1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "indvars" 58 59 STATISTIC(NumWidened , "Number of indvars widened"); 60 STATISTIC(NumReplaced , "Number of exit values replaced"); 61 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 62 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 63 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 73 cl::desc("Reduce live induction variables.")); 74 75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 76 77 static cl::opt<ReplaceExitVal> ReplaceExitValue( 78 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 79 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 80 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 81 clEnumValN(OnlyCheapRepl, "cheap", 82 "only replace exit value when the cost is cheap"), 83 clEnumValN(AlwaysRepl, "always", 84 "always replace exit value whenever possible"), 85 clEnumValEnd)); 86 87 namespace { 88 struct RewritePhi; 89 90 class IndVarSimplify : public LoopPass { 91 LoopInfo *LI; 92 ScalarEvolution *SE; 93 DominatorTree *DT; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed; 99 public: 100 101 static char ID; // Pass identification, replacement for typeid 102 IndVarSimplify() 103 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 104 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addRequired<LoopInfoWrapperPass>(); 112 AU.addRequired<ScalarEvolutionWrapperPass>(); 113 AU.addRequiredID(LoopSimplifyID); 114 AU.addRequiredID(LCSSAID); 115 AU.addPreserved<GlobalsAAWrapperPass>(); 116 AU.addPreserved<ScalarEvolutionWrapperPass>(); 117 AU.addPreservedID(LoopSimplifyID); 118 AU.addPreservedID(LCSSAID); 119 AU.setPreservesCFG(); 120 } 121 122 private: 123 void releaseMemory() override { 124 DeadInsts.clear(); 125 } 126 127 bool isValidRewrite(Value *FromVal, Value *ToVal); 128 129 void handleFloatingPointIV(Loop *L, PHINode *PH); 130 void rewriteNonIntegerIVs(Loop *L); 131 132 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 133 134 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 135 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 136 void rewriteFirstIterationLoopExitValues(Loop *L); 137 138 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 139 PHINode *IndVar, SCEVExpander &Rewriter); 140 141 void sinkUnusedInvariants(Loop *L); 142 143 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 144 Instruction *InsertPt, Type *Ty); 145 }; 146 } 147 148 char IndVarSimplify::ID = 0; 149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 150 "Induction Variable Simplification", false, false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 155 INITIALIZE_PASS_DEPENDENCY(LCSSA) 156 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 157 "Induction Variable Simplification", false, false) 158 159 Pass *llvm::createIndVarSimplifyPass() { 160 return new IndVarSimplify(); 161 } 162 163 /// Return true if the SCEV expansion generated by the rewriter can replace the 164 /// original value. SCEV guarantees that it produces the same value, but the way 165 /// it is produced may be illegal IR. Ideally, this function will only be 166 /// called for verification. 167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 168 // If an SCEV expression subsumed multiple pointers, its expansion could 169 // reassociate the GEP changing the base pointer. This is illegal because the 170 // final address produced by a GEP chain must be inbounds relative to its 171 // underlying object. Otherwise basic alias analysis, among other things, 172 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 173 // producing an expression involving multiple pointers. Until then, we must 174 // bail out here. 175 // 176 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 177 // because it understands lcssa phis while SCEV does not. 178 Value *FromPtr = FromVal; 179 Value *ToPtr = ToVal; 180 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 181 FromPtr = GEP->getPointerOperand(); 182 } 183 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 184 ToPtr = GEP->getPointerOperand(); 185 } 186 if (FromPtr != FromVal || ToPtr != ToVal) { 187 // Quickly check the common case 188 if (FromPtr == ToPtr) 189 return true; 190 191 // SCEV may have rewritten an expression that produces the GEP's pointer 192 // operand. That's ok as long as the pointer operand has the same base 193 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 194 // base of a recurrence. This handles the case in which SCEV expansion 195 // converts a pointer type recurrence into a nonrecurrent pointer base 196 // indexed by an integer recurrence. 197 198 // If the GEP base pointer is a vector of pointers, abort. 199 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 200 return false; 201 202 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 203 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 204 if (FromBase == ToBase) 205 return true; 206 207 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 208 << *FromBase << " != " << *ToBase << "\n"); 209 210 return false; 211 } 212 return true; 213 } 214 215 /// Determine the insertion point for this user. By default, insert immediately 216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 218 /// common dominator for the incoming blocks. 219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 220 DominatorTree *DT, LoopInfo *LI) { 221 PHINode *PHI = dyn_cast<PHINode>(User); 222 if (!PHI) 223 return User; 224 225 Instruction *InsertPt = nullptr; 226 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 227 if (PHI->getIncomingValue(i) != Def) 228 continue; 229 230 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 231 if (!InsertPt) { 232 InsertPt = InsertBB->getTerminator(); 233 continue; 234 } 235 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 236 InsertPt = InsertBB->getTerminator(); 237 } 238 assert(InsertPt && "Missing phi operand"); 239 240 auto *DefI = dyn_cast<Instruction>(Def); 241 if (!DefI) 242 return InsertPt; 243 244 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 245 246 auto *L = LI->getLoopFor(DefI->getParent()); 247 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 248 249 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 250 if (LI->getLoopFor(DTN->getBlock()) == L) 251 return DTN->getBlock()->getTerminator(); 252 253 llvm_unreachable("DefI dominates InsertPt!"); 254 } 255 256 //===----------------------------------------------------------------------===// 257 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 258 //===----------------------------------------------------------------------===// 259 260 /// Convert APF to an integer, if possible. 261 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 262 bool isExact = false; 263 // See if we can convert this to an int64_t 264 uint64_t UIntVal; 265 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 266 &isExact) != APFloat::opOK || !isExact) 267 return false; 268 IntVal = UIntVal; 269 return true; 270 } 271 272 /// If the loop has floating induction variable then insert corresponding 273 /// integer induction variable if possible. 274 /// For example, 275 /// for(double i = 0; i < 10000; ++i) 276 /// bar(i) 277 /// is converted into 278 /// for(int i = 0; i < 10000; ++i) 279 /// bar((double)i); 280 /// 281 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 282 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 283 unsigned BackEdge = IncomingEdge^1; 284 285 // Check incoming value. 286 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 287 288 int64_t InitValue; 289 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 290 return; 291 292 // Check IV increment. Reject this PN if increment operation is not 293 // an add or increment value can not be represented by an integer. 294 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 295 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 296 297 // If this is not an add of the PHI with a constantfp, or if the constant fp 298 // is not an integer, bail out. 299 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 300 int64_t IncValue; 301 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 302 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 303 return; 304 305 // Check Incr uses. One user is PN and the other user is an exit condition 306 // used by the conditional terminator. 307 Value::user_iterator IncrUse = Incr->user_begin(); 308 Instruction *U1 = cast<Instruction>(*IncrUse++); 309 if (IncrUse == Incr->user_end()) return; 310 Instruction *U2 = cast<Instruction>(*IncrUse++); 311 if (IncrUse != Incr->user_end()) return; 312 313 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 314 // only used by a branch, we can't transform it. 315 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 316 if (!Compare) 317 Compare = dyn_cast<FCmpInst>(U2); 318 if (!Compare || !Compare->hasOneUse() || 319 !isa<BranchInst>(Compare->user_back())) 320 return; 321 322 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 323 324 // We need to verify that the branch actually controls the iteration count 325 // of the loop. If not, the new IV can overflow and no one will notice. 326 // The branch block must be in the loop and one of the successors must be out 327 // of the loop. 328 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 329 if (!L->contains(TheBr->getParent()) || 330 (L->contains(TheBr->getSuccessor(0)) && 331 L->contains(TheBr->getSuccessor(1)))) 332 return; 333 334 335 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 336 // transform it. 337 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 338 int64_t ExitValue; 339 if (ExitValueVal == nullptr || 340 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 341 return; 342 343 // Find new predicate for integer comparison. 344 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 345 switch (Compare->getPredicate()) { 346 default: return; // Unknown comparison. 347 case CmpInst::FCMP_OEQ: 348 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 349 case CmpInst::FCMP_ONE: 350 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 351 case CmpInst::FCMP_OGT: 352 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 353 case CmpInst::FCMP_OGE: 354 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 355 case CmpInst::FCMP_OLT: 356 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 357 case CmpInst::FCMP_OLE: 358 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 359 } 360 361 // We convert the floating point induction variable to a signed i32 value if 362 // we can. This is only safe if the comparison will not overflow in a way 363 // that won't be trapped by the integer equivalent operations. Check for this 364 // now. 365 // TODO: We could use i64 if it is native and the range requires it. 366 367 // The start/stride/exit values must all fit in signed i32. 368 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 369 return; 370 371 // If not actually striding (add x, 0.0), avoid touching the code. 372 if (IncValue == 0) 373 return; 374 375 // Positive and negative strides have different safety conditions. 376 if (IncValue > 0) { 377 // If we have a positive stride, we require the init to be less than the 378 // exit value. 379 if (InitValue >= ExitValue) 380 return; 381 382 uint32_t Range = uint32_t(ExitValue-InitValue); 383 // Check for infinite loop, either: 384 // while (i <= Exit) or until (i > Exit) 385 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 386 if (++Range == 0) return; // Range overflows. 387 } 388 389 unsigned Leftover = Range % uint32_t(IncValue); 390 391 // If this is an equality comparison, we require that the strided value 392 // exactly land on the exit value, otherwise the IV condition will wrap 393 // around and do things the fp IV wouldn't. 394 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 395 Leftover != 0) 396 return; 397 398 // If the stride would wrap around the i32 before exiting, we can't 399 // transform the IV. 400 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 401 return; 402 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakVH to observe whether this happens. 449 WeakVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 Changed = true; 475 } 476 477 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 // 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakVH, 8> PHIs; 485 for (BasicBlock::iterator I = Header->begin(); 486 PHINode *PN = dyn_cast<PHINode>(I); ++I) 487 PHIs.push_back(PN); 488 489 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 490 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 491 handleFloatingPointIV(L, PN); 492 493 // If the loop previously had floating-point IV, ScalarEvolution 494 // may not have been able to compute a trip count. Now that we've done some 495 // re-writing, the trip count may be computable. 496 if (Changed) 497 SE->forgetLoop(L); 498 } 499 500 namespace { 501 // Collect information about PHI nodes which can be transformed in 502 // rewriteLoopExitValues. 503 struct RewritePhi { 504 PHINode *PN; 505 unsigned Ith; // Ith incoming value. 506 Value *Val; // Exit value after expansion. 507 bool HighCost; // High Cost when expansion. 508 509 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 510 : PN(P), Ith(I), Val(V), HighCost(H) {} 511 }; 512 } 513 514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 515 Loop *L, Instruction *InsertPt, 516 Type *ResultTy) { 517 // Before expanding S into an expensive LLVM expression, see if we can use an 518 // already existing value as the expansion for S. 519 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 520 if (ExistingValue->getType() == ResultTy) 521 return ExistingValue; 522 523 // We didn't find anything, fall back to using SCEVExpander. 524 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // rewriteLoopExitValues - Optimize IV users outside the loop. 529 // As a side effect, reduces the amount of IV processing within the loop. 530 //===----------------------------------------------------------------------===// 531 532 /// Check to see if this loop has a computable loop-invariant execution count. 533 /// If so, this means that we can compute the final value of any expressions 534 /// that are recurrent in the loop, and substitute the exit values from the loop 535 /// into any instructions outside of the loop that use the final values of the 536 /// current expressions. 537 /// 538 /// This is mostly redundant with the regular IndVarSimplify activities that 539 /// happen later, except that it's more powerful in some cases, because it's 540 /// able to brute-force evaluate arbitrary instructions as long as they have 541 /// constant operands at the beginning of the loop. 542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 543 // Check a pre-condition. 544 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 545 546 SmallVector<BasicBlock*, 8> ExitBlocks; 547 L->getUniqueExitBlocks(ExitBlocks); 548 549 SmallVector<RewritePhi, 8> RewritePhiSet; 550 // Find all values that are computed inside the loop, but used outside of it. 551 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 552 // the exit blocks of the loop to find them. 553 for (BasicBlock *ExitBB : ExitBlocks) { 554 // If there are no PHI nodes in this exit block, then no values defined 555 // inside the loop are used on this path, skip it. 556 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 557 if (!PN) continue; 558 559 unsigned NumPreds = PN->getNumIncomingValues(); 560 561 // Iterate over all of the PHI nodes. 562 BasicBlock::iterator BBI = ExitBB->begin(); 563 while ((PN = dyn_cast<PHINode>(BBI++))) { 564 if (PN->use_empty()) 565 continue; // dead use, don't replace it 566 567 if (!SE->isSCEVable(PN->getType())) 568 continue; 569 570 // It's necessary to tell ScalarEvolution about this explicitly so that 571 // it can walk the def-use list and forget all SCEVs, as it may not be 572 // watching the PHI itself. Once the new exit value is in place, there 573 // may not be a def-use connection between the loop and every instruction 574 // which got a SCEVAddRecExpr for that loop. 575 SE->forgetValue(PN); 576 577 // Iterate over all of the values in all the PHI nodes. 578 for (unsigned i = 0; i != NumPreds; ++i) { 579 // If the value being merged in is not integer or is not defined 580 // in the loop, skip it. 581 Value *InVal = PN->getIncomingValue(i); 582 if (!isa<Instruction>(InVal)) 583 continue; 584 585 // If this pred is for a subloop, not L itself, skip it. 586 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 587 continue; // The Block is in a subloop, skip it. 588 589 // Check that InVal is defined in the loop. 590 Instruction *Inst = cast<Instruction>(InVal); 591 if (!L->contains(Inst)) 592 continue; 593 594 // Okay, this instruction has a user outside of the current loop 595 // and varies predictably *inside* the loop. Evaluate the value it 596 // contains when the loop exits, if possible. 597 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 598 if (!SE->isLoopInvariant(ExitValue, L) || 599 !isSafeToExpand(ExitValue, *SE)) 600 continue; 601 602 // Computing the value outside of the loop brings no benefit if : 603 // - it is definitely used inside the loop in a way which can not be 604 // optimized away. 605 // - no use outside of the loop can take advantage of hoisting the 606 // computation out of the loop 607 if (ExitValue->getSCEVType()>=scMulExpr) { 608 unsigned NumHardInternalUses = 0; 609 unsigned NumSoftExternalUses = 0; 610 unsigned NumUses = 0; 611 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 612 IB != IE && NumUses <= 6; ++IB) { 613 Instruction *UseInstr = cast<Instruction>(*IB); 614 unsigned Opc = UseInstr->getOpcode(); 615 NumUses++; 616 if (L->contains(UseInstr)) { 617 if (Opc == Instruction::Call || Opc == Instruction::Ret) 618 NumHardInternalUses++; 619 } else { 620 if (Opc == Instruction::PHI) { 621 // Do not count the Phi as a use. LCSSA may have inserted 622 // plenty of trivial ones. 623 NumUses--; 624 for (auto PB = UseInstr->user_begin(), 625 PE = UseInstr->user_end(); 626 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 627 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 628 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 629 NumSoftExternalUses++; 630 } 631 continue; 632 } 633 if (Opc != Instruction::Call && Opc != Instruction::Ret) 634 NumSoftExternalUses++; 635 } 636 } 637 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 638 continue; 639 } 640 641 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 642 Value *ExitVal = 643 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 644 645 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 646 << " LoopVal = " << *Inst << "\n"); 647 648 if (!isValidRewrite(Inst, ExitVal)) { 649 DeadInsts.push_back(ExitVal); 650 continue; 651 } 652 653 // Collect all the candidate PHINodes to be rewritten. 654 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 655 } 656 } 657 } 658 659 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 660 661 // Transformation. 662 for (const RewritePhi &Phi : RewritePhiSet) { 663 PHINode *PN = Phi.PN; 664 Value *ExitVal = Phi.Val; 665 666 // Only do the rewrite when the ExitValue can be expanded cheaply. 667 // If LoopCanBeDel is true, rewrite exit value aggressively. 668 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 669 DeadInsts.push_back(ExitVal); 670 continue; 671 } 672 673 Changed = true; 674 ++NumReplaced; 675 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 676 PN->setIncomingValue(Phi.Ith, ExitVal); 677 678 // If this instruction is dead now, delete it. Don't do it now to avoid 679 // invalidating iterators. 680 if (isInstructionTriviallyDead(Inst, TLI)) 681 DeadInsts.push_back(Inst); 682 683 // Replace PN with ExitVal if that is legal and does not break LCSSA. 684 if (PN->getNumIncomingValues() == 1 && 685 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 686 PN->replaceAllUsesWith(ExitVal); 687 PN->eraseFromParent(); 688 } 689 } 690 691 // The insertion point instruction may have been deleted; clear it out 692 // so that the rewriter doesn't trip over it later. 693 Rewriter.clearInsertPoint(); 694 } 695 696 //===---------------------------------------------------------------------===// 697 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 698 // they will exit at the first iteration. 699 //===---------------------------------------------------------------------===// 700 701 /// Check to see if this loop has loop invariant conditions which lead to loop 702 /// exits. If so, we know that if the exit path is taken, it is at the first 703 /// loop iteration. This lets us predict exit values of PHI nodes that live in 704 /// loop header. 705 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 706 // Verify the input to the pass is already in LCSSA form. 707 assert(L->isLCSSAForm(*DT)); 708 709 SmallVector<BasicBlock *, 8> ExitBlocks; 710 L->getUniqueExitBlocks(ExitBlocks); 711 auto *LoopHeader = L->getHeader(); 712 assert(LoopHeader && "Invalid loop"); 713 714 for (auto *ExitBB : ExitBlocks) { 715 BasicBlock::iterator BBI = ExitBB->begin(); 716 // If there are no more PHI nodes in this exit block, then no more 717 // values defined inside the loop are used on this path. 718 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 719 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 720 IncomingValIdx != E; ++IncomingValIdx) { 721 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 722 723 // We currently only support loop exits from loop header. If the 724 // incoming block is not loop header, we need to recursively check 725 // all conditions starting from loop header are loop invariants. 726 // Additional support might be added in the future. 727 if (IncomingBB != LoopHeader) 728 continue; 729 730 // Get condition that leads to the exit path. 731 auto *TermInst = IncomingBB->getTerminator(); 732 733 Value *Cond = nullptr; 734 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 735 // Must be a conditional branch, otherwise the block 736 // should not be in the loop. 737 Cond = BI->getCondition(); 738 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 739 Cond = SI->getCondition(); 740 else 741 continue; 742 743 if (!L->isLoopInvariant(Cond)) 744 continue; 745 746 auto *ExitVal = 747 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 748 749 // Only deal with PHIs. 750 if (!ExitVal) 751 continue; 752 753 // If ExitVal is a PHI on the loop header, then we know its 754 // value along this exit because the exit can only be taken 755 // on the first iteration. 756 auto *LoopPreheader = L->getLoopPreheader(); 757 assert(LoopPreheader && "Invalid loop"); 758 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 759 if (PreheaderIdx != -1) { 760 assert(ExitVal->getParent() == LoopHeader && 761 "ExitVal must be in loop header"); 762 PN->setIncomingValue(IncomingValIdx, 763 ExitVal->getIncomingValue(PreheaderIdx)); 764 } 765 } 766 } 767 } 768 } 769 770 /// Check whether it is possible to delete the loop after rewriting exit 771 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 772 /// aggressively. 773 bool IndVarSimplify::canLoopBeDeleted( 774 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 775 776 BasicBlock *Preheader = L->getLoopPreheader(); 777 // If there is no preheader, the loop will not be deleted. 778 if (!Preheader) 779 return false; 780 781 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 782 // We obviate multiple ExitingBlocks case for simplicity. 783 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 784 // after exit value rewriting, we can enhance the logic here. 785 SmallVector<BasicBlock *, 4> ExitingBlocks; 786 L->getExitingBlocks(ExitingBlocks); 787 SmallVector<BasicBlock *, 8> ExitBlocks; 788 L->getUniqueExitBlocks(ExitBlocks); 789 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 790 return false; 791 792 BasicBlock *ExitBlock = ExitBlocks[0]; 793 BasicBlock::iterator BI = ExitBlock->begin(); 794 while (PHINode *P = dyn_cast<PHINode>(BI)) { 795 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 796 797 // If the Incoming value of P is found in RewritePhiSet, we know it 798 // could be rewritten to use a loop invariant value in transformation 799 // phase later. Skip it in the loop invariant check below. 800 bool found = false; 801 for (const RewritePhi &Phi : RewritePhiSet) { 802 unsigned i = Phi.Ith; 803 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 804 found = true; 805 break; 806 } 807 } 808 809 Instruction *I; 810 if (!found && (I = dyn_cast<Instruction>(Incoming))) 811 if (!L->hasLoopInvariantOperands(I)) 812 return false; 813 814 ++BI; 815 } 816 817 for (auto *BB : L->blocks()) 818 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 819 return false; 820 821 return true; 822 } 823 824 //===----------------------------------------------------------------------===// 825 // IV Widening - Extend the width of an IV to cover its widest uses. 826 //===----------------------------------------------------------------------===// 827 828 namespace { 829 // Collect information about induction variables that are used by sign/zero 830 // extend operations. This information is recorded by CollectExtend and provides 831 // the input to WidenIV. 832 struct WideIVInfo { 833 PHINode *NarrowIV = nullptr; 834 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 835 bool IsSigned = false; // Was a sext user seen before a zext? 836 }; 837 } 838 839 /// Update information about the induction variable that is extended by this 840 /// sign or zero extend operation. This is used to determine the final width of 841 /// the IV before actually widening it. 842 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 843 const TargetTransformInfo *TTI) { 844 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 845 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 846 return; 847 848 Type *Ty = Cast->getType(); 849 uint64_t Width = SE->getTypeSizeInBits(Ty); 850 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 851 return; 852 853 // Cast is either an sext or zext up to this point. 854 // We should not widen an indvar if arithmetics on the wider indvar are more 855 // expensive than those on the narrower indvar. We check only the cost of ADD 856 // because at least an ADD is required to increment the induction variable. We 857 // could compute more comprehensively the cost of all instructions on the 858 // induction variable when necessary. 859 if (TTI && 860 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 861 TTI->getArithmeticInstrCost(Instruction::Add, 862 Cast->getOperand(0)->getType())) { 863 return; 864 } 865 866 if (!WI.WidestNativeType) { 867 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 868 WI.IsSigned = IsSigned; 869 return; 870 } 871 872 // We extend the IV to satisfy the sign of its first user, arbitrarily. 873 if (WI.IsSigned != IsSigned) 874 return; 875 876 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 877 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 878 } 879 880 namespace { 881 882 /// Record a link in the Narrow IV def-use chain along with the WideIV that 883 /// computes the same value as the Narrow IV def. This avoids caching Use* 884 /// pointers. 885 struct NarrowIVDefUse { 886 Instruction *NarrowDef = nullptr; 887 Instruction *NarrowUse = nullptr; 888 Instruction *WideDef = nullptr; 889 890 // True if the narrow def is never negative. Tracking this information lets 891 // us use a sign extension instead of a zero extension or vice versa, when 892 // profitable and legal. 893 bool NeverNegative = false; 894 895 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 896 bool NeverNegative) 897 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 898 NeverNegative(NeverNegative) {} 899 }; 900 901 /// The goal of this transform is to remove sign and zero extends without 902 /// creating any new induction variables. To do this, it creates a new phi of 903 /// the wider type and redirects all users, either removing extends or inserting 904 /// truncs whenever we stop propagating the type. 905 /// 906 class WidenIV { 907 // Parameters 908 PHINode *OrigPhi; 909 Type *WideType; 910 bool IsSigned; 911 912 // Context 913 LoopInfo *LI; 914 Loop *L; 915 ScalarEvolution *SE; 916 DominatorTree *DT; 917 918 // Result 919 PHINode *WidePhi; 920 Instruction *WideInc; 921 const SCEV *WideIncExpr; 922 SmallVectorImpl<WeakVH> &DeadInsts; 923 924 SmallPtrSet<Instruction*,16> Widened; 925 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 926 927 public: 928 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 929 ScalarEvolution *SEv, DominatorTree *DTree, 930 SmallVectorImpl<WeakVH> &DI) : 931 OrigPhi(WI.NarrowIV), 932 WideType(WI.WidestNativeType), 933 IsSigned(WI.IsSigned), 934 LI(LInfo), 935 L(LI->getLoopFor(OrigPhi->getParent())), 936 SE(SEv), 937 DT(DTree), 938 WidePhi(nullptr), 939 WideInc(nullptr), 940 WideIncExpr(nullptr), 941 DeadInsts(DI) { 942 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 943 } 944 945 PHINode *createWideIV(SCEVExpander &Rewriter); 946 947 protected: 948 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 949 Instruction *Use); 950 951 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 952 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 953 const SCEVAddRecExpr *WideAR); 954 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 955 956 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 957 958 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 959 960 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 961 unsigned OpCode) const; 962 963 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 964 965 bool widenLoopCompare(NarrowIVDefUse DU); 966 967 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 968 }; 969 } // anonymous namespace 970 971 /// Perform a quick domtree based check for loop invariance assuming that V is 972 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 973 /// purpose. 974 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 975 Instruction *Inst = dyn_cast<Instruction>(V); 976 if (!Inst) 977 return true; 978 979 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 980 } 981 982 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 983 bool IsSigned, Instruction *Use) { 984 // Set the debug location and conservative insertion point. 985 IRBuilder<> Builder(Use); 986 // Hoist the insertion point into loop preheaders as far as possible. 987 for (const Loop *L = LI->getLoopFor(Use->getParent()); 988 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 989 L = L->getParentLoop()) 990 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 991 992 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 993 Builder.CreateZExt(NarrowOper, WideType); 994 } 995 996 /// Instantiate a wide operation to replace a narrow operation. This only needs 997 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 998 /// 0 for any operation we decide not to clone. 999 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1000 const SCEVAddRecExpr *WideAR) { 1001 unsigned Opcode = DU.NarrowUse->getOpcode(); 1002 switch (Opcode) { 1003 default: 1004 return nullptr; 1005 case Instruction::Add: 1006 case Instruction::Mul: 1007 case Instruction::UDiv: 1008 case Instruction::Sub: 1009 return cloneArithmeticIVUser(DU, WideAR); 1010 1011 case Instruction::And: 1012 case Instruction::Or: 1013 case Instruction::Xor: 1014 case Instruction::Shl: 1015 case Instruction::LShr: 1016 case Instruction::AShr: 1017 return cloneBitwiseIVUser(DU); 1018 } 1019 } 1020 1021 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1022 Instruction *NarrowUse = DU.NarrowUse; 1023 Instruction *NarrowDef = DU.NarrowDef; 1024 Instruction *WideDef = DU.WideDef; 1025 1026 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1027 1028 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1029 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1030 // invariant and will be folded or hoisted. If it actually comes from a 1031 // widened IV, it should be removed during a future call to widenIVUse. 1032 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1033 ? WideDef 1034 : createExtendInst(NarrowUse->getOperand(0), WideType, 1035 IsSigned, NarrowUse); 1036 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1037 ? WideDef 1038 : createExtendInst(NarrowUse->getOperand(1), WideType, 1039 IsSigned, NarrowUse); 1040 1041 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1042 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1043 NarrowBO->getName()); 1044 IRBuilder<> Builder(NarrowUse); 1045 Builder.Insert(WideBO); 1046 WideBO->copyIRFlags(NarrowBO); 1047 return WideBO; 1048 } 1049 1050 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1051 const SCEVAddRecExpr *WideAR) { 1052 Instruction *NarrowUse = DU.NarrowUse; 1053 Instruction *NarrowDef = DU.NarrowDef; 1054 Instruction *WideDef = DU.WideDef; 1055 1056 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1057 1058 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1059 1060 // We're trying to find X such that 1061 // 1062 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1063 // 1064 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1065 // and check using SCEV if any of them are correct. 1066 1067 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1068 // correct solution to X. 1069 auto GuessNonIVOperand = [&](bool SignExt) { 1070 const SCEV *WideLHS; 1071 const SCEV *WideRHS; 1072 1073 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1074 if (SignExt) 1075 return SE->getSignExtendExpr(S, Ty); 1076 return SE->getZeroExtendExpr(S, Ty); 1077 }; 1078 1079 if (IVOpIdx == 0) { 1080 WideLHS = SE->getSCEV(WideDef); 1081 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1082 WideRHS = GetExtend(NarrowRHS, WideType); 1083 } else { 1084 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1085 WideLHS = GetExtend(NarrowLHS, WideType); 1086 WideRHS = SE->getSCEV(WideDef); 1087 } 1088 1089 // WideUse is "WideDef `op.wide` X" as described in the comment. 1090 const SCEV *WideUse = nullptr; 1091 1092 switch (NarrowUse->getOpcode()) { 1093 default: 1094 llvm_unreachable("No other possibility!"); 1095 1096 case Instruction::Add: 1097 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1098 break; 1099 1100 case Instruction::Mul: 1101 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1102 break; 1103 1104 case Instruction::UDiv: 1105 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1106 break; 1107 1108 case Instruction::Sub: 1109 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1110 break; 1111 } 1112 1113 return WideUse == WideAR; 1114 }; 1115 1116 bool SignExtend = IsSigned; 1117 if (!GuessNonIVOperand(SignExtend)) { 1118 SignExtend = !SignExtend; 1119 if (!GuessNonIVOperand(SignExtend)) 1120 return nullptr; 1121 } 1122 1123 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1124 ? WideDef 1125 : createExtendInst(NarrowUse->getOperand(0), WideType, 1126 SignExtend, NarrowUse); 1127 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1128 ? WideDef 1129 : createExtendInst(NarrowUse->getOperand(1), WideType, 1130 SignExtend, NarrowUse); 1131 1132 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1133 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1134 NarrowBO->getName()); 1135 1136 IRBuilder<> Builder(NarrowUse); 1137 Builder.Insert(WideBO); 1138 WideBO->copyIRFlags(NarrowBO); 1139 return WideBO; 1140 } 1141 1142 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1143 unsigned OpCode) const { 1144 if (OpCode == Instruction::Add) 1145 return SE->getAddExpr(LHS, RHS); 1146 if (OpCode == Instruction::Sub) 1147 return SE->getMinusSCEV(LHS, RHS); 1148 if (OpCode == Instruction::Mul) 1149 return SE->getMulExpr(LHS, RHS); 1150 1151 llvm_unreachable("Unsupported opcode."); 1152 } 1153 1154 /// No-wrap operations can transfer sign extension of their result to their 1155 /// operands. Generate the SCEV value for the widened operation without 1156 /// actually modifying the IR yet. If the expression after extending the 1157 /// operands is an AddRec for this loop, return it. 1158 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1159 1160 // Handle the common case of add<nsw/nuw> 1161 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1162 // Only Add/Sub/Mul instructions supported yet. 1163 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1164 OpCode != Instruction::Mul) 1165 return nullptr; 1166 1167 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1168 // if extending the other will lead to a recurrence. 1169 const unsigned ExtendOperIdx = 1170 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1171 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1172 1173 const SCEV *ExtendOperExpr = nullptr; 1174 const OverflowingBinaryOperator *OBO = 1175 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1176 if (IsSigned && OBO->hasNoSignedWrap()) 1177 ExtendOperExpr = SE->getSignExtendExpr( 1178 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1179 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1180 ExtendOperExpr = SE->getZeroExtendExpr( 1181 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1182 else 1183 return nullptr; 1184 1185 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1186 // flags. This instruction may be guarded by control flow that the no-wrap 1187 // behavior depends on. Non-control-equivalent instructions can be mapped to 1188 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1189 // semantics to those operations. 1190 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1191 const SCEV *rhs = ExtendOperExpr; 1192 1193 // Let's swap operands to the initial order for the case of non-commutative 1194 // operations, like SUB. See PR21014. 1195 if (ExtendOperIdx == 0) 1196 std::swap(lhs, rhs); 1197 const SCEVAddRecExpr *AddRec = 1198 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1199 1200 if (!AddRec || AddRec->getLoop() != L) 1201 return nullptr; 1202 return AddRec; 1203 } 1204 1205 /// Is this instruction potentially interesting for further simplification after 1206 /// widening it's type? In other words, can the extend be safely hoisted out of 1207 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1208 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1209 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1210 if (!SE->isSCEVable(NarrowUse->getType())) 1211 return nullptr; 1212 1213 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1214 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1215 >= SE->getTypeSizeInBits(WideType)) { 1216 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1217 // index. So don't follow this use. 1218 return nullptr; 1219 } 1220 1221 const SCEV *WideExpr = IsSigned ? 1222 SE->getSignExtendExpr(NarrowExpr, WideType) : 1223 SE->getZeroExtendExpr(NarrowExpr, WideType); 1224 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1225 if (!AddRec || AddRec->getLoop() != L) 1226 return nullptr; 1227 return AddRec; 1228 } 1229 1230 /// This IV user cannot be widen. Replace this use of the original narrow IV 1231 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1232 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1233 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1234 << " for user " << *DU.NarrowUse << "\n"); 1235 IRBuilder<> Builder( 1236 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1237 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1238 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1239 } 1240 1241 /// If the narrow use is a compare instruction, then widen the compare 1242 // (and possibly the other operand). The extend operation is hoisted into the 1243 // loop preheader as far as possible. 1244 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1245 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1246 if (!Cmp) 1247 return false; 1248 1249 // We can legally widen the comparison in the following two cases: 1250 // 1251 // - The signedness of the IV extension and comparison match 1252 // 1253 // - The narrow IV is always positive (and thus its sign extension is equal 1254 // to its zero extension). For instance, let's say we're zero extending 1255 // %narrow for the following use 1256 // 1257 // icmp slt i32 %narrow, %val ... (A) 1258 // 1259 // and %narrow is always positive. Then 1260 // 1261 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1262 // == icmp slt i32 zext(%narrow), sext(%val) 1263 1264 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1265 return false; 1266 1267 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1268 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1269 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1270 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1271 1272 // Widen the compare instruction. 1273 IRBuilder<> Builder( 1274 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1275 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1276 1277 // Widen the other operand of the compare, if necessary. 1278 if (CastWidth < IVWidth) { 1279 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1280 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1281 } 1282 return true; 1283 } 1284 1285 /// Determine whether an individual user of the narrow IV can be widened. If so, 1286 /// return the wide clone of the user. 1287 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1288 1289 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1290 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1291 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1292 // For LCSSA phis, sink the truncate outside the loop. 1293 // After SimplifyCFG most loop exit targets have a single predecessor. 1294 // Otherwise fall back to a truncate within the loop. 1295 if (UsePhi->getNumOperands() != 1) 1296 truncateIVUse(DU, DT, LI); 1297 else { 1298 PHINode *WidePhi = 1299 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1300 UsePhi); 1301 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1302 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1303 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1304 UsePhi->replaceAllUsesWith(Trunc); 1305 DeadInsts.emplace_back(UsePhi); 1306 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1307 << " to " << *WidePhi << "\n"); 1308 } 1309 return nullptr; 1310 } 1311 } 1312 // Our raison d'etre! Eliminate sign and zero extension. 1313 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1314 Value *NewDef = DU.WideDef; 1315 if (DU.NarrowUse->getType() != WideType) { 1316 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1317 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1318 if (CastWidth < IVWidth) { 1319 // The cast isn't as wide as the IV, so insert a Trunc. 1320 IRBuilder<> Builder(DU.NarrowUse); 1321 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1322 } 1323 else { 1324 // A wider extend was hidden behind a narrower one. This may induce 1325 // another round of IV widening in which the intermediate IV becomes 1326 // dead. It should be very rare. 1327 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1328 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1329 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1330 NewDef = DU.NarrowUse; 1331 } 1332 } 1333 if (NewDef != DU.NarrowUse) { 1334 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1335 << " replaced by " << *DU.WideDef << "\n"); 1336 ++NumElimExt; 1337 DU.NarrowUse->replaceAllUsesWith(NewDef); 1338 DeadInsts.emplace_back(DU.NarrowUse); 1339 } 1340 // Now that the extend is gone, we want to expose it's uses for potential 1341 // further simplification. We don't need to directly inform SimplifyIVUsers 1342 // of the new users, because their parent IV will be processed later as a 1343 // new loop phi. If we preserved IVUsers analysis, we would also want to 1344 // push the uses of WideDef here. 1345 1346 // No further widening is needed. The deceased [sz]ext had done it for us. 1347 return nullptr; 1348 } 1349 1350 // Does this user itself evaluate to a recurrence after widening? 1351 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1352 if (!WideAddRec) 1353 WideAddRec = getExtendedOperandRecurrence(DU); 1354 1355 if (!WideAddRec) { 1356 // If use is a loop condition, try to promote the condition instead of 1357 // truncating the IV first. 1358 if (widenLoopCompare(DU)) 1359 return nullptr; 1360 1361 // This user does not evaluate to a recurence after widening, so don't 1362 // follow it. Instead insert a Trunc to kill off the original use, 1363 // eventually isolating the original narrow IV so it can be removed. 1364 truncateIVUse(DU, DT, LI); 1365 return nullptr; 1366 } 1367 // Assume block terminators cannot evaluate to a recurrence. We can't to 1368 // insert a Trunc after a terminator if there happens to be a critical edge. 1369 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1370 "SCEV is not expected to evaluate a block terminator"); 1371 1372 // Reuse the IV increment that SCEVExpander created as long as it dominates 1373 // NarrowUse. 1374 Instruction *WideUse = nullptr; 1375 if (WideAddRec == WideIncExpr 1376 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1377 WideUse = WideInc; 1378 else { 1379 WideUse = cloneIVUser(DU, WideAddRec); 1380 if (!WideUse) 1381 return nullptr; 1382 } 1383 // Evaluation of WideAddRec ensured that the narrow expression could be 1384 // extended outside the loop without overflow. This suggests that the wide use 1385 // evaluates to the same expression as the extended narrow use, but doesn't 1386 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1387 // where it fails, we simply throw away the newly created wide use. 1388 if (WideAddRec != SE->getSCEV(WideUse)) { 1389 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1390 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1391 DeadInsts.emplace_back(WideUse); 1392 return nullptr; 1393 } 1394 1395 // Returning WideUse pushes it on the worklist. 1396 return WideUse; 1397 } 1398 1399 /// Add eligible users of NarrowDef to NarrowIVUsers. 1400 /// 1401 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1402 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1403 bool NeverNegative = 1404 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1405 SE->getConstant(NarrowSCEV->getType(), 0)); 1406 for (User *U : NarrowDef->users()) { 1407 Instruction *NarrowUser = cast<Instruction>(U); 1408 1409 // Handle data flow merges and bizarre phi cycles. 1410 if (!Widened.insert(NarrowUser).second) 1411 continue; 1412 1413 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1414 } 1415 } 1416 1417 /// Process a single induction variable. First use the SCEVExpander to create a 1418 /// wide induction variable that evaluates to the same recurrence as the 1419 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1420 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1421 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1422 /// 1423 /// It would be simpler to delete uses as they are processed, but we must avoid 1424 /// invalidating SCEV expressions. 1425 /// 1426 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1427 // Is this phi an induction variable? 1428 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1429 if (!AddRec) 1430 return nullptr; 1431 1432 // Widen the induction variable expression. 1433 const SCEV *WideIVExpr = IsSigned ? 1434 SE->getSignExtendExpr(AddRec, WideType) : 1435 SE->getZeroExtendExpr(AddRec, WideType); 1436 1437 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1438 "Expect the new IV expression to preserve its type"); 1439 1440 // Can the IV be extended outside the loop without overflow? 1441 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1442 if (!AddRec || AddRec->getLoop() != L) 1443 return nullptr; 1444 1445 // An AddRec must have loop-invariant operands. Since this AddRec is 1446 // materialized by a loop header phi, the expression cannot have any post-loop 1447 // operands, so they must dominate the loop header. 1448 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1449 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1450 && "Loop header phi recurrence inputs do not dominate the loop"); 1451 1452 // The rewriter provides a value for the desired IV expression. This may 1453 // either find an existing phi or materialize a new one. Either way, we 1454 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1455 // of the phi-SCC dominates the loop entry. 1456 Instruction *InsertPt = &L->getHeader()->front(); 1457 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1458 1459 // Remembering the WideIV increment generated by SCEVExpander allows 1460 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1461 // employ a general reuse mechanism because the call above is the only call to 1462 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1463 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1464 WideInc = 1465 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1466 WideIncExpr = SE->getSCEV(WideInc); 1467 } 1468 1469 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1470 ++NumWidened; 1471 1472 // Traverse the def-use chain using a worklist starting at the original IV. 1473 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1474 1475 Widened.insert(OrigPhi); 1476 pushNarrowIVUsers(OrigPhi, WidePhi); 1477 1478 while (!NarrowIVUsers.empty()) { 1479 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1480 1481 // Process a def-use edge. This may replace the use, so don't hold a 1482 // use_iterator across it. 1483 Instruction *WideUse = widenIVUse(DU, Rewriter); 1484 1485 // Follow all def-use edges from the previous narrow use. 1486 if (WideUse) 1487 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1488 1489 // widenIVUse may have removed the def-use edge. 1490 if (DU.NarrowDef->use_empty()) 1491 DeadInsts.emplace_back(DU.NarrowDef); 1492 } 1493 return WidePhi; 1494 } 1495 1496 //===----------------------------------------------------------------------===// 1497 // Live IV Reduction - Minimize IVs live across the loop. 1498 //===----------------------------------------------------------------------===// 1499 1500 1501 //===----------------------------------------------------------------------===// 1502 // Simplification of IV users based on SCEV evaluation. 1503 //===----------------------------------------------------------------------===// 1504 1505 namespace { 1506 class IndVarSimplifyVisitor : public IVVisitor { 1507 ScalarEvolution *SE; 1508 const TargetTransformInfo *TTI; 1509 PHINode *IVPhi; 1510 1511 public: 1512 WideIVInfo WI; 1513 1514 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1515 const TargetTransformInfo *TTI, 1516 const DominatorTree *DTree) 1517 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1518 DT = DTree; 1519 WI.NarrowIV = IVPhi; 1520 if (ReduceLiveIVs) 1521 setSplitOverflowIntrinsics(); 1522 } 1523 1524 // Implement the interface used by simplifyUsersOfIV. 1525 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1526 }; 1527 } 1528 1529 /// Iteratively perform simplification on a worklist of IV users. Each 1530 /// successive simplification may push more users which may themselves be 1531 /// candidates for simplification. 1532 /// 1533 /// Sign/Zero extend elimination is interleaved with IV simplification. 1534 /// 1535 void IndVarSimplify::simplifyAndExtend(Loop *L, 1536 SCEVExpander &Rewriter, 1537 LoopInfo *LI) { 1538 SmallVector<WideIVInfo, 8> WideIVs; 1539 1540 SmallVector<PHINode*, 8> LoopPhis; 1541 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1542 LoopPhis.push_back(cast<PHINode>(I)); 1543 } 1544 // Each round of simplification iterates through the SimplifyIVUsers worklist 1545 // for all current phis, then determines whether any IVs can be 1546 // widened. Widening adds new phis to LoopPhis, inducing another round of 1547 // simplification on the wide IVs. 1548 while (!LoopPhis.empty()) { 1549 // Evaluate as many IV expressions as possible before widening any IVs. This 1550 // forces SCEV to set no-wrap flags before evaluating sign/zero 1551 // extension. The first time SCEV attempts to normalize sign/zero extension, 1552 // the result becomes final. So for the most predictable results, we delay 1553 // evaluation of sign/zero extend evaluation until needed, and avoid running 1554 // other SCEV based analysis prior to simplifyAndExtend. 1555 do { 1556 PHINode *CurrIV = LoopPhis.pop_back_val(); 1557 1558 // Information about sign/zero extensions of CurrIV. 1559 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1560 1561 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1562 1563 if (Visitor.WI.WidestNativeType) { 1564 WideIVs.push_back(Visitor.WI); 1565 } 1566 } while(!LoopPhis.empty()); 1567 1568 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1569 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1570 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1571 Changed = true; 1572 LoopPhis.push_back(WidePhi); 1573 } 1574 } 1575 } 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1580 //===----------------------------------------------------------------------===// 1581 1582 /// Return true if this loop's backedge taken count expression can be safely and 1583 /// cheaply expanded into an instruction sequence that can be used by 1584 /// linearFunctionTestReplace. 1585 /// 1586 /// TODO: This fails for pointer-type loop counters with greater than one byte 1587 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1588 /// we could skip this check in the case that the LFTR loop counter (chosen by 1589 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1590 /// the loop test to an inequality test by checking the target data's alignment 1591 /// of element types (given that the initial pointer value originates from or is 1592 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1593 /// However, we don't yet have a strong motivation for converting loop tests 1594 /// into inequality tests. 1595 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1596 SCEVExpander &Rewriter) { 1597 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1598 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1599 BackedgeTakenCount->isZero()) 1600 return false; 1601 1602 if (!L->getExitingBlock()) 1603 return false; 1604 1605 // Can't rewrite non-branch yet. 1606 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1607 return false; 1608 1609 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1610 return false; 1611 1612 return true; 1613 } 1614 1615 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1616 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1617 Instruction *IncI = dyn_cast<Instruction>(IncV); 1618 if (!IncI) 1619 return nullptr; 1620 1621 switch (IncI->getOpcode()) { 1622 case Instruction::Add: 1623 case Instruction::Sub: 1624 break; 1625 case Instruction::GetElementPtr: 1626 // An IV counter must preserve its type. 1627 if (IncI->getNumOperands() == 2) 1628 break; 1629 default: 1630 return nullptr; 1631 } 1632 1633 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1634 if (Phi && Phi->getParent() == L->getHeader()) { 1635 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1636 return Phi; 1637 return nullptr; 1638 } 1639 if (IncI->getOpcode() == Instruction::GetElementPtr) 1640 return nullptr; 1641 1642 // Allow add/sub to be commuted. 1643 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1644 if (Phi && Phi->getParent() == L->getHeader()) { 1645 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1646 return Phi; 1647 } 1648 return nullptr; 1649 } 1650 1651 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1652 static ICmpInst *getLoopTest(Loop *L) { 1653 assert(L->getExitingBlock() && "expected loop exit"); 1654 1655 BasicBlock *LatchBlock = L->getLoopLatch(); 1656 // Don't bother with LFTR if the loop is not properly simplified. 1657 if (!LatchBlock) 1658 return nullptr; 1659 1660 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1661 assert(BI && "expected exit branch"); 1662 1663 return dyn_cast<ICmpInst>(BI->getCondition()); 1664 } 1665 1666 /// linearFunctionTestReplace policy. Return true unless we can show that the 1667 /// current exit test is already sufficiently canonical. 1668 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1669 // Do LFTR to simplify the exit condition to an ICMP. 1670 ICmpInst *Cond = getLoopTest(L); 1671 if (!Cond) 1672 return true; 1673 1674 // Do LFTR to simplify the exit ICMP to EQ/NE 1675 ICmpInst::Predicate Pred = Cond->getPredicate(); 1676 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1677 return true; 1678 1679 // Look for a loop invariant RHS 1680 Value *LHS = Cond->getOperand(0); 1681 Value *RHS = Cond->getOperand(1); 1682 if (!isLoopInvariant(RHS, L, DT)) { 1683 if (!isLoopInvariant(LHS, L, DT)) 1684 return true; 1685 std::swap(LHS, RHS); 1686 } 1687 // Look for a simple IV counter LHS 1688 PHINode *Phi = dyn_cast<PHINode>(LHS); 1689 if (!Phi) 1690 Phi = getLoopPhiForCounter(LHS, L, DT); 1691 1692 if (!Phi) 1693 return true; 1694 1695 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1696 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1697 if (Idx < 0) 1698 return true; 1699 1700 // Do LFTR if the exit condition's IV is *not* a simple counter. 1701 Value *IncV = Phi->getIncomingValue(Idx); 1702 return Phi != getLoopPhiForCounter(IncV, L, DT); 1703 } 1704 1705 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1706 /// down to checking that all operands are constant and listing instructions 1707 /// that may hide undef. 1708 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1709 unsigned Depth) { 1710 if (isa<Constant>(V)) 1711 return !isa<UndefValue>(V); 1712 1713 if (Depth >= 6) 1714 return false; 1715 1716 // Conservatively handle non-constant non-instructions. For example, Arguments 1717 // may be undef. 1718 Instruction *I = dyn_cast<Instruction>(V); 1719 if (!I) 1720 return false; 1721 1722 // Load and return values may be undef. 1723 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1724 return false; 1725 1726 // Optimistically handle other instructions. 1727 for (Value *Op : I->operands()) { 1728 if (!Visited.insert(Op).second) 1729 continue; 1730 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1731 return false; 1732 } 1733 return true; 1734 } 1735 1736 /// Return true if the given value is concrete. We must prove that undef can 1737 /// never reach it. 1738 /// 1739 /// TODO: If we decide that this is a good approach to checking for undef, we 1740 /// may factor it into a common location. 1741 static bool hasConcreteDef(Value *V) { 1742 SmallPtrSet<Value*, 8> Visited; 1743 Visited.insert(V); 1744 return hasConcreteDefImpl(V, Visited, 0); 1745 } 1746 1747 /// Return true if this IV has any uses other than the (soon to be rewritten) 1748 /// loop exit test. 1749 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1750 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1751 Value *IncV = Phi->getIncomingValue(LatchIdx); 1752 1753 for (User *U : Phi->users()) 1754 if (U != Cond && U != IncV) return false; 1755 1756 for (User *U : IncV->users()) 1757 if (U != Cond && U != Phi) return false; 1758 return true; 1759 } 1760 1761 /// Find an affine IV in canonical form. 1762 /// 1763 /// BECount may be an i8* pointer type. The pointer difference is already 1764 /// valid count without scaling the address stride, so it remains a pointer 1765 /// expression as far as SCEV is concerned. 1766 /// 1767 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1768 /// 1769 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1770 /// 1771 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1772 /// This is difficult in general for SCEV because of potential overflow. But we 1773 /// could at least handle constant BECounts. 1774 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1775 ScalarEvolution *SE, DominatorTree *DT) { 1776 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1777 1778 Value *Cond = 1779 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1780 1781 // Loop over all of the PHI nodes, looking for a simple counter. 1782 PHINode *BestPhi = nullptr; 1783 const SCEV *BestInit = nullptr; 1784 BasicBlock *LatchBlock = L->getLoopLatch(); 1785 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1786 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1787 1788 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1789 PHINode *Phi = cast<PHINode>(I); 1790 if (!SE->isSCEVable(Phi->getType())) 1791 continue; 1792 1793 // Avoid comparing an integer IV against a pointer Limit. 1794 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1795 continue; 1796 1797 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1798 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1799 continue; 1800 1801 // AR may be a pointer type, while BECount is an integer type. 1802 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1803 // AR may not be a narrower type, or we may never exit. 1804 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1805 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 1806 continue; 1807 1808 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1809 if (!Step || !Step->isOne()) 1810 continue; 1811 1812 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1813 Value *IncV = Phi->getIncomingValue(LatchIdx); 1814 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1815 continue; 1816 1817 // Avoid reusing a potentially undef value to compute other values that may 1818 // have originally had a concrete definition. 1819 if (!hasConcreteDef(Phi)) { 1820 // We explicitly allow unknown phis as long as they are already used by 1821 // the loop test. In this case we assume that performing LFTR could not 1822 // increase the number of undef users. 1823 if (ICmpInst *Cond = getLoopTest(L)) { 1824 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1825 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1826 continue; 1827 } 1828 } 1829 } 1830 const SCEV *Init = AR->getStart(); 1831 1832 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1833 // Don't force a live loop counter if another IV can be used. 1834 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1835 continue; 1836 1837 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1838 // also prefers integer to pointer IVs. 1839 if (BestInit->isZero() != Init->isZero()) { 1840 if (BestInit->isZero()) 1841 continue; 1842 } 1843 // If two IVs both count from zero or both count from nonzero then the 1844 // narrower is likely a dead phi that has been widened. Use the wider phi 1845 // to allow the other to be eliminated. 1846 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1847 continue; 1848 } 1849 BestPhi = Phi; 1850 BestInit = Init; 1851 } 1852 return BestPhi; 1853 } 1854 1855 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1856 /// the new loop test. 1857 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1858 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1859 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1860 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1861 const SCEV *IVInit = AR->getStart(); 1862 1863 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1864 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1865 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1866 // the existing GEPs whenever possible. 1867 if (IndVar->getType()->isPointerTy() 1868 && !IVCount->getType()->isPointerTy()) { 1869 1870 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1871 // signed value. IVCount on the other hand represents the loop trip count, 1872 // which is an unsigned value. FindLoopCounter only allows induction 1873 // variables that have a positive unit stride of one. This means we don't 1874 // have to handle the case of negative offsets (yet) and just need to zero 1875 // extend IVCount. 1876 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1877 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1878 1879 // Expand the code for the iteration count. 1880 assert(SE->isLoopInvariant(IVOffset, L) && 1881 "Computed iteration count is not loop invariant!"); 1882 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1883 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1884 1885 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1886 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1887 // We could handle pointer IVs other than i8*, but we need to compensate for 1888 // gep index scaling. See canExpandBackedgeTakenCount comments. 1889 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1890 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1891 && "unit stride pointer IV must be i8*"); 1892 1893 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1894 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1895 } 1896 else { 1897 // In any other case, convert both IVInit and IVCount to integers before 1898 // comparing. This may result in SCEV expension of pointers, but in practice 1899 // SCEV will fold the pointer arithmetic away as such: 1900 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1901 // 1902 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1903 // for simple memset-style loops. 1904 // 1905 // IVInit integer and IVCount pointer would only occur if a canonical IV 1906 // were generated on top of case #2, which is not expected. 1907 1908 const SCEV *IVLimit = nullptr; 1909 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1910 // For non-zero Start, compute IVCount here. 1911 if (AR->getStart()->isZero()) 1912 IVLimit = IVCount; 1913 else { 1914 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1915 const SCEV *IVInit = AR->getStart(); 1916 1917 // For integer IVs, truncate the IV before computing IVInit + BECount. 1918 if (SE->getTypeSizeInBits(IVInit->getType()) 1919 > SE->getTypeSizeInBits(IVCount->getType())) 1920 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1921 1922 IVLimit = SE->getAddExpr(IVInit, IVCount); 1923 } 1924 // Expand the code for the iteration count. 1925 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1926 IRBuilder<> Builder(BI); 1927 assert(SE->isLoopInvariant(IVLimit, L) && 1928 "Computed iteration count is not loop invariant!"); 1929 // Ensure that we generate the same type as IndVar, or a smaller integer 1930 // type. In the presence of null pointer values, we have an integer type 1931 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1932 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1933 IndVar->getType() : IVCount->getType(); 1934 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1935 } 1936 } 1937 1938 /// This method rewrites the exit condition of the loop to be a canonical != 1939 /// comparison against the incremented loop induction variable. This pass is 1940 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1941 /// determine a loop-invariant trip count of the loop, which is actually a much 1942 /// broader range than just linear tests. 1943 Value *IndVarSimplify:: 1944 linearFunctionTestReplace(Loop *L, 1945 const SCEV *BackedgeTakenCount, 1946 PHINode *IndVar, 1947 SCEVExpander &Rewriter) { 1948 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1949 1950 // Initialize CmpIndVar and IVCount to their preincremented values. 1951 Value *CmpIndVar = IndVar; 1952 const SCEV *IVCount = BackedgeTakenCount; 1953 1954 // If the exiting block is the same as the backedge block, we prefer to 1955 // compare against the post-incremented value, otherwise we must compare 1956 // against the preincremented value. 1957 if (L->getExitingBlock() == L->getLoopLatch()) { 1958 // Add one to the "backedge-taken" count to get the trip count. 1959 // This addition may overflow, which is valid as long as the comparison is 1960 // truncated to BackedgeTakenCount->getType(). 1961 IVCount = SE->getAddExpr(BackedgeTakenCount, 1962 SE->getOne(BackedgeTakenCount->getType())); 1963 // The BackedgeTaken expression contains the number of times that the 1964 // backedge branches to the loop header. This is one less than the 1965 // number of times the loop executes, so use the incremented indvar. 1966 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1967 } 1968 1969 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1970 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1971 && "genLoopLimit missed a cast"); 1972 1973 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1974 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1975 ICmpInst::Predicate P; 1976 if (L->contains(BI->getSuccessor(0))) 1977 P = ICmpInst::ICMP_NE; 1978 else 1979 P = ICmpInst::ICMP_EQ; 1980 1981 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1982 << " LHS:" << *CmpIndVar << '\n' 1983 << " op:\t" 1984 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1985 << " RHS:\t" << *ExitCnt << "\n" 1986 << " IVCount:\t" << *IVCount << "\n"); 1987 1988 IRBuilder<> Builder(BI); 1989 1990 // LFTR can ignore IV overflow and truncate to the width of 1991 // BECount. This avoids materializing the add(zext(add)) expression. 1992 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1993 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1994 if (CmpIndVarSize > ExitCntSize) { 1995 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1996 const SCEV *ARStart = AR->getStart(); 1997 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1998 // For constant IVCount, avoid truncation. 1999 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2000 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2001 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2002 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2003 // above such that IVCount is now zero. 2004 if (IVCount != BackedgeTakenCount && Count == 0) { 2005 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2006 ++Count; 2007 } 2008 else 2009 Count = Count.zext(CmpIndVarSize); 2010 APInt NewLimit; 2011 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2012 NewLimit = Start - Count; 2013 else 2014 NewLimit = Start + Count; 2015 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2016 2017 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2018 } else { 2019 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2020 "lftr.wideiv"); 2021 } 2022 } 2023 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2024 Value *OrigCond = BI->getCondition(); 2025 // It's tempting to use replaceAllUsesWith here to fully replace the old 2026 // comparison, but that's not immediately safe, since users of the old 2027 // comparison may not be dominated by the new comparison. Instead, just 2028 // update the branch to use the new comparison; in the common case this 2029 // will make old comparison dead. 2030 BI->setCondition(Cond); 2031 DeadInsts.push_back(OrigCond); 2032 2033 ++NumLFTR; 2034 Changed = true; 2035 return Cond; 2036 } 2037 2038 //===----------------------------------------------------------------------===// 2039 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2040 //===----------------------------------------------------------------------===// 2041 2042 /// If there's a single exit block, sink any loop-invariant values that 2043 /// were defined in the preheader but not used inside the loop into the 2044 /// exit block to reduce register pressure in the loop. 2045 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2046 BasicBlock *ExitBlock = L->getExitBlock(); 2047 if (!ExitBlock) return; 2048 2049 BasicBlock *Preheader = L->getLoopPreheader(); 2050 if (!Preheader) return; 2051 2052 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2053 BasicBlock::iterator I(Preheader->getTerminator()); 2054 while (I != Preheader->begin()) { 2055 --I; 2056 // New instructions were inserted at the end of the preheader. 2057 if (isa<PHINode>(I)) 2058 break; 2059 2060 // Don't move instructions which might have side effects, since the side 2061 // effects need to complete before instructions inside the loop. Also don't 2062 // move instructions which might read memory, since the loop may modify 2063 // memory. Note that it's okay if the instruction might have undefined 2064 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2065 // block. 2066 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2067 continue; 2068 2069 // Skip debug info intrinsics. 2070 if (isa<DbgInfoIntrinsic>(I)) 2071 continue; 2072 2073 // Skip eh pad instructions. 2074 if (I->isEHPad()) 2075 continue; 2076 2077 // Don't sink alloca: we never want to sink static alloca's out of the 2078 // entry block, and correctly sinking dynamic alloca's requires 2079 // checks for stacksave/stackrestore intrinsics. 2080 // FIXME: Refactor this check somehow? 2081 if (isa<AllocaInst>(I)) 2082 continue; 2083 2084 // Determine if there is a use in or before the loop (direct or 2085 // otherwise). 2086 bool UsedInLoop = false; 2087 for (Use &U : I->uses()) { 2088 Instruction *User = cast<Instruction>(U.getUser()); 2089 BasicBlock *UseBB = User->getParent(); 2090 if (PHINode *P = dyn_cast<PHINode>(User)) { 2091 unsigned i = 2092 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2093 UseBB = P->getIncomingBlock(i); 2094 } 2095 if (UseBB == Preheader || L->contains(UseBB)) { 2096 UsedInLoop = true; 2097 break; 2098 } 2099 } 2100 2101 // If there is, the def must remain in the preheader. 2102 if (UsedInLoop) 2103 continue; 2104 2105 // Otherwise, sink it to the exit block. 2106 Instruction *ToMove = &*I; 2107 bool Done = false; 2108 2109 if (I != Preheader->begin()) { 2110 // Skip debug info intrinsics. 2111 do { 2112 --I; 2113 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2114 2115 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2116 Done = true; 2117 } else { 2118 Done = true; 2119 } 2120 2121 ToMove->moveBefore(InsertPt); 2122 if (Done) break; 2123 InsertPt = ToMove; 2124 } 2125 } 2126 2127 //===----------------------------------------------------------------------===// 2128 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2129 //===----------------------------------------------------------------------===// 2130 2131 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2132 if (skipOptnoneFunction(L)) 2133 return false; 2134 2135 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2136 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2137 // canonicalization can be a pessimization without LSR to "clean up" 2138 // afterwards. 2139 // - We depend on having a preheader; in particular, 2140 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2141 // and we're in trouble if we can't find the induction variable even when 2142 // we've manually inserted one. 2143 if (!L->isLoopSimplifyForm()) 2144 return false; 2145 2146 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2147 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2148 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2149 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2150 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2151 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2152 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2153 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2154 2155 DeadInsts.clear(); 2156 Changed = false; 2157 2158 // If there are any floating-point recurrences, attempt to 2159 // transform them to use integer recurrences. 2160 rewriteNonIntegerIVs(L); 2161 2162 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2163 2164 // Create a rewriter object which we'll use to transform the code with. 2165 SCEVExpander Rewriter(*SE, DL, "indvars"); 2166 #ifndef NDEBUG 2167 Rewriter.setDebugType(DEBUG_TYPE); 2168 #endif 2169 2170 // Eliminate redundant IV users. 2171 // 2172 // Simplification works best when run before other consumers of SCEV. We 2173 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2174 // other expressions involving loop IVs have been evaluated. This helps SCEV 2175 // set no-wrap flags before normalizing sign/zero extension. 2176 Rewriter.disableCanonicalMode(); 2177 simplifyAndExtend(L, Rewriter, LI); 2178 2179 // Check to see if this loop has a computable loop-invariant execution count. 2180 // If so, this means that we can compute the final value of any expressions 2181 // that are recurrent in the loop, and substitute the exit values from the 2182 // loop into any instructions outside of the loop that use the final values of 2183 // the current expressions. 2184 // 2185 if (ReplaceExitValue != NeverRepl && 2186 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2187 rewriteLoopExitValues(L, Rewriter); 2188 2189 // Eliminate redundant IV cycles. 2190 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2191 2192 // If we have a trip count expression, rewrite the loop's exit condition 2193 // using it. We can currently only handle loops with a single exit. 2194 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2195 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2196 if (IndVar) { 2197 // Check preconditions for proper SCEVExpander operation. SCEV does not 2198 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2199 // pass that uses the SCEVExpander must do it. This does not work well for 2200 // loop passes because SCEVExpander makes assumptions about all loops, 2201 // while LoopPassManager only forces the current loop to be simplified. 2202 // 2203 // FIXME: SCEV expansion has no way to bail out, so the caller must 2204 // explicitly check any assumptions made by SCEV. Brittle. 2205 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2206 if (!AR || AR->getLoop()->getLoopPreheader()) 2207 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2208 Rewriter); 2209 } 2210 } 2211 // Clear the rewriter cache, because values that are in the rewriter's cache 2212 // can be deleted in the loop below, causing the AssertingVH in the cache to 2213 // trigger. 2214 Rewriter.clear(); 2215 2216 // Now that we're done iterating through lists, clean up any instructions 2217 // which are now dead. 2218 while (!DeadInsts.empty()) 2219 if (Instruction *Inst = 2220 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2221 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2222 2223 // The Rewriter may not be used from this point on. 2224 2225 // Loop-invariant instructions in the preheader that aren't used in the 2226 // loop may be sunk below the loop to reduce register pressure. 2227 sinkUnusedInvariants(L); 2228 2229 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2230 // trip count and therefore can further simplify exit values in addition to 2231 // rewriteLoopExitValues. 2232 rewriteFirstIterationLoopExitValues(L); 2233 2234 // Clean up dead instructions. 2235 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2236 2237 // Check a post-condition. 2238 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2239 2240 // Verify that LFTR, and any other change have not interfered with SCEV's 2241 // ability to compute trip count. 2242 #ifndef NDEBUG 2243 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2244 SE->forgetLoop(L); 2245 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2246 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2247 SE->getTypeSizeInBits(NewBECount->getType())) 2248 NewBECount = SE->getTruncateOrNoop(NewBECount, 2249 BackedgeTakenCount->getType()); 2250 else 2251 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2252 NewBECount->getType()); 2253 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2254 } 2255 #endif 2256 2257 return Changed; 2258 } 2259