1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/MemorySSA.h" 42 #include "llvm/Analysis/MemorySSAUpdater.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantRange.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 86 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 87 #include <cassert> 88 #include <cstdint> 89 #include <utility> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "indvars" 94 95 STATISTIC(NumWidened , "Number of indvars widened"); 96 STATISTIC(NumReplaced , "Number of exit values replaced"); 97 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 98 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 99 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 100 101 // Trip count verification can be enabled by default under NDEBUG if we 102 // implement a strong expression equivalence checker in SCEV. Until then, we 103 // use the verify-indvars flag, which may assert in some cases. 104 static cl::opt<bool> VerifyIndvars( 105 "verify-indvars", cl::Hidden, 106 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 107 "effect in release builds. (Note: this adds additional SCEV " 108 "queries potentially changing the analysis result)")); 109 110 static cl::opt<ReplaceExitVal> ReplaceExitValue( 111 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 112 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 113 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 114 clEnumValN(OnlyCheapRepl, "cheap", 115 "only replace exit value when the cost is cheap"), 116 clEnumValN(NoHardUse, "noharduse", 117 "only replace exit values when loop def likely dead"), 118 clEnumValN(AlwaysRepl, "always", 119 "always replace exit value whenever possible"))); 120 121 static cl::opt<bool> UsePostIncrementRanges( 122 "indvars-post-increment-ranges", cl::Hidden, 123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 128 cl::desc("Disable Linear Function Test Replace optimization")); 129 130 static cl::opt<bool> 131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 132 cl::desc("Predicate conditions in read only loops")); 133 134 static cl::opt<bool> 135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 136 cl::desc("Allow widening of indvars to eliminate s/zext")); 137 138 namespace { 139 140 struct RewritePhi; 141 142 class IndVarSimplify { 143 LoopInfo *LI; 144 ScalarEvolution *SE; 145 DominatorTree *DT; 146 const DataLayout &DL; 147 TargetLibraryInfo *TLI; 148 const TargetTransformInfo *TTI; 149 std::unique_ptr<MemorySSAUpdater> MSSAU; 150 151 SmallVector<WeakTrackingVH, 16> DeadInsts; 152 bool WidenIndVars; 153 154 bool handleFloatingPointIV(Loop *L, PHINode *PH); 155 bool rewriteNonIntegerIVs(Loop *L); 156 157 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 158 /// Try to eliminate loop exits based on analyzeable exit counts 159 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 160 /// Try to form loop invariant tests for loop exits by changing how many 161 /// iterations of the loop run when that is unobservable. 162 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 163 164 bool rewriteFirstIterationLoopExitValues(Loop *L); 165 166 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 167 const SCEV *ExitCount, 168 PHINode *IndVar, SCEVExpander &Rewriter); 169 170 bool sinkUnusedInvariants(Loop *L); 171 172 public: 173 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 174 const DataLayout &DL, TargetLibraryInfo *TLI, 175 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 176 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 177 WidenIndVars(WidenIndVars) { 178 if (MSSA) 179 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 180 } 181 182 bool run(Loop *L); 183 }; 184 185 } // end anonymous namespace 186 187 //===----------------------------------------------------------------------===// 188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 189 //===----------------------------------------------------------------------===// 190 191 /// Convert APF to an integer, if possible. 192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 193 bool isExact = false; 194 // See if we can convert this to an int64_t 195 uint64_t UIntVal; 196 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 197 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 198 !isExact) 199 return false; 200 IntVal = UIntVal; 201 return true; 202 } 203 204 /// If the loop has floating induction variable then insert corresponding 205 /// integer induction variable if possible. 206 /// For example, 207 /// for(double i = 0; i < 10000; ++i) 208 /// bar(i) 209 /// is converted into 210 /// for(int i = 0; i < 10000; ++i) 211 /// bar((double)i); 212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 213 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 214 unsigned BackEdge = IncomingEdge^1; 215 216 // Check incoming value. 217 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 218 219 int64_t InitValue; 220 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 221 return false; 222 223 // Check IV increment. Reject this PN if increment operation is not 224 // an add or increment value can not be represented by an integer. 225 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 226 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 227 228 // If this is not an add of the PHI with a constantfp, or if the constant fp 229 // is not an integer, bail out. 230 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 231 int64_t IncValue; 232 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 233 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 234 return false; 235 236 // Check Incr uses. One user is PN and the other user is an exit condition 237 // used by the conditional terminator. 238 Value::user_iterator IncrUse = Incr->user_begin(); 239 Instruction *U1 = cast<Instruction>(*IncrUse++); 240 if (IncrUse == Incr->user_end()) return false; 241 Instruction *U2 = cast<Instruction>(*IncrUse++); 242 if (IncrUse != Incr->user_end()) return false; 243 244 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 245 // only used by a branch, we can't transform it. 246 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 247 if (!Compare) 248 Compare = dyn_cast<FCmpInst>(U2); 249 if (!Compare || !Compare->hasOneUse() || 250 !isa<BranchInst>(Compare->user_back())) 251 return false; 252 253 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 254 255 // We need to verify that the branch actually controls the iteration count 256 // of the loop. If not, the new IV can overflow and no one will notice. 257 // The branch block must be in the loop and one of the successors must be out 258 // of the loop. 259 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 260 if (!L->contains(TheBr->getParent()) || 261 (L->contains(TheBr->getSuccessor(0)) && 262 L->contains(TheBr->getSuccessor(1)))) 263 return false; 264 265 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 266 // transform it. 267 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 268 int64_t ExitValue; 269 if (ExitValueVal == nullptr || 270 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 271 return false; 272 273 // Find new predicate for integer comparison. 274 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 275 switch (Compare->getPredicate()) { 276 default: return false; // Unknown comparison. 277 case CmpInst::FCMP_OEQ: 278 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 279 case CmpInst::FCMP_ONE: 280 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 281 case CmpInst::FCMP_OGT: 282 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 283 case CmpInst::FCMP_OGE: 284 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 285 case CmpInst::FCMP_OLT: 286 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 287 case CmpInst::FCMP_OLE: 288 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 289 } 290 291 // We convert the floating point induction variable to a signed i32 value if 292 // we can. This is only safe if the comparison will not overflow in a way 293 // that won't be trapped by the integer equivalent operations. Check for this 294 // now. 295 // TODO: We could use i64 if it is native and the range requires it. 296 297 // The start/stride/exit values must all fit in signed i32. 298 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 299 return false; 300 301 // If not actually striding (add x, 0.0), avoid touching the code. 302 if (IncValue == 0) 303 return false; 304 305 // Positive and negative strides have different safety conditions. 306 if (IncValue > 0) { 307 // If we have a positive stride, we require the init to be less than the 308 // exit value. 309 if (InitValue >= ExitValue) 310 return false; 311 312 uint32_t Range = uint32_t(ExitValue-InitValue); 313 // Check for infinite loop, either: 314 // while (i <= Exit) or until (i > Exit) 315 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 316 if (++Range == 0) return false; // Range overflows. 317 } 318 319 unsigned Leftover = Range % uint32_t(IncValue); 320 321 // If this is an equality comparison, we require that the strided value 322 // exactly land on the exit value, otherwise the IV condition will wrap 323 // around and do things the fp IV wouldn't. 324 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 325 Leftover != 0) 326 return false; 327 328 // If the stride would wrap around the i32 before exiting, we can't 329 // transform the IV. 330 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 331 return false; 332 } else { 333 // If we have a negative stride, we require the init to be greater than the 334 // exit value. 335 if (InitValue <= ExitValue) 336 return false; 337 338 uint32_t Range = uint32_t(InitValue-ExitValue); 339 // Check for infinite loop, either: 340 // while (i >= Exit) or until (i < Exit) 341 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 342 if (++Range == 0) return false; // Range overflows. 343 } 344 345 unsigned Leftover = Range % uint32_t(-IncValue); 346 347 // If this is an equality comparison, we require that the strided value 348 // exactly land on the exit value, otherwise the IV condition will wrap 349 // around and do things the fp IV wouldn't. 350 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 351 Leftover != 0) 352 return false; 353 354 // If the stride would wrap around the i32 before exiting, we can't 355 // transform the IV. 356 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 357 return false; 358 } 359 360 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 361 362 // Insert new integer induction variable. 363 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 364 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 365 PN->getIncomingBlock(IncomingEdge)); 366 367 Value *NewAdd = 368 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 369 Incr->getName()+".int", Incr); 370 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 371 372 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 373 ConstantInt::get(Int32Ty, ExitValue), 374 Compare->getName()); 375 376 // In the following deletions, PN may become dead and may be deleted. 377 // Use a WeakTrackingVH to observe whether this happens. 378 WeakTrackingVH WeakPH = PN; 379 380 // Delete the old floating point exit comparison. The branch starts using the 381 // new comparison. 382 NewCompare->takeName(Compare); 383 Compare->replaceAllUsesWith(NewCompare); 384 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 385 386 // Delete the old floating point increment. 387 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 388 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 389 390 // If the FP induction variable still has uses, this is because something else 391 // in the loop uses its value. In order to canonicalize the induction 392 // variable, we chose to eliminate the IV and rewrite it in terms of an 393 // int->fp cast. 394 // 395 // We give preference to sitofp over uitofp because it is faster on most 396 // platforms. 397 if (WeakPH) { 398 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 399 &*PN->getParent()->getFirstInsertionPt()); 400 PN->replaceAllUsesWith(Conv); 401 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 402 } 403 return true; 404 } 405 406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 407 // First step. Check to see if there are any floating-point recurrences. 408 // If there are, change them into integer recurrences, permitting analysis by 409 // the SCEV routines. 410 BasicBlock *Header = L->getHeader(); 411 412 SmallVector<WeakTrackingVH, 8> PHIs; 413 for (PHINode &PN : Header->phis()) 414 PHIs.push_back(&PN); 415 416 bool Changed = false; 417 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 418 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 419 Changed |= handleFloatingPointIV(L, PN); 420 421 // If the loop previously had floating-point IV, ScalarEvolution 422 // may not have been able to compute a trip count. Now that we've done some 423 // re-writing, the trip count may be computable. 424 if (Changed) 425 SE->forgetLoop(L); 426 return Changed; 427 } 428 429 //===---------------------------------------------------------------------===// 430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 431 // they will exit at the first iteration. 432 //===---------------------------------------------------------------------===// 433 434 /// Check to see if this loop has loop invariant conditions which lead to loop 435 /// exits. If so, we know that if the exit path is taken, it is at the first 436 /// loop iteration. This lets us predict exit values of PHI nodes that live in 437 /// loop header. 438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 439 // Verify the input to the pass is already in LCSSA form. 440 assert(L->isLCSSAForm(*DT)); 441 442 SmallVector<BasicBlock *, 8> ExitBlocks; 443 L->getUniqueExitBlocks(ExitBlocks); 444 445 bool MadeAnyChanges = false; 446 for (auto *ExitBB : ExitBlocks) { 447 // If there are no more PHI nodes in this exit block, then no more 448 // values defined inside the loop are used on this path. 449 for (PHINode &PN : ExitBB->phis()) { 450 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 451 IncomingValIdx != E; ++IncomingValIdx) { 452 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 453 454 // Can we prove that the exit must run on the first iteration if it 455 // runs at all? (i.e. early exits are fine for our purposes, but 456 // traces which lead to this exit being taken on the 2nd iteration 457 // aren't.) Note that this is about whether the exit branch is 458 // executed, not about whether it is taken. 459 if (!L->getLoopLatch() || 460 !DT->dominates(IncomingBB, L->getLoopLatch())) 461 continue; 462 463 // Get condition that leads to the exit path. 464 auto *TermInst = IncomingBB->getTerminator(); 465 466 Value *Cond = nullptr; 467 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 468 // Must be a conditional branch, otherwise the block 469 // should not be in the loop. 470 Cond = BI->getCondition(); 471 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 472 Cond = SI->getCondition(); 473 else 474 continue; 475 476 if (!L->isLoopInvariant(Cond)) 477 continue; 478 479 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 480 481 // Only deal with PHIs in the loop header. 482 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 483 continue; 484 485 // If ExitVal is a PHI on the loop header, then we know its 486 // value along this exit because the exit can only be taken 487 // on the first iteration. 488 auto *LoopPreheader = L->getLoopPreheader(); 489 assert(LoopPreheader && "Invalid loop"); 490 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 491 if (PreheaderIdx != -1) { 492 assert(ExitVal->getParent() == L->getHeader() && 493 "ExitVal must be in loop header"); 494 MadeAnyChanges = true; 495 PN.setIncomingValue(IncomingValIdx, 496 ExitVal->getIncomingValue(PreheaderIdx)); 497 } 498 } 499 } 500 } 501 return MadeAnyChanges; 502 } 503 504 //===----------------------------------------------------------------------===// 505 // IV Widening - Extend the width of an IV to cover its widest uses. 506 //===----------------------------------------------------------------------===// 507 508 /// Update information about the induction variable that is extended by this 509 /// sign or zero extend operation. This is used to determine the final width of 510 /// the IV before actually widening it. 511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 512 ScalarEvolution *SE, 513 const TargetTransformInfo *TTI) { 514 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 515 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 516 return; 517 518 Type *Ty = Cast->getType(); 519 uint64_t Width = SE->getTypeSizeInBits(Ty); 520 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 521 return; 522 523 // Check that `Cast` actually extends the induction variable (we rely on this 524 // later). This takes care of cases where `Cast` is extending a truncation of 525 // the narrow induction variable, and thus can end up being narrower than the 526 // "narrow" induction variable. 527 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 528 if (NarrowIVWidth >= Width) 529 return; 530 531 // Cast is either an sext or zext up to this point. 532 // We should not widen an indvar if arithmetics on the wider indvar are more 533 // expensive than those on the narrower indvar. We check only the cost of ADD 534 // because at least an ADD is required to increment the induction variable. We 535 // could compute more comprehensively the cost of all instructions on the 536 // induction variable when necessary. 537 if (TTI && 538 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 539 TTI->getArithmeticInstrCost(Instruction::Add, 540 Cast->getOperand(0)->getType())) { 541 return; 542 } 543 544 if (!WI.WidestNativeType) { 545 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 546 WI.IsSigned = IsSigned; 547 return; 548 } 549 550 // We extend the IV to satisfy the sign of its first user, arbitrarily. 551 if (WI.IsSigned != IsSigned) 552 return; 553 554 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 555 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Live IV Reduction - Minimize IVs live across the loop. 560 //===----------------------------------------------------------------------===// 561 562 //===----------------------------------------------------------------------===// 563 // Simplification of IV users based on SCEV evaluation. 564 //===----------------------------------------------------------------------===// 565 566 namespace { 567 568 class IndVarSimplifyVisitor : public IVVisitor { 569 ScalarEvolution *SE; 570 const TargetTransformInfo *TTI; 571 PHINode *IVPhi; 572 573 public: 574 WideIVInfo WI; 575 576 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 577 const TargetTransformInfo *TTI, 578 const DominatorTree *DTree) 579 : SE(SCEV), TTI(TTI), IVPhi(IV) { 580 DT = DTree; 581 WI.NarrowIV = IVPhi; 582 } 583 584 // Implement the interface used by simplifyUsersOfIV. 585 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 586 }; 587 588 } // end anonymous namespace 589 590 /// Iteratively perform simplification on a worklist of IV users. Each 591 /// successive simplification may push more users which may themselves be 592 /// candidates for simplification. 593 /// 594 /// Sign/Zero extend elimination is interleaved with IV simplification. 595 bool IndVarSimplify::simplifyAndExtend(Loop *L, 596 SCEVExpander &Rewriter, 597 LoopInfo *LI) { 598 SmallVector<WideIVInfo, 8> WideIVs; 599 600 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 601 Intrinsic::getName(Intrinsic::experimental_guard)); 602 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 603 604 SmallVector<PHINode*, 8> LoopPhis; 605 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 606 LoopPhis.push_back(cast<PHINode>(I)); 607 } 608 // Each round of simplification iterates through the SimplifyIVUsers worklist 609 // for all current phis, then determines whether any IVs can be 610 // widened. Widening adds new phis to LoopPhis, inducing another round of 611 // simplification on the wide IVs. 612 bool Changed = false; 613 while (!LoopPhis.empty()) { 614 // Evaluate as many IV expressions as possible before widening any IVs. This 615 // forces SCEV to set no-wrap flags before evaluating sign/zero 616 // extension. The first time SCEV attempts to normalize sign/zero extension, 617 // the result becomes final. So for the most predictable results, we delay 618 // evaluation of sign/zero extend evaluation until needed, and avoid running 619 // other SCEV based analysis prior to simplifyAndExtend. 620 do { 621 PHINode *CurrIV = LoopPhis.pop_back_val(); 622 623 // Information about sign/zero extensions of CurrIV. 624 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 625 626 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 627 &Visitor); 628 629 if (Visitor.WI.WidestNativeType) { 630 WideIVs.push_back(Visitor.WI); 631 } 632 } while(!LoopPhis.empty()); 633 634 // Continue if we disallowed widening. 635 if (!WidenIndVars) 636 continue; 637 638 for (; !WideIVs.empty(); WideIVs.pop_back()) { 639 unsigned ElimExt; 640 unsigned Widened; 641 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 642 DT, DeadInsts, ElimExt, Widened, 643 HasGuards, UsePostIncrementRanges)) { 644 NumElimExt += ElimExt; 645 NumWidened += Widened; 646 Changed = true; 647 LoopPhis.push_back(WidePhi); 648 } 649 } 650 } 651 return Changed; 652 } 653 654 //===----------------------------------------------------------------------===// 655 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 656 //===----------------------------------------------------------------------===// 657 658 /// Given an Value which is hoped to be part of an add recurance in the given 659 /// loop, return the associated Phi node if so. Otherwise, return null. Note 660 /// that this is less general than SCEVs AddRec checking. 661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 662 Instruction *IncI = dyn_cast<Instruction>(IncV); 663 if (!IncI) 664 return nullptr; 665 666 switch (IncI->getOpcode()) { 667 case Instruction::Add: 668 case Instruction::Sub: 669 break; 670 case Instruction::GetElementPtr: 671 // An IV counter must preserve its type. 672 if (IncI->getNumOperands() == 2) 673 break; 674 LLVM_FALLTHROUGH; 675 default: 676 return nullptr; 677 } 678 679 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 680 if (Phi && Phi->getParent() == L->getHeader()) { 681 if (L->isLoopInvariant(IncI->getOperand(1))) 682 return Phi; 683 return nullptr; 684 } 685 if (IncI->getOpcode() == Instruction::GetElementPtr) 686 return nullptr; 687 688 // Allow add/sub to be commuted. 689 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 690 if (Phi && Phi->getParent() == L->getHeader()) { 691 if (L->isLoopInvariant(IncI->getOperand(0))) 692 return Phi; 693 } 694 return nullptr; 695 } 696 697 /// Whether the current loop exit test is based on this value. Currently this 698 /// is limited to a direct use in the loop condition. 699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 700 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 701 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 702 // TODO: Allow non-icmp loop test. 703 if (!ICmp) 704 return false; 705 706 // TODO: Allow indirect use. 707 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 708 } 709 710 /// linearFunctionTestReplace policy. Return true unless we can show that the 711 /// current exit test is already sufficiently canonical. 712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 713 assert(L->getLoopLatch() && "Must be in simplified form"); 714 715 // Avoid converting a constant or loop invariant test back to a runtime 716 // test. This is critical for when SCEV's cached ExitCount is less precise 717 // than the current IR (such as after we've proven a particular exit is 718 // actually dead and thus the BE count never reaches our ExitCount.) 719 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 720 if (L->isLoopInvariant(BI->getCondition())) 721 return false; 722 723 // Do LFTR to simplify the exit condition to an ICMP. 724 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 725 if (!Cond) 726 return true; 727 728 // Do LFTR to simplify the exit ICMP to EQ/NE 729 ICmpInst::Predicate Pred = Cond->getPredicate(); 730 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 731 return true; 732 733 // Look for a loop invariant RHS 734 Value *LHS = Cond->getOperand(0); 735 Value *RHS = Cond->getOperand(1); 736 if (!L->isLoopInvariant(RHS)) { 737 if (!L->isLoopInvariant(LHS)) 738 return true; 739 std::swap(LHS, RHS); 740 } 741 // Look for a simple IV counter LHS 742 PHINode *Phi = dyn_cast<PHINode>(LHS); 743 if (!Phi) 744 Phi = getLoopPhiForCounter(LHS, L); 745 746 if (!Phi) 747 return true; 748 749 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 750 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 751 if (Idx < 0) 752 return true; 753 754 // Do LFTR if the exit condition's IV is *not* a simple counter. 755 Value *IncV = Phi->getIncomingValue(Idx); 756 return Phi != getLoopPhiForCounter(IncV, L); 757 } 758 759 /// Return true if undefined behavior would provable be executed on the path to 760 /// OnPathTo if Root produced a posion result. Note that this doesn't say 761 /// anything about whether OnPathTo is actually executed or whether Root is 762 /// actually poison. This can be used to assess whether a new use of Root can 763 /// be added at a location which is control equivalent with OnPathTo (such as 764 /// immediately before it) without introducing UB which didn't previously 765 /// exist. Note that a false result conveys no information. 766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 767 Instruction *OnPathTo, 768 DominatorTree *DT) { 769 // Basic approach is to assume Root is poison, propagate poison forward 770 // through all users we can easily track, and then check whether any of those 771 // users are provable UB and must execute before out exiting block might 772 // exit. 773 774 // The set of all recursive users we've visited (which are assumed to all be 775 // poison because of said visit) 776 SmallSet<const Value *, 16> KnownPoison; 777 SmallVector<const Instruction*, 16> Worklist; 778 Worklist.push_back(Root); 779 while (!Worklist.empty()) { 780 const Instruction *I = Worklist.pop_back_val(); 781 782 // If we know this must trigger UB on a path leading our target. 783 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 784 return true; 785 786 // If we can't analyze propagation through this instruction, just skip it 787 // and transitive users. Safe as false is a conservative result. 788 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 789 continue; 790 791 if (KnownPoison.insert(I).second) 792 for (const User *User : I->users()) 793 Worklist.push_back(cast<Instruction>(User)); 794 } 795 796 // Might be non-UB, or might have a path we couldn't prove must execute on 797 // way to exiting bb. 798 return false; 799 } 800 801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 802 /// down to checking that all operands are constant and listing instructions 803 /// that may hide undef. 804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 805 unsigned Depth) { 806 if (isa<Constant>(V)) 807 return !isa<UndefValue>(V); 808 809 if (Depth >= 6) 810 return false; 811 812 // Conservatively handle non-constant non-instructions. For example, Arguments 813 // may be undef. 814 Instruction *I = dyn_cast<Instruction>(V); 815 if (!I) 816 return false; 817 818 // Load and return values may be undef. 819 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 820 return false; 821 822 // Optimistically handle other instructions. 823 for (Value *Op : I->operands()) { 824 if (!Visited.insert(Op).second) 825 continue; 826 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 827 return false; 828 } 829 return true; 830 } 831 832 /// Return true if the given value is concrete. We must prove that undef can 833 /// never reach it. 834 /// 835 /// TODO: If we decide that this is a good approach to checking for undef, we 836 /// may factor it into a common location. 837 static bool hasConcreteDef(Value *V) { 838 SmallPtrSet<Value*, 8> Visited; 839 Visited.insert(V); 840 return hasConcreteDefImpl(V, Visited, 0); 841 } 842 843 /// Return true if this IV has any uses other than the (soon to be rewritten) 844 /// loop exit test. 845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 846 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 847 Value *IncV = Phi->getIncomingValue(LatchIdx); 848 849 for (User *U : Phi->users()) 850 if (U != Cond && U != IncV) return false; 851 852 for (User *U : IncV->users()) 853 if (U != Cond && U != Phi) return false; 854 return true; 855 } 856 857 /// Return true if the given phi is a "counter" in L. A counter is an 858 /// add recurance (of integer or pointer type) with an arbitrary start, and a 859 /// step of 1. Note that L must have exactly one latch. 860 static bool isLoopCounter(PHINode* Phi, Loop *L, 861 ScalarEvolution *SE) { 862 assert(Phi->getParent() == L->getHeader()); 863 assert(L->getLoopLatch()); 864 865 if (!SE->isSCEVable(Phi->getType())) 866 return false; 867 868 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 869 if (!AR || AR->getLoop() != L || !AR->isAffine()) 870 return false; 871 872 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 873 if (!Step || !Step->isOne()) 874 return false; 875 876 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 877 Value *IncV = Phi->getIncomingValue(LatchIdx); 878 return (getLoopPhiForCounter(IncV, L) == Phi && 879 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 880 } 881 882 /// Search the loop header for a loop counter (anadd rec w/step of one) 883 /// suitable for use by LFTR. If multiple counters are available, select the 884 /// "best" one based profitable heuristics. 885 /// 886 /// BECount may be an i8* pointer type. The pointer difference is already 887 /// valid count without scaling the address stride, so it remains a pointer 888 /// expression as far as SCEV is concerned. 889 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 890 const SCEV *BECount, 891 ScalarEvolution *SE, DominatorTree *DT) { 892 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 893 894 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 895 896 // Loop over all of the PHI nodes, looking for a simple counter. 897 PHINode *BestPhi = nullptr; 898 const SCEV *BestInit = nullptr; 899 BasicBlock *LatchBlock = L->getLoopLatch(); 900 assert(LatchBlock && "Must be in simplified form"); 901 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 902 903 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 904 PHINode *Phi = cast<PHINode>(I); 905 if (!isLoopCounter(Phi, L, SE)) 906 continue; 907 908 // Avoid comparing an integer IV against a pointer Limit. 909 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 910 continue; 911 912 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 913 914 // AR may be a pointer type, while BECount is an integer type. 915 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 916 // AR may not be a narrower type, or we may never exit. 917 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 918 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 919 continue; 920 921 // Avoid reusing a potentially undef value to compute other values that may 922 // have originally had a concrete definition. 923 if (!hasConcreteDef(Phi)) { 924 // We explicitly allow unknown phis as long as they are already used by 925 // the loop exit test. This is legal since performing LFTR could not 926 // increase the number of undef users. 927 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 928 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 929 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 930 continue; 931 } 932 933 // Avoid introducing undefined behavior due to poison which didn't exist in 934 // the original program. (Annoyingly, the rules for poison and undef 935 // propagation are distinct, so this does NOT cover the undef case above.) 936 // We have to ensure that we don't introduce UB by introducing a use on an 937 // iteration where said IV produces poison. Our strategy here differs for 938 // pointers and integer IVs. For integers, we strip and reinfer as needed, 939 // see code in linearFunctionTestReplace. For pointers, we restrict 940 // transforms as there is no good way to reinfer inbounds once lost. 941 if (!Phi->getType()->isIntegerTy() && 942 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 943 continue; 944 945 const SCEV *Init = AR->getStart(); 946 947 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 948 // Don't force a live loop counter if another IV can be used. 949 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 950 continue; 951 952 // Prefer to count-from-zero. This is a more "canonical" counter form. It 953 // also prefers integer to pointer IVs. 954 if (BestInit->isZero() != Init->isZero()) { 955 if (BestInit->isZero()) 956 continue; 957 } 958 // If two IVs both count from zero or both count from nonzero then the 959 // narrower is likely a dead phi that has been widened. Use the wider phi 960 // to allow the other to be eliminated. 961 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 962 continue; 963 } 964 BestPhi = Phi; 965 BestInit = Init; 966 } 967 return BestPhi; 968 } 969 970 /// Insert an IR expression which computes the value held by the IV IndVar 971 /// (which must be an loop counter w/unit stride) after the backedge of loop L 972 /// is taken ExitCount times. 973 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 974 const SCEV *ExitCount, bool UsePostInc, Loop *L, 975 SCEVExpander &Rewriter, ScalarEvolution *SE) { 976 assert(isLoopCounter(IndVar, L, SE)); 977 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 978 const SCEV *IVInit = AR->getStart(); 979 980 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 981 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 982 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 983 // the existing GEPs whenever possible. 984 if (IndVar->getType()->isPointerTy() && 985 !ExitCount->getType()->isPointerTy()) { 986 // IVOffset will be the new GEP offset that is interpreted by GEP as a 987 // signed value. ExitCount on the other hand represents the loop trip count, 988 // which is an unsigned value. FindLoopCounter only allows induction 989 // variables that have a positive unit stride of one. This means we don't 990 // have to handle the case of negative offsets (yet) and just need to zero 991 // extend ExitCount. 992 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 993 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 994 if (UsePostInc) 995 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 996 997 // Expand the code for the iteration count. 998 assert(SE->isLoopInvariant(IVOffset, L) && 999 "Computed iteration count is not loop invariant!"); 1000 1001 // We could handle pointer IVs other than i8*, but we need to compensate for 1002 // gep index scaling. 1003 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1004 cast<PointerType>(IndVar->getType()) 1005 ->getElementType())->isOne() && 1006 "unit stride pointer IV must be i8*"); 1007 1008 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1009 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1010 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1011 } else { 1012 // In any other case, convert both IVInit and ExitCount to integers before 1013 // comparing. This may result in SCEV expansion of pointers, but in practice 1014 // SCEV will fold the pointer arithmetic away as such: 1015 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1016 // 1017 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1018 // for simple memset-style loops. 1019 // 1020 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1021 // were generated on top of case #2, which is not expected. 1022 1023 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1024 // For unit stride, IVCount = Start + ExitCount with 2's complement 1025 // overflow. 1026 1027 // For integer IVs, truncate the IV before computing IVInit + BECount, 1028 // unless we know apriori that the limit must be a constant when evaluated 1029 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1030 // of the IV in the loop over a (potentially) expensive expansion of the 1031 // widened exit count add(zext(add)) expression. 1032 if (SE->getTypeSizeInBits(IVInit->getType()) 1033 > SE->getTypeSizeInBits(ExitCount->getType())) { 1034 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1035 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1036 else 1037 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1038 } 1039 1040 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1041 1042 if (UsePostInc) 1043 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1044 1045 // Expand the code for the iteration count. 1046 assert(SE->isLoopInvariant(IVLimit, L) && 1047 "Computed iteration count is not loop invariant!"); 1048 // Ensure that we generate the same type as IndVar, or a smaller integer 1049 // type. In the presence of null pointer values, we have an integer type 1050 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1051 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1052 IndVar->getType() : ExitCount->getType(); 1053 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1054 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1055 } 1056 } 1057 1058 /// This method rewrites the exit condition of the loop to be a canonical != 1059 /// comparison against the incremented loop induction variable. This pass is 1060 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1061 /// determine a loop-invariant trip count of the loop, which is actually a much 1062 /// broader range than just linear tests. 1063 bool IndVarSimplify:: 1064 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1065 const SCEV *ExitCount, 1066 PHINode *IndVar, SCEVExpander &Rewriter) { 1067 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1068 assert(isLoopCounter(IndVar, L, SE)); 1069 Instruction * const IncVar = 1070 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1071 1072 // Initialize CmpIndVar to the preincremented IV. 1073 Value *CmpIndVar = IndVar; 1074 bool UsePostInc = false; 1075 1076 // If the exiting block is the same as the backedge block, we prefer to 1077 // compare against the post-incremented value, otherwise we must compare 1078 // against the preincremented value. 1079 if (ExitingBB == L->getLoopLatch()) { 1080 // For pointer IVs, we chose to not strip inbounds which requires us not 1081 // to add a potentially UB introducing use. We need to either a) show 1082 // the loop test we're modifying is already in post-inc form, or b) show 1083 // that adding a use must not introduce UB. 1084 bool SafeToPostInc = 1085 IndVar->getType()->isIntegerTy() || 1086 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1087 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1088 if (SafeToPostInc) { 1089 UsePostInc = true; 1090 CmpIndVar = IncVar; 1091 } 1092 } 1093 1094 // It may be necessary to drop nowrap flags on the incrementing instruction 1095 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1096 // case the increment might have previously been poison on the last iteration 1097 // only) or if LFTR switches to a different IV that was previously dynamically 1098 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1099 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1100 // check), because the pre-inc addrec flags may be adopted from the original 1101 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1102 // TODO: This handling is inaccurate for one case: If we switch to a 1103 // dynamically dead IV that wraps on the first loop iteration only, which is 1104 // not covered by the post-inc addrec. (If the new IV was not dynamically 1105 // dead, it could not be poison on the first iteration in the first place.) 1106 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1107 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1108 if (BO->hasNoUnsignedWrap()) 1109 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1110 if (BO->hasNoSignedWrap()) 1111 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1112 } 1113 1114 Value *ExitCnt = genLoopLimit( 1115 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1116 assert(ExitCnt->getType()->isPointerTy() == 1117 IndVar->getType()->isPointerTy() && 1118 "genLoopLimit missed a cast"); 1119 1120 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1121 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1122 ICmpInst::Predicate P; 1123 if (L->contains(BI->getSuccessor(0))) 1124 P = ICmpInst::ICMP_NE; 1125 else 1126 P = ICmpInst::ICMP_EQ; 1127 1128 IRBuilder<> Builder(BI); 1129 1130 // The new loop exit condition should reuse the debug location of the 1131 // original loop exit condition. 1132 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1133 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1134 1135 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1136 // avoid the expensive expansion of the limit expression in the wider type, 1137 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1138 // since we know (from the exit count bitwidth), that we can't self-wrap in 1139 // the narrower type. 1140 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1141 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1142 if (CmpIndVarSize > ExitCntSize) { 1143 assert(!CmpIndVar->getType()->isPointerTy() && 1144 !ExitCnt->getType()->isPointerTy()); 1145 1146 // Before resorting to actually inserting the truncate, use the same 1147 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1148 // the other side of the comparison instead. We still evaluate the limit 1149 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1150 // a truncate within in. 1151 bool Extended = false; 1152 const SCEV *IV = SE->getSCEV(CmpIndVar); 1153 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1154 ExitCnt->getType()); 1155 const SCEV *ZExtTrunc = 1156 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1157 1158 if (ZExtTrunc == IV) { 1159 Extended = true; 1160 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1161 "wide.trip.count"); 1162 } else { 1163 const SCEV *SExtTrunc = 1164 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1165 if (SExtTrunc == IV) { 1166 Extended = true; 1167 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1168 "wide.trip.count"); 1169 } 1170 } 1171 1172 if (Extended) { 1173 bool Discard; 1174 L->makeLoopInvariant(ExitCnt, Discard); 1175 } else 1176 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1177 "lftr.wideiv"); 1178 } 1179 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1180 << " LHS:" << *CmpIndVar << '\n' 1181 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1182 << "\n" 1183 << " RHS:\t" << *ExitCnt << "\n" 1184 << "ExitCount:\t" << *ExitCount << "\n" 1185 << " was: " << *BI->getCondition() << "\n"); 1186 1187 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1188 Value *OrigCond = BI->getCondition(); 1189 // It's tempting to use replaceAllUsesWith here to fully replace the old 1190 // comparison, but that's not immediately safe, since users of the old 1191 // comparison may not be dominated by the new comparison. Instead, just 1192 // update the branch to use the new comparison; in the common case this 1193 // will make old comparison dead. 1194 BI->setCondition(Cond); 1195 DeadInsts.emplace_back(OrigCond); 1196 1197 ++NumLFTR; 1198 return true; 1199 } 1200 1201 //===----------------------------------------------------------------------===// 1202 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1203 //===----------------------------------------------------------------------===// 1204 1205 /// If there's a single exit block, sink any loop-invariant values that 1206 /// were defined in the preheader but not used inside the loop into the 1207 /// exit block to reduce register pressure in the loop. 1208 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1209 BasicBlock *ExitBlock = L->getExitBlock(); 1210 if (!ExitBlock) return false; 1211 1212 BasicBlock *Preheader = L->getLoopPreheader(); 1213 if (!Preheader) return false; 1214 1215 bool MadeAnyChanges = false; 1216 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1217 BasicBlock::iterator I(Preheader->getTerminator()); 1218 while (I != Preheader->begin()) { 1219 --I; 1220 // New instructions were inserted at the end of the preheader. 1221 if (isa<PHINode>(I)) 1222 break; 1223 1224 // Don't move instructions which might have side effects, since the side 1225 // effects need to complete before instructions inside the loop. Also don't 1226 // move instructions which might read memory, since the loop may modify 1227 // memory. Note that it's okay if the instruction might have undefined 1228 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1229 // block. 1230 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1231 continue; 1232 1233 // Skip debug info intrinsics. 1234 if (isa<DbgInfoIntrinsic>(I)) 1235 continue; 1236 1237 // Skip eh pad instructions. 1238 if (I->isEHPad()) 1239 continue; 1240 1241 // Don't sink alloca: we never want to sink static alloca's out of the 1242 // entry block, and correctly sinking dynamic alloca's requires 1243 // checks for stacksave/stackrestore intrinsics. 1244 // FIXME: Refactor this check somehow? 1245 if (isa<AllocaInst>(I)) 1246 continue; 1247 1248 // Determine if there is a use in or before the loop (direct or 1249 // otherwise). 1250 bool UsedInLoop = false; 1251 for (Use &U : I->uses()) { 1252 Instruction *User = cast<Instruction>(U.getUser()); 1253 BasicBlock *UseBB = User->getParent(); 1254 if (PHINode *P = dyn_cast<PHINode>(User)) { 1255 unsigned i = 1256 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1257 UseBB = P->getIncomingBlock(i); 1258 } 1259 if (UseBB == Preheader || L->contains(UseBB)) { 1260 UsedInLoop = true; 1261 break; 1262 } 1263 } 1264 1265 // If there is, the def must remain in the preheader. 1266 if (UsedInLoop) 1267 continue; 1268 1269 // Otherwise, sink it to the exit block. 1270 Instruction *ToMove = &*I; 1271 bool Done = false; 1272 1273 if (I != Preheader->begin()) { 1274 // Skip debug info intrinsics. 1275 do { 1276 --I; 1277 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1278 1279 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1280 Done = true; 1281 } else { 1282 Done = true; 1283 } 1284 1285 MadeAnyChanges = true; 1286 ToMove->moveBefore(*ExitBlock, InsertPt); 1287 if (Done) break; 1288 InsertPt = ToMove->getIterator(); 1289 } 1290 1291 return MadeAnyChanges; 1292 } 1293 1294 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1295 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1296 auto *OldCond = BI->getCondition(); 1297 BI->setCondition(NewCond); 1298 if (OldCond->use_empty()) 1299 DeadInsts.emplace_back(OldCond); 1300 } 1301 1302 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1303 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1304 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1305 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1306 auto *OldCond = BI->getCondition(); 1307 auto *NewCond = 1308 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); 1309 replaceExitCond(BI, NewCond, DeadInsts); 1310 } 1311 1312 static void replaceLoopPHINodesWithPreheaderValues( 1313 Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1314 auto *LoopPreheader = L->getLoopPreheader(); 1315 auto *LoopHeader = L->getHeader(); 1316 for (auto &PN : LoopHeader->phis()) { 1317 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1318 PN.replaceAllUsesWith(PreheaderIncoming); 1319 DeadInsts.emplace_back(&PN); 1320 } 1321 } 1322 1323 static void replaceWithInvariantCond( 1324 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1325 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, 1326 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1327 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1328 Rewriter.setInsertPoint(BI); 1329 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1330 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1331 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1332 if (ExitIfTrue) 1333 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1334 IRBuilder<> Builder(BI); 1335 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1336 BI->getCondition()->getName()); 1337 replaceExitCond(BI, NewCond, DeadInsts); 1338 } 1339 1340 static bool optimizeLoopExitWithUnknownExitCount( 1341 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, 1342 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1343 ScalarEvolution *SE, SCEVExpander &Rewriter, 1344 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1345 ICmpInst::Predicate Pred; 1346 Value *LHS, *RHS; 1347 using namespace PatternMatch; 1348 BasicBlock *TrueSucc, *FalseSucc; 1349 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1350 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1351 return false; 1352 1353 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1354 "Not a loop exit!"); 1355 1356 // 'LHS pred RHS' should now mean that we stay in loop. 1357 if (L->contains(FalseSucc)) 1358 Pred = CmpInst::getInversePredicate(Pred); 1359 1360 // If we are proving loop exit, invert the predicate. 1361 if (Inverted) 1362 Pred = CmpInst::getInversePredicate(Pred); 1363 1364 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1365 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1366 // Can we prove it to be trivially true? 1367 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { 1368 foldExit(L, ExitingBB, Inverted, DeadInsts); 1369 return true; 1370 } 1371 // Further logic works for non-inverted condition only. 1372 if (Inverted) 1373 return false; 1374 1375 auto *ARTy = LHSS->getType(); 1376 auto *MaxIterTy = MaxIter->getType(); 1377 // If possible, adjust types. 1378 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1379 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1380 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1381 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1382 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1383 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1384 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1385 } 1386 1387 if (SkipLastIter) { 1388 const SCEV *One = SE->getOne(MaxIter->getType()); 1389 MaxIter = SE->getMinusSCEV(MaxIter, One); 1390 } 1391 1392 // Check if there is a loop-invariant predicate equivalent to our check. 1393 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1394 L, BI, MaxIter); 1395 if (!LIP) 1396 return false; 1397 1398 // Can we prove it to be trivially true? 1399 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1400 foldExit(L, ExitingBB, Inverted, DeadInsts); 1401 else 1402 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, 1403 Rewriter, DeadInsts); 1404 1405 return true; 1406 } 1407 1408 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1409 SmallVector<BasicBlock*, 16> ExitingBlocks; 1410 L->getExitingBlocks(ExitingBlocks); 1411 1412 // Remove all exits which aren't both rewriteable and execute on every 1413 // iteration. 1414 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1415 // If our exitting block exits multiple loops, we can only rewrite the 1416 // innermost one. Otherwise, we're changing how many times the innermost 1417 // loop runs before it exits. 1418 if (LI->getLoopFor(ExitingBB) != L) 1419 return true; 1420 1421 // Can't rewrite non-branch yet. 1422 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1423 if (!BI) 1424 return true; 1425 1426 // If already constant, nothing to do. 1427 if (isa<Constant>(BI->getCondition())) 1428 return true; 1429 1430 // Likewise, the loop latch must be dominated by the exiting BB. 1431 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1432 return true; 1433 1434 return false; 1435 }); 1436 1437 if (ExitingBlocks.empty()) 1438 return false; 1439 1440 // Get a symbolic upper bound on the loop backedge taken count. 1441 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1442 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1443 return false; 1444 1445 // Visit our exit blocks in order of dominance. We know from the fact that 1446 // all exits must dominate the latch, so there is a total dominance order 1447 // between them. 1448 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1449 // std::sort sorts in ascending order, so we want the inverse of 1450 // the normal dominance relation. 1451 if (A == B) return false; 1452 if (DT->properlyDominates(A, B)) 1453 return true; 1454 else { 1455 assert(DT->properlyDominates(B, A) && 1456 "expected total dominance order!"); 1457 return false; 1458 } 1459 }); 1460 #ifdef ASSERT 1461 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1462 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1463 } 1464 #endif 1465 1466 bool Changed = false; 1467 bool SkipLastIter = false; 1468 bool ExitsOnFirstIter = false; 1469 SmallSet<const SCEV*, 8> DominatingExitCounts; 1470 for (BasicBlock *ExitingBB : ExitingBlocks) { 1471 if (ExitsOnFirstIter) { 1472 // If proved that some earlier exit is taken 1473 // on 1st iteration, then fold this one. 1474 foldExit(L, ExitingBB, true, DeadInsts); 1475 continue; 1476 } 1477 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1478 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1479 // Okay, we do not know the exit count here. Can we at least prove that it 1480 // will remain the same within iteration space? 1481 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1482 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { 1483 return optimizeLoopExitWithUnknownExitCount( 1484 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, 1485 Rewriter, DeadInsts); 1486 }; 1487 1488 // TODO: We might have proved that we can skip the last iteration for 1489 // this check. In this case, we only want to check the condition on the 1490 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1491 // corner case: 1492 // 1493 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1494 // 1495 // If we could not prove that len != 0, then we also could not prove that 1496 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1497 // OptimizeCond will likely not prove anything for it, even if it could 1498 // prove the same fact for len. 1499 // 1500 // As a temporary solution, we query both last and pre-last iterations in 1501 // hope that we will be able to prove triviality for at least one of 1502 // them. We can stop querying MaxExitCount for this case once SCEV 1503 // understands that (MaxExitCount - 1) will not overflow here. 1504 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1505 Changed = true; 1506 else if (SkipLastIter) 1507 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1508 Changed = true; 1509 continue; 1510 } 1511 1512 if (MaxExitCount == ExitCount) 1513 // If the loop has more than 1 iteration, all further checks will be 1514 // executed 1 iteration less. 1515 SkipLastIter = true; 1516 1517 // If we know we'd exit on the first iteration, rewrite the exit to 1518 // reflect this. This does not imply the loop must exit through this 1519 // exit; there may be an earlier one taken on the first iteration. 1520 // We know that the backedge can't be taken, so we replace all 1521 // the header PHIs with values coming from the preheader. 1522 if (ExitCount->isZero()) { 1523 foldExit(L, ExitingBB, true, DeadInsts); 1524 replaceLoopPHINodesWithPreheaderValues(L, DeadInsts); 1525 Changed = true; 1526 ExitsOnFirstIter = true; 1527 continue; 1528 } 1529 1530 assert(ExitCount->getType()->isIntegerTy() && 1531 MaxExitCount->getType()->isIntegerTy() && 1532 "Exit counts must be integers"); 1533 1534 Type *WiderType = 1535 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1536 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1537 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1538 assert(MaxExitCount->getType() == ExitCount->getType()); 1539 1540 // Can we prove that some other exit must be taken strictly before this 1541 // one? 1542 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1543 MaxExitCount, ExitCount)) { 1544 foldExit(L, ExitingBB, false, DeadInsts); 1545 Changed = true; 1546 continue; 1547 } 1548 1549 // As we run, keep track of which exit counts we've encountered. If we 1550 // find a duplicate, we've found an exit which would have exited on the 1551 // exiting iteration, but (from the visit order) strictly follows another 1552 // which does the same and is thus dead. 1553 if (!DominatingExitCounts.insert(ExitCount).second) { 1554 foldExit(L, ExitingBB, false, DeadInsts); 1555 Changed = true; 1556 continue; 1557 } 1558 1559 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1560 // here. If we kept track of the min of dominanting exits so far, we could 1561 // discharge exits with EC >= MDEC. This is less powerful than the existing 1562 // transform (since later exits aren't considered), but potentially more 1563 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1564 // or a >u b. Such a case is not currently known. 1565 } 1566 return Changed; 1567 } 1568 1569 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1570 SmallVector<BasicBlock*, 16> ExitingBlocks; 1571 L->getExitingBlocks(ExitingBlocks); 1572 1573 // Finally, see if we can rewrite our exit conditions into a loop invariant 1574 // form. If we have a read-only loop, and we can tell that we must exit down 1575 // a path which does not need any of the values computed within the loop, we 1576 // can rewrite the loop to exit on the first iteration. Note that this 1577 // doesn't either a) tell us the loop exits on the first iteration (unless 1578 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1579 // This transformation looks a lot like a restricted form of dead loop 1580 // elimination, but restricted to read-only loops and without neccesssarily 1581 // needing to kill the loop entirely. 1582 if (!LoopPredication) 1583 return false; 1584 1585 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1586 // through *explicit* control flow. We have to eliminate the possibility of 1587 // implicit exits (see below) before we know it's truly exact. 1588 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1589 if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE)) 1590 return false; 1591 1592 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1593 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1594 1595 auto BadExit = [&](BasicBlock *ExitingBB) { 1596 // If our exiting block exits multiple loops, we can only rewrite the 1597 // innermost one. Otherwise, we're changing how many times the innermost 1598 // loop runs before it exits. 1599 if (LI->getLoopFor(ExitingBB) != L) 1600 return true; 1601 1602 // Can't rewrite non-branch yet. 1603 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1604 if (!BI) 1605 return true; 1606 1607 // If already constant, nothing to do. 1608 if (isa<Constant>(BI->getCondition())) 1609 return true; 1610 1611 // If the exit block has phis, we need to be able to compute the values 1612 // within the loop which contains them. This assumes trivially lcssa phis 1613 // have already been removed; TODO: generalize 1614 BasicBlock *ExitBlock = 1615 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1616 if (!ExitBlock->phis().empty()) 1617 return true; 1618 1619 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1620 if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE)) 1621 return true; 1622 1623 assert(SE->isLoopInvariant(ExitCount, L) && 1624 "Exit count must be loop invariant"); 1625 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1626 return false; 1627 }; 1628 1629 // If we have any exits which can't be predicated themselves, than we can't 1630 // predicate any exit which isn't guaranteed to execute before it. Consider 1631 // two exits (a) and (b) which would both exit on the same iteration. If we 1632 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1633 // we could convert a loop from exiting through (a) to one exiting through 1634 // (b). Note that this problem exists only for exits with the same exit 1635 // count, and we could be more aggressive when exit counts are known inequal. 1636 llvm::sort(ExitingBlocks, 1637 [&](BasicBlock *A, BasicBlock *B) { 1638 // std::sort sorts in ascending order, so we want the inverse of 1639 // the normal dominance relation, plus a tie breaker for blocks 1640 // unordered by dominance. 1641 if (DT->properlyDominates(A, B)) return true; 1642 if (DT->properlyDominates(B, A)) return false; 1643 return A->getName() < B->getName(); 1644 }); 1645 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1646 // exits before the backedge). If they aren't, reasoning about reachability 1647 // is complicated and we choose not to for now. 1648 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1649 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1650 return false; 1651 1652 // Given our sorted total order, we know that exit[j] must be evaluated 1653 // after all exit[i] such j > i. 1654 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1655 if (BadExit(ExitingBlocks[i])) { 1656 ExitingBlocks.resize(i); 1657 break; 1658 } 1659 1660 if (ExitingBlocks.empty()) 1661 return false; 1662 1663 // We rely on not being able to reach an exiting block on a later iteration 1664 // then it's statically compute exit count. The implementaton of 1665 // getExitCount currently has this invariant, but assert it here so that 1666 // breakage is obvious if this ever changes.. 1667 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1668 return DT->dominates(ExitingBB, L->getLoopLatch()); 1669 })); 1670 1671 // At this point, ExitingBlocks consists of only those blocks which are 1672 // predicatable. Given that, we know we have at least one exit we can 1673 // predicate if the loop is doesn't have side effects and doesn't have any 1674 // implicit exits (because then our exact BTC isn't actually exact). 1675 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1676 // suggestions on how to improve this? I can obviously bail out for outer 1677 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1678 // is that enough for *all* side effects? 1679 for (BasicBlock *BB : L->blocks()) 1680 for (auto &I : *BB) 1681 // TODO:isGuaranteedToTransfer 1682 if (I.mayHaveSideEffects()) 1683 return false; 1684 1685 bool Changed = false; 1686 // Finally, do the actual predication for all predicatable blocks. A couple 1687 // of notes here: 1688 // 1) We don't bother to constant fold dominated exits with identical exit 1689 // counts; that's simply a form of CSE/equality propagation and we leave 1690 // it for dedicated passes. 1691 // 2) We insert the comparison at the branch. Hoisting introduces additional 1692 // legality constraints and we leave that to dedicated logic. We want to 1693 // predicate even if we can't insert a loop invariant expression as 1694 // peeling or unrolling will likely reduce the cost of the otherwise loop 1695 // varying check. 1696 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1697 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1698 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1699 for (BasicBlock *ExitingBB : ExitingBlocks) { 1700 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1701 1702 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1703 Value *NewCond; 1704 if (ExitCount == ExactBTC) { 1705 NewCond = L->contains(BI->getSuccessor(0)) ? 1706 B.getFalse() : B.getTrue(); 1707 } else { 1708 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1709 if (!ExactBTCV) 1710 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1711 Value *RHS = ExactBTCV; 1712 if (ECV->getType() != RHS->getType()) { 1713 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1714 ECV = B.CreateZExt(ECV, WiderTy); 1715 RHS = B.CreateZExt(RHS, WiderTy); 1716 } 1717 auto Pred = L->contains(BI->getSuccessor(0)) ? 1718 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1719 NewCond = B.CreateICmp(Pred, ECV, RHS); 1720 } 1721 Value *OldCond = BI->getCondition(); 1722 BI->setCondition(NewCond); 1723 if (OldCond->use_empty()) 1724 DeadInsts.emplace_back(OldCond); 1725 Changed = true; 1726 } 1727 1728 return Changed; 1729 } 1730 1731 //===----------------------------------------------------------------------===// 1732 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1733 //===----------------------------------------------------------------------===// 1734 1735 bool IndVarSimplify::run(Loop *L) { 1736 // We need (and expect!) the incoming loop to be in LCSSA. 1737 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1738 "LCSSA required to run indvars!"); 1739 1740 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1741 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1742 // canonicalization can be a pessimization without LSR to "clean up" 1743 // afterwards. 1744 // - We depend on having a preheader; in particular, 1745 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1746 // and we're in trouble if we can't find the induction variable even when 1747 // we've manually inserted one. 1748 // - LFTR relies on having a single backedge. 1749 if (!L->isLoopSimplifyForm()) 1750 return false; 1751 1752 #ifndef NDEBUG 1753 // Used below for a consistency check only 1754 // Note: Since the result returned by ScalarEvolution may depend on the order 1755 // in which previous results are added to its cache, the call to 1756 // getBackedgeTakenCount() may change following SCEV queries. 1757 const SCEV *BackedgeTakenCount; 1758 if (VerifyIndvars) 1759 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1760 #endif 1761 1762 bool Changed = false; 1763 // If there are any floating-point recurrences, attempt to 1764 // transform them to use integer recurrences. 1765 Changed |= rewriteNonIntegerIVs(L); 1766 1767 // Create a rewriter object which we'll use to transform the code with. 1768 SCEVExpander Rewriter(*SE, DL, "indvars"); 1769 #ifndef NDEBUG 1770 Rewriter.setDebugType(DEBUG_TYPE); 1771 #endif 1772 1773 // Eliminate redundant IV users. 1774 // 1775 // Simplification works best when run before other consumers of SCEV. We 1776 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1777 // other expressions involving loop IVs have been evaluated. This helps SCEV 1778 // set no-wrap flags before normalizing sign/zero extension. 1779 Rewriter.disableCanonicalMode(); 1780 Changed |= simplifyAndExtend(L, Rewriter, LI); 1781 1782 // Check to see if we can compute the final value of any expressions 1783 // that are recurrent in the loop, and substitute the exit values from the 1784 // loop into any instructions outside of the loop that use the final values 1785 // of the current expressions. 1786 if (ReplaceExitValue != NeverRepl) { 1787 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1788 ReplaceExitValue, DeadInsts)) { 1789 NumReplaced += Rewrites; 1790 Changed = true; 1791 } 1792 } 1793 1794 // Eliminate redundant IV cycles. 1795 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1796 1797 // Try to eliminate loop exits based on analyzeable exit counts 1798 if (optimizeLoopExits(L, Rewriter)) { 1799 Changed = true; 1800 // Given we've changed exit counts, notify SCEV 1801 // Some nested loops may share same folded exit basic block, 1802 // thus we need to notify top most loop. 1803 SE->forgetTopmostLoop(L); 1804 } 1805 1806 // Try to form loop invariant tests for loop exits by changing how many 1807 // iterations of the loop run when that is unobservable. 1808 if (predicateLoopExits(L, Rewriter)) { 1809 Changed = true; 1810 // Given we've changed exit counts, notify SCEV 1811 SE->forgetLoop(L); 1812 } 1813 1814 // If we have a trip count expression, rewrite the loop's exit condition 1815 // using it. 1816 if (!DisableLFTR) { 1817 BasicBlock *PreHeader = L->getLoopPreheader(); 1818 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 1819 1820 SmallVector<BasicBlock*, 16> ExitingBlocks; 1821 L->getExitingBlocks(ExitingBlocks); 1822 for (BasicBlock *ExitingBB : ExitingBlocks) { 1823 // Can't rewrite non-branch yet. 1824 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1825 continue; 1826 1827 // If our exitting block exits multiple loops, we can only rewrite the 1828 // innermost one. Otherwise, we're changing how many times the innermost 1829 // loop runs before it exits. 1830 if (LI->getLoopFor(ExitingBB) != L) 1831 continue; 1832 1833 if (!needsLFTR(L, ExitingBB)) 1834 continue; 1835 1836 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1837 if (isa<SCEVCouldNotCompute>(ExitCount)) 1838 continue; 1839 1840 // This was handled above, but as we form SCEVs, we can sometimes refine 1841 // existing ones; this allows exit counts to be folded to zero which 1842 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 1843 // until stable to handle cases like this better. 1844 if (ExitCount->isZero()) 1845 continue; 1846 1847 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 1848 if (!IndVar) 1849 continue; 1850 1851 // Avoid high cost expansions. Note: This heuristic is questionable in 1852 // that our definition of "high cost" is not exactly principled. 1853 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 1854 TTI, PreHeaderBR)) 1855 continue; 1856 1857 // Check preconditions for proper SCEVExpander operation. SCEV does not 1858 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 1859 // any pass that uses the SCEVExpander must do it. This does not work 1860 // well for loop passes because SCEVExpander makes assumptions about 1861 // all loops, while LoopPassManager only forces the current loop to be 1862 // simplified. 1863 // 1864 // FIXME: SCEV expansion has no way to bail out, so the caller must 1865 // explicitly check any assumptions made by SCEV. Brittle. 1866 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 1867 if (!AR || AR->getLoop()->getLoopPreheader()) 1868 Changed |= linearFunctionTestReplace(L, ExitingBB, 1869 ExitCount, IndVar, 1870 Rewriter); 1871 } 1872 } 1873 // Clear the rewriter cache, because values that are in the rewriter's cache 1874 // can be deleted in the loop below, causing the AssertingVH in the cache to 1875 // trigger. 1876 Rewriter.clear(); 1877 1878 // Now that we're done iterating through lists, clean up any instructions 1879 // which are now dead. 1880 while (!DeadInsts.empty()) { 1881 Value *V = DeadInsts.pop_back_val(); 1882 1883 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 1884 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 1885 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 1886 Changed |= 1887 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 1888 } 1889 1890 // The Rewriter may not be used from this point on. 1891 1892 // Loop-invariant instructions in the preheader that aren't used in the 1893 // loop may be sunk below the loop to reduce register pressure. 1894 Changed |= sinkUnusedInvariants(L); 1895 1896 // rewriteFirstIterationLoopExitValues does not rely on the computation of 1897 // trip count and therefore can further simplify exit values in addition to 1898 // rewriteLoopExitValues. 1899 Changed |= rewriteFirstIterationLoopExitValues(L); 1900 1901 // Clean up dead instructions. 1902 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 1903 1904 // Check a post-condition. 1905 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1906 "Indvars did not preserve LCSSA!"); 1907 1908 // Verify that LFTR, and any other change have not interfered with SCEV's 1909 // ability to compute trip count. We may have *changed* the exit count, but 1910 // only by reducing it. 1911 #ifndef NDEBUG 1912 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1913 SE->forgetLoop(L); 1914 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1915 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1916 SE->getTypeSizeInBits(NewBECount->getType())) 1917 NewBECount = SE->getTruncateOrNoop(NewBECount, 1918 BackedgeTakenCount->getType()); 1919 else 1920 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1921 NewBECount->getType()); 1922 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 1923 NewBECount) && "indvars must preserve SCEV"); 1924 } 1925 if (VerifyMemorySSA && MSSAU) 1926 MSSAU->getMemorySSA()->verifyMemorySSA(); 1927 #endif 1928 1929 return Changed; 1930 } 1931 1932 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 1933 LoopStandardAnalysisResults &AR, 1934 LPMUpdater &) { 1935 Function *F = L.getHeader()->getParent(); 1936 const DataLayout &DL = F->getParent()->getDataLayout(); 1937 1938 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 1939 WidenIndVars && AllowIVWidening); 1940 if (!IVS.run(&L)) 1941 return PreservedAnalyses::all(); 1942 1943 auto PA = getLoopPassPreservedAnalyses(); 1944 PA.preserveSet<CFGAnalyses>(); 1945 if (AR.MSSA) 1946 PA.preserve<MemorySSAAnalysis>(); 1947 return PA; 1948 } 1949 1950 namespace { 1951 1952 struct IndVarSimplifyLegacyPass : public LoopPass { 1953 static char ID; // Pass identification, replacement for typeid 1954 1955 IndVarSimplifyLegacyPass() : LoopPass(ID) { 1956 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 1957 } 1958 1959 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1960 if (skipLoop(L)) 1961 return false; 1962 1963 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1964 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1965 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1966 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1967 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 1968 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1969 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1970 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1971 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1972 MemorySSA *MSSA = nullptr; 1973 if (MSSAAnalysis) 1974 MSSA = &MSSAAnalysis->getMSSA(); 1975 1976 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 1977 return IVS.run(L); 1978 } 1979 1980 void getAnalysisUsage(AnalysisUsage &AU) const override { 1981 AU.setPreservesCFG(); 1982 AU.addPreserved<MemorySSAWrapperPass>(); 1983 getLoopAnalysisUsage(AU); 1984 } 1985 }; 1986 1987 } // end anonymous namespace 1988 1989 char IndVarSimplifyLegacyPass::ID = 0; 1990 1991 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 1992 "Induction Variable Simplification", false, false) 1993 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1994 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 1995 "Induction Variable Simplification", false, false) 1996 1997 Pass *llvm::createIndVarSimplifyPass() { 1998 return new IndVarSimplifyLegacyPass(); 1999 } 2000