment. Reject this PN if increment operation is not
229   // an add or increment value can not be represented by an integer.
230   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
231   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
232 
233   // If this is not an add of the PHI with a constantfp, or if the constant fp
234   // is not an integer, bail out.
235   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
236   int64_t IncValue;
237   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
238       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
239     return false;
240 
241   // Check Incr uses. One user is PN and the other user is an exit condition
242   // used by the conditional terminator.
243   Value::user_iterator IncrUse = Incr->user_begin();
244   Instruction *U1 = cast<Instruction>(*IncrUse++);
245   if (IncrUse == Incr->user_end()) return false;
246   Instruction *U2 = cast<Instruction>(*IncrUse++);
247   if (IncrUse != Incr->user_end()) return false;
248 
249   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
250   // only used by a branch, we can't transform it.
251   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
252   if (!Compare)
253     Compare = dyn_cast<FCmpInst>(U2);
254   if (!Compare || !Compare->hasOneUse() ||
255       !isa<BranchInst>(Compare->user_back()))
256     return false;
257 
258   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
259 
260   // We need to verify that the branch actually controls the iteration count
261   // of the loop.  If not, the new IV can overflow and no one will notice.
262   // The branch block must be in the loop and one of the successors must be out
263   // of the loop.
264   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
265   if (!L->contains(TheBr->getParent()) ||
266       (L->contains(TheBr->getSuccessor(0)) &&
267        L->contains(TheBr->getSuccessor(1))))
268     return false;
269 
270   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
271   // transform it.
272   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
273   int64_t ExitValue;
274   if (ExitValueVal == nullptr ||
275       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
276     return false;
277 
278   // Find new predicate for integer comparison.
279   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
280   switch (Compare->getPredicate()) {
281   default: return false;  // Unknown comparison.
282   case CmpInst::FCMP_OEQ:
283   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
284   case CmpInst::FCMP_ONE:
285   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
286   case CmpInst::FCMP_OGT:
287   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
288   case CmpInst::FCMP_OGE:
289   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
290   case CmpInst::FCMP_OLT:
291   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
292   case CmpInst::FCMP_OLE:
293   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
294   }
295 
296   // We convert the floating point induction variable to a signed i32 value if
297   // we can.  This is only safe if the comparison will not overflow in a way
298   // that won't be trapped by the integer equivalent operations.  Check for this
299   // now.
300   // TODO: We could use i64 if it is native and the range requires it.
301 
302   // The start/stride/exit values must all fit in signed i32.
303   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
304     return false;
305 
306   // If not actually striding (add x, 0.0), avoid touching the code.
307   if (IncValue == 0)
308     return false;
309 
310   // Positive and negative strides have different safety conditions.
311   if (IncValue > 0) {
312     // If we have a positive stride, we require the init to be less than the
313     // exit value.
314     if (InitValue >= ExitValue)
315       return false;
316 
317     uint32_t Range = uint32_t(ExitValue-InitValue);
318     // Check for infinite loop, either:
319     // while (i <= Exit) or until (i > Exit)
320     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
321       if (++Range == 0) return false;  // Range overflows.
322     }
323 
324     unsigned Leftover = Range % uint32_t(IncValue);
325 
326     // If this is an equality comparison, we require that the strided value
327     // exactly land on the exit value, otherwise the IV condition will wrap
328     // around and do things the fp IV wouldn't.
329     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
330         Leftover != 0)
331       return false;
332 
333     // If the stride would wrap around the i32 before exiting, we can't
334     // transform the IV.
335     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
336       return false;
337   } else {
338     // If we have a negative stride, we require the init to be greater than the
339     // exit value.
340     if (InitValue <= ExitValue)
341       return false;
342 
343     uint32_t Range = uint32_t(InitValue-ExitValue);
344     // Check for infinite loop, either:
345     // while (i >= Exit) or until (i < Exit)
346     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
347       if (++Range == 0) return false;  // Range overflows.
348     }
349 
350     unsigned Leftover = Range % uint32_t(-IncValue);
351 
352     // If this is an equality comparison, we require that the strided value
353     // exactly land on the exit value, otherwise the IV condition will wrap
354     // around and do things the fp IV wouldn't.
355     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
356         Leftover != 0)
357       return false;
358 
359     // If the stride would wrap around the i32 before exiting, we can't
360     // transform the IV.
361     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
362       return false;
363   }
364 
365   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
366 
367   // Insert new integer induction variable.
368   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
369   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
370                       PN->getIncomingBlock(IncomingEdge));
371 
372   Value *NewAdd =
373     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
374                               Incr->getName()+".int", Incr);
375   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
376 
377   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
378                                       ConstantInt::get(Int32Ty, ExitValue),
379                                       Compare->getName());
380 
381   // In the following deletions, PN may become dead and may be deleted.
382   // Use a WeakTrackingVH to observe whether this happens.
383   WeakTrackingVH WeakPH = PN;
384 
385   // Delete the old floating point exit comparison.  The branch starts using the
386   // new comparison.
387   NewCompare->takeName(Compare);
388   Compare->replaceAllUsesWith(NewCompare);
389   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
390 
391   // Delete the old floating point increment.
392   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
393   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
394 
395   // If the FP induction variable still has uses, this is because something else
396   // in the loop uses its value.  In order to canonicalize the induction
397   // variable, we chose to eliminate the IV and rewrite it in terms of an
398   // int->fp cast.
399   //
400   // We give preference to sitofp over uitofp because it is faster on most
401   // platforms.
402   if (WeakPH) {
403     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
404                                  &*PN->getParent()->getFirstInsertionPt());
405     PN->replaceAllUsesWith(Conv);
406     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
407   }
408   return true;
409 }
410 
411 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
412   // First step.  Check to see if there are any floating-point recurrences.
413   // If there are, change them into integer recurrences, permitting analysis by
414   // the SCEV routines.
415   BasicBlock *Header = L->getHeader();
416 
417   SmallVector<WeakTrackingVH, 8> PHIs;
418   for (PHINode &PN : Header->phis())
419     PHIs.push_back(&PN);
420 
421   bool Changed = false;
422   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
423     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
424       Changed |= handleFloatingPointIV(L, PN);
425 
426   // If the loop previously had floating-point IV, ScalarEvolution
427   // may not have been able to compute a trip count. Now that we've done some
428   // re-writing, the trip count may be computable.
429   if (Changed)
430     SE->forgetLoop(L);
431   return Changed;
432 }
433 
434 //===---------------------------------------------------------------------===//
435 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
436 // they will exit at the first iteration.
437 //===---------------------------------------------------------------------===//
438 
439 /// Check to see if this loop has loop invariant conditions which lead to loop
440 /// exits. If so, we know that if the exit path is taken, it is at the first
441 /// loop iteration. This lets us predict exit values of PHI nodes that live in
442 /// loop header.
443 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
444   // Verify the input to the pass is already in LCSSA form.
445   assert(L->isLCSSAForm(*DT));
446 
447   SmallVector<BasicBlock *, 8> ExitBlocks;
448   L->getUniqueExitBlocks(ExitBlocks);
449 
450   bool MadeAnyChanges = false;
451   for (auto *ExitBB : ExitBlocks) {
452     // If there are no more PHI nodes in this exit block, then no more
453     // values defined inside the loop are used on this path.
454     for (PHINode &PN : ExitBB->phis()) {
455       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
456            IncomingValIdx != E; ++IncomingValIdx) {
457         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
458 
459         // Can we prove that the exit must run on the first iteration if it
460         // runs at all?  (i.e. early exits are fine for our purposes, but
461         // traces which lead to this exit being taken on the 2nd iteration
462         // aren't.)  Note that this is about whether the exit branch is
463         // executed, not about whether it is taken.
464         if (!L->getLoopLatch() ||
465             !DT->dominates(IncomingBB, L->getLoopLatch()))
466           continue;
467 
468         // Get condition that leads to the exit path.
469         auto *TermInst = IncomingBB->getTerminator();
470 
471         Value *Cond = nullptr;
472         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
473           // Must be a conditional branch, otherwise the block
474           // should not be in the loop.
475           Cond = BI->getCondition();
476         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
477           Cond = SI->getCondition();
478         else
479           continue;
480 
481         if (!L->isLoopInvariant(Cond))
482           continue;
483 
484         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
485 
486         // Only deal with PHIs in the loop header.
487         if (!ExitVal || ExitVal->getParent() != L->getHeader())
488           continue;
489 
490         // If ExitVal is a PHI on the loop header, then we know its
491         // value along this exit because the exit can only be taken
492         // on the first iteration.
493         auto *LoopPreheader = L->getLoopPreheader();
494         assert(LoopPreheader && "Invalid loop");
495         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
496         if (PreheaderIdx != -1) {
497           assert(ExitVal->getParent() == L->getHeader() &&
498                  "ExitVal must be in loop header");
499           MadeAnyChanges = true;
500           PN.setIncomingValue(IncomingValIdx,
501                               ExitVal->getIncomingValue(PreheaderIdx));
502           SE->forgetValue(&PN);
503         }
504       }
505     }
506   }
507   return MadeAnyChanges;
508 }
509 
510 //===----------------------------------------------------------------------===//
511 //  IV Widening - Extend the width of an IV to cover its widest uses.
512 //===----------------------------------------------------------------------===//
513 
514 /// Update information about the induction variable that is extended by this
515 /// sign or zero extend operation. This is used to determine the final width of
516 /// the IV before actually widening it.
517 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
518                         ScalarEvolution *SE,
519                         const TargetTransformInfo *TTI) {
520   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
521   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
522     return;
523 
524   Type *Ty = Cast->getType();
525   uint64_t Width = SE->getTypeSizeInBits(Ty);
526   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
527     return;
528 
529   // Check that `Cast` actually extends the induction variable (we rely on this
530   // later).  This takes care of cases where `Cast` is extending a truncation of
531   // the narrow induction variable, and thus can end up being narrower than the
532   // "narrow" induction variable.
533   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
534   if (NarrowIVWidth >= Width)
535     return;
536 
537   // Cast is either an sext or zext up to this point.
538   // We should not widen an indvar if arithmetics on the wider indvar are more
539   // expensive than those on the narrower indvar. We check only the cost of ADD
540   // because at least an ADD is required to increment the induction variable. We
541   // could compute more comprehensively the cost of all instructions on the
542   // induction variable when necessary.
543   if (TTI &&
544       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
545           TTI->getArithmeticInstrCost(Instruction::Add,
546                                       Cast->getOperand(0)->getType())) {
547     return;
548   }
549 
550   if (!WI.WidestNativeType ||
551       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
552     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
553     WI.IsSigned = IsSigned;
554     return;
555   }
556 
557   // We extend the IV to satisfy the sign of its user(s), or 'signed'
558   // if there are multiple users with both sign- and zero extensions,
559   // in order not to introduce nondeterministic behaviour based on the
560   // unspecified order of a PHI nodes' users-iterator.
561   WI.IsSigned |= IsSigned;
562 }
563 
564 //===----------------------------------------------------------------------===//
565 //  Live IV Reduction - Minimize IVs live across the loop.
566 //===----------------------------------------------------------------------===//
567 
568 //===----------------------------------------------------------------------===//
569 //  Simplification of IV users based on SCEV evaluation.
570 //===----------------------------------------------------------------------===//
571 
572 namespace {
573 
574 class IndVarSimplifyVisitor : public IVVisitor {
575   ScalarEvolution *SE;
576   const TargetTransformInfo *TTI;
577   PHINode *IVPhi;
578 
579 public:
580   WideIVInfo WI;
581 
582   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
583                         const TargetTransformInfo *TTI,
584                         const DominatorTree *DTree)
585     : SE(SCEV), TTI(TTI), IVPhi(IV) {
586     DT = DTree;
587     WI.NarrowIV = IVPhi;
588   }
589 
590   // Implement the interface used by simplifyUsersOfIV.
591   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
592 };
593 
594 } // end anonymous namespace
595 
596 /// Iteratively perform simplification on a worklist of IV users. Each
597 /// successive simplification may push more users which may themselves be
598 /// candidates for simplification.
599 ///
600 /// Sign/Zero extend elimination is interleaved with IV simplification.
601 bool IndVarSimplify::simplifyAndExtend(Loop *L,
602                                        SCEVExpander &Rewriter,
603                                        LoopInfo *LI) {
604   SmallVector<WideIVInfo, 8> WideIVs;
605 
606   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
607           Intrinsic::getName(Intrinsic::experimental_guard));
608   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
609 
610   SmallVector<PHINode*, 8> LoopPhis;
611   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
612     LoopPhis.push_back(cast<PHINode>(I));
613   }
614   // Each round of simplification iterates through the SimplifyIVUsers worklist
615   // for all current phis, then determines whether any IVs can be
616   // widened. Widening adds new phis to LoopPhis, inducing another round of
617   // simplification on the wide IVs.
618   bool Changed = false;
619   while (!LoopPhis.empty()) {
620     // Evaluate as many IV expressions as possible before widening any IVs. This
621     // forces SCEV to set no-wrap flags before evaluating sign/zero
622     // extension. The first time SCEV attempts to normalize sign/zero extension,
623     // the result becomes final. So for the most predictable results, we delay
624     // evaluation of sign/zero extend evaluation until needed, and avoid running
625     // other SCEV based analysis prior to simplifyAndExtend.
626     do {
627       PHINode *CurrIV = LoopPhis.pop_back_val();
628 
629       // Information about sign/zero extensions of CurrIV.
630       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
631 
632       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
633                                    &Visitor);
634 
635       if (Visitor.WI.WidestNativeType) {
636         WideIVs.push_back(Visitor.WI);
637       }
638     } while(!LoopPhis.empty());
639 
640     // Continue if we disallowed widening.
641     if (!WidenIndVars)
642       continue;
643 
644     for (; !WideIVs.empty(); WideIVs.pop_back()) {
645       unsigned ElimExt;
646       unsigned Widened;
647       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
648                                           DT, DeadInsts, ElimExt, Widened,
649                                           HasGuards, UsePostIncrementRanges)) {
650         NumElimExt += ElimExt;
651         NumWidened += Widened;
652         Changed = true;
653         LoopPhis.push_back(WidePhi);
654       }
655     }
656   }
657   return Changed;
658 }
659 
660 //===----------------------------------------------------------------------===//
661 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
662 //===----------------------------------------------------------------------===//
663 
664 /// Given an Value which is hoped to be part of an add recurance in the given
665 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
666 /// that this is less general than SCEVs AddRec checking.
667 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
668   Instruction *IncI = dyn_cast<Instruction>(IncV);
669   if (!IncI)
670     return nullptr;
671 
672   switch (IncI->getOpcode()) {
673   case Instruction::Add:
674   case Instruction::Sub:
675     break;
676   case Instruction::GetElementPtr:
677     // An IV counter must preserve its type.
678     if (IncI->getNumOperands() == 2)
679       break;
680     LLVM_FALLTHROUGH;
681   default:
682     return nullptr;
683   }
684 
685   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
686   if (Phi && Phi->getParent() == L->getHeader()) {
687     if (L->isLoopInvariant(IncI->getOperand(1)))
688       return Phi;
689     return nullptr;
690   }
691   if (IncI->getOpcode() == Instruction::GetElementPtr)
692     return nullptr;
693 
694   // Allow add/sub to be commuted.
695   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
696   if (Phi && Phi->getParent() == L->getHeader()) {
697     if (L->isLoopInvariant(IncI->getOperand(0)))
698       return Phi;
699   }
700   return nullptr;
701 }
702 
703 /// Whether the current loop exit test is based on this value.  Currently this
704 /// is limited to a direct use in the loop condition.
705 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
706   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
707   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
708   // TODO: Allow non-icmp loop test.
709   if (!ICmp)
710     return false;
711 
712   // TODO: Allow indirect use.
713   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
714 }
715 
716 /// linearFunctionTestReplace policy. Return true unless we can show that the
717 /// current exit test is already sufficiently canonical.
718 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
719   assert(L->getLoopLatch() && "Must be in simplified form");
720 
721   // Avoid converting a constant or loop invariant test back to a runtime
722   // test.  This is critical for when SCEV's cached ExitCount is less precise
723   // than the current IR (such as after we've proven a particular exit is
724   // actually dead and thus the BE count never reaches our ExitCount.)
725   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
726   if (L->isLoopInvariant(BI->getCondition()))
727     return false;
728 
729   // Do LFTR to simplify the exit condition to an ICMP.
730   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
731   if (!Cond)
732     return true;
733 
734   // Do LFTR to simplify the exit ICMP to EQ/NE
735   ICmpInst::Predicate Pred = Cond->getPredicate();
736   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
737     return true;
738 
739   // Look for a loop invariant RHS
740   Value *LHS = Cond->getOperand(0);
741   Value *RHS = Cond->getOperand(1);
742   if (!L->isLoopInvariant(RHS)) {
743     if (!L->isLoopInvariant(LHS))
744       return true;
745     std::swap(LHS, RHS);
746   }
747   // Look for a simple IV counter LHS
748   PHINode *Phi = dyn_cast<PHINode>(LHS);
749   if (!Phi)
750     Phi = getLoopPhiForCounter(LHS, L);
751 
752   if (!Phi)
753     return true;
754 
755   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
756   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
757   if (Idx < 0)
758     return true;
759 
760   // Do LFTR if the exit condition's IV is *not* a simple counter.
761   Value *IncV = Phi->getIncomingValue(Idx);
762   return Phi != getLoopPhiForCounter(IncV, L);
763 }
764 
765 /// Return true if undefined behavior would provable be executed on the path to
766 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
767 /// anything about whether OnPathTo is actually executed or whether Root is
768 /// actually poison.  This can be used to assess whether a new use of Root can
769 /// be added at a location which is control equivalent with OnPathTo (such as
770 /// immediately before it) without introducing UB which didn't previously
771 /// exist.  Note that a false result conveys no information.
772 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
773                                           Instruction *OnPathTo,
774                                           DominatorTree *DT) {
775   // Basic approach is to assume Root is poison, propagate poison forward
776   // through all users we can easily track, and then check whether any of those
777   // users are provable UB and must execute before out exiting block might
778   // exit.
779 
780   // The set of all recursive users we've visited (which are assumed to all be
781   // poison because of said visit)
782   SmallSet<const Value *, 16> KnownPoison;
783   SmallVector<const Instruction*, 16> Worklist;
784   Worklist.push_back(Root);
785   while (!Worklist.empty()) {
786     const Instruction *I = Worklist.pop_back_val();
787 
788     // If we know this must trigger UB on a path leading our target.
789     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
790       return true;
791 
792     // If we can't analyze propagation through this instruction, just skip it
793     // and transitive users.  Safe as false is a conservative result.
794     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
795       continue;
796 
797     if (KnownPoison.insert(I).second)
798       for (const User *User : I->users())
799         Worklist.push_back(cast<Instruction>(User));
800   }
801 
802   // Might be non-UB, or might have a path we couldn't prove must execute on
803   // way to exiting bb.
804   return false;
805 }
806 
807 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
808 /// down to checking that all operands are constant and listing instructions
809 /// that may hide undef.
810 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
811                                unsigned Depth) {
812   if (isa<Constant>(V))
813     return !isa<UndefValue>(V);
814 
815   if (Depth >= 6)
816     return false;
817 
818   // Conservatively handle non-constant non-instructions. For example, Arguments
819   // may be undef.
820   Instruction *I = dyn_cast<Instruction>(V);
821   if (!I)
822     return false;
823 
824   // Load and return values may be undef.
825   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
826     return false;
827 
828   // Optimistically handle other instructions.
829   for (Value *Op : I->operands()) {
830     if (!Visited.insert(Op).second)
831       continue;
832     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
833       return false;
834   }
835   return true;
836 }
837 
838 /// Return true if the given value is concrete. We must prove that undef can
839 /// never reach it.
840 ///
841 /// TODO: If we decide that this is a good approach to checking for undef, we
842 /// may factor it into a common location.
843 static bool hasConcreteDef(Value *V) {
844   SmallPtrSet<Value*, 8> Visited;
845   Visited.insert(V);
846   return hasConcreteDefImpl(V, Visited, 0);
847 }
848 
849 /// Return true if this IV has any uses other than the (soon to be rewritten)
850 /// loop exit test.
851 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
852   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
853   Value *IncV = Phi->getIncomingValue(LatchIdx);
854 
855   for (User *U : Phi->users())
856     if (U != Cond && U != IncV) return false;
857 
858   for (User *U : IncV->users())
859     if (U != Cond && U != Phi) return false;
860   return true;
861 }
862 
863 /// Return true if the given phi is a "counter" in L.  A counter is an
864 /// add recurance (of integer or pointer type) with an arbitrary start, and a
865 /// step of 1.  Note that L must have exactly one latch.
866 static bool isLoopCounter(PHINode* Phi, Loop *L,
867                           ScalarEvolution *SE) {
868   assert(Phi->getParent() == L->getHeader());
869   assert(L->getLoopLatch());
870 
871   if (!SE->isSCEVable(Phi->getType()))
872     return false;
873 
874   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
875   if (!AR || AR->getLoop() != L || !AR->isAffine())
876     return false;
877 
878   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
879   if (!Step || !Step->isOne())
880     return false;
881 
882   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
883   Value *IncV = Phi->getIncomingValue(LatchIdx);
884   return (getLoopPhiForCounter(IncV, L) == Phi &&
885           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
886 }
887 
888 /// Search the loop header for a loop counter (anadd rec w/step of one)
889 /// suitable for use by LFTR.  If multiple counters are available, select the
890 /// "best" one based profitable heuristics.
891 ///
892 /// BECount may be an i8* pointer type. The pointer difference is already
893 /// valid count without scaling the address stride, so it remains a pointer
894 /// expression as far as SCEV is concerned.
895 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
896                                 const SCEV *BECount,
897                                 ScalarEvolution *SE, DominatorTree *DT) {
898   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
899 
900   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
901 
902   // Loop over all of the PHI nodes, looking for a simple counter.
903   PHINode *BestPhi = nullptr;
904   const SCEV *BestInit = nullptr;
905   BasicBlock *LatchBlock = L->getLoopLatch();
906   assert(LatchBlock && "Must be in simplified form");
907   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
908 
909   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
910     PHINode *Phi = cast<PHINode>(I);
911     if (!isLoopCounter(Phi, L, SE))
912       continue;
913 
914     // Avoid comparing an integer IV against a pointer Limit.
915     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
916       continue;
917 
918     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
919 
920     // AR may be a pointer type, while BECount is an integer type.
921     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
922     // AR may not be a narrower type, or we may never exit.
923     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
924     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
925       continue;
926 
927     // Avoid reusing a potentially undef value to compute other values that may
928     // have originally had a concrete definition.
929     if (!hasConcreteDef(Phi)) {
930       // We explicitly allow unknown phis as long as they are already used by
931       // the loop exit test.  This is legal since performing LFTR could not
932       // increase the number of undef users.
933       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
934       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
935           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
936         continue;
937     }
938 
939     // Avoid introducing undefined behavior due to poison which didn't exist in
940     // the original program.  (Annoyingly, the rules for poison and undef
941     // propagation are distinct, so this does NOT cover the undef case above.)
942     // We have to ensure that we don't introduce UB by introducing a use on an
943     // iteration where said IV produces poison.  Our strategy here differs for
944     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
945     // see code in linearFunctionTestReplace.  For pointers, we restrict
946     // transforms as there is no good way to reinfer inbounds once lost.
947     if (!Phi->getType()->isIntegerTy() &&
948         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
949       continue;
950 
951     const SCEV *Init = AR->getStart();
952 
953     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
954       // Don't force a live loop counter if another IV can be used.
955       if (AlmostDeadIV(Phi, LatchBlock, Cond))
956         continue;
957 
958       // Prefer to count-from-zero. This is a more "canonical" counter form. It
959       // also prefers integer to pointer IVs.
960       if (BestInit->isZero() != Init->isZero()) {
961         if (BestInit->isZero())
962           continue;
963       }
964       // If two IVs both count from zero or both count from nonzero then the
965       // narrower is likely a dead phi that has been widened. Use the wider phi
966       // to allow the other to be eliminated.
967       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
968         continue;
969     }
970     BestPhi = Phi;
971     BestInit = Init;
972   }
973   return BestPhi;
974 }
975 
976 /// Insert an IR expression which computes the value held by the IV IndVar
977 /// (which must be an loop counter w/unit stride) after the backedge of loop L
978 /// is taken ExitCount times.
979 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
980                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
981                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
982   assert(isLoopCounter(IndVar, L, SE));
983   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
984   const SCEV *IVInit = AR->getStart();
985   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
986 
987   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
988   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
989   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
990   // the existing GEPs whenever possible.
991   if (IndVar->getType()->isPointerTy() &&
992       !ExitCount->getType()->isPointerTy()) {
993     // IVOffset will be the new GEP offset that is interpreted by GEP as a
994     // signed value. ExitCount on the other hand represents the loop trip count,
995     // which is an unsigned value. FindLoopCounter only allows induction
996     // variables that have a positive unit stride of one. This means we don't
997     // have to handle the case of negative offsets (yet) and just need to zero
998     // extend ExitCount.
999     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1000     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
1001     if (UsePostInc)
1002       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1003 
1004     // Expand the code for the iteration count.
1005     assert(SE->isLoopInvariant(IVOffset, L) &&
1006            "Computed iteration count is not loop invariant!");
1007 
1008     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1009     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1010     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1011   } else {
1012     // In any other case, convert both IVInit and ExitCount to integers before
1013     // comparing. This may result in SCEV expansion of pointers, but in practice
1014     // SCEV will fold the pointer arithmetic away as such:
1015     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1016     //
1017     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1018     // for simple memset-style loops.
1019     //
1020     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1021     // were generated on top of case #2, which is not expected.
1022 
1023     // For unit stride, IVCount = Start + ExitCount with 2's complement
1024     // overflow.
1025 
1026     // For integer IVs, truncate the IV before computing IVInit + BECount,
1027     // unless we know apriori that the limit must be a constant when evaluated
1028     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1029     // of the IV in the loop over a (potentially) expensive expansion of the
1030     // widened exit count add(zext(add)) expression.
1031     if (SE->getTypeSizeInBits(IVInit->getType())
1032         > SE->getTypeSizeInBits(ExitCount->getType())) {
1033       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1034         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1035       else
1036         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1037     }
1038 
1039     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1040 
1041     if (UsePostInc)
1042       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1043 
1044     // Expand the code for the iteration count.
1045     assert(SE->isLoopInvariant(IVLimit, L) &&
1046            "Computed iteration count is not loop invariant!");
1047     // Ensure that we generate the same type as IndVar, or a smaller integer
1048     // type. In the presence of null pointer values, we have an integer type
1049     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1050     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1051       IndVar->getType() : ExitCount->getType();
1052     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1053     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1054   }
1055 }
1056 
1057 /// This method rewrites the exit condition of the loop to be a canonical !=
1058 /// comparison against the incremented loop induction variable.  This pass is
1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1060 /// determine a loop-invariant trip count of the loop, which is actually a much
1061 /// broader range than just linear tests.
1062 bool IndVarSimplify::
1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1064                           const SCEV *ExitCount,
1065                           PHINode *IndVar, SCEVExpander &Rewriter) {
1066   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1067   assert(isLoopCounter(IndVar, L, SE));
1068   Instruction * const IncVar =
1069     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1070 
1071   // Initialize CmpIndVar to the preincremented IV.
1072   Value *CmpIndVar = IndVar;
1073   bool UsePostInc = false;
1074 
1075   // If the exiting block is the same as the backedge block, we prefer to
1076   // compare against the post-incremented value, otherwise we must compare
1077   // against the preincremented value.
1078   if (ExitingBB == L->getLoopLatch()) {
1079     // For pointer IVs, we chose to not strip inbounds which requires us not
1080     // to add a potentially UB introducing use.  We need to either a) show
1081     // the loop test we're modifying is already in post-inc form, or b) show
1082     // that adding a use must not introduce UB.
1083     bool SafeToPostInc =
1084         IndVar->getType()->isIntegerTy() ||
1085         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1086         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1087     if (SafeToPostInc) {
1088       UsePostInc = true;
1089       CmpIndVar = IncVar;
1090     }
1091   }
1092 
1093   // It may be necessary to drop nowrap flags on the incrementing instruction
1094   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1095   // case the increment might have previously been poison on the last iteration
1096   // only) or if LFTR switches to a different IV that was previously dynamically
1097   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1098   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1099   // check), because the pre-inc addrec flags may be adopted from the original
1100   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1101   // TODO: This handling is inaccurate for one case: If we switch to a
1102   // dynamically dead IV that wraps on the first loop iteration only, which is
1103   // not covered by the post-inc addrec. (If the new IV was not dynamically
1104   // dead, it could not be poison on the first iteration in the first place.)
1105   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1106     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1107     if (BO->hasNoUnsignedWrap())
1108       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1109     if (BO->hasNoSignedWrap())
1110       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1111   }
1112 
1113   Value *ExitCnt = genLoopLimit(
1114       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1115   assert(ExitCnt->getType()->isPointerTy() ==
1116              IndVar->getType()->isPointerTy() &&
1117          "genLoopLimit missed a cast");
1118 
1119   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1120   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1121   ICmpInst::Predicate P;
1122   if (L->contains(BI->getSuccessor(0)))
1123     P = ICmpInst::ICMP_NE;
1124   else
1125     P = ICmpInst::ICMP_EQ;
1126 
1127   IRBuilder<> Builder(BI);
1128 
1129   // The new loop exit condition should reuse the debug location of the
1130   // original loop exit condition.
1131   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1132     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1133 
1134   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1135   // avoid the expensive expansion of the limit expression in the wider type,
1136   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1137   // since we know (from the exit count bitwidth), that we can't self-wrap in
1138   // the narrower type.
1139   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1140   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1141   if (CmpIndVarSize > ExitCntSize) {
1142     assert(!CmpIndVar->getType()->isPointerTy() &&
1143            !ExitCnt->getType()->isPointerTy());
1144 
1145     // Before resorting to actually inserting the truncate, use the same
1146     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1147     // the other side of the comparison instead.  We still evaluate the limit
1148     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1149     // a truncate within in.
1150     bool Extended = false;
1151     const SCEV *IV = SE->getSCEV(CmpIndVar);
1152     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1153                                                   ExitCnt->getType());
1154     const SCEV *ZExtTrunc =
1155       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1156 
1157     if (ZExtTrunc == IV) {
1158       Extended = true;
1159       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1160                                    "wide.trip.count");
1161     } else {
1162       const SCEV *SExtTrunc =
1163         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1164       if (SExtTrunc == IV) {
1165         Extended = true;
1166         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1167                                      "wide.trip.count");
1168       }
1169     }
1170 
1171     if (Extended) {
1172       bool Discard;
1173       L->makeLoopInvariant(ExitCnt, Discard);
1174     } else
1175       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1176                                       "lftr.wideiv");
1177   }
1178   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1179                     << "      LHS:" << *CmpIndVar << '\n'
1180                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1181                     << "\n"
1182                     << "      RHS:\t" << *ExitCnt << "\n"
1183                     << "ExitCount:\t" << *ExitCount << "\n"
1184                     << "  was: " << *BI->getCondition() << "\n");
1185 
1186   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1187   Value *OrigCond = BI->getCondition();
1188   // It's tempting to use replaceAllUsesWith here to fully replace the old
1189   // comparison, but that's not immediately safe, since users of the old
1190   // comparison may not be dominated by the new comparison. Instead, just
1191   // update the branch to use the new comparison; in the common case this
1192   // will make old comparison dead.
1193   BI->setCondition(Cond);
1194   DeadInsts.emplace_back(OrigCond);
1195 
1196   ++NumLFTR;
1197   return true;
1198 }
1199 
1200 //===----------------------------------------------------------------------===//
1201 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1202 //===----------------------------------------------------------------------===//
1203 
1204 /// If there's a single exit block, sink any loop-invariant values that
1205 /// were defined in the preheader but not used inside the loop into the
1206 /// exit block to reduce register pressure in the loop.
1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1208   BasicBlock *ExitBlock = L->getExitBlock();
1209   if (!ExitBlock) return false;
1210 
1211   BasicBlock *Preheader = L->getLoopPreheader();
1212   if (!Preheader) return false;
1213 
1214   bool MadeAnyChanges = false;
1215   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1216   BasicBlock::iterator I(Preheader->getTerminator());
1217   while (I != Preheader->begin()) {
1218     --I;
1219     // New instructions were inserted at the end of the preheader.
1220     if (isa<PHINode>(I))
1221       break;
1222 
1223     // Don't move instructions which might have side effects, since the side
1224     // effects need to complete before instructions inside the loop.  Also don't
1225     // move instructions which might read memory, since the loop may modify
1226     // memory. Note that it's okay if the instruction might have undefined
1227     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1228     // block.
1229     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1230       continue;
1231 
1232     // Skip debug info intrinsics.
1233     if (isa<DbgInfoIntrinsic>(I))
1234       continue;
1235 
1236     // Skip eh pad instructions.
1237     if (I->isEHPad())
1238       continue;
1239 
1240     // Don't sink alloca: we never want to sink static alloca's out of the
1241     // entry block, and correctly sinking dynamic alloca's requires
1242     // checks for stacksave/stackrestore intrinsics.
1243     // FIXME: Refactor this check somehow?
1244     if (isa<AllocaInst>(I))
1245       continue;
1246 
1247     // Determine if there is a use in or before the loop (direct or
1248     // otherwise).
1249     bool UsedInLoop = false;
1250     for (Use &U : I->uses()) {
1251       Instruction *User = cast<Instruction>(U.getUser());
1252       BasicBlock *UseBB = User->getParent();
1253       if (PHINode *P = dyn_cast<PHINode>(User)) {
1254         unsigned i =
1255           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1256         UseBB = P->getIncomingBlock(i);
1257       }
1258       if (UseBB == Preheader || L->contains(UseBB)) {
1259         UsedInLoop = true;
1260         break;
1261       }
1262     }
1263 
1264     // If there is, the def must remain in the preheader.
1265     if (UsedInLoop)
1266       continue;
1267 
1268     // Otherwise, sink it to the exit block.
1269     Instruction *ToMove = &*I;
1270     bool Done = false;
1271 
1272     if (I != Preheader->begin()) {
1273       // Skip debug info intrinsics.
1274       do {
1275         --I;
1276       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1277 
1278       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1279         Done = true;
1280     } else {
1281       Done = true;
1282     }
1283 
1284     MadeAnyChanges = true;
1285     ToMove->moveBefore(*ExitBlock, InsertPt);
1286     if (Done) break;
1287     InsertPt = ToMove->getIterator();
1288   }
1289 
1290   return MadeAnyChanges;
1291 }
1292 
1293 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1294                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1295   auto *OldCond = BI->getCondition();
1296   BI->setCondition(NewCond);
1297   if (OldCond->use_empty())
1298     DeadInsts.emplace_back(OldCond);
1299 }
1300 
1301 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1302                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1303   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1304   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1305   auto *OldCond = BI->getCondition();
1306   auto *NewCond =
1307       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1308   replaceExitCond(BI, NewCond, DeadInsts);
1309 }
1310 
1311 static void replaceLoopPHINodesWithPreheaderValues(
1312     Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1313   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1314   auto *LoopPreheader = L->getLoopPreheader();
1315   auto *LoopHeader = L->getHeader();
1316   for (auto &PN : LoopHeader->phis()) {
1317     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1318     PN.replaceAllUsesWith(PreheaderIncoming);
1319     DeadInsts.emplace_back(&PN);
1320   }
1321 }
1322 
1323 static void replaceWithInvariantCond(
1324     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1325     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1326     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1327   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1328   Rewriter.setInsertPoint(BI);
1329   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1330   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1331   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1332   if (ExitIfTrue)
1333     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1334   IRBuilder<> Builder(BI);
1335   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1336                                      BI->getCondition()->getName());
1337   replaceExitCond(BI, NewCond, DeadInsts);
1338 }
1339 
1340 static bool optimizeLoopExitWithUnknownExitCount(
1341     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1342     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1343     ScalarEvolution *SE, SCEVExpander &Rewriter,
1344     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1345   ICmpInst::Predicate Pred;
1346   Value *LHS, *RHS;
1347   BasicBlock *TrueSucc, *FalseSucc;
1348   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1349                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1350     return false;
1351 
1352   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1353          "Not a loop exit!");
1354 
1355   // 'LHS pred RHS' should now mean that we stay in loop.
1356   if (L->contains(FalseSucc))
1357     Pred = CmpInst::getInversePredicate(Pred);
1358 
1359   // If we are proving loop exit, invert the predicate.
1360   if (Inverted)
1361     Pred = CmpInst::getInversePredicate(Pred);
1362 
1363   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1364   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1365   // Can we prove it to be trivially true?
1366   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1367     foldExit(L, ExitingBB, Inverted, DeadInsts);
1368     return true;
1369   }
1370   // Further logic works for non-inverted condition only.
1371   if (Inverted)
1372     return false;
1373 
1374   auto *ARTy = LHSS->getType();
1375   auto *MaxIterTy = MaxIter->getType();
1376   // If possible, adjust types.
1377   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1378     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1379   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1380     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1381     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1382     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1383       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1384   }
1385 
1386   if (SkipLastIter) {
1387     const SCEV *One = SE->getOne(MaxIter->getType());
1388     MaxIter = SE->getMinusSCEV(MaxIter, One);
1389   }
1390 
1391   // Check if there is a loop-invariant predicate equivalent to our check.
1392   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1393                                                                L, BI, MaxIter);
1394   if (!LIP)
1395     return false;
1396 
1397   // Can we prove it to be trivially true?
1398   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1399     foldExit(L, ExitingBB, Inverted, DeadInsts);
1400   else
1401     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1402                              Rewriter, DeadInsts);
1403 
1404   return true;
1405 }
1406 
1407 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1408   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1409   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1410   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1411   // it already has flags.  The alternative to this would be to extending the
1412   // set of "interesting" IV users to include the icmp, but doing that
1413   // regresses results in practice by querying SCEVs before trip counts which
1414   // rely on them which results in SCEV caching sub-optimal answers.  The
1415   // concern about caching sub-optimal results is why we only query SCEVs of
1416   // the loop invariant RHS here.
1417   SmallVector<BasicBlock*, 16> ExitingBlocks;
1418   L->getExitingBlocks(ExitingBlocks);
1419   bool Changed = false;
1420   for (auto *ExitingBB : ExitingBlocks) {
1421     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1422     if (!BI)
1423       continue;
1424     assert(BI->isConditional() && "exit branch must be conditional");
1425 
1426     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1427     if (!ICmp || !ICmp->hasOneUse())
1428       continue;
1429 
1430     auto *LHS = ICmp->getOperand(0);
1431     auto *RHS = ICmp->getOperand(1);
1432     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1433     // poisoning cache with sub-optimal results.  For the must-execute case,
1434     // this is a neccessary precondition for correctness.
1435     if (!L->isLoopInvariant(RHS)) {
1436       if (!L->isLoopInvariant(LHS))
1437         continue;
1438       // Same logic applies for the inverse case
1439       std::swap(LHS, RHS);
1440     }
1441 
1442     // Match (icmp signed-cond zext, RHS)
1443     Value *LHSOp = nullptr;
1444     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1445       continue;
1446 
1447     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1448     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1449     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1450     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1451     FullCR = FullCR.zeroExtend(OuterBitWidth);
1452     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1453     if (FullCR.contains(RHSCR)) {
1454       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1455       // replace the signed condition with the unsigned version.
1456       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1457       Changed = true;
1458       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1459       // have not changed exit counts, or the values produced by the compare.
1460       continue;
1461     }
1462   }
1463 
1464   // Now that we've canonicalized the condition to match the extend,
1465   // see if we can rotate the extend out of the loop.
1466   for (auto *ExitingBB : ExitingBlocks) {
1467     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1468     if (!BI)
1469       continue;
1470     assert(BI->isConditional() && "exit branch must be conditional");
1471 
1472     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1473     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1474       continue;
1475 
1476     bool Swapped = false;
1477     auto *LHS = ICmp->getOperand(0);
1478     auto *RHS = ICmp->getOperand(1);
1479     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1480       // Nothing to rotate
1481       continue;
1482     if (L->isLoopInvariant(LHS)) {
1483       // Same logic applies for the inverse case until we actually pick
1484       // which operand of the compare to update.
1485       Swapped = true;
1486       std::swap(LHS, RHS);
1487     }
1488     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1489 
1490     // Match (icmp unsigned-cond zext, RHS)
1491     // TODO: Extend to handle corresponding sext/signed-cmp case
1492     // TODO: Extend to other invertible functions
1493     Value *LHSOp = nullptr;
1494     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1495       continue;
1496 
1497     // In general, we only rotate if we can do so without increasing the number
1498     // of instructions.  The exception is when we have an zext(add-rec).  The
1499     // reason for allowing this exception is that we know we need to get rid
1500     // of the zext for SCEV to be able to compute a trip count for said loops;
1501     // we consider the new trip count valuable enough to increase instruction
1502     // count by one.
1503     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1504       continue;
1505 
1506     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1507     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1508     // when zext is loop varying and RHS is loop invariant.  This converts
1509     // loop varying work to loop-invariant work.
1510     auto doRotateTransform = [&]() {
1511       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1512       auto *NewRHS =
1513         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1514                          L->getLoopPreheader()->getTerminator());
1515       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1516       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1517       if (LHS->use_empty())
1518         DeadInsts.push_back(LHS);
1519     };
1520 
1521 
1522     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1523     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1524     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1525     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1526     FullCR = FullCR.zeroExtend(OuterBitWidth);
1527     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1528     if (FullCR.contains(RHSCR)) {
1529       doRotateTransform();
1530       Changed = true;
1531       // Note, we are leaving SCEV in an unfortunately imprecise case here
1532       // as rotation tends to reveal information about trip counts not
1533       // previously visible.
1534       continue;
1535     }
1536   }
1537 
1538   return Changed;
1539 }
1540 
1541 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1542   SmallVector<BasicBlock*, 16> ExitingBlocks;
1543   L->getExitingBlocks(ExitingBlocks);
1544 
1545   // Remove all exits which aren't both rewriteable and execute on every
1546   // iteration.
1547   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1548     // If our exitting block exits multiple loops, we can only rewrite the
1549     // innermost one.  Otherwise, we're changing how many times the innermost
1550     // loop runs before it exits.
1551     if (LI->getLoopFor(ExitingBB) != L)
1552       return true;
1553 
1554     // Can't rewrite non-branch yet.
1555     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1556     if (!BI)
1557       return true;
1558 
1559     // If already constant, nothing to do.
1560     if (isa<Constant>(BI->getCondition()))
1561       return true;
1562 
1563     // Likewise, the loop latch must be dominated by the exiting BB.
1564     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1565       return true;
1566 
1567     return false;
1568   });
1569 
1570   if (ExitingBlocks.empty())
1571     return false;
1572 
1573   // Get a symbolic upper bound on the loop backedge taken count.
1574   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1575   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1576     return false;
1577 
1578   // Visit our exit blocks in order of dominance. We know from the fact that
1579   // all exits must dominate the latch, so there is a total dominance order
1580   // between them.
1581   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1582                // std::sort sorts in ascending order, so we want the inverse of
1583                // the normal dominance relation.
1584                if (A == B) return false;
1585                if (DT->properlyDominates(A, B))
1586                  return true;
1587                else {
1588                  assert(DT->properlyDominates(B, A) &&
1589                         "expected total dominance order!");
1590                  return false;
1591                }
1592   });
1593 #ifdef ASSERT
1594   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1595     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1596   }
1597 #endif
1598 
1599   bool Changed = false;
1600   bool SkipLastIter = false;
1601   SmallSet<const SCEV*, 8> DominatingExitCounts;
1602   for (BasicBlock *ExitingBB : ExitingBlocks) {
1603     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1604     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1605       // Okay, we do not know the exit count here. Can we at least prove that it
1606       // will remain the same within iteration space?
1607       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1608       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1609         return optimizeLoopExitWithUnknownExitCount(
1610             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1611             Rewriter, DeadInsts);
1612       };
1613 
1614       // TODO: We might have proved that we can skip the last iteration for
1615       // this check. In this case, we only want to check the condition on the
1616       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1617       // corner case:
1618       //
1619       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1620       //
1621       // If we could not prove that len != 0, then we also could not prove that
1622       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1623       // OptimizeCond will likely not prove anything for it, even if it could
1624       // prove the same fact for len.
1625       //
1626       // As a temporary solution, we query both last and pre-last iterations in
1627       // hope that we will be able to prove triviality for at least one of
1628       // them. We can stop querying MaxExitCount for this case once SCEV
1629       // understands that (MaxExitCount - 1) will not overflow here.
1630       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1631         Changed = true;
1632       else if (SkipLastIter)
1633         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1634           Changed = true;
1635       continue;
1636     }
1637 
1638     if (MaxExitCount == ExitCount)
1639       // If the loop has more than 1 iteration, all further checks will be
1640       // executed 1 iteration less.
1641       SkipLastIter = true;
1642 
1643     // If we know we'd exit on the first iteration, rewrite the exit to
1644     // reflect this.  This does not imply the loop must exit through this
1645     // exit; there may be an earlier one taken on the first iteration.
1646     // We know that the backedge can't be taken, so we replace all
1647     // the header PHIs with values coming from the preheader.
1648     if (ExitCount->isZero()) {
1649       foldExit(L, ExitingBB, true, DeadInsts);
1650       replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1651       Changed = true;
1652       continue;
1653     }
1654 
1655     assert(ExitCount->getType()->isIntegerTy() &&
1656            MaxExitCount->getType()->isIntegerTy() &&
1657            "Exit counts must be integers");
1658 
1659     Type *WiderType =
1660       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1661     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1662     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1663     assert(MaxExitCount->getType() == ExitCount->getType());
1664 
1665     // Can we prove that some other exit must be taken strictly before this
1666     // one?
1667     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1668                                      MaxExitCount, ExitCount)) {
1669       foldExit(L, ExitingBB, false, DeadInsts);
1670       Changed = true;
1671       continue;
1672     }
1673 
1674     // As we run, keep track of which exit counts we've encountered.  If we
1675     // find a duplicate, we've found an exit which would have exited on the
1676     // exiting iteration, but (from the visit order) strictly follows another
1677     // which does the same and is thus dead.
1678     if (!DominatingExitCounts.insert(ExitCount).second) {
1679       foldExit(L, ExitingBB, false, DeadInsts);
1680       Changed = true;
1681       continue;
1682     }
1683 
1684     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1685     // here.  If we kept track of the min of dominanting exits so far, we could
1686     // discharge exits with EC >= MDEC. This is less powerful than the existing
1687     // transform (since later exits aren't considered), but potentially more
1688     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1689     // or a >u b.  Such a case is not currently known.
1690   }
1691   return Changed;
1692 }
1693 
1694 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1695   SmallVector<BasicBlock*, 16> ExitingBlocks;
1696   L->getExitingBlocks(ExitingBlocks);
1697 
1698   // Finally, see if we can rewrite our exit conditions into a loop invariant
1699   // form. If we have a read-only loop, and we can tell that we must exit down
1700   // a path which does not need any of the values computed within the loop, we
1701   // can rewrite the loop to exit on the first iteration.  Note that this
1702   // doesn't either a) tell us the loop exits on the first iteration (unless
1703   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1704   // This transformation looks a lot like a restricted form of dead loop
1705   // elimination, but restricted to read-only loops and without neccesssarily
1706   // needing to kill the loop entirely.
1707   if (!LoopPredication)
1708     return false;
1709 
1710   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1711   // through *explicit* control flow.  We have to eliminate the possibility of
1712   // implicit exits (see below) before we know it's truly exact.
1713   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1714   if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE))
1715     return false;
1716 
1717   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1718   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1719 
1720   auto BadExit = [&](BasicBlock *ExitingBB) {
1721     // If our exiting block exits multiple loops, we can only rewrite the
1722     // innermost one.  Otherwise, we're changing how many times the innermost
1723     // loop runs before it exits.
1724     if (LI->getLoopFor(ExitingBB) != L)
1725       return true;
1726 
1727     // Can't rewrite non-branch yet.
1728     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1729     if (!BI)
1730       return true;
1731 
1732     // If already constant, nothing to do.
1733     if (isa<Constant>(BI->getCondition()))
1734       return true;
1735 
1736     // If the exit block has phis, we need to be able to compute the values
1737     // within the loop which contains them.  This assumes trivially lcssa phis
1738     // have already been removed; TODO: generalize
1739     BasicBlock *ExitBlock =
1740     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1741     if (!ExitBlock->phis().empty())
1742       return true;
1743 
1744     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1745     if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE))
1746       return true;
1747 
1748     assert(SE->isLoopInvariant(ExitCount, L) &&
1749            "Exit count must be loop invariant");
1750     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1751     return false;
1752   };
1753 
1754   // If we have any exits which can't be predicated themselves, than we can't
1755   // predicate any exit which isn't guaranteed to execute before it.  Consider
1756   // two exits (a) and (b) which would both exit on the same iteration.  If we
1757   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1758   // we could convert a loop from exiting through (a) to one exiting through
1759   // (b).  Note that this problem exists only for exits with the same exit
1760   // count, and we could be more aggressive when exit counts are known inequal.
1761   llvm::sort(ExitingBlocks,
1762             [&](BasicBlock *A, BasicBlock *B) {
1763               // std::sort sorts in ascending order, so we want the inverse of
1764               // the normal dominance relation, plus a tie breaker for blocks
1765               // unordered by dominance.
1766               if (DT->properlyDominates(A, B)) return true;
1767               if (DT->properlyDominates(B, A)) return false;
1768               return A->getName() < B->getName();
1769             });
1770   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1771   // exits before the backedge).  If they aren't, reasoning about reachability
1772   // is complicated and we choose not to for now.
1773   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1774     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1775       return false;
1776 
1777   // Given our sorted total order, we know that exit[j] must be evaluated
1778   // after all exit[i] such j > i.
1779   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1780     if (BadExit(ExitingBlocks[i])) {
1781       ExitingBlocks.resize(i);
1782       break;
1783     }
1784 
1785   if (ExitingBlocks.empty())
1786     return false;
1787 
1788   // We rely on not being able to reach an exiting block on a later iteration
1789   // then it's statically compute exit count.  The implementaton of
1790   // getExitCount currently has this invariant, but assert it here so that
1791   // breakage is obvious if this ever changes..
1792   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1793         return DT->dominates(ExitingBB, L->getLoopLatch());
1794       }));
1795 
1796   // At this point, ExitingBlocks consists of only those blocks which are
1797   // predicatable.  Given that, we know we have at least one exit we can
1798   // predicate if the loop is doesn't have side effects and doesn't have any
1799   // implicit exits (because then our exact BTC isn't actually exact).
1800   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1801   // suggestions on how to improve this?  I can obviously bail out for outer
1802   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1803   // is that enough for *all* side effects?
1804   for (BasicBlock *BB : L->blocks())
1805     for (auto &I : *BB)
1806       // TODO:isGuaranteedToTransfer
1807       if (I.mayHaveSideEffects())
1808         return false;
1809 
1810   bool Changed = false;
1811   // Finally, do the actual predication for all predicatable blocks.  A couple
1812   // of notes here:
1813   // 1) We don't bother to constant fold dominated exits with identical exit
1814   //    counts; that's simply a form of CSE/equality propagation and we leave
1815   //    it for dedicated passes.
1816   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1817   //    legality constraints and we leave that to dedicated logic.  We want to
1818   //    predicate even if we can't insert a loop invariant expression as
1819   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1820   //    varying check.
1821   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1822   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1823   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1824   for (BasicBlock *ExitingBB : ExitingBlocks) {
1825     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1826 
1827     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1828     Value *NewCond;
1829     if (ExitCount == ExactBTC) {
1830       NewCond = L->contains(BI->getSuccessor(0)) ?
1831         B.getFalse() : B.getTrue();
1832     } else {
1833       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1834       if (!ExactBTCV)
1835         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1836       Value *RHS = ExactBTCV;
1837       if (ECV->getType() != RHS->getType()) {
1838         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1839         ECV = B.CreateZExt(ECV, WiderTy);
1840         RHS = B.CreateZExt(RHS, WiderTy);
1841       }
1842       auto Pred = L->contains(BI->getSuccessor(0)) ?
1843         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1844       NewCond = B.CreateICmp(Pred, ECV, RHS);
1845     }
1846     Value *OldCond = BI->getCondition();
1847     BI->setCondition(NewCond);
1848     if (OldCond->use_empty())
1849       DeadInsts.emplace_back(OldCond);
1850     Changed = true;
1851   }
1852 
1853   return Changed;
1854 }
1855 
1856 //===----------------------------------------------------------------------===//
1857 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1858 //===----------------------------------------------------------------------===//
1859 
1860 bool IndVarSimplify::run(Loop *L) {
1861   // We need (and expect!) the incoming loop to be in LCSSA.
1862   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1863          "LCSSA required to run indvars!");
1864 
1865   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1866   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1867   //    canonicalization can be a pessimization without LSR to "clean up"
1868   //    afterwards.
1869   //  - We depend on having a preheader; in particular,
1870   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1871   //    and we're in trouble if we can't find the induction variable even when
1872   //    we've manually inserted one.
1873   //  - LFTR relies on having a single backedge.
1874   if (!L->isLoopSimplifyForm())
1875     return false;
1876 
1877 #ifndef NDEBUG
1878   // Used below for a consistency check only
1879   // Note: Since the result returned by ScalarEvolution may depend on the order
1880   // in which previous results are added to its cache, the call to
1881   // getBackedgeTakenCount() may change following SCEV queries.
1882   const SCEV *BackedgeTakenCount;
1883   if (VerifyIndvars)
1884     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1885 #endif
1886 
1887   bool Changed = false;
1888   // If there are any floating-point recurrences, attempt to
1889   // transform them to use integer recurrences.
1890   Changed |= rewriteNonIntegerIVs(L);
1891 
1892   // Create a rewriter object which we'll use to transform the code with.
1893   SCEVExpander Rewriter(*SE, DL, "indvars");
1894 #ifndef NDEBUG
1895   Rewriter.setDebugType(DEBUG_TYPE);
1896 #endif
1897 
1898   // Eliminate redundant IV users.
1899   //
1900   // Simplification works best when run before other consumers of SCEV. We
1901   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1902   // other expressions involving loop IVs have been evaluated. This helps SCEV
1903   // set no-wrap flags before normalizing sign/zero extension.
1904   Rewriter.disableCanonicalMode();
1905   Changed |= simplifyAndExtend(L, Rewriter, LI);
1906 
1907   // Check to see if we can compute the final value of any expressions
1908   // that are recurrent in the loop, and substitute the exit values from the
1909   // loop into any instructions outside of the loop that use the final values
1910   // of the current expressions.
1911   if (ReplaceExitValue != NeverRepl) {
1912     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1913                                              ReplaceExitValue, DeadInsts)) {
1914       NumReplaced += Rewrites;
1915       Changed = true;
1916     }
1917   }
1918 
1919   // Eliminate redundant IV cycles.
1920   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1921 
1922   // Try to convert exit conditions to unsigned and rotate computation
1923   // out of the loop.  Note: Handles invalidation internally if needed.
1924   Changed |= canonicalizeExitCondition(L);
1925 
1926   // Try to eliminate loop exits based on analyzeable exit counts
1927   if (optimizeLoopExits(L, Rewriter))  {
1928     Changed = true;
1929     // Given we've changed exit counts, notify SCEV
1930     // Some nested loops may share same folded exit basic block,
1931     // thus we need to notify top most loop.
1932     SE->forgetTopmostLoop(L);
1933   }
1934 
1935   // Try to form loop invariant tests for loop exits by changing how many
1936   // iterations of the loop run when that is unobservable.
1937   if (predicateLoopExits(L, Rewriter)) {
1938     Changed = true;
1939     // Given we've changed exit counts, notify SCEV
1940     SE->forgetLoop(L);
1941   }
1942 
1943   // If we have a trip count expression, rewrite the loop's exit condition
1944   // using it.
1945   if (!DisableLFTR) {
1946     BasicBlock *PreHeader = L->getLoopPreheader();
1947 
1948     SmallVector<BasicBlock*, 16> ExitingBlocks;
1949     L->getExitingBlocks(ExitingBlocks);
1950     for (BasicBlock *ExitingBB : ExitingBlocks) {
1951       // Can't rewrite non-branch yet.
1952       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1953         continue;
1954 
1955       // If our exitting block exits multiple loops, we can only rewrite the
1956       // innermost one.  Otherwise, we're changing how many times the innermost
1957       // loop runs before it exits.
1958       if (LI->getLoopFor(ExitingBB) != L)
1959         continue;
1960 
1961       if (!needsLFTR(L, ExitingBB))
1962         continue;
1963 
1964       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1965       if (isa<SCEVCouldNotCompute>(ExitCount))
1966         continue;
1967 
1968       // This was handled above, but as we form SCEVs, we can sometimes refine
1969       // existing ones; this allows exit counts to be folded to zero which
1970       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1971       // until stable to handle cases like this better.
1972       if (ExitCount->isZero())
1973         continue;
1974 
1975       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1976       if (!IndVar)
1977         continue;
1978 
1979       // Avoid high cost expansions.  Note: This heuristic is questionable in
1980       // that our definition of "high cost" is not exactly principled.
1981       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1982                                        TTI, PreHeader->getTerminator()))
1983         continue;
1984 
1985       // Check preconditions for proper SCEVExpander operation. SCEV does not
1986       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1987       // any pass that uses the SCEVExpander must do it. This does not work
1988       // well for loop passes because SCEVExpander makes assumptions about
1989       // all loops, while LoopPassManager only forces the current loop to be
1990       // simplified.
1991       //
1992       // FIXME: SCEV expansion has no way to bail out, so the caller must
1993       // explicitly check any assumptions made by SCEV. Brittle.
1994       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1995       if (!AR || AR->getLoop()->getLoopPreheader())
1996         Changed |= linearFunctionTestReplace(L, ExitingBB,
1997                                              ExitCount, IndVar,
1998                                              Rewriter);
1999     }
2000   }
2001   // Clear the rewriter cache, because values that are in the rewriter's cache
2002   // can be deleted in the loop below, causing the AssertingVH in the cache to
2003   // trigger.
2004   Rewriter.clear();
2005 
2006   // Now that we're done iterating through lists, clean up any instructions
2007   // which are now dead.
2008   while (!DeadInsts.empty()) {
2009     Value *V = DeadInsts.pop_back_val();
2010 
2011     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2012       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2013     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2014       Changed |=
2015           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2016   }
2017 
2018   // The Rewriter may not be used from this point on.
2019 
2020   // Loop-invariant instructions in the preheader that aren't used in the
2021   // loop may be sunk below the loop to reduce register pressure.
2022   Changed |= sinkUnusedInvariants(L);
2023 
2024   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2025   // trip count and therefore can further simplify exit values in addition to
2026   // rewriteLoopExitValues.
2027   Changed |= rewriteFirstIterationLoopExitValues(L);
2028 
2029   // Clean up dead instructions.
2030   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2031 
2032   // Check a post-condition.
2033   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2034          "Indvars did not preserve LCSSA!");
2035 
2036   // Verify that LFTR, and any other change have not interfered with SCEV's
2037   // ability to compute trip count.  We may have *changed* the exit count, but
2038   // only by reducing it.
2039 #ifndef NDEBUG
2040   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2041     SE->forgetLoop(L);
2042     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2043     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2044         SE->getTypeSizeInBits(NewBECount->getType()))
2045       NewBECount = SE->getTruncateOrNoop(NewBECount,
2046                                          BackedgeTakenCount->getType());
2047     else
2048       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2049                                                  NewBECount->getType());
2050     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2051                                  NewBECount) && "indvars must preserve SCEV");
2052   }
2053   if (VerifyMemorySSA && MSSAU)
2054     MSSAU->getMemorySSA()->verifyMemorySSA();
2055 #endif
2056 
2057   return Changed;
2058 }
2059 
2060 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2061                                           LoopStandardAnalysisResults &AR,
2062                                           LPMUpdater &) {
2063   Function *F = L.getHeader()->getParent();
2064   const DataLayout &DL = F->getParent()->getDataLayout();
2065 
2066   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2067                      WidenIndVars && AllowIVWidening);
2068   if (!IVS.run(&L))
2069     return PreservedAnalyses::all();
2070 
2071   auto PA = getLoopPassPreservedAnalyses();
2072   PA.preserveSet<CFGAnalyses>();
2073   if (AR.MSSA)
2074     PA.preserve<MemorySSAAnalysis>();
2075   return PA;
2076 }
2077 
2078 namespace {
2079 
2080 struct IndVarSimplifyLegacyPass : public LoopPass {
2081   static char ID; // Pass identification, replacement for typeid
2082 
2083   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2084     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2085   }
2086 
2087   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2088     if (skipLoop(L))
2089       return false;
2090 
2091     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2092     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2093     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2094     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2095     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2096     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2097     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2098     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2099     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2100     MemorySSA *MSSA = nullptr;
2101     if (MSSAAnalysis)
2102       MSSA = &MSSAAnalysis->getMSSA();
2103 
2104     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2105     return IVS.run(L);
2106   }
2107 
2108   void getAnalysisUsage(AnalysisUsage &AU) const override {
2109     AU.setPreservesCFG();
2110     AU.addPreserved<MemorySSAWrapperPass>();
2111     getLoopAnalysisUsage(AU);
2112   }
2113 };
2114 
2115 } // end anonymous namespace
2116 
2117 char IndVarSimplifyLegacyPass::ID = 0;
2118 
2119 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2120                       "Induction Variable Simplification", false, false)
2121 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2122 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2123                     "Induction Variable Simplification", false, false)
2124 
2125 Pass *llvm::createIndVarSimplifyPass() {
2126   return new IndVarSimplifyLegacyPass();
2127 }
2128