xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision d9ca444835e67960df927d5b8cade57776fdd8cb)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "indvars"
94 
95 STATISTIC(NumWidened     , "Number of indvars widened");
96 STATISTIC(NumReplaced    , "Number of exit values replaced");
97 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
98 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
99 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
100 
101 // Trip count verification can be enabled by default under NDEBUG if we
102 // implement a strong expression equivalence checker in SCEV. Until then, we
103 // use the verify-indvars flag, which may assert in some cases.
104 static cl::opt<bool> VerifyIndvars(
105     "verify-indvars", cl::Hidden,
106     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
107              "effect in release builds. (Note: this adds additional SCEV "
108              "queries potentially changing the analysis result)"));
109 
110 static cl::opt<ReplaceExitVal> ReplaceExitValue(
111     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
112     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
113     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
114                clEnumValN(OnlyCheapRepl, "cheap",
115                           "only replace exit value when the cost is cheap"),
116                clEnumValN(NoHardUse, "noharduse",
117                           "only replace exit values when loop def likely dead"),
118                clEnumValN(AlwaysRepl, "always",
119                           "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 struct RewritePhi;
141 
142 class IndVarSimplify {
143   LoopInfo *LI;
144   ScalarEvolution *SE;
145   DominatorTree *DT;
146   const DataLayout &DL;
147   TargetLibraryInfo *TLI;
148   const TargetTransformInfo *TTI;
149   std::unique_ptr<MemorySSAUpdater> MSSAU;
150 
151   SmallVector<WeakTrackingVH, 16> DeadInsts;
152   bool WidenIndVars;
153 
154   bool handleFloatingPointIV(Loop *L, PHINode *PH);
155   bool rewriteNonIntegerIVs(Loop *L);
156 
157   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
158   /// Try to eliminate loop exits based on analyzeable exit counts
159   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
160   /// Try to form loop invariant tests for loop exits by changing how many
161   /// iterations of the loop run when that is unobservable.
162   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
163 
164   bool rewriteFirstIterationLoopExitValues(Loop *L);
165 
166   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
167                                  const SCEV *ExitCount,
168                                  PHINode *IndVar, SCEVExpander &Rewriter);
169 
170   bool sinkUnusedInvariants(Loop *L);
171 
172 public:
173   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
174                  const DataLayout &DL, TargetLibraryInfo *TLI,
175                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
176       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
177         WidenIndVars(WidenIndVars) {
178     if (MSSA)
179       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
180   }
181 
182   bool run(Loop *L);
183 };
184 
185 } // end anonymous namespace
186 
187 //===----------------------------------------------------------------------===//
188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
189 //===----------------------------------------------------------------------===//
190 
191 /// Convert APF to an integer, if possible.
192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
193   bool isExact = false;
194   // See if we can convert this to an int64_t
195   uint64_t UIntVal;
196   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
197                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
198       !isExact)
199     return false;
200   IntVal = UIntVal;
201   return true;
202 }
203 
204 /// If the loop has floating induction variable then insert corresponding
205 /// integer induction variable if possible.
206 /// For example,
207 /// for(double i = 0; i < 10000; ++i)
208 ///   bar(i)
209 /// is converted into
210 /// for(int i = 0; i < 10000; ++i)
211 ///   bar((double)i);
212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
213   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
214   unsigned BackEdge     = IncomingEdge^1;
215 
216   // Check incoming value.
217   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
218 
219   int64_t InitValue;
220   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
221     return false;
222 
223   // Check IV increment. Reject this PN if increment operation is not
224   // an add or increment value can not be represented by an integer.
225   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
226   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
227 
228   // If this is not an add of the PHI with a constantfp, or if the constant fp
229   // is not an integer, bail out.
230   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
231   int64_t IncValue;
232   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
233       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
234     return false;
235 
236   // Check Incr uses. One user is PN and the other user is an exit condition
237   // used by the conditional terminator.
238   Value::user_iterator IncrUse = Incr->user_begin();
239   Instruction *U1 = cast<Instruction>(*IncrUse++);
240   if (IncrUse == Incr->user_end()) return false;
241   Instruction *U2 = cast<Instruction>(*IncrUse++);
242   if (IncrUse != Incr->user_end()) return false;
243 
244   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
245   // only used by a branch, we can't transform it.
246   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
247   if (!Compare)
248     Compare = dyn_cast<FCmpInst>(U2);
249   if (!Compare || !Compare->hasOneUse() ||
250       !isa<BranchInst>(Compare->user_back()))
251     return false;
252 
253   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
254 
255   // We need to verify that the branch actually controls the iteration count
256   // of the loop.  If not, the new IV can overflow and no one will notice.
257   // The branch block must be in the loop and one of the successors must be out
258   // of the loop.
259   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
260   if (!L->contains(TheBr->getParent()) ||
261       (L->contains(TheBr->getSuccessor(0)) &&
262        L->contains(TheBr->getSuccessor(1))))
263     return false;
264 
265   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
266   // transform it.
267   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
268   int64_t ExitValue;
269   if (ExitValueVal == nullptr ||
270       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
271     return false;
272 
273   // Find new predicate for integer comparison.
274   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
275   switch (Compare->getPredicate()) {
276   default: return false;  // Unknown comparison.
277   case CmpInst::FCMP_OEQ:
278   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
279   case CmpInst::FCMP_ONE:
280   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
281   case CmpInst::FCMP_OGT:
282   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
283   case CmpInst::FCMP_OGE:
284   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
285   case CmpInst::FCMP_OLT:
286   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
287   case CmpInst::FCMP_OLE:
288   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
289   }
290 
291   // We convert the floating point induction variable to a signed i32 value if
292   // we can.  This is only safe if the comparison will not overflow in a way
293   // that won't be trapped by the integer equivalent operations.  Check for this
294   // now.
295   // TODO: We could use i64 if it is native and the range requires it.
296 
297   // The start/stride/exit values must all fit in signed i32.
298   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
299     return false;
300 
301   // If not actually striding (add x, 0.0), avoid touching the code.
302   if (IncValue == 0)
303     return false;
304 
305   // Positive and negative strides have different safety conditions.
306   if (IncValue > 0) {
307     // If we have a positive stride, we require the init to be less than the
308     // exit value.
309     if (InitValue >= ExitValue)
310       return false;
311 
312     uint32_t Range = uint32_t(ExitValue-InitValue);
313     // Check for infinite loop, either:
314     // while (i <= Exit) or until (i > Exit)
315     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
316       if (++Range == 0) return false;  // Range overflows.
317     }
318 
319     unsigned Leftover = Range % uint32_t(IncValue);
320 
321     // If this is an equality comparison, we require that the strided value
322     // exactly land on the exit value, otherwise the IV condition will wrap
323     // around and do things the fp IV wouldn't.
324     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
325         Leftover != 0)
326       return false;
327 
328     // If the stride would wrap around the i32 before exiting, we can't
329     // transform the IV.
330     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
331       return false;
332   } else {
333     // If we have a negative stride, we require the init to be greater than the
334     // exit value.
335     if (InitValue <= ExitValue)
336       return false;
337 
338     uint32_t Range = uint32_t(InitValue-ExitValue);
339     // Check for infinite loop, either:
340     // while (i >= Exit) or until (i < Exit)
341     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
342       if (++Range == 0) return false;  // Range overflows.
343     }
344 
345     unsigned Leftover = Range % uint32_t(-IncValue);
346 
347     // If this is an equality comparison, we require that the strided value
348     // exactly land on the exit value, otherwise the IV condition will wrap
349     // around and do things the fp IV wouldn't.
350     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
351         Leftover != 0)
352       return false;
353 
354     // If the stride would wrap around the i32 before exiting, we can't
355     // transform the IV.
356     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
357       return false;
358   }
359 
360   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
361 
362   // Insert new integer induction variable.
363   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
364   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
365                       PN->getIncomingBlock(IncomingEdge));
366 
367   Value *NewAdd =
368     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
369                               Incr->getName()+".int", Incr);
370   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
371 
372   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
373                                       ConstantInt::get(Int32Ty, ExitValue),
374                                       Compare->getName());
375 
376   // In the following deletions, PN may become dead and may be deleted.
377   // Use a WeakTrackingVH to observe whether this happens.
378   WeakTrackingVH WeakPH = PN;
379 
380   // Delete the old floating point exit comparison.  The branch starts using the
381   // new comparison.
382   NewCompare->takeName(Compare);
383   Compare->replaceAllUsesWith(NewCompare);
384   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
385 
386   // Delete the old floating point increment.
387   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
388   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
389 
390   // If the FP induction variable still has uses, this is because something else
391   // in the loop uses its value.  In order to canonicalize the induction
392   // variable, we chose to eliminate the IV and rewrite it in terms of an
393   // int->fp cast.
394   //
395   // We give preference to sitofp over uitofp because it is faster on most
396   // platforms.
397   if (WeakPH) {
398     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399                                  &*PN->getParent()->getFirstInsertionPt());
400     PN->replaceAllUsesWith(Conv);
401     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402   }
403   return true;
404 }
405 
406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407   // First step.  Check to see if there are any floating-point recurrences.
408   // If there are, change them into integer recurrences, permitting analysis by
409   // the SCEV routines.
410   BasicBlock *Header = L->getHeader();
411 
412   SmallVector<WeakTrackingVH, 8> PHIs;
413   for (PHINode &PN : Header->phis())
414     PHIs.push_back(&PN);
415 
416   bool Changed = false;
417   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
418     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
419       Changed |= handleFloatingPointIV(L, PN);
420 
421   // If the loop previously had floating-point IV, ScalarEvolution
422   // may not have been able to compute a trip count. Now that we've done some
423   // re-writing, the trip count may be computable.
424   if (Changed)
425     SE->forgetLoop(L);
426   return Changed;
427 }
428 
429 //===---------------------------------------------------------------------===//
430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431 // they will exit at the first iteration.
432 //===---------------------------------------------------------------------===//
433 
434 /// Check to see if this loop has loop invariant conditions which lead to loop
435 /// exits. If so, we know that if the exit path is taken, it is at the first
436 /// loop iteration. This lets us predict exit values of PHI nodes that live in
437 /// loop header.
438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439   // Verify the input to the pass is already in LCSSA form.
440   assert(L->isLCSSAForm(*DT));
441 
442   SmallVector<BasicBlock *, 8> ExitBlocks;
443   L->getUniqueExitBlocks(ExitBlocks);
444 
445   bool MadeAnyChanges = false;
446   for (auto *ExitBB : ExitBlocks) {
447     // If there are no more PHI nodes in this exit block, then no more
448     // values defined inside the loop are used on this path.
449     for (PHINode &PN : ExitBB->phis()) {
450       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451            IncomingValIdx != E; ++IncomingValIdx) {
452         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453 
454         // Can we prove that the exit must run on the first iteration if it
455         // runs at all?  (i.e. early exits are fine for our purposes, but
456         // traces which lead to this exit being taken on the 2nd iteration
457         // aren't.)  Note that this is about whether the exit branch is
458         // executed, not about whether it is taken.
459         if (!L->getLoopLatch() ||
460             !DT->dominates(IncomingBB, L->getLoopLatch()))
461           continue;
462 
463         // Get condition that leads to the exit path.
464         auto *TermInst = IncomingBB->getTerminator();
465 
466         Value *Cond = nullptr;
467         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468           // Must be a conditional branch, otherwise the block
469           // should not be in the loop.
470           Cond = BI->getCondition();
471         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472           Cond = SI->getCondition();
473         else
474           continue;
475 
476         if (!L->isLoopInvariant(Cond))
477           continue;
478 
479         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480 
481         // Only deal with PHIs in the loop header.
482         if (!ExitVal || ExitVal->getParent() != L->getHeader())
483           continue;
484 
485         // If ExitVal is a PHI on the loop header, then we know its
486         // value along this exit because the exit can only be taken
487         // on the first iteration.
488         auto *LoopPreheader = L->getLoopPreheader();
489         assert(LoopPreheader && "Invalid loop");
490         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491         if (PreheaderIdx != -1) {
492           assert(ExitVal->getParent() == L->getHeader() &&
493                  "ExitVal must be in loop header");
494           MadeAnyChanges = true;
495           PN.setIncomingValue(IncomingValIdx,
496                               ExitVal->getIncomingValue(PreheaderIdx));
497         }
498       }
499     }
500   }
501   return MadeAnyChanges;
502 }
503 
504 //===----------------------------------------------------------------------===//
505 //  IV Widening - Extend the width of an IV to cover its widest uses.
506 //===----------------------------------------------------------------------===//
507 
508 /// Update information about the induction variable that is extended by this
509 /// sign or zero extend operation. This is used to determine the final width of
510 /// the IV before actually widening it.
511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
512                         ScalarEvolution *SE,
513                         const TargetTransformInfo *TTI) {
514   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
515   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
516     return;
517 
518   Type *Ty = Cast->getType();
519   uint64_t Width = SE->getTypeSizeInBits(Ty);
520   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
521     return;
522 
523   // Check that `Cast` actually extends the induction variable (we rely on this
524   // later).  This takes care of cases where `Cast` is extending a truncation of
525   // the narrow induction variable, and thus can end up being narrower than the
526   // "narrow" induction variable.
527   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
528   if (NarrowIVWidth >= Width)
529     return;
530 
531   // Cast is either an sext or zext up to this point.
532   // We should not widen an indvar if arithmetics on the wider indvar are more
533   // expensive than those on the narrower indvar. We check only the cost of ADD
534   // because at least an ADD is required to increment the induction variable. We
535   // could compute more comprehensively the cost of all instructions on the
536   // induction variable when necessary.
537   if (TTI &&
538       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
539           TTI->getArithmeticInstrCost(Instruction::Add,
540                                       Cast->getOperand(0)->getType())) {
541     return;
542   }
543 
544   if (!WI.WidestNativeType) {
545     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
546     WI.IsSigned = IsSigned;
547     return;
548   }
549 
550   // We extend the IV to satisfy the sign of its first user, arbitrarily.
551   if (WI.IsSigned != IsSigned)
552     return;
553 
554   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
555     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //  Live IV Reduction - Minimize IVs live across the loop.
560 //===----------------------------------------------------------------------===//
561 
562 //===----------------------------------------------------------------------===//
563 //  Simplification of IV users based on SCEV evaluation.
564 //===----------------------------------------------------------------------===//
565 
566 namespace {
567 
568 class IndVarSimplifyVisitor : public IVVisitor {
569   ScalarEvolution *SE;
570   const TargetTransformInfo *TTI;
571   PHINode *IVPhi;
572 
573 public:
574   WideIVInfo WI;
575 
576   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
577                         const TargetTransformInfo *TTI,
578                         const DominatorTree *DTree)
579     : SE(SCEV), TTI(TTI), IVPhi(IV) {
580     DT = DTree;
581     WI.NarrowIV = IVPhi;
582   }
583 
584   // Implement the interface used by simplifyUsersOfIV.
585   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
586 };
587 
588 } // end anonymous namespace
589 
590 /// Iteratively perform simplification on a worklist of IV users. Each
591 /// successive simplification may push more users which may themselves be
592 /// candidates for simplification.
593 ///
594 /// Sign/Zero extend elimination is interleaved with IV simplification.
595 bool IndVarSimplify::simplifyAndExtend(Loop *L,
596                                        SCEVExpander &Rewriter,
597                                        LoopInfo *LI) {
598   SmallVector<WideIVInfo, 8> WideIVs;
599 
600   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
601           Intrinsic::getName(Intrinsic::experimental_guard));
602   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603 
604   SmallVector<PHINode*, 8> LoopPhis;
605   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
606     LoopPhis.push_back(cast<PHINode>(I));
607   }
608   // Each round of simplification iterates through the SimplifyIVUsers worklist
609   // for all current phis, then determines whether any IVs can be
610   // widened. Widening adds new phis to LoopPhis, inducing another round of
611   // simplification on the wide IVs.
612   bool Changed = false;
613   while (!LoopPhis.empty()) {
614     // Evaluate as many IV expressions as possible before widening any IVs. This
615     // forces SCEV to set no-wrap flags before evaluating sign/zero
616     // extension. The first time SCEV attempts to normalize sign/zero extension,
617     // the result becomes final. So for the most predictable results, we delay
618     // evaluation of sign/zero extend evaluation until needed, and avoid running
619     // other SCEV based analysis prior to simplifyAndExtend.
620     do {
621       PHINode *CurrIV = LoopPhis.pop_back_val();
622 
623       // Information about sign/zero extensions of CurrIV.
624       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
625 
626       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
627                                    &Visitor);
628 
629       if (Visitor.WI.WidestNativeType) {
630         WideIVs.push_back(Visitor.WI);
631       }
632     } while(!LoopPhis.empty());
633 
634     // Continue if we disallowed widening.
635     if (!WidenIndVars)
636       continue;
637 
638     for (; !WideIVs.empty(); WideIVs.pop_back()) {
639       unsigned ElimExt;
640       unsigned Widened;
641       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
642                                           DT, DeadInsts, ElimExt, Widened,
643                                           HasGuards, UsePostIncrementRanges)) {
644         NumElimExt += ElimExt;
645         NumWidened += Widened;
646         Changed = true;
647         LoopPhis.push_back(WidePhi);
648       }
649     }
650   }
651   return Changed;
652 }
653 
654 //===----------------------------------------------------------------------===//
655 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
656 //===----------------------------------------------------------------------===//
657 
658 /// Given an Value which is hoped to be part of an add recurance in the given
659 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
660 /// that this is less general than SCEVs AddRec checking.
661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
662   Instruction *IncI = dyn_cast<Instruction>(IncV);
663   if (!IncI)
664     return nullptr;
665 
666   switch (IncI->getOpcode()) {
667   case Instruction::Add:
668   case Instruction::Sub:
669     break;
670   case Instruction::GetElementPtr:
671     // An IV counter must preserve its type.
672     if (IncI->getNumOperands() == 2)
673       break;
674     LLVM_FALLTHROUGH;
675   default:
676     return nullptr;
677   }
678 
679   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
680   if (Phi && Phi->getParent() == L->getHeader()) {
681     if (L->isLoopInvariant(IncI->getOperand(1)))
682       return Phi;
683     return nullptr;
684   }
685   if (IncI->getOpcode() == Instruction::GetElementPtr)
686     return nullptr;
687 
688   // Allow add/sub to be commuted.
689   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
690   if (Phi && Phi->getParent() == L->getHeader()) {
691     if (L->isLoopInvariant(IncI->getOperand(0)))
692       return Phi;
693   }
694   return nullptr;
695 }
696 
697 /// Whether the current loop exit test is based on this value.  Currently this
698 /// is limited to a direct use in the loop condition.
699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
700   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
701   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
702   // TODO: Allow non-icmp loop test.
703   if (!ICmp)
704     return false;
705 
706   // TODO: Allow indirect use.
707   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
708 }
709 
710 /// linearFunctionTestReplace policy. Return true unless we can show that the
711 /// current exit test is already sufficiently canonical.
712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
713   assert(L->getLoopLatch() && "Must be in simplified form");
714 
715   // Avoid converting a constant or loop invariant test back to a runtime
716   // test.  This is critical for when SCEV's cached ExitCount is less precise
717   // than the current IR (such as after we've proven a particular exit is
718   // actually dead and thus the BE count never reaches our ExitCount.)
719   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
720   if (L->isLoopInvariant(BI->getCondition()))
721     return false;
722 
723   // Do LFTR to simplify the exit condition to an ICMP.
724   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
725   if (!Cond)
726     return true;
727 
728   // Do LFTR to simplify the exit ICMP to EQ/NE
729   ICmpInst::Predicate Pred = Cond->getPredicate();
730   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
731     return true;
732 
733   // Look for a loop invariant RHS
734   Value *LHS = Cond->getOperand(0);
735   Value *RHS = Cond->getOperand(1);
736   if (!L->isLoopInvariant(RHS)) {
737     if (!L->isLoopInvariant(LHS))
738       return true;
739     std::swap(LHS, RHS);
740   }
741   // Look for a simple IV counter LHS
742   PHINode *Phi = dyn_cast<PHINode>(LHS);
743   if (!Phi)
744     Phi = getLoopPhiForCounter(LHS, L);
745 
746   if (!Phi)
747     return true;
748 
749   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
750   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
751   if (Idx < 0)
752     return true;
753 
754   // Do LFTR if the exit condition's IV is *not* a simple counter.
755   Value *IncV = Phi->getIncomingValue(Idx);
756   return Phi != getLoopPhiForCounter(IncV, L);
757 }
758 
759 /// Return true if undefined behavior would provable be executed on the path to
760 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
761 /// anything about whether OnPathTo is actually executed or whether Root is
762 /// actually poison.  This can be used to assess whether a new use of Root can
763 /// be added at a location which is control equivalent with OnPathTo (such as
764 /// immediately before it) without introducing UB which didn't previously
765 /// exist.  Note that a false result conveys no information.
766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
767                                           Instruction *OnPathTo,
768                                           DominatorTree *DT) {
769   // Basic approach is to assume Root is poison, propagate poison forward
770   // through all users we can easily track, and then check whether any of those
771   // users are provable UB and must execute before out exiting block might
772   // exit.
773 
774   // The set of all recursive users we've visited (which are assumed to all be
775   // poison because of said visit)
776   SmallSet<const Value *, 16> KnownPoison;
777   SmallVector<const Instruction*, 16> Worklist;
778   Worklist.push_back(Root);
779   while (!Worklist.empty()) {
780     const Instruction *I = Worklist.pop_back_val();
781 
782     // If we know this must trigger UB on a path leading our target.
783     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
784       return true;
785 
786     // If we can't analyze propagation through this instruction, just skip it
787     // and transitive users.  Safe as false is a conservative result.
788     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
789       continue;
790 
791     if (KnownPoison.insert(I).second)
792       for (const User *User : I->users())
793         Worklist.push_back(cast<Instruction>(User));
794   }
795 
796   // Might be non-UB, or might have a path we couldn't prove must execute on
797   // way to exiting bb.
798   return false;
799 }
800 
801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
802 /// down to checking that all operands are constant and listing instructions
803 /// that may hide undef.
804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
805                                unsigned Depth) {
806   if (isa<Constant>(V))
807     return !isa<UndefValue>(V);
808 
809   if (Depth >= 6)
810     return false;
811 
812   // Conservatively handle non-constant non-instructions. For example, Arguments
813   // may be undef.
814   Instruction *I = dyn_cast<Instruction>(V);
815   if (!I)
816     return false;
817 
818   // Load and return values may be undef.
819   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
820     return false;
821 
822   // Optimistically handle other instructions.
823   for (Value *Op : I->operands()) {
824     if (!Visited.insert(Op).second)
825       continue;
826     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
827       return false;
828   }
829   return true;
830 }
831 
832 /// Return true if the given value is concrete. We must prove that undef can
833 /// never reach it.
834 ///
835 /// TODO: If we decide that this is a good approach to checking for undef, we
836 /// may factor it into a common location.
837 static bool hasConcreteDef(Value *V) {
838   SmallPtrSet<Value*, 8> Visited;
839   Visited.insert(V);
840   return hasConcreteDefImpl(V, Visited, 0);
841 }
842 
843 /// Return true if this IV has any uses other than the (soon to be rewritten)
844 /// loop exit test.
845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
846   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
847   Value *IncV = Phi->getIncomingValue(LatchIdx);
848 
849   for (User *U : Phi->users())
850     if (U != Cond && U != IncV) return false;
851 
852   for (User *U : IncV->users())
853     if (U != Cond && U != Phi) return false;
854   return true;
855 }
856 
857 /// Return true if the given phi is a "counter" in L.  A counter is an
858 /// add recurance (of integer or pointer type) with an arbitrary start, and a
859 /// step of 1.  Note that L must have exactly one latch.
860 static bool isLoopCounter(PHINode* Phi, Loop *L,
861                           ScalarEvolution *SE) {
862   assert(Phi->getParent() == L->getHeader());
863   assert(L->getLoopLatch());
864 
865   if (!SE->isSCEVable(Phi->getType()))
866     return false;
867 
868   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
869   if (!AR || AR->getLoop() != L || !AR->isAffine())
870     return false;
871 
872   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
873   if (!Step || !Step->isOne())
874     return false;
875 
876   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
877   Value *IncV = Phi->getIncomingValue(LatchIdx);
878   return (getLoopPhiForCounter(IncV, L) == Phi &&
879           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
880 }
881 
882 /// Search the loop header for a loop counter (anadd rec w/step of one)
883 /// suitable for use by LFTR.  If multiple counters are available, select the
884 /// "best" one based profitable heuristics.
885 ///
886 /// BECount may be an i8* pointer type. The pointer difference is already
887 /// valid count without scaling the address stride, so it remains a pointer
888 /// expression as far as SCEV is concerned.
889 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
890                                 const SCEV *BECount,
891                                 ScalarEvolution *SE, DominatorTree *DT) {
892   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
893 
894   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
895 
896   // Loop over all of the PHI nodes, looking for a simple counter.
897   PHINode *BestPhi = nullptr;
898   const SCEV *BestInit = nullptr;
899   BasicBlock *LatchBlock = L->getLoopLatch();
900   assert(LatchBlock && "Must be in simplified form");
901   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
902 
903   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
904     PHINode *Phi = cast<PHINode>(I);
905     if (!isLoopCounter(Phi, L, SE))
906       continue;
907 
908     // Avoid comparing an integer IV against a pointer Limit.
909     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
910       continue;
911 
912     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
913 
914     // AR may be a pointer type, while BECount is an integer type.
915     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
916     // AR may not be a narrower type, or we may never exit.
917     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
918     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
919       continue;
920 
921     // Avoid reusing a potentially undef value to compute other values that may
922     // have originally had a concrete definition.
923     if (!hasConcreteDef(Phi)) {
924       // We explicitly allow unknown phis as long as they are already used by
925       // the loop exit test.  This is legal since performing LFTR could not
926       // increase the number of undef users.
927       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
928       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
929           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
930         continue;
931     }
932 
933     // Avoid introducing undefined behavior due to poison which didn't exist in
934     // the original program.  (Annoyingly, the rules for poison and undef
935     // propagation are distinct, so this does NOT cover the undef case above.)
936     // We have to ensure that we don't introduce UB by introducing a use on an
937     // iteration where said IV produces poison.  Our strategy here differs for
938     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
939     // see code in linearFunctionTestReplace.  For pointers, we restrict
940     // transforms as there is no good way to reinfer inbounds once lost.
941     if (!Phi->getType()->isIntegerTy() &&
942         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
943       continue;
944 
945     const SCEV *Init = AR->getStart();
946 
947     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
948       // Don't force a live loop counter if another IV can be used.
949       if (AlmostDeadIV(Phi, LatchBlock, Cond))
950         continue;
951 
952       // Prefer to count-from-zero. This is a more "canonical" counter form. It
953       // also prefers integer to pointer IVs.
954       if (BestInit->isZero() != Init->isZero()) {
955         if (BestInit->isZero())
956           continue;
957       }
958       // If two IVs both count from zero or both count from nonzero then the
959       // narrower is likely a dead phi that has been widened. Use the wider phi
960       // to allow the other to be eliminated.
961       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
962         continue;
963     }
964     BestPhi = Phi;
965     BestInit = Init;
966   }
967   return BestPhi;
968 }
969 
970 /// Insert an IR expression which computes the value held by the IV IndVar
971 /// (which must be an loop counter w/unit stride) after the backedge of loop L
972 /// is taken ExitCount times.
973 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
974                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
975                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
976   assert(isLoopCounter(IndVar, L, SE));
977   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
978   const SCEV *IVInit = AR->getStart();
979 
980   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
981   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
982   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
983   // the existing GEPs whenever possible.
984   if (IndVar->getType()->isPointerTy() &&
985       !ExitCount->getType()->isPointerTy()) {
986     // IVOffset will be the new GEP offset that is interpreted by GEP as a
987     // signed value. ExitCount on the other hand represents the loop trip count,
988     // which is an unsigned value. FindLoopCounter only allows induction
989     // variables that have a positive unit stride of one. This means we don't
990     // have to handle the case of negative offsets (yet) and just need to zero
991     // extend ExitCount.
992     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
993     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
994     if (UsePostInc)
995       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
996 
997     // Expand the code for the iteration count.
998     assert(SE->isLoopInvariant(IVOffset, L) &&
999            "Computed iteration count is not loop invariant!");
1000 
1001     // We could handle pointer IVs other than i8*, but we need to compensate for
1002     // gep index scaling.
1003     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1004                              cast<PointerType>(IndVar->getType())
1005                                  ->getElementType())->isOne() &&
1006            "unit stride pointer IV must be i8*");
1007 
1008     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1009     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1010     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1011   } else {
1012     // In any other case, convert both IVInit and ExitCount to integers before
1013     // comparing. This may result in SCEV expansion of pointers, but in practice
1014     // SCEV will fold the pointer arithmetic away as such:
1015     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1016     //
1017     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1018     // for simple memset-style loops.
1019     //
1020     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1021     // were generated on top of case #2, which is not expected.
1022 
1023     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1024     // For unit stride, IVCount = Start + ExitCount with 2's complement
1025     // overflow.
1026 
1027     // For integer IVs, truncate the IV before computing IVInit + BECount,
1028     // unless we know apriori that the limit must be a constant when evaluated
1029     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1030     // of the IV in the loop over a (potentially) expensive expansion of the
1031     // widened exit count add(zext(add)) expression.
1032     if (SE->getTypeSizeInBits(IVInit->getType())
1033         > SE->getTypeSizeInBits(ExitCount->getType())) {
1034       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1035         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1036       else
1037         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1038     }
1039 
1040     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1041 
1042     if (UsePostInc)
1043       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1044 
1045     // Expand the code for the iteration count.
1046     assert(SE->isLoopInvariant(IVLimit, L) &&
1047            "Computed iteration count is not loop invariant!");
1048     // Ensure that we generate the same type as IndVar, or a smaller integer
1049     // type. In the presence of null pointer values, we have an integer type
1050     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1051     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1052       IndVar->getType() : ExitCount->getType();
1053     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1054     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1055   }
1056 }
1057 
1058 /// This method rewrites the exit condition of the loop to be a canonical !=
1059 /// comparison against the incremented loop induction variable.  This pass is
1060 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1061 /// determine a loop-invariant trip count of the loop, which is actually a much
1062 /// broader range than just linear tests.
1063 bool IndVarSimplify::
1064 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1065                           const SCEV *ExitCount,
1066                           PHINode *IndVar, SCEVExpander &Rewriter) {
1067   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1068   assert(isLoopCounter(IndVar, L, SE));
1069   Instruction * const IncVar =
1070     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1071 
1072   // Initialize CmpIndVar to the preincremented IV.
1073   Value *CmpIndVar = IndVar;
1074   bool UsePostInc = false;
1075 
1076   // If the exiting block is the same as the backedge block, we prefer to
1077   // compare against the post-incremented value, otherwise we must compare
1078   // against the preincremented value.
1079   if (ExitingBB == L->getLoopLatch()) {
1080     // For pointer IVs, we chose to not strip inbounds which requires us not
1081     // to add a potentially UB introducing use.  We need to either a) show
1082     // the loop test we're modifying is already in post-inc form, or b) show
1083     // that adding a use must not introduce UB.
1084     bool SafeToPostInc =
1085         IndVar->getType()->isIntegerTy() ||
1086         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1087         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1088     if (SafeToPostInc) {
1089       UsePostInc = true;
1090       CmpIndVar = IncVar;
1091     }
1092   }
1093 
1094   // It may be necessary to drop nowrap flags on the incrementing instruction
1095   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1096   // case the increment might have previously been poison on the last iteration
1097   // only) or if LFTR switches to a different IV that was previously dynamically
1098   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1099   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1100   // check), because the pre-inc addrec flags may be adopted from the original
1101   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1102   // TODO: This handling is inaccurate for one case: If we switch to a
1103   // dynamically dead IV that wraps on the first loop iteration only, which is
1104   // not covered by the post-inc addrec. (If the new IV was not dynamically
1105   // dead, it could not be poison on the first iteration in the first place.)
1106   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1107     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1108     if (BO->hasNoUnsignedWrap())
1109       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1110     if (BO->hasNoSignedWrap())
1111       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1112   }
1113 
1114   Value *ExitCnt = genLoopLimit(
1115       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1116   assert(ExitCnt->getType()->isPointerTy() ==
1117              IndVar->getType()->isPointerTy() &&
1118          "genLoopLimit missed a cast");
1119 
1120   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1121   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1122   ICmpInst::Predicate P;
1123   if (L->contains(BI->getSuccessor(0)))
1124     P = ICmpInst::ICMP_NE;
1125   else
1126     P = ICmpInst::ICMP_EQ;
1127 
1128   IRBuilder<> Builder(BI);
1129 
1130   // The new loop exit condition should reuse the debug location of the
1131   // original loop exit condition.
1132   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1133     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1134 
1135   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1136   // avoid the expensive expansion of the limit expression in the wider type,
1137   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1138   // since we know (from the exit count bitwidth), that we can't self-wrap in
1139   // the narrower type.
1140   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1141   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1142   if (CmpIndVarSize > ExitCntSize) {
1143     assert(!CmpIndVar->getType()->isPointerTy() &&
1144            !ExitCnt->getType()->isPointerTy());
1145 
1146     // Before resorting to actually inserting the truncate, use the same
1147     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1148     // the other side of the comparison instead.  We still evaluate the limit
1149     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1150     // a truncate within in.
1151     bool Extended = false;
1152     const SCEV *IV = SE->getSCEV(CmpIndVar);
1153     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1154                                                   ExitCnt->getType());
1155     const SCEV *ZExtTrunc =
1156       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1157 
1158     if (ZExtTrunc == IV) {
1159       Extended = true;
1160       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1161                                    "wide.trip.count");
1162     } else {
1163       const SCEV *SExtTrunc =
1164         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1165       if (SExtTrunc == IV) {
1166         Extended = true;
1167         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1168                                      "wide.trip.count");
1169       }
1170     }
1171 
1172     if (Extended) {
1173       bool Discard;
1174       L->makeLoopInvariant(ExitCnt, Discard);
1175     } else
1176       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1177                                       "lftr.wideiv");
1178   }
1179   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1180                     << "      LHS:" << *CmpIndVar << '\n'
1181                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1182                     << "\n"
1183                     << "      RHS:\t" << *ExitCnt << "\n"
1184                     << "ExitCount:\t" << *ExitCount << "\n"
1185                     << "  was: " << *BI->getCondition() << "\n");
1186 
1187   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1188   Value *OrigCond = BI->getCondition();
1189   // It's tempting to use replaceAllUsesWith here to fully replace the old
1190   // comparison, but that's not immediately safe, since users of the old
1191   // comparison may not be dominated by the new comparison. Instead, just
1192   // update the branch to use the new comparison; in the common case this
1193   // will make old comparison dead.
1194   BI->setCondition(Cond);
1195   DeadInsts.emplace_back(OrigCond);
1196 
1197   ++NumLFTR;
1198   return true;
1199 }
1200 
1201 //===----------------------------------------------------------------------===//
1202 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1203 //===----------------------------------------------------------------------===//
1204 
1205 /// If there's a single exit block, sink any loop-invariant values that
1206 /// were defined in the preheader but not used inside the loop into the
1207 /// exit block to reduce register pressure in the loop.
1208 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1209   BasicBlock *ExitBlock = L->getExitBlock();
1210   if (!ExitBlock) return false;
1211 
1212   BasicBlock *Preheader = L->getLoopPreheader();
1213   if (!Preheader) return false;
1214 
1215   bool MadeAnyChanges = false;
1216   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1217   BasicBlock::iterator I(Preheader->getTerminator());
1218   while (I != Preheader->begin()) {
1219     --I;
1220     // New instructions were inserted at the end of the preheader.
1221     if (isa<PHINode>(I))
1222       break;
1223 
1224     // Don't move instructions which might have side effects, since the side
1225     // effects need to complete before instructions inside the loop.  Also don't
1226     // move instructions which might read memory, since the loop may modify
1227     // memory. Note that it's okay if the instruction might have undefined
1228     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1229     // block.
1230     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1231       continue;
1232 
1233     // Skip debug info intrinsics.
1234     if (isa<DbgInfoIntrinsic>(I))
1235       continue;
1236 
1237     // Skip eh pad instructions.
1238     if (I->isEHPad())
1239       continue;
1240 
1241     // Don't sink alloca: we never want to sink static alloca's out of the
1242     // entry block, and correctly sinking dynamic alloca's requires
1243     // checks for stacksave/stackrestore intrinsics.
1244     // FIXME: Refactor this check somehow?
1245     if (isa<AllocaInst>(I))
1246       continue;
1247 
1248     // Determine if there is a use in or before the loop (direct or
1249     // otherwise).
1250     bool UsedInLoop = false;
1251     for (Use &U : I->uses()) {
1252       Instruction *User = cast<Instruction>(U.getUser());
1253       BasicBlock *UseBB = User->getParent();
1254       if (PHINode *P = dyn_cast<PHINode>(User)) {
1255         unsigned i =
1256           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1257         UseBB = P->getIncomingBlock(i);
1258       }
1259       if (UseBB == Preheader || L->contains(UseBB)) {
1260         UsedInLoop = true;
1261         break;
1262       }
1263     }
1264 
1265     // If there is, the def must remain in the preheader.
1266     if (UsedInLoop)
1267       continue;
1268 
1269     // Otherwise, sink it to the exit block.
1270     Instruction *ToMove = &*I;
1271     bool Done = false;
1272 
1273     if (I != Preheader->begin()) {
1274       // Skip debug info intrinsics.
1275       do {
1276         --I;
1277       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1278 
1279       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1280         Done = true;
1281     } else {
1282       Done = true;
1283     }
1284 
1285     MadeAnyChanges = true;
1286     ToMove->moveBefore(*ExitBlock, InsertPt);
1287     if (Done) break;
1288     InsertPt = ToMove->getIterator();
1289   }
1290 
1291   return MadeAnyChanges;
1292 }
1293 
1294 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1295                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1296   auto *OldCond = BI->getCondition();
1297   BI->setCondition(NewCond);
1298   if (OldCond->use_empty())
1299     DeadInsts.emplace_back(OldCond);
1300 }
1301 
1302 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1303                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1304   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1305   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1306   auto *OldCond = BI->getCondition();
1307   auto *NewCond =
1308       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1309   replaceExitCond(BI, NewCond, DeadInsts);
1310 }
1311 
1312 static void replaceLoopPHINodesWithPreheaderValues(
1313     Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1314   auto *LoopPreheader = L->getLoopPreheader();
1315   auto *LoopHeader = L->getHeader();
1316   for (auto &PN : LoopHeader->phis()) {
1317     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1318     PN.replaceAllUsesWith(PreheaderIncoming);
1319     DeadInsts.emplace_back(&PN);
1320   }
1321 }
1322 
1323 static void replaceWithInvariantCond(
1324     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1325     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1326     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1327   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1328   Rewriter.setInsertPoint(BI);
1329   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1330   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1331   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1332   if (ExitIfTrue)
1333     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1334   IRBuilder<> Builder(BI);
1335   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1336                                      BI->getCondition()->getName());
1337   replaceExitCond(BI, NewCond, DeadInsts);
1338 }
1339 
1340 static bool optimizeLoopExitWithUnknownExitCount(
1341     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1342     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1343     ScalarEvolution *SE, SCEVExpander &Rewriter,
1344     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1345   ICmpInst::Predicate Pred;
1346   Value *LHS, *RHS;
1347   using namespace PatternMatch;
1348   BasicBlock *TrueSucc, *FalseSucc;
1349   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1350                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1351     return false;
1352 
1353   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1354          "Not a loop exit!");
1355 
1356   // 'LHS pred RHS' should now mean that we stay in loop.
1357   if (L->contains(FalseSucc))
1358     Pred = CmpInst::getInversePredicate(Pred);
1359 
1360   // If we are proving loop exit, invert the predicate.
1361   if (Inverted)
1362     Pred = CmpInst::getInversePredicate(Pred);
1363 
1364   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1365   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1366   // Can we prove it to be trivially true?
1367   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1368     foldExit(L, ExitingBB, Inverted, DeadInsts);
1369     return true;
1370   }
1371   // Further logic works for non-inverted condition only.
1372   if (Inverted)
1373     return false;
1374 
1375   auto *ARTy = LHSS->getType();
1376   auto *MaxIterTy = MaxIter->getType();
1377   // If possible, adjust types.
1378   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1379     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1380   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1381     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1382     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1383     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1384       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1385   }
1386 
1387   if (SkipLastIter) {
1388     const SCEV *One = SE->getOne(MaxIter->getType());
1389     MaxIter = SE->getMinusSCEV(MaxIter, One);
1390   }
1391 
1392   // Check if there is a loop-invariant predicate equivalent to our check.
1393   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1394                                                                L, BI, MaxIter);
1395   if (!LIP)
1396     return false;
1397 
1398   // Can we prove it to be trivially true?
1399   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1400     foldExit(L, ExitingBB, Inverted, DeadInsts);
1401   else
1402     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1403                              Rewriter, DeadInsts);
1404 
1405   return true;
1406 }
1407 
1408 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1409   SmallVector<BasicBlock*, 16> ExitingBlocks;
1410   L->getExitingBlocks(ExitingBlocks);
1411 
1412   // Remove all exits which aren't both rewriteable and execute on every
1413   // iteration.
1414   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1415     // If our exitting block exits multiple loops, we can only rewrite the
1416     // innermost one.  Otherwise, we're changing how many times the innermost
1417     // loop runs before it exits.
1418     if (LI->getLoopFor(ExitingBB) != L)
1419       return true;
1420 
1421     // Can't rewrite non-branch yet.
1422     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1423     if (!BI)
1424       return true;
1425 
1426     // If already constant, nothing to do.
1427     if (isa<Constant>(BI->getCondition()))
1428       return true;
1429 
1430     // Likewise, the loop latch must be dominated by the exiting BB.
1431     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1432       return true;
1433 
1434     return false;
1435   });
1436 
1437   if (ExitingBlocks.empty())
1438     return false;
1439 
1440   // Get a symbolic upper bound on the loop backedge taken count.
1441   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1442   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1443     return false;
1444 
1445   // Visit our exit blocks in order of dominance. We know from the fact that
1446   // all exits must dominate the latch, so there is a total dominance order
1447   // between them.
1448   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1449                // std::sort sorts in ascending order, so we want the inverse of
1450                // the normal dominance relation.
1451                if (A == B) return false;
1452                if (DT->properlyDominates(A, B))
1453                  return true;
1454                else {
1455                  assert(DT->properlyDominates(B, A) &&
1456                         "expected total dominance order!");
1457                  return false;
1458                }
1459   });
1460 #ifdef ASSERT
1461   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1462     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1463   }
1464 #endif
1465 
1466   bool Changed = false;
1467   bool SkipLastIter = false;
1468   bool ExitsOnFirstIter = false;
1469   SmallSet<const SCEV*, 8> DominatingExitCounts;
1470   for (BasicBlock *ExitingBB : ExitingBlocks) {
1471     if (ExitsOnFirstIter) {
1472       // If proved that some earlier exit is taken
1473       // on 1st iteration, then fold this one.
1474       foldExit(L, ExitingBB, true, DeadInsts);
1475       continue;
1476     }
1477     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1478     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1479       // Okay, we do not know the exit count here. Can we at least prove that it
1480       // will remain the same within iteration space?
1481       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1482       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1483         return optimizeLoopExitWithUnknownExitCount(
1484             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1485             Rewriter, DeadInsts);
1486       };
1487 
1488       // TODO: We might have proved that we can skip the last iteration for
1489       // this check. In this case, we only want to check the condition on the
1490       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1491       // corner case:
1492       //
1493       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1494       //
1495       // If we could not prove that len != 0, then we also could not prove that
1496       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1497       // OptimizeCond will likely not prove anything for it, even if it could
1498       // prove the same fact for len.
1499       //
1500       // As a temporary solution, we query both last and pre-last iterations in
1501       // hope that we will be able to prove triviality for at least one of
1502       // them. We can stop querying MaxExitCount for this case once SCEV
1503       // understands that (MaxExitCount - 1) will not overflow here.
1504       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1505         Changed = true;
1506       else if (SkipLastIter)
1507         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1508           Changed = true;
1509       continue;
1510     }
1511 
1512     if (MaxExitCount == ExitCount)
1513       // If the loop has more than 1 iteration, all further checks will be
1514       // executed 1 iteration less.
1515       SkipLastIter = true;
1516 
1517     // If we know we'd exit on the first iteration, rewrite the exit to
1518     // reflect this.  This does not imply the loop must exit through this
1519     // exit; there may be an earlier one taken on the first iteration.
1520     // We know that the backedge can't be taken, so we replace all
1521     // the header PHIs with values coming from the preheader.
1522     if (ExitCount->isZero()) {
1523       foldExit(L, ExitingBB, true, DeadInsts);
1524       replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1525       Changed = true;
1526       ExitsOnFirstIter = true;
1527       continue;
1528     }
1529 
1530     assert(ExitCount->getType()->isIntegerTy() &&
1531            MaxExitCount->getType()->isIntegerTy() &&
1532            "Exit counts must be integers");
1533 
1534     Type *WiderType =
1535       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1536     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1537     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1538     assert(MaxExitCount->getType() == ExitCount->getType());
1539 
1540     // Can we prove that some other exit must be taken strictly before this
1541     // one?
1542     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1543                                      MaxExitCount, ExitCount)) {
1544       foldExit(L, ExitingBB, false, DeadInsts);
1545       Changed = true;
1546       continue;
1547     }
1548 
1549     // As we run, keep track of which exit counts we've encountered.  If we
1550     // find a duplicate, we've found an exit which would have exited on the
1551     // exiting iteration, but (from the visit order) strictly follows another
1552     // which does the same and is thus dead.
1553     if (!DominatingExitCounts.insert(ExitCount).second) {
1554       foldExit(L, ExitingBB, false, DeadInsts);
1555       Changed = true;
1556       continue;
1557     }
1558 
1559     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1560     // here.  If we kept track of the min of dominanting exits so far, we could
1561     // discharge exits with EC >= MDEC. This is less powerful than the existing
1562     // transform (since later exits aren't considered), but potentially more
1563     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1564     // or a >u b.  Such a case is not currently known.
1565   }
1566   return Changed;
1567 }
1568 
1569 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1570   SmallVector<BasicBlock*, 16> ExitingBlocks;
1571   L->getExitingBlocks(ExitingBlocks);
1572 
1573   // Finally, see if we can rewrite our exit conditions into a loop invariant
1574   // form. If we have a read-only loop, and we can tell that we must exit down
1575   // a path which does not need any of the values computed within the loop, we
1576   // can rewrite the loop to exit on the first iteration.  Note that this
1577   // doesn't either a) tell us the loop exits on the first iteration (unless
1578   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1579   // This transformation looks a lot like a restricted form of dead loop
1580   // elimination, but restricted to read-only loops and without neccesssarily
1581   // needing to kill the loop entirely.
1582   if (!LoopPredication)
1583     return false;
1584 
1585   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1586   // through *explicit* control flow.  We have to eliminate the possibility of
1587   // implicit exits (see below) before we know it's truly exact.
1588   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1589   if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE))
1590     return false;
1591 
1592   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1593   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1594 
1595   auto BadExit = [&](BasicBlock *ExitingBB) {
1596     // If our exiting block exits multiple loops, we can only rewrite the
1597     // innermost one.  Otherwise, we're changing how many times the innermost
1598     // loop runs before it exits.
1599     if (LI->getLoopFor(ExitingBB) != L)
1600       return true;
1601 
1602     // Can't rewrite non-branch yet.
1603     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1604     if (!BI)
1605       return true;
1606 
1607     // If already constant, nothing to do.
1608     if (isa<Constant>(BI->getCondition()))
1609       return true;
1610 
1611     // If the exit block has phis, we need to be able to compute the values
1612     // within the loop which contains them.  This assumes trivially lcssa phis
1613     // have already been removed; TODO: generalize
1614     BasicBlock *ExitBlock =
1615     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1616     if (!ExitBlock->phis().empty())
1617       return true;
1618 
1619     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1620     if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE))
1621       return true;
1622 
1623     assert(SE->isLoopInvariant(ExitCount, L) &&
1624            "Exit count must be loop invariant");
1625     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1626     return false;
1627   };
1628 
1629   // If we have any exits which can't be predicated themselves, than we can't
1630   // predicate any exit which isn't guaranteed to execute before it.  Consider
1631   // two exits (a) and (b) which would both exit on the same iteration.  If we
1632   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1633   // we could convert a loop from exiting through (a) to one exiting through
1634   // (b).  Note that this problem exists only for exits with the same exit
1635   // count, and we could be more aggressive when exit counts are known inequal.
1636   llvm::sort(ExitingBlocks,
1637             [&](BasicBlock *A, BasicBlock *B) {
1638               // std::sort sorts in ascending order, so we want the inverse of
1639               // the normal dominance relation, plus a tie breaker for blocks
1640               // unordered by dominance.
1641               if (DT->properlyDominates(A, B)) return true;
1642               if (DT->properlyDominates(B, A)) return false;
1643               return A->getName() < B->getName();
1644             });
1645   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1646   // exits before the backedge).  If they aren't, reasoning about reachability
1647   // is complicated and we choose not to for now.
1648   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1649     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1650       return false;
1651 
1652   // Given our sorted total order, we know that exit[j] must be evaluated
1653   // after all exit[i] such j > i.
1654   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1655     if (BadExit(ExitingBlocks[i])) {
1656       ExitingBlocks.resize(i);
1657       break;
1658     }
1659 
1660   if (ExitingBlocks.empty())
1661     return false;
1662 
1663   // We rely on not being able to reach an exiting block on a later iteration
1664   // then it's statically compute exit count.  The implementaton of
1665   // getExitCount currently has this invariant, but assert it here so that
1666   // breakage is obvious if this ever changes..
1667   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1668         return DT->dominates(ExitingBB, L->getLoopLatch());
1669       }));
1670 
1671   // At this point, ExitingBlocks consists of only those blocks which are
1672   // predicatable.  Given that, we know we have at least one exit we can
1673   // predicate if the loop is doesn't have side effects and doesn't have any
1674   // implicit exits (because then our exact BTC isn't actually exact).
1675   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1676   // suggestions on how to improve this?  I can obviously bail out for outer
1677   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1678   // is that enough for *all* side effects?
1679   for (BasicBlock *BB : L->blocks())
1680     for (auto &I : *BB)
1681       // TODO:isGuaranteedToTransfer
1682       if (I.mayHaveSideEffects())
1683         return false;
1684 
1685   bool Changed = false;
1686   // Finally, do the actual predication for all predicatable blocks.  A couple
1687   // of notes here:
1688   // 1) We don't bother to constant fold dominated exits with identical exit
1689   //    counts; that's simply a form of CSE/equality propagation and we leave
1690   //    it for dedicated passes.
1691   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1692   //    legality constraints and we leave that to dedicated logic.  We want to
1693   //    predicate even if we can't insert a loop invariant expression as
1694   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1695   //    varying check.
1696   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1697   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1698   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1699   for (BasicBlock *ExitingBB : ExitingBlocks) {
1700     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1701 
1702     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1703     Value *NewCond;
1704     if (ExitCount == ExactBTC) {
1705       NewCond = L->contains(BI->getSuccessor(0)) ?
1706         B.getFalse() : B.getTrue();
1707     } else {
1708       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1709       if (!ExactBTCV)
1710         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1711       Value *RHS = ExactBTCV;
1712       if (ECV->getType() != RHS->getType()) {
1713         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1714         ECV = B.CreateZExt(ECV, WiderTy);
1715         RHS = B.CreateZExt(RHS, WiderTy);
1716       }
1717       auto Pred = L->contains(BI->getSuccessor(0)) ?
1718         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1719       NewCond = B.CreateICmp(Pred, ECV, RHS);
1720     }
1721     Value *OldCond = BI->getCondition();
1722     BI->setCondition(NewCond);
1723     if (OldCond->use_empty())
1724       DeadInsts.emplace_back(OldCond);
1725     Changed = true;
1726   }
1727 
1728   return Changed;
1729 }
1730 
1731 //===----------------------------------------------------------------------===//
1732 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1733 //===----------------------------------------------------------------------===//
1734 
1735 bool IndVarSimplify::run(Loop *L) {
1736   // We need (and expect!) the incoming loop to be in LCSSA.
1737   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1738          "LCSSA required to run indvars!");
1739 
1740   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1741   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1742   //    canonicalization can be a pessimization without LSR to "clean up"
1743   //    afterwards.
1744   //  - We depend on having a preheader; in particular,
1745   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1746   //    and we're in trouble if we can't find the induction variable even when
1747   //    we've manually inserted one.
1748   //  - LFTR relies on having a single backedge.
1749   if (!L->isLoopSimplifyForm())
1750     return false;
1751 
1752 #ifndef NDEBUG
1753   // Used below for a consistency check only
1754   // Note: Since the result returned by ScalarEvolution may depend on the order
1755   // in which previous results are added to its cache, the call to
1756   // getBackedgeTakenCount() may change following SCEV queries.
1757   const SCEV *BackedgeTakenCount;
1758   if (VerifyIndvars)
1759     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1760 #endif
1761 
1762   bool Changed = false;
1763   // If there are any floating-point recurrences, attempt to
1764   // transform them to use integer recurrences.
1765   Changed |= rewriteNonIntegerIVs(L);
1766 
1767   // Create a rewriter object which we'll use to transform the code with.
1768   SCEVExpander Rewriter(*SE, DL, "indvars");
1769 #ifndef NDEBUG
1770   Rewriter.setDebugType(DEBUG_TYPE);
1771 #endif
1772 
1773   // Eliminate redundant IV users.
1774   //
1775   // Simplification works best when run before other consumers of SCEV. We
1776   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1777   // other expressions involving loop IVs have been evaluated. This helps SCEV
1778   // set no-wrap flags before normalizing sign/zero extension.
1779   Rewriter.disableCanonicalMode();
1780   Changed |= simplifyAndExtend(L, Rewriter, LI);
1781 
1782   // Check to see if we can compute the final value of any expressions
1783   // that are recurrent in the loop, and substitute the exit values from the
1784   // loop into any instructions outside of the loop that use the final values
1785   // of the current expressions.
1786   if (ReplaceExitValue != NeverRepl) {
1787     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1788                                              ReplaceExitValue, DeadInsts)) {
1789       NumReplaced += Rewrites;
1790       Changed = true;
1791     }
1792   }
1793 
1794   // Eliminate redundant IV cycles.
1795   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1796 
1797   // Try to eliminate loop exits based on analyzeable exit counts
1798   if (optimizeLoopExits(L, Rewriter))  {
1799     Changed = true;
1800     // Given we've changed exit counts, notify SCEV
1801     // Some nested loops may share same folded exit basic block,
1802     // thus we need to notify top most loop.
1803     SE->forgetTopmostLoop(L);
1804   }
1805 
1806   // Try to form loop invariant tests for loop exits by changing how many
1807   // iterations of the loop run when that is unobservable.
1808   if (predicateLoopExits(L, Rewriter)) {
1809     Changed = true;
1810     // Given we've changed exit counts, notify SCEV
1811     SE->forgetLoop(L);
1812   }
1813 
1814   // If we have a trip count expression, rewrite the loop's exit condition
1815   // using it.
1816   if (!DisableLFTR) {
1817     BasicBlock *PreHeader = L->getLoopPreheader();
1818     BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
1819 
1820     SmallVector<BasicBlock*, 16> ExitingBlocks;
1821     L->getExitingBlocks(ExitingBlocks);
1822     for (BasicBlock *ExitingBB : ExitingBlocks) {
1823       // Can't rewrite non-branch yet.
1824       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1825         continue;
1826 
1827       // If our exitting block exits multiple loops, we can only rewrite the
1828       // innermost one.  Otherwise, we're changing how many times the innermost
1829       // loop runs before it exits.
1830       if (LI->getLoopFor(ExitingBB) != L)
1831         continue;
1832 
1833       if (!needsLFTR(L, ExitingBB))
1834         continue;
1835 
1836       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1837       if (isa<SCEVCouldNotCompute>(ExitCount))
1838         continue;
1839 
1840       // This was handled above, but as we form SCEVs, we can sometimes refine
1841       // existing ones; this allows exit counts to be folded to zero which
1842       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1843       // until stable to handle cases like this better.
1844       if (ExitCount->isZero())
1845         continue;
1846 
1847       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1848       if (!IndVar)
1849         continue;
1850 
1851       // Avoid high cost expansions.  Note: This heuristic is questionable in
1852       // that our definition of "high cost" is not exactly principled.
1853       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1854                                        TTI, PreHeaderBR))
1855         continue;
1856 
1857       // Check preconditions for proper SCEVExpander operation. SCEV does not
1858       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1859       // any pass that uses the SCEVExpander must do it. This does not work
1860       // well for loop passes because SCEVExpander makes assumptions about
1861       // all loops, while LoopPassManager only forces the current loop to be
1862       // simplified.
1863       //
1864       // FIXME: SCEV expansion has no way to bail out, so the caller must
1865       // explicitly check any assumptions made by SCEV. Brittle.
1866       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1867       if (!AR || AR->getLoop()->getLoopPreheader())
1868         Changed |= linearFunctionTestReplace(L, ExitingBB,
1869                                              ExitCount, IndVar,
1870                                              Rewriter);
1871     }
1872   }
1873   // Clear the rewriter cache, because values that are in the rewriter's cache
1874   // can be deleted in the loop below, causing the AssertingVH in the cache to
1875   // trigger.
1876   Rewriter.clear();
1877 
1878   // Now that we're done iterating through lists, clean up any instructions
1879   // which are now dead.
1880   while (!DeadInsts.empty()) {
1881     Value *V = DeadInsts.pop_back_val();
1882 
1883     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
1884       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
1885     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
1886       Changed |=
1887           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
1888   }
1889 
1890   // The Rewriter may not be used from this point on.
1891 
1892   // Loop-invariant instructions in the preheader that aren't used in the
1893   // loop may be sunk below the loop to reduce register pressure.
1894   Changed |= sinkUnusedInvariants(L);
1895 
1896   // rewriteFirstIterationLoopExitValues does not rely on the computation of
1897   // trip count and therefore can further simplify exit values in addition to
1898   // rewriteLoopExitValues.
1899   Changed |= rewriteFirstIterationLoopExitValues(L);
1900 
1901   // Clean up dead instructions.
1902   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
1903 
1904   // Check a post-condition.
1905   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1906          "Indvars did not preserve LCSSA!");
1907 
1908   // Verify that LFTR, and any other change have not interfered with SCEV's
1909   // ability to compute trip count.  We may have *changed* the exit count, but
1910   // only by reducing it.
1911 #ifndef NDEBUG
1912   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1913     SE->forgetLoop(L);
1914     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1915     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1916         SE->getTypeSizeInBits(NewBECount->getType()))
1917       NewBECount = SE->getTruncateOrNoop(NewBECount,
1918                                          BackedgeTakenCount->getType());
1919     else
1920       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1921                                                  NewBECount->getType());
1922     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
1923                                  NewBECount) && "indvars must preserve SCEV");
1924   }
1925   if (VerifyMemorySSA && MSSAU)
1926     MSSAU->getMemorySSA()->verifyMemorySSA();
1927 #endif
1928 
1929   return Changed;
1930 }
1931 
1932 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
1933                                           LoopStandardAnalysisResults &AR,
1934                                           LPMUpdater &) {
1935   Function *F = L.getHeader()->getParent();
1936   const DataLayout &DL = F->getParent()->getDataLayout();
1937 
1938   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
1939                      WidenIndVars && AllowIVWidening);
1940   if (!IVS.run(&L))
1941     return PreservedAnalyses::all();
1942 
1943   auto PA = getLoopPassPreservedAnalyses();
1944   PA.preserveSet<CFGAnalyses>();
1945   if (AR.MSSA)
1946     PA.preserve<MemorySSAAnalysis>();
1947   return PA;
1948 }
1949 
1950 namespace {
1951 
1952 struct IndVarSimplifyLegacyPass : public LoopPass {
1953   static char ID; // Pass identification, replacement for typeid
1954 
1955   IndVarSimplifyLegacyPass() : LoopPass(ID) {
1956     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
1957   }
1958 
1959   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1960     if (skipLoop(L))
1961       return false;
1962 
1963     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1964     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1965     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1966     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1967     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
1968     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1969     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1970     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1971     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1972     MemorySSA *MSSA = nullptr;
1973     if (MSSAAnalysis)
1974       MSSA = &MSSAAnalysis->getMSSA();
1975 
1976     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
1977     return IVS.run(L);
1978   }
1979 
1980   void getAnalysisUsage(AnalysisUsage &AU) const override {
1981     AU.setPreservesCFG();
1982     AU.addPreserved<MemorySSAWrapperPass>();
1983     getLoopAnalysisUsage(AU);
1984   }
1985 };
1986 
1987 } // end anonymous namespace
1988 
1989 char IndVarSimplifyLegacyPass::ID = 0;
1990 
1991 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
1992                       "Induction Variable Simplification", false, false)
1993 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1994 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
1995                     "Induction Variable Simplification", false, false)
1996 
1997 Pass *llvm::createIndVarSimplifyPass() {
1998   return new IndVarSimplifyLegacyPass();
1999 }
2000