xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision cddde58f1c5d6956f669f690fb65920314f4e727)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "indvars"
58 
59 STATISTIC(NumWidened     , "Number of indvars widened");
60 STATISTIC(NumReplaced    , "Number of exit values replaced");
61 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64 
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69   "verify-indvars", cl::Hidden,
70   cl::desc("Verify the ScalarEvolution result after running indvars"));
71 
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73   cl::desc("Reduce live induction variables."));
74 
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76 
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81                clEnumValN(OnlyCheapRepl, "cheap",
82                           "only replace exit value when the cost is cheap"),
83                clEnumValN(AlwaysRepl, "always",
84                           "always replace exit value whenever possible"),
85                clEnumValEnd));
86 
87 namespace {
88 struct RewritePhi;
89 
90 class IndVarSimplify : public LoopPass {
91   LoopInfo                  *LI;
92   ScalarEvolution           *SE;
93   DominatorTree             *DT;
94   TargetLibraryInfo         *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed;
99 public:
100 
101   static char ID; // Pass identification, replacement for typeid
102   IndVarSimplify()
103     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108 
109   void getAnalysisUsage(AnalysisUsage &AU) const override {
110     AU.addRequired<DominatorTreeWrapperPass>();
111     AU.addRequired<LoopInfoWrapperPass>();
112     AU.addRequired<ScalarEvolutionWrapperPass>();
113     AU.addRequiredID(LoopSimplifyID);
114     AU.addRequiredID(LCSSAID);
115     AU.addPreserved<GlobalsAAWrapperPass>();
116     AU.addPreserved<ScalarEvolutionWrapperPass>();
117     AU.addPreservedID(LoopSimplifyID);
118     AU.addPreservedID(LCSSAID);
119     AU.setPreservesCFG();
120   }
121 
122 private:
123   void releaseMemory() override {
124     DeadInsts.clear();
125   }
126 
127   bool isValidRewrite(Value *FromVal, Value *ToVal);
128 
129   void handleFloatingPointIV(Loop *L, PHINode *PH);
130   void rewriteNonIntegerIVs(Loop *L);
131 
132   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133 
134   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136   void rewriteFirstIterationLoopExitValues(Loop *L);
137 
138   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
139                                    PHINode *IndVar, SCEVExpander &Rewriter);
140 
141   void sinkUnusedInvariants(Loop *L);
142 
143   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
144                             Instruction *InsertPt, Type *Ty);
145 };
146 }
147 
148 char IndVarSimplify::ID = 0;
149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
150                 "Induction Variable Simplification", false, false)
151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
155 INITIALIZE_PASS_DEPENDENCY(LCSSA)
156 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 
159 Pass *llvm::createIndVarSimplifyPass() {
160   return new IndVarSimplify();
161 }
162 
163 /// Return true if the SCEV expansion generated by the rewriter can replace the
164 /// original value. SCEV guarantees that it produces the same value, but the way
165 /// it is produced may be illegal IR.  Ideally, this function will only be
166 /// called for verification.
167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
168   // If an SCEV expression subsumed multiple pointers, its expansion could
169   // reassociate the GEP changing the base pointer. This is illegal because the
170   // final address produced by a GEP chain must be inbounds relative to its
171   // underlying object. Otherwise basic alias analysis, among other things,
172   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
173   // producing an expression involving multiple pointers. Until then, we must
174   // bail out here.
175   //
176   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
177   // because it understands lcssa phis while SCEV does not.
178   Value *FromPtr = FromVal;
179   Value *ToPtr = ToVal;
180   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
181     FromPtr = GEP->getPointerOperand();
182   }
183   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
184     ToPtr = GEP->getPointerOperand();
185   }
186   if (FromPtr != FromVal || ToPtr != ToVal) {
187     // Quickly check the common case
188     if (FromPtr == ToPtr)
189       return true;
190 
191     // SCEV may have rewritten an expression that produces the GEP's pointer
192     // operand. That's ok as long as the pointer operand has the same base
193     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
194     // base of a recurrence. This handles the case in which SCEV expansion
195     // converts a pointer type recurrence into a nonrecurrent pointer base
196     // indexed by an integer recurrence.
197 
198     // If the GEP base pointer is a vector of pointers, abort.
199     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
200       return false;
201 
202     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
203     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
204     if (FromBase == ToBase)
205       return true;
206 
207     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
208           << *FromBase << " != " << *ToBase << "\n");
209 
210     return false;
211   }
212   return true;
213 }
214 
215 /// Determine the insertion point for this user. By default, insert immediately
216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
218 /// common dominator for the incoming blocks.
219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
220                                           DominatorTree *DT, LoopInfo *LI) {
221   PHINode *PHI = dyn_cast<PHINode>(User);
222   if (!PHI)
223     return User;
224 
225   Instruction *InsertPt = nullptr;
226   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
227     if (PHI->getIncomingValue(i) != Def)
228       continue;
229 
230     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
231     if (!InsertPt) {
232       InsertPt = InsertBB->getTerminator();
233       continue;
234     }
235     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
236     InsertPt = InsertBB->getTerminator();
237   }
238   assert(InsertPt && "Missing phi operand");
239 
240   auto *DefI = dyn_cast<Instruction>(Def);
241   if (!DefI)
242     return InsertPt;
243 
244   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
245 
246   auto *L = LI->getLoopFor(DefI->getParent());
247   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
248 
249   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
250     if (LI->getLoopFor(DTN->getBlock()) == L)
251       return DTN->getBlock()->getTerminator();
252 
253   llvm_unreachable("DefI dominates InsertPt!");
254 }
255 
256 //===----------------------------------------------------------------------===//
257 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
258 //===----------------------------------------------------------------------===//
259 
260 /// Convert APF to an integer, if possible.
261 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
262   bool isExact = false;
263   // See if we can convert this to an int64_t
264   uint64_t UIntVal;
265   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
266                            &isExact) != APFloat::opOK || !isExact)
267     return false;
268   IntVal = UIntVal;
269   return true;
270 }
271 
272 /// If the loop has floating induction variable then insert corresponding
273 /// integer induction variable if possible.
274 /// For example,
275 /// for(double i = 0; i < 10000; ++i)
276 ///   bar(i)
277 /// is converted into
278 /// for(int i = 0; i < 10000; ++i)
279 ///   bar((double)i);
280 ///
281 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
282   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
283   unsigned BackEdge     = IncomingEdge^1;
284 
285   // Check incoming value.
286   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
287 
288   int64_t InitValue;
289   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
290     return;
291 
292   // Check IV increment. Reject this PN if increment operation is not
293   // an add or increment value can not be represented by an integer.
294   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
295   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
296 
297   // If this is not an add of the PHI with a constantfp, or if the constant fp
298   // is not an integer, bail out.
299   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
300   int64_t IncValue;
301   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
302       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
303     return;
304 
305   // Check Incr uses. One user is PN and the other user is an exit condition
306   // used by the conditional terminator.
307   Value::user_iterator IncrUse = Incr->user_begin();
308   Instruction *U1 = cast<Instruction>(*IncrUse++);
309   if (IncrUse == Incr->user_end()) return;
310   Instruction *U2 = cast<Instruction>(*IncrUse++);
311   if (IncrUse != Incr->user_end()) return;
312 
313   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
314   // only used by a branch, we can't transform it.
315   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
316   if (!Compare)
317     Compare = dyn_cast<FCmpInst>(U2);
318   if (!Compare || !Compare->hasOneUse() ||
319       !isa<BranchInst>(Compare->user_back()))
320     return;
321 
322   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
323 
324   // We need to verify that the branch actually controls the iteration count
325   // of the loop.  If not, the new IV can overflow and no one will notice.
326   // The branch block must be in the loop and one of the successors must be out
327   // of the loop.
328   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
329   if (!L->contains(TheBr->getParent()) ||
330       (L->contains(TheBr->getSuccessor(0)) &&
331        L->contains(TheBr->getSuccessor(1))))
332     return;
333 
334 
335   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
336   // transform it.
337   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
338   int64_t ExitValue;
339   if (ExitValueVal == nullptr ||
340       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
341     return;
342 
343   // Find new predicate for integer comparison.
344   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
345   switch (Compare->getPredicate()) {
346   default: return;  // Unknown comparison.
347   case CmpInst::FCMP_OEQ:
348   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
349   case CmpInst::FCMP_ONE:
350   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
351   case CmpInst::FCMP_OGT:
352   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
353   case CmpInst::FCMP_OGE:
354   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
355   case CmpInst::FCMP_OLT:
356   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
357   case CmpInst::FCMP_OLE:
358   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
359   }
360 
361   // We convert the floating point induction variable to a signed i32 value if
362   // we can.  This is only safe if the comparison will not overflow in a way
363   // that won't be trapped by the integer equivalent operations.  Check for this
364   // now.
365   // TODO: We could use i64 if it is native and the range requires it.
366 
367   // The start/stride/exit values must all fit in signed i32.
368   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
369     return;
370 
371   // If not actually striding (add x, 0.0), avoid touching the code.
372   if (IncValue == 0)
373     return;
374 
375   // Positive and negative strides have different safety conditions.
376   if (IncValue > 0) {
377     // If we have a positive stride, we require the init to be less than the
378     // exit value.
379     if (InitValue >= ExitValue)
380       return;
381 
382     uint32_t Range = uint32_t(ExitValue-InitValue);
383     // Check for infinite loop, either:
384     // while (i <= Exit) or until (i > Exit)
385     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
386       if (++Range == 0) return;  // Range overflows.
387     }
388 
389     unsigned Leftover = Range % uint32_t(IncValue);
390 
391     // If this is an equality comparison, we require that the strided value
392     // exactly land on the exit value, otherwise the IV condition will wrap
393     // around and do things the fp IV wouldn't.
394     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
395         Leftover != 0)
396       return;
397 
398     // If the stride would wrap around the i32 before exiting, we can't
399     // transform the IV.
400     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
401       return;
402 
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakVH to observe whether this happens.
449   WeakVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   Changed = true;
475 }
476 
477 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   //
482   BasicBlock *Header = L->getHeader();
483 
484   SmallVector<WeakVH, 8> PHIs;
485   for (BasicBlock::iterator I = Header->begin();
486        PHINode *PN = dyn_cast<PHINode>(I); ++I)
487     PHIs.push_back(PN);
488 
489   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491       handleFloatingPointIV(L, PN);
492 
493   // If the loop previously had floating-point IV, ScalarEvolution
494   // may not have been able to compute a trip count. Now that we've done some
495   // re-writing, the trip count may be computable.
496   if (Changed)
497     SE->forgetLoop(L);
498 }
499 
500 namespace {
501 // Collect information about PHI nodes which can be transformed in
502 // rewriteLoopExitValues.
503 struct RewritePhi {
504   PHINode *PN;
505   unsigned Ith;  // Ith incoming value.
506   Value *Val;    // Exit value after expansion.
507   bool HighCost; // High Cost when expansion.
508 
509   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
510       : PN(P), Ith(I), Val(V), HighCost(H) {}
511 };
512 }
513 
514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
515                                           Loop *L, Instruction *InsertPt,
516                                           Type *ResultTy) {
517   // Before expanding S into an expensive LLVM expression, see if we can use an
518   // already existing value as the expansion for S.
519   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
520     if (ExistingValue->getType() == ResultTy)
521       return ExistingValue;
522 
523   // We didn't find anything, fall back to using SCEVExpander.
524   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // rewriteLoopExitValues - Optimize IV users outside the loop.
529 // As a side effect, reduces the amount of IV processing within the loop.
530 //===----------------------------------------------------------------------===//
531 
532 /// Check to see if this loop has a computable loop-invariant execution count.
533 /// If so, this means that we can compute the final value of any expressions
534 /// that are recurrent in the loop, and substitute the exit values from the loop
535 /// into any instructions outside of the loop that use the final values of the
536 /// current expressions.
537 ///
538 /// This is mostly redundant with the regular IndVarSimplify activities that
539 /// happen later, except that it's more powerful in some cases, because it's
540 /// able to brute-force evaluate arbitrary instructions as long as they have
541 /// constant operands at the beginning of the loop.
542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
543   // Check a pre-condition.
544   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
545 
546   SmallVector<BasicBlock*, 8> ExitBlocks;
547   L->getUniqueExitBlocks(ExitBlocks);
548 
549   SmallVector<RewritePhi, 8> RewritePhiSet;
550   // Find all values that are computed inside the loop, but used outside of it.
551   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
552   // the exit blocks of the loop to find them.
553   for (BasicBlock *ExitBB : ExitBlocks) {
554     // If there are no PHI nodes in this exit block, then no values defined
555     // inside the loop are used on this path, skip it.
556     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
557     if (!PN) continue;
558 
559     unsigned NumPreds = PN->getNumIncomingValues();
560 
561     // Iterate over all of the PHI nodes.
562     BasicBlock::iterator BBI = ExitBB->begin();
563     while ((PN = dyn_cast<PHINode>(BBI++))) {
564       if (PN->use_empty())
565         continue; // dead use, don't replace it
566 
567       if (!SE->isSCEVable(PN->getType()))
568         continue;
569 
570       // It's necessary to tell ScalarEvolution about this explicitly so that
571       // it can walk the def-use list and forget all SCEVs, as it may not be
572       // watching the PHI itself. Once the new exit value is in place, there
573       // may not be a def-use connection between the loop and every instruction
574       // which got a SCEVAddRecExpr for that loop.
575       SE->forgetValue(PN);
576 
577       // Iterate over all of the values in all the PHI nodes.
578       for (unsigned i = 0; i != NumPreds; ++i) {
579         // If the value being merged in is not integer or is not defined
580         // in the loop, skip it.
581         Value *InVal = PN->getIncomingValue(i);
582         if (!isa<Instruction>(InVal))
583           continue;
584 
585         // If this pred is for a subloop, not L itself, skip it.
586         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
587           continue; // The Block is in a subloop, skip it.
588 
589         // Check that InVal is defined in the loop.
590         Instruction *Inst = cast<Instruction>(InVal);
591         if (!L->contains(Inst))
592           continue;
593 
594         // Okay, this instruction has a user outside of the current loop
595         // and varies predictably *inside* the loop.  Evaluate the value it
596         // contains when the loop exits, if possible.
597         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
598         if (!SE->isLoopInvariant(ExitValue, L) ||
599             !isSafeToExpand(ExitValue, *SE))
600           continue;
601 
602         // Computing the value outside of the loop brings no benefit if :
603         //  - it is definitely used inside the loop in a way which can not be
604         //    optimized away.
605         //  - no use outside of the loop can take advantage of hoisting the
606         //    computation out of the loop
607         if (ExitValue->getSCEVType()>=scMulExpr) {
608           unsigned NumHardInternalUses = 0;
609           unsigned NumSoftExternalUses = 0;
610           unsigned NumUses = 0;
611           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
612                IB != IE && NumUses <= 6; ++IB) {
613             Instruction *UseInstr = cast<Instruction>(*IB);
614             unsigned Opc = UseInstr->getOpcode();
615             NumUses++;
616             if (L->contains(UseInstr)) {
617               if (Opc == Instruction::Call || Opc == Instruction::Ret)
618                 NumHardInternalUses++;
619             } else {
620               if (Opc == Instruction::PHI) {
621                 // Do not count the Phi as a use. LCSSA may have inserted
622                 // plenty of trivial ones.
623                 NumUses--;
624                 for (auto PB = UseInstr->user_begin(),
625                           PE = UseInstr->user_end();
626                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
627                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
628                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
629                     NumSoftExternalUses++;
630                 }
631                 continue;
632               }
633               if (Opc != Instruction::Call && Opc != Instruction::Ret)
634                 NumSoftExternalUses++;
635             }
636           }
637           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
638             continue;
639         }
640 
641         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
642         Value *ExitVal =
643             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
644 
645         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
646                      << "  LoopVal = " << *Inst << "\n");
647 
648         if (!isValidRewrite(Inst, ExitVal)) {
649           DeadInsts.push_back(ExitVal);
650           continue;
651         }
652 
653         // Collect all the candidate PHINodes to be rewritten.
654         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
655       }
656     }
657   }
658 
659   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
660 
661   // Transformation.
662   for (const RewritePhi &Phi : RewritePhiSet) {
663     PHINode *PN = Phi.PN;
664     Value *ExitVal = Phi.Val;
665 
666     // Only do the rewrite when the ExitValue can be expanded cheaply.
667     // If LoopCanBeDel is true, rewrite exit value aggressively.
668     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
669       DeadInsts.push_back(ExitVal);
670       continue;
671     }
672 
673     Changed = true;
674     ++NumReplaced;
675     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
676     PN->setIncomingValue(Phi.Ith, ExitVal);
677 
678     // If this instruction is dead now, delete it. Don't do it now to avoid
679     // invalidating iterators.
680     if (isInstructionTriviallyDead(Inst, TLI))
681       DeadInsts.push_back(Inst);
682 
683     // Replace PN with ExitVal if that is legal and does not break LCSSA.
684     if (PN->getNumIncomingValues() == 1 &&
685         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
686       PN->replaceAllUsesWith(ExitVal);
687       PN->eraseFromParent();
688     }
689   }
690 
691   // The insertion point instruction may have been deleted; clear it out
692   // so that the rewriter doesn't trip over it later.
693   Rewriter.clearInsertPoint();
694 }
695 
696 //===---------------------------------------------------------------------===//
697 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
698 // they will exit at the first iteration.
699 //===---------------------------------------------------------------------===//
700 
701 /// Check to see if this loop has loop invariant conditions which lead to loop
702 /// exits. If so, we know that if the exit path is taken, it is at the first
703 /// loop iteration. This lets us predict exit values of PHI nodes that live in
704 /// loop header.
705 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
706   // Verify the input to the pass is already in LCSSA form.
707   assert(L->isLCSSAForm(*DT));
708 
709   SmallVector<BasicBlock *, 8> ExitBlocks;
710   L->getUniqueExitBlocks(ExitBlocks);
711   auto *LoopHeader = L->getHeader();
712   assert(LoopHeader && "Invalid loop");
713 
714   for (auto *ExitBB : ExitBlocks) {
715     BasicBlock::iterator BBI = ExitBB->begin();
716     // If there are no more PHI nodes in this exit block, then no more
717     // values defined inside the loop are used on this path.
718     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
719       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
720           IncomingValIdx != E; ++IncomingValIdx) {
721         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
722 
723         // We currently only support loop exits from loop header. If the
724         // incoming block is not loop header, we need to recursively check
725         // all conditions starting from loop header are loop invariants.
726         // Additional support might be added in the future.
727         if (IncomingBB != LoopHeader)
728           continue;
729 
730         // Get condition that leads to the exit path.
731         auto *TermInst = IncomingBB->getTerminator();
732 
733         Value *Cond = nullptr;
734         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
735           // Must be a conditional branch, otherwise the block
736           // should not be in the loop.
737           Cond = BI->getCondition();
738         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
739           Cond = SI->getCondition();
740         else
741           continue;
742 
743         if (!L->isLoopInvariant(Cond))
744           continue;
745 
746         auto *ExitVal =
747             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
748 
749         // Only deal with PHIs.
750         if (!ExitVal)
751           continue;
752 
753         // If ExitVal is a PHI on the loop header, then we know its
754         // value along this exit because the exit can only be taken
755         // on the first iteration.
756         auto *LoopPreheader = L->getLoopPreheader();
757         assert(LoopPreheader && "Invalid loop");
758         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
759         if (PreheaderIdx != -1) {
760           assert(ExitVal->getParent() == LoopHeader &&
761                  "ExitVal must be in loop header");
762           PN->setIncomingValue(IncomingValIdx,
763               ExitVal->getIncomingValue(PreheaderIdx));
764         }
765       }
766     }
767   }
768 }
769 
770 /// Check whether it is possible to delete the loop after rewriting exit
771 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
772 /// aggressively.
773 bool IndVarSimplify::canLoopBeDeleted(
774     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
775 
776   BasicBlock *Preheader = L->getLoopPreheader();
777   // If there is no preheader, the loop will not be deleted.
778   if (!Preheader)
779     return false;
780 
781   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
782   // We obviate multiple ExitingBlocks case for simplicity.
783   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
784   // after exit value rewriting, we can enhance the logic here.
785   SmallVector<BasicBlock *, 4> ExitingBlocks;
786   L->getExitingBlocks(ExitingBlocks);
787   SmallVector<BasicBlock *, 8> ExitBlocks;
788   L->getUniqueExitBlocks(ExitBlocks);
789   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
790     return false;
791 
792   BasicBlock *ExitBlock = ExitBlocks[0];
793   BasicBlock::iterator BI = ExitBlock->begin();
794   while (PHINode *P = dyn_cast<PHINode>(BI)) {
795     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
796 
797     // If the Incoming value of P is found in RewritePhiSet, we know it
798     // could be rewritten to use a loop invariant value in transformation
799     // phase later. Skip it in the loop invariant check below.
800     bool found = false;
801     for (const RewritePhi &Phi : RewritePhiSet) {
802       unsigned i = Phi.Ith;
803       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
804         found = true;
805         break;
806       }
807     }
808 
809     Instruction *I;
810     if (!found && (I = dyn_cast<Instruction>(Incoming)))
811       if (!L->hasLoopInvariantOperands(I))
812         return false;
813 
814     ++BI;
815   }
816 
817   for (auto *BB : L->blocks())
818     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
819       return false;
820 
821   return true;
822 }
823 
824 //===----------------------------------------------------------------------===//
825 //  IV Widening - Extend the width of an IV to cover its widest uses.
826 //===----------------------------------------------------------------------===//
827 
828 namespace {
829 // Collect information about induction variables that are used by sign/zero
830 // extend operations. This information is recorded by CollectExtend and provides
831 // the input to WidenIV.
832 struct WideIVInfo {
833   PHINode *NarrowIV = nullptr;
834   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
835   bool IsSigned = false;            // Was a sext user seen before a zext?
836 };
837 }
838 
839 /// Update information about the induction variable that is extended by this
840 /// sign or zero extend operation. This is used to determine the final width of
841 /// the IV before actually widening it.
842 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
843                         const TargetTransformInfo *TTI) {
844   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
845   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
846     return;
847 
848   Type *Ty = Cast->getType();
849   uint64_t Width = SE->getTypeSizeInBits(Ty);
850   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
851     return;
852 
853   // Cast is either an sext or zext up to this point.
854   // We should not widen an indvar if arithmetics on the wider indvar are more
855   // expensive than those on the narrower indvar. We check only the cost of ADD
856   // because at least an ADD is required to increment the induction variable. We
857   // could compute more comprehensively the cost of all instructions on the
858   // induction variable when necessary.
859   if (TTI &&
860       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
861           TTI->getArithmeticInstrCost(Instruction::Add,
862                                       Cast->getOperand(0)->getType())) {
863     return;
864   }
865 
866   if (!WI.WidestNativeType) {
867     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
868     WI.IsSigned = IsSigned;
869     return;
870   }
871 
872   // We extend the IV to satisfy the sign of its first user, arbitrarily.
873   if (WI.IsSigned != IsSigned)
874     return;
875 
876   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
877     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
878 }
879 
880 namespace {
881 
882 /// Record a link in the Narrow IV def-use chain along with the WideIV that
883 /// computes the same value as the Narrow IV def.  This avoids caching Use*
884 /// pointers.
885 struct NarrowIVDefUse {
886   Instruction *NarrowDef = nullptr;
887   Instruction *NarrowUse = nullptr;
888   Instruction *WideDef = nullptr;
889 
890   // True if the narrow def is never negative.  Tracking this information lets
891   // us use a sign extension instead of a zero extension or vice versa, when
892   // profitable and legal.
893   bool NeverNegative = false;
894 
895   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
896                  bool NeverNegative)
897       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
898         NeverNegative(NeverNegative) {}
899 };
900 
901 /// The goal of this transform is to remove sign and zero extends without
902 /// creating any new induction variables. To do this, it creates a new phi of
903 /// the wider type and redirects all users, either removing extends or inserting
904 /// truncs whenever we stop propagating the type.
905 ///
906 class WidenIV {
907   // Parameters
908   PHINode *OrigPhi;
909   Type *WideType;
910   bool IsSigned;
911 
912   // Context
913   LoopInfo        *LI;
914   Loop            *L;
915   ScalarEvolution *SE;
916   DominatorTree   *DT;
917 
918   // Result
919   PHINode *WidePhi;
920   Instruction *WideInc;
921   const SCEV *WideIncExpr;
922   SmallVectorImpl<WeakVH> &DeadInsts;
923 
924   SmallPtrSet<Instruction*,16> Widened;
925   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
926 
927 public:
928   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
929           ScalarEvolution *SEv, DominatorTree *DTree,
930           SmallVectorImpl<WeakVH> &DI) :
931     OrigPhi(WI.NarrowIV),
932     WideType(WI.WidestNativeType),
933     IsSigned(WI.IsSigned),
934     LI(LInfo),
935     L(LI->getLoopFor(OrigPhi->getParent())),
936     SE(SEv),
937     DT(DTree),
938     WidePhi(nullptr),
939     WideInc(nullptr),
940     WideIncExpr(nullptr),
941     DeadInsts(DI) {
942     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
943   }
944 
945   PHINode *createWideIV(SCEVExpander &Rewriter);
946 
947 protected:
948   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
949                           Instruction *Use);
950 
951   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
952   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
953                                      const SCEVAddRecExpr *WideAR);
954   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
955 
956   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
957 
958   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
959 
960   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
961                               unsigned OpCode) const;
962 
963   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
964 
965   bool widenLoopCompare(NarrowIVDefUse DU);
966 
967   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
968 };
969 } // anonymous namespace
970 
971 /// Perform a quick domtree based check for loop invariance assuming that V is
972 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
973 /// purpose.
974 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
975   Instruction *Inst = dyn_cast<Instruction>(V);
976   if (!Inst)
977     return true;
978 
979   return DT->properlyDominates(Inst->getParent(), L->getHeader());
980 }
981 
982 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
983                                  bool IsSigned, Instruction *Use) {
984   // Set the debug location and conservative insertion point.
985   IRBuilder<> Builder(Use);
986   // Hoist the insertion point into loop preheaders as far as possible.
987   for (const Loop *L = LI->getLoopFor(Use->getParent());
988        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
989        L = L->getParentLoop())
990     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
991 
992   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
993                     Builder.CreateZExt(NarrowOper, WideType);
994 }
995 
996 /// Instantiate a wide operation to replace a narrow operation. This only needs
997 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
998 /// 0 for any operation we decide not to clone.
999 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1000                                   const SCEVAddRecExpr *WideAR) {
1001   unsigned Opcode = DU.NarrowUse->getOpcode();
1002   switch (Opcode) {
1003   default:
1004     return nullptr;
1005   case Instruction::Add:
1006   case Instruction::Mul:
1007   case Instruction::UDiv:
1008   case Instruction::Sub:
1009     return cloneArithmeticIVUser(DU, WideAR);
1010 
1011   case Instruction::And:
1012   case Instruction::Or:
1013   case Instruction::Xor:
1014   case Instruction::Shl:
1015   case Instruction::LShr:
1016   case Instruction::AShr:
1017     return cloneBitwiseIVUser(DU);
1018   }
1019 }
1020 
1021 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1022   Instruction *NarrowUse = DU.NarrowUse;
1023   Instruction *NarrowDef = DU.NarrowDef;
1024   Instruction *WideDef = DU.WideDef;
1025 
1026   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1027 
1028   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1029   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1030   // invariant and will be folded or hoisted. If it actually comes from a
1031   // widened IV, it should be removed during a future call to widenIVUse.
1032   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1033                    ? WideDef
1034                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1035                                       IsSigned, NarrowUse);
1036   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1037                    ? WideDef
1038                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1039                                       IsSigned, NarrowUse);
1040 
1041   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1042   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1043                                         NarrowBO->getName());
1044   IRBuilder<> Builder(NarrowUse);
1045   Builder.Insert(WideBO);
1046   WideBO->copyIRFlags(NarrowBO);
1047   return WideBO;
1048 }
1049 
1050 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1051                                             const SCEVAddRecExpr *WideAR) {
1052   Instruction *NarrowUse = DU.NarrowUse;
1053   Instruction *NarrowDef = DU.NarrowDef;
1054   Instruction *WideDef = DU.WideDef;
1055 
1056   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1057 
1058   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1059 
1060   // We're trying to find X such that
1061   //
1062   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1063   //
1064   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1065   // and check using SCEV if any of them are correct.
1066 
1067   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1068   // correct solution to X.
1069   auto GuessNonIVOperand = [&](bool SignExt) {
1070     const SCEV *WideLHS;
1071     const SCEV *WideRHS;
1072 
1073     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1074       if (SignExt)
1075         return SE->getSignExtendExpr(S, Ty);
1076       return SE->getZeroExtendExpr(S, Ty);
1077     };
1078 
1079     if (IVOpIdx == 0) {
1080       WideLHS = SE->getSCEV(WideDef);
1081       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1082       WideRHS = GetExtend(NarrowRHS, WideType);
1083     } else {
1084       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1085       WideLHS = GetExtend(NarrowLHS, WideType);
1086       WideRHS = SE->getSCEV(WideDef);
1087     }
1088 
1089     // WideUse is "WideDef `op.wide` X" as described in the comment.
1090     const SCEV *WideUse = nullptr;
1091 
1092     switch (NarrowUse->getOpcode()) {
1093     default:
1094       llvm_unreachable("No other possibility!");
1095 
1096     case Instruction::Add:
1097       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1098       break;
1099 
1100     case Instruction::Mul:
1101       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1102       break;
1103 
1104     case Instruction::UDiv:
1105       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1106       break;
1107 
1108     case Instruction::Sub:
1109       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1110       break;
1111     }
1112 
1113     return WideUse == WideAR;
1114   };
1115 
1116   bool SignExtend = IsSigned;
1117   if (!GuessNonIVOperand(SignExtend)) {
1118     SignExtend = !SignExtend;
1119     if (!GuessNonIVOperand(SignExtend))
1120       return nullptr;
1121   }
1122 
1123   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1124                    ? WideDef
1125                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1126                                       SignExtend, NarrowUse);
1127   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1128                    ? WideDef
1129                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1130                                       SignExtend, NarrowUse);
1131 
1132   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1133   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1134                                         NarrowBO->getName());
1135 
1136   IRBuilder<> Builder(NarrowUse);
1137   Builder.Insert(WideBO);
1138   WideBO->copyIRFlags(NarrowBO);
1139   return WideBO;
1140 }
1141 
1142 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1143                                      unsigned OpCode) const {
1144   if (OpCode == Instruction::Add)
1145     return SE->getAddExpr(LHS, RHS);
1146   if (OpCode == Instruction::Sub)
1147     return SE->getMinusSCEV(LHS, RHS);
1148   if (OpCode == Instruction::Mul)
1149     return SE->getMulExpr(LHS, RHS);
1150 
1151   llvm_unreachable("Unsupported opcode.");
1152 }
1153 
1154 /// No-wrap operations can transfer sign extension of their result to their
1155 /// operands. Generate the SCEV value for the widened operation without
1156 /// actually modifying the IR yet. If the expression after extending the
1157 /// operands is an AddRec for this loop, return it.
1158 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1159 
1160   // Handle the common case of add<nsw/nuw>
1161   const unsigned OpCode = DU.NarrowUse->getOpcode();
1162   // Only Add/Sub/Mul instructions supported yet.
1163   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1164       OpCode != Instruction::Mul)
1165     return nullptr;
1166 
1167   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1168   // if extending the other will lead to a recurrence.
1169   const unsigned ExtendOperIdx =
1170       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1171   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1172 
1173   const SCEV *ExtendOperExpr = nullptr;
1174   const OverflowingBinaryOperator *OBO =
1175     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1176   if (IsSigned && OBO->hasNoSignedWrap())
1177     ExtendOperExpr = SE->getSignExtendExpr(
1178       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1179   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1180     ExtendOperExpr = SE->getZeroExtendExpr(
1181       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1182   else
1183     return nullptr;
1184 
1185   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1186   // flags. This instruction may be guarded by control flow that the no-wrap
1187   // behavior depends on. Non-control-equivalent instructions can be mapped to
1188   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1189   // semantics to those operations.
1190   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1191   const SCEV *rhs = ExtendOperExpr;
1192 
1193   // Let's swap operands to the initial order for the case of non-commutative
1194   // operations, like SUB. See PR21014.
1195   if (ExtendOperIdx == 0)
1196     std::swap(lhs, rhs);
1197   const SCEVAddRecExpr *AddRec =
1198       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1199 
1200   if (!AddRec || AddRec->getLoop() != L)
1201     return nullptr;
1202   return AddRec;
1203 }
1204 
1205 /// Is this instruction potentially interesting for further simplification after
1206 /// widening it's type? In other words, can the extend be safely hoisted out of
1207 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1208 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1209 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1210   if (!SE->isSCEVable(NarrowUse->getType()))
1211     return nullptr;
1212 
1213   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1214   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1215       >= SE->getTypeSizeInBits(WideType)) {
1216     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1217     // index. So don't follow this use.
1218     return nullptr;
1219   }
1220 
1221   const SCEV *WideExpr = IsSigned ?
1222     SE->getSignExtendExpr(NarrowExpr, WideType) :
1223     SE->getZeroExtendExpr(NarrowExpr, WideType);
1224   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1225   if (!AddRec || AddRec->getLoop() != L)
1226     return nullptr;
1227   return AddRec;
1228 }
1229 
1230 /// This IV user cannot be widen. Replace this use of the original narrow IV
1231 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1232 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1233   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1234         << " for user " << *DU.NarrowUse << "\n");
1235   IRBuilder<> Builder(
1236       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1237   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1238   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1239 }
1240 
1241 /// If the narrow use is a compare instruction, then widen the compare
1242 //  (and possibly the other operand).  The extend operation is hoisted into the
1243 // loop preheader as far as possible.
1244 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1245   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1246   if (!Cmp)
1247     return false;
1248 
1249   // We can legally widen the comparison in the following two cases:
1250   //
1251   //  - The signedness of the IV extension and comparison match
1252   //
1253   //  - The narrow IV is always positive (and thus its sign extension is equal
1254   //    to its zero extension).  For instance, let's say we're zero extending
1255   //    %narrow for the following use
1256   //
1257   //      icmp slt i32 %narrow, %val   ... (A)
1258   //
1259   //    and %narrow is always positive.  Then
1260   //
1261   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1262   //          == icmp slt i32 zext(%narrow), sext(%val)
1263 
1264   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1265     return false;
1266 
1267   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1268   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1269   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1270   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1271 
1272   // Widen the compare instruction.
1273   IRBuilder<> Builder(
1274       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1275   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1276 
1277   // Widen the other operand of the compare, if necessary.
1278   if (CastWidth < IVWidth) {
1279     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1280     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1281   }
1282   return true;
1283 }
1284 
1285 /// Determine whether an individual user of the narrow IV can be widened. If so,
1286 /// return the wide clone of the user.
1287 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1288 
1289   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1290   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1291     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1292       // For LCSSA phis, sink the truncate outside the loop.
1293       // After SimplifyCFG most loop exit targets have a single predecessor.
1294       // Otherwise fall back to a truncate within the loop.
1295       if (UsePhi->getNumOperands() != 1)
1296         truncateIVUse(DU, DT, LI);
1297       else {
1298         PHINode *WidePhi =
1299           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1300                           UsePhi);
1301         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1302         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1303         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1304         UsePhi->replaceAllUsesWith(Trunc);
1305         DeadInsts.emplace_back(UsePhi);
1306         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1307               << " to " << *WidePhi << "\n");
1308       }
1309       return nullptr;
1310     }
1311   }
1312   // Our raison d'etre! Eliminate sign and zero extension.
1313   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1314     Value *NewDef = DU.WideDef;
1315     if (DU.NarrowUse->getType() != WideType) {
1316       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1317       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1318       if (CastWidth < IVWidth) {
1319         // The cast isn't as wide as the IV, so insert a Trunc.
1320         IRBuilder<> Builder(DU.NarrowUse);
1321         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1322       }
1323       else {
1324         // A wider extend was hidden behind a narrower one. This may induce
1325         // another round of IV widening in which the intermediate IV becomes
1326         // dead. It should be very rare.
1327         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1328               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1329         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1330         NewDef = DU.NarrowUse;
1331       }
1332     }
1333     if (NewDef != DU.NarrowUse) {
1334       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1335             << " replaced by " << *DU.WideDef << "\n");
1336       ++NumElimExt;
1337       DU.NarrowUse->replaceAllUsesWith(NewDef);
1338       DeadInsts.emplace_back(DU.NarrowUse);
1339     }
1340     // Now that the extend is gone, we want to expose it's uses for potential
1341     // further simplification. We don't need to directly inform SimplifyIVUsers
1342     // of the new users, because their parent IV will be processed later as a
1343     // new loop phi. If we preserved IVUsers analysis, we would also want to
1344     // push the uses of WideDef here.
1345 
1346     // No further widening is needed. The deceased [sz]ext had done it for us.
1347     return nullptr;
1348   }
1349 
1350   // Does this user itself evaluate to a recurrence after widening?
1351   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1352   if (!WideAddRec)
1353     WideAddRec = getExtendedOperandRecurrence(DU);
1354 
1355   if (!WideAddRec) {
1356     // If use is a loop condition, try to promote the condition instead of
1357     // truncating the IV first.
1358     if (widenLoopCompare(DU))
1359       return nullptr;
1360 
1361     // This user does not evaluate to a recurence after widening, so don't
1362     // follow it. Instead insert a Trunc to kill off the original use,
1363     // eventually isolating the original narrow IV so it can be removed.
1364     truncateIVUse(DU, DT, LI);
1365     return nullptr;
1366   }
1367   // Assume block terminators cannot evaluate to a recurrence. We can't to
1368   // insert a Trunc after a terminator if there happens to be a critical edge.
1369   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1370          "SCEV is not expected to evaluate a block terminator");
1371 
1372   // Reuse the IV increment that SCEVExpander created as long as it dominates
1373   // NarrowUse.
1374   Instruction *WideUse = nullptr;
1375   if (WideAddRec == WideIncExpr
1376       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1377     WideUse = WideInc;
1378   else {
1379     WideUse = cloneIVUser(DU, WideAddRec);
1380     if (!WideUse)
1381       return nullptr;
1382   }
1383   // Evaluation of WideAddRec ensured that the narrow expression could be
1384   // extended outside the loop without overflow. This suggests that the wide use
1385   // evaluates to the same expression as the extended narrow use, but doesn't
1386   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1387   // where it fails, we simply throw away the newly created wide use.
1388   if (WideAddRec != SE->getSCEV(WideUse)) {
1389     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1390           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1391     DeadInsts.emplace_back(WideUse);
1392     return nullptr;
1393   }
1394 
1395   // Returning WideUse pushes it on the worklist.
1396   return WideUse;
1397 }
1398 
1399 /// Add eligible users of NarrowDef to NarrowIVUsers.
1400 ///
1401 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1402   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1403   bool NeverNegative =
1404       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1405                            SE->getConstant(NarrowSCEV->getType(), 0));
1406   for (User *U : NarrowDef->users()) {
1407     Instruction *NarrowUser = cast<Instruction>(U);
1408 
1409     // Handle data flow merges and bizarre phi cycles.
1410     if (!Widened.insert(NarrowUser).second)
1411       continue;
1412 
1413     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1414   }
1415 }
1416 
1417 /// Process a single induction variable. First use the SCEVExpander to create a
1418 /// wide induction variable that evaluates to the same recurrence as the
1419 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1420 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1421 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1422 ///
1423 /// It would be simpler to delete uses as they are processed, but we must avoid
1424 /// invalidating SCEV expressions.
1425 ///
1426 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1427   // Is this phi an induction variable?
1428   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1429   if (!AddRec)
1430     return nullptr;
1431 
1432   // Widen the induction variable expression.
1433   const SCEV *WideIVExpr = IsSigned ?
1434     SE->getSignExtendExpr(AddRec, WideType) :
1435     SE->getZeroExtendExpr(AddRec, WideType);
1436 
1437   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1438          "Expect the new IV expression to preserve its type");
1439 
1440   // Can the IV be extended outside the loop without overflow?
1441   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1442   if (!AddRec || AddRec->getLoop() != L)
1443     return nullptr;
1444 
1445   // An AddRec must have loop-invariant operands. Since this AddRec is
1446   // materialized by a loop header phi, the expression cannot have any post-loop
1447   // operands, so they must dominate the loop header.
1448   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1449          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1450          && "Loop header phi recurrence inputs do not dominate the loop");
1451 
1452   // The rewriter provides a value for the desired IV expression. This may
1453   // either find an existing phi or materialize a new one. Either way, we
1454   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1455   // of the phi-SCC dominates the loop entry.
1456   Instruction *InsertPt = &L->getHeader()->front();
1457   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1458 
1459   // Remembering the WideIV increment generated by SCEVExpander allows
1460   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1461   // employ a general reuse mechanism because the call above is the only call to
1462   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1463   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1464     WideInc =
1465       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1466     WideIncExpr = SE->getSCEV(WideInc);
1467   }
1468 
1469   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1470   ++NumWidened;
1471 
1472   // Traverse the def-use chain using a worklist starting at the original IV.
1473   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1474 
1475   Widened.insert(OrigPhi);
1476   pushNarrowIVUsers(OrigPhi, WidePhi);
1477 
1478   while (!NarrowIVUsers.empty()) {
1479     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1480 
1481     // Process a def-use edge. This may replace the use, so don't hold a
1482     // use_iterator across it.
1483     Instruction *WideUse = widenIVUse(DU, Rewriter);
1484 
1485     // Follow all def-use edges from the previous narrow use.
1486     if (WideUse)
1487       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1488 
1489     // widenIVUse may have removed the def-use edge.
1490     if (DU.NarrowDef->use_empty())
1491       DeadInsts.emplace_back(DU.NarrowDef);
1492   }
1493   return WidePhi;
1494 }
1495 
1496 //===----------------------------------------------------------------------===//
1497 //  Live IV Reduction - Minimize IVs live across the loop.
1498 //===----------------------------------------------------------------------===//
1499 
1500 
1501 //===----------------------------------------------------------------------===//
1502 //  Simplification of IV users based on SCEV evaluation.
1503 //===----------------------------------------------------------------------===//
1504 
1505 namespace {
1506 class IndVarSimplifyVisitor : public IVVisitor {
1507   ScalarEvolution *SE;
1508   const TargetTransformInfo *TTI;
1509   PHINode *IVPhi;
1510 
1511 public:
1512   WideIVInfo WI;
1513 
1514   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1515                         const TargetTransformInfo *TTI,
1516                         const DominatorTree *DTree)
1517     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1518     DT = DTree;
1519     WI.NarrowIV = IVPhi;
1520     if (ReduceLiveIVs)
1521       setSplitOverflowIntrinsics();
1522   }
1523 
1524   // Implement the interface used by simplifyUsersOfIV.
1525   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1526 };
1527 }
1528 
1529 /// Iteratively perform simplification on a worklist of IV users. Each
1530 /// successive simplification may push more users which may themselves be
1531 /// candidates for simplification.
1532 ///
1533 /// Sign/Zero extend elimination is interleaved with IV simplification.
1534 ///
1535 void IndVarSimplify::simplifyAndExtend(Loop *L,
1536                                        SCEVExpander &Rewriter,
1537                                        LoopInfo *LI) {
1538   SmallVector<WideIVInfo, 8> WideIVs;
1539 
1540   SmallVector<PHINode*, 8> LoopPhis;
1541   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1542     LoopPhis.push_back(cast<PHINode>(I));
1543   }
1544   // Each round of simplification iterates through the SimplifyIVUsers worklist
1545   // for all current phis, then determines whether any IVs can be
1546   // widened. Widening adds new phis to LoopPhis, inducing another round of
1547   // simplification on the wide IVs.
1548   while (!LoopPhis.empty()) {
1549     // Evaluate as many IV expressions as possible before widening any IVs. This
1550     // forces SCEV to set no-wrap flags before evaluating sign/zero
1551     // extension. The first time SCEV attempts to normalize sign/zero extension,
1552     // the result becomes final. So for the most predictable results, we delay
1553     // evaluation of sign/zero extend evaluation until needed, and avoid running
1554     // other SCEV based analysis prior to simplifyAndExtend.
1555     do {
1556       PHINode *CurrIV = LoopPhis.pop_back_val();
1557 
1558       // Information about sign/zero extensions of CurrIV.
1559       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1560 
1561       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1562 
1563       if (Visitor.WI.WidestNativeType) {
1564         WideIVs.push_back(Visitor.WI);
1565       }
1566     } while(!LoopPhis.empty());
1567 
1568     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1569       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1570       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1571         Changed = true;
1572         LoopPhis.push_back(WidePhi);
1573       }
1574     }
1575   }
1576 }
1577 
1578 //===----------------------------------------------------------------------===//
1579 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1580 //===----------------------------------------------------------------------===//
1581 
1582 /// Return true if this loop's backedge taken count expression can be safely and
1583 /// cheaply expanded into an instruction sequence that can be used by
1584 /// linearFunctionTestReplace.
1585 ///
1586 /// TODO: This fails for pointer-type loop counters with greater than one byte
1587 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1588 /// we could skip this check in the case that the LFTR loop counter (chosen by
1589 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1590 /// the loop test to an inequality test by checking the target data's alignment
1591 /// of element types (given that the initial pointer value originates from or is
1592 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1593 /// However, we don't yet have a strong motivation for converting loop tests
1594 /// into inequality tests.
1595 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1596                                         SCEVExpander &Rewriter) {
1597   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1598   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1599       BackedgeTakenCount->isZero())
1600     return false;
1601 
1602   if (!L->getExitingBlock())
1603     return false;
1604 
1605   // Can't rewrite non-branch yet.
1606   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1607     return false;
1608 
1609   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1610     return false;
1611 
1612   return true;
1613 }
1614 
1615 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1616 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1617   Instruction *IncI = dyn_cast<Instruction>(IncV);
1618   if (!IncI)
1619     return nullptr;
1620 
1621   switch (IncI->getOpcode()) {
1622   case Instruction::Add:
1623   case Instruction::Sub:
1624     break;
1625   case Instruction::GetElementPtr:
1626     // An IV counter must preserve its type.
1627     if (IncI->getNumOperands() == 2)
1628       break;
1629   default:
1630     return nullptr;
1631   }
1632 
1633   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1634   if (Phi && Phi->getParent() == L->getHeader()) {
1635     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1636       return Phi;
1637     return nullptr;
1638   }
1639   if (IncI->getOpcode() == Instruction::GetElementPtr)
1640     return nullptr;
1641 
1642   // Allow add/sub to be commuted.
1643   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1644   if (Phi && Phi->getParent() == L->getHeader()) {
1645     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1646       return Phi;
1647   }
1648   return nullptr;
1649 }
1650 
1651 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1652 static ICmpInst *getLoopTest(Loop *L) {
1653   assert(L->getExitingBlock() && "expected loop exit");
1654 
1655   BasicBlock *LatchBlock = L->getLoopLatch();
1656   // Don't bother with LFTR if the loop is not properly simplified.
1657   if (!LatchBlock)
1658     return nullptr;
1659 
1660   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1661   assert(BI && "expected exit branch");
1662 
1663   return dyn_cast<ICmpInst>(BI->getCondition());
1664 }
1665 
1666 /// linearFunctionTestReplace policy. Return true unless we can show that the
1667 /// current exit test is already sufficiently canonical.
1668 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1669   // Do LFTR to simplify the exit condition to an ICMP.
1670   ICmpInst *Cond = getLoopTest(L);
1671   if (!Cond)
1672     return true;
1673 
1674   // Do LFTR to simplify the exit ICMP to EQ/NE
1675   ICmpInst::Predicate Pred = Cond->getPredicate();
1676   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1677     return true;
1678 
1679   // Look for a loop invariant RHS
1680   Value *LHS = Cond->getOperand(0);
1681   Value *RHS = Cond->getOperand(1);
1682   if (!isLoopInvariant(RHS, L, DT)) {
1683     if (!isLoopInvariant(LHS, L, DT))
1684       return true;
1685     std::swap(LHS, RHS);
1686   }
1687   // Look for a simple IV counter LHS
1688   PHINode *Phi = dyn_cast<PHINode>(LHS);
1689   if (!Phi)
1690     Phi = getLoopPhiForCounter(LHS, L, DT);
1691 
1692   if (!Phi)
1693     return true;
1694 
1695   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1696   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1697   if (Idx < 0)
1698     return true;
1699 
1700   // Do LFTR if the exit condition's IV is *not* a simple counter.
1701   Value *IncV = Phi->getIncomingValue(Idx);
1702   return Phi != getLoopPhiForCounter(IncV, L, DT);
1703 }
1704 
1705 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1706 /// down to checking that all operands are constant and listing instructions
1707 /// that may hide undef.
1708 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1709                                unsigned Depth) {
1710   if (isa<Constant>(V))
1711     return !isa<UndefValue>(V);
1712 
1713   if (Depth >= 6)
1714     return false;
1715 
1716   // Conservatively handle non-constant non-instructions. For example, Arguments
1717   // may be undef.
1718   Instruction *I = dyn_cast<Instruction>(V);
1719   if (!I)
1720     return false;
1721 
1722   // Load and return values may be undef.
1723   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1724     return false;
1725 
1726   // Optimistically handle other instructions.
1727   for (Value *Op : I->operands()) {
1728     if (!Visited.insert(Op).second)
1729       continue;
1730     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1731       return false;
1732   }
1733   return true;
1734 }
1735 
1736 /// Return true if the given value is concrete. We must prove that undef can
1737 /// never reach it.
1738 ///
1739 /// TODO: If we decide that this is a good approach to checking for undef, we
1740 /// may factor it into a common location.
1741 static bool hasConcreteDef(Value *V) {
1742   SmallPtrSet<Value*, 8> Visited;
1743   Visited.insert(V);
1744   return hasConcreteDefImpl(V, Visited, 0);
1745 }
1746 
1747 /// Return true if this IV has any uses other than the (soon to be rewritten)
1748 /// loop exit test.
1749 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1750   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1751   Value *IncV = Phi->getIncomingValue(LatchIdx);
1752 
1753   for (User *U : Phi->users())
1754     if (U != Cond && U != IncV) return false;
1755 
1756   for (User *U : IncV->users())
1757     if (U != Cond && U != Phi) return false;
1758   return true;
1759 }
1760 
1761 /// Find an affine IV in canonical form.
1762 ///
1763 /// BECount may be an i8* pointer type. The pointer difference is already
1764 /// valid count without scaling the address stride, so it remains a pointer
1765 /// expression as far as SCEV is concerned.
1766 ///
1767 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1768 ///
1769 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1770 ///
1771 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1772 /// This is difficult in general for SCEV because of potential overflow. But we
1773 /// could at least handle constant BECounts.
1774 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1775                                 ScalarEvolution *SE, DominatorTree *DT) {
1776   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1777 
1778   Value *Cond =
1779     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1780 
1781   // Loop over all of the PHI nodes, looking for a simple counter.
1782   PHINode *BestPhi = nullptr;
1783   const SCEV *BestInit = nullptr;
1784   BasicBlock *LatchBlock = L->getLoopLatch();
1785   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1786   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1787 
1788   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1789     PHINode *Phi = cast<PHINode>(I);
1790     if (!SE->isSCEVable(Phi->getType()))
1791       continue;
1792 
1793     // Avoid comparing an integer IV against a pointer Limit.
1794     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1795       continue;
1796 
1797     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1798     if (!AR || AR->getLoop() != L || !AR->isAffine())
1799       continue;
1800 
1801     // AR may be a pointer type, while BECount is an integer type.
1802     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1803     // AR may not be a narrower type, or we may never exit.
1804     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1805     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
1806       continue;
1807 
1808     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1809     if (!Step || !Step->isOne())
1810       continue;
1811 
1812     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1813     Value *IncV = Phi->getIncomingValue(LatchIdx);
1814     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1815       continue;
1816 
1817     // Avoid reusing a potentially undef value to compute other values that may
1818     // have originally had a concrete definition.
1819     if (!hasConcreteDef(Phi)) {
1820       // We explicitly allow unknown phis as long as they are already used by
1821       // the loop test. In this case we assume that performing LFTR could not
1822       // increase the number of undef users.
1823       if (ICmpInst *Cond = getLoopTest(L)) {
1824         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1825             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1826           continue;
1827         }
1828       }
1829     }
1830     const SCEV *Init = AR->getStart();
1831 
1832     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1833       // Don't force a live loop counter if another IV can be used.
1834       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1835         continue;
1836 
1837       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1838       // also prefers integer to pointer IVs.
1839       if (BestInit->isZero() != Init->isZero()) {
1840         if (BestInit->isZero())
1841           continue;
1842       }
1843       // If two IVs both count from zero or both count from nonzero then the
1844       // narrower is likely a dead phi that has been widened. Use the wider phi
1845       // to allow the other to be eliminated.
1846       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1847         continue;
1848     }
1849     BestPhi = Phi;
1850     BestInit = Init;
1851   }
1852   return BestPhi;
1853 }
1854 
1855 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1856 /// the new loop test.
1857 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1858                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1859   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1860   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1861   const SCEV *IVInit = AR->getStart();
1862 
1863   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1864   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1865   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1866   // the existing GEPs whenever possible.
1867   if (IndVar->getType()->isPointerTy()
1868       && !IVCount->getType()->isPointerTy()) {
1869 
1870     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1871     // signed value. IVCount on the other hand represents the loop trip count,
1872     // which is an unsigned value. FindLoopCounter only allows induction
1873     // variables that have a positive unit stride of one. This means we don't
1874     // have to handle the case of negative offsets (yet) and just need to zero
1875     // extend IVCount.
1876     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1877     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1878 
1879     // Expand the code for the iteration count.
1880     assert(SE->isLoopInvariant(IVOffset, L) &&
1881            "Computed iteration count is not loop invariant!");
1882     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1883     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1884 
1885     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1886     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1887     // We could handle pointer IVs other than i8*, but we need to compensate for
1888     // gep index scaling. See canExpandBackedgeTakenCount comments.
1889     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1890              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1891            && "unit stride pointer IV must be i8*");
1892 
1893     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1894     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1895   }
1896   else {
1897     // In any other case, convert both IVInit and IVCount to integers before
1898     // comparing. This may result in SCEV expension of pointers, but in practice
1899     // SCEV will fold the pointer arithmetic away as such:
1900     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1901     //
1902     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1903     // for simple memset-style loops.
1904     //
1905     // IVInit integer and IVCount pointer would only occur if a canonical IV
1906     // were generated on top of case #2, which is not expected.
1907 
1908     const SCEV *IVLimit = nullptr;
1909     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1910     // For non-zero Start, compute IVCount here.
1911     if (AR->getStart()->isZero())
1912       IVLimit = IVCount;
1913     else {
1914       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1915       const SCEV *IVInit = AR->getStart();
1916 
1917       // For integer IVs, truncate the IV before computing IVInit + BECount.
1918       if (SE->getTypeSizeInBits(IVInit->getType())
1919           > SE->getTypeSizeInBits(IVCount->getType()))
1920         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1921 
1922       IVLimit = SE->getAddExpr(IVInit, IVCount);
1923     }
1924     // Expand the code for the iteration count.
1925     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1926     IRBuilder<> Builder(BI);
1927     assert(SE->isLoopInvariant(IVLimit, L) &&
1928            "Computed iteration count is not loop invariant!");
1929     // Ensure that we generate the same type as IndVar, or a smaller integer
1930     // type. In the presence of null pointer values, we have an integer type
1931     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1932     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1933       IndVar->getType() : IVCount->getType();
1934     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1935   }
1936 }
1937 
1938 /// This method rewrites the exit condition of the loop to be a canonical !=
1939 /// comparison against the incremented loop induction variable.  This pass is
1940 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1941 /// determine a loop-invariant trip count of the loop, which is actually a much
1942 /// broader range than just linear tests.
1943 Value *IndVarSimplify::
1944 linearFunctionTestReplace(Loop *L,
1945                           const SCEV *BackedgeTakenCount,
1946                           PHINode *IndVar,
1947                           SCEVExpander &Rewriter) {
1948   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1949 
1950   // Initialize CmpIndVar and IVCount to their preincremented values.
1951   Value *CmpIndVar = IndVar;
1952   const SCEV *IVCount = BackedgeTakenCount;
1953 
1954   // If the exiting block is the same as the backedge block, we prefer to
1955   // compare against the post-incremented value, otherwise we must compare
1956   // against the preincremented value.
1957   if (L->getExitingBlock() == L->getLoopLatch()) {
1958     // Add one to the "backedge-taken" count to get the trip count.
1959     // This addition may overflow, which is valid as long as the comparison is
1960     // truncated to BackedgeTakenCount->getType().
1961     IVCount = SE->getAddExpr(BackedgeTakenCount,
1962                              SE->getOne(BackedgeTakenCount->getType()));
1963     // The BackedgeTaken expression contains the number of times that the
1964     // backedge branches to the loop header.  This is one less than the
1965     // number of times the loop executes, so use the incremented indvar.
1966     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1967   }
1968 
1969   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1970   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1971          && "genLoopLimit missed a cast");
1972 
1973   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1974   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1975   ICmpInst::Predicate P;
1976   if (L->contains(BI->getSuccessor(0)))
1977     P = ICmpInst::ICMP_NE;
1978   else
1979     P = ICmpInst::ICMP_EQ;
1980 
1981   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1982                << "      LHS:" << *CmpIndVar << '\n'
1983                << "       op:\t"
1984                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1985                << "      RHS:\t" << *ExitCnt << "\n"
1986                << "  IVCount:\t" << *IVCount << "\n");
1987 
1988   IRBuilder<> Builder(BI);
1989 
1990   // LFTR can ignore IV overflow and truncate to the width of
1991   // BECount. This avoids materializing the add(zext(add)) expression.
1992   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1993   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1994   if (CmpIndVarSize > ExitCntSize) {
1995     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1996     const SCEV *ARStart = AR->getStart();
1997     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1998     // For constant IVCount, avoid truncation.
1999     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2000       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2001       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2002       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2003       // above such that IVCount is now zero.
2004       if (IVCount != BackedgeTakenCount && Count == 0) {
2005         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2006         ++Count;
2007       }
2008       else
2009         Count = Count.zext(CmpIndVarSize);
2010       APInt NewLimit;
2011       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2012         NewLimit = Start - Count;
2013       else
2014         NewLimit = Start + Count;
2015       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2016 
2017       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2018     } else {
2019       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2020                                       "lftr.wideiv");
2021     }
2022   }
2023   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2024   Value *OrigCond = BI->getCondition();
2025   // It's tempting to use replaceAllUsesWith here to fully replace the old
2026   // comparison, but that's not immediately safe, since users of the old
2027   // comparison may not be dominated by the new comparison. Instead, just
2028   // update the branch to use the new comparison; in the common case this
2029   // will make old comparison dead.
2030   BI->setCondition(Cond);
2031   DeadInsts.push_back(OrigCond);
2032 
2033   ++NumLFTR;
2034   Changed = true;
2035   return Cond;
2036 }
2037 
2038 //===----------------------------------------------------------------------===//
2039 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2040 //===----------------------------------------------------------------------===//
2041 
2042 /// If there's a single exit block, sink any loop-invariant values that
2043 /// were defined in the preheader but not used inside the loop into the
2044 /// exit block to reduce register pressure in the loop.
2045 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2046   BasicBlock *ExitBlock = L->getExitBlock();
2047   if (!ExitBlock) return;
2048 
2049   BasicBlock *Preheader = L->getLoopPreheader();
2050   if (!Preheader) return;
2051 
2052   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2053   BasicBlock::iterator I(Preheader->getTerminator());
2054   while (I != Preheader->begin()) {
2055     --I;
2056     // New instructions were inserted at the end of the preheader.
2057     if (isa<PHINode>(I))
2058       break;
2059 
2060     // Don't move instructions which might have side effects, since the side
2061     // effects need to complete before instructions inside the loop.  Also don't
2062     // move instructions which might read memory, since the loop may modify
2063     // memory. Note that it's okay if the instruction might have undefined
2064     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2065     // block.
2066     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2067       continue;
2068 
2069     // Skip debug info intrinsics.
2070     if (isa<DbgInfoIntrinsic>(I))
2071       continue;
2072 
2073     // Skip eh pad instructions.
2074     if (I->isEHPad())
2075       continue;
2076 
2077     // Don't sink alloca: we never want to sink static alloca's out of the
2078     // entry block, and correctly sinking dynamic alloca's requires
2079     // checks for stacksave/stackrestore intrinsics.
2080     // FIXME: Refactor this check somehow?
2081     if (isa<AllocaInst>(I))
2082       continue;
2083 
2084     // Determine if there is a use in or before the loop (direct or
2085     // otherwise).
2086     bool UsedInLoop = false;
2087     for (Use &U : I->uses()) {
2088       Instruction *User = cast<Instruction>(U.getUser());
2089       BasicBlock *UseBB = User->getParent();
2090       if (PHINode *P = dyn_cast<PHINode>(User)) {
2091         unsigned i =
2092           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2093         UseBB = P->getIncomingBlock(i);
2094       }
2095       if (UseBB == Preheader || L->contains(UseBB)) {
2096         UsedInLoop = true;
2097         break;
2098       }
2099     }
2100 
2101     // If there is, the def must remain in the preheader.
2102     if (UsedInLoop)
2103       continue;
2104 
2105     // Otherwise, sink it to the exit block.
2106     Instruction *ToMove = &*I;
2107     bool Done = false;
2108 
2109     if (I != Preheader->begin()) {
2110       // Skip debug info intrinsics.
2111       do {
2112         --I;
2113       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2114 
2115       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2116         Done = true;
2117     } else {
2118       Done = true;
2119     }
2120 
2121     ToMove->moveBefore(InsertPt);
2122     if (Done) break;
2123     InsertPt = ToMove;
2124   }
2125 }
2126 
2127 //===----------------------------------------------------------------------===//
2128 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2129 //===----------------------------------------------------------------------===//
2130 
2131 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2132   if (skipOptnoneFunction(L))
2133     return false;
2134 
2135   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2136   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2137   //    canonicalization can be a pessimization without LSR to "clean up"
2138   //    afterwards.
2139   //  - We depend on having a preheader; in particular,
2140   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2141   //    and we're in trouble if we can't find the induction variable even when
2142   //    we've manually inserted one.
2143   if (!L->isLoopSimplifyForm())
2144     return false;
2145 
2146   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2147   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2148   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2149   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2150   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2151   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2152   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2153   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2154 
2155   DeadInsts.clear();
2156   Changed = false;
2157 
2158   // If there are any floating-point recurrences, attempt to
2159   // transform them to use integer recurrences.
2160   rewriteNonIntegerIVs(L);
2161 
2162   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2163 
2164   // Create a rewriter object which we'll use to transform the code with.
2165   SCEVExpander Rewriter(*SE, DL, "indvars");
2166 #ifndef NDEBUG
2167   Rewriter.setDebugType(DEBUG_TYPE);
2168 #endif
2169 
2170   // Eliminate redundant IV users.
2171   //
2172   // Simplification works best when run before other consumers of SCEV. We
2173   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2174   // other expressions involving loop IVs have been evaluated. This helps SCEV
2175   // set no-wrap flags before normalizing sign/zero extension.
2176   Rewriter.disableCanonicalMode();
2177   simplifyAndExtend(L, Rewriter, LI);
2178 
2179   // Check to see if this loop has a computable loop-invariant execution count.
2180   // If so, this means that we can compute the final value of any expressions
2181   // that are recurrent in the loop, and substitute the exit values from the
2182   // loop into any instructions outside of the loop that use the final values of
2183   // the current expressions.
2184   //
2185   if (ReplaceExitValue != NeverRepl &&
2186       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2187     rewriteLoopExitValues(L, Rewriter);
2188 
2189   // Eliminate redundant IV cycles.
2190   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2191 
2192   // If we have a trip count expression, rewrite the loop's exit condition
2193   // using it.  We can currently only handle loops with a single exit.
2194   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2195     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2196     if (IndVar) {
2197       // Check preconditions for proper SCEVExpander operation. SCEV does not
2198       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2199       // pass that uses the SCEVExpander must do it. This does not work well for
2200       // loop passes because SCEVExpander makes assumptions about all loops,
2201       // while LoopPassManager only forces the current loop to be simplified.
2202       //
2203       // FIXME: SCEV expansion has no way to bail out, so the caller must
2204       // explicitly check any assumptions made by SCEV. Brittle.
2205       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2206       if (!AR || AR->getLoop()->getLoopPreheader())
2207         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2208                                         Rewriter);
2209     }
2210   }
2211   // Clear the rewriter cache, because values that are in the rewriter's cache
2212   // can be deleted in the loop below, causing the AssertingVH in the cache to
2213   // trigger.
2214   Rewriter.clear();
2215 
2216   // Now that we're done iterating through lists, clean up any instructions
2217   // which are now dead.
2218   while (!DeadInsts.empty())
2219     if (Instruction *Inst =
2220             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2221       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2222 
2223   // The Rewriter may not be used from this point on.
2224 
2225   // Loop-invariant instructions in the preheader that aren't used in the
2226   // loop may be sunk below the loop to reduce register pressure.
2227   sinkUnusedInvariants(L);
2228 
2229   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2230   // trip count and therefore can further simplify exit values in addition to
2231   // rewriteLoopExitValues.
2232   rewriteFirstIterationLoopExitValues(L);
2233 
2234   // Clean up dead instructions.
2235   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2236 
2237   // Check a post-condition.
2238   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2239 
2240   // Verify that LFTR, and any other change have not interfered with SCEV's
2241   // ability to compute trip count.
2242 #ifndef NDEBUG
2243   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2244     SE->forgetLoop(L);
2245     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2246     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2247         SE->getTypeSizeInBits(NewBECount->getType()))
2248       NewBECount = SE->getTruncateOrNoop(NewBECount,
2249                                          BackedgeTakenCount->getType());
2250     else
2251       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2252                                                  NewBECount->getType());
2253     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2254   }
2255 #endif
2256 
2257   return Changed;
2258 }
2259