1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetLibraryInfo.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 50 using namespace llvm; 51 52 #define DEBUG_TYPE "indvars" 53 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumReplaced , "Number of exit values replaced"); 56 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 57 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 58 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 59 60 // Trip count verification can be enabled by default under NDEBUG if we 61 // implement a strong expression equivalence checker in SCEV. Until then, we 62 // use the verify-indvars flag, which may assert in some cases. 63 static cl::opt<bool> VerifyIndvars( 64 "verify-indvars", cl::Hidden, 65 cl::desc("Verify the ScalarEvolution result after running indvars")); 66 67 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 68 cl::desc("Reduce live induction variables.")); 69 70 namespace { 71 class IndVarSimplify : public LoopPass { 72 LoopInfo *LI; 73 ScalarEvolution *SE; 74 DominatorTree *DT; 75 const DataLayout *DL; 76 TargetLibraryInfo *TLI; 77 78 SmallVector<WeakVH, 16> DeadInsts; 79 bool Changed; 80 public: 81 82 static char ID; // Pass identification, replacement for typeid 83 IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), 84 DL(nullptr), Changed(false) { 85 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 86 } 87 88 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 89 90 void getAnalysisUsage(AnalysisUsage &AU) const override { 91 AU.addRequired<DominatorTreeWrapperPass>(); 92 AU.addRequired<LoopInfo>(); 93 AU.addRequired<ScalarEvolution>(); 94 AU.addRequiredID(LoopSimplifyID); 95 AU.addRequiredID(LCSSAID); 96 AU.addPreserved<ScalarEvolution>(); 97 AU.addPreservedID(LoopSimplifyID); 98 AU.addPreservedID(LCSSAID); 99 AU.setPreservesCFG(); 100 } 101 102 private: 103 void releaseMemory() override { 104 DeadInsts.clear(); 105 } 106 107 bool isValidRewrite(Value *FromVal, Value *ToVal); 108 109 void HandleFloatingPointIV(Loop *L, PHINode *PH); 110 void RewriteNonIntegerIVs(Loop *L); 111 112 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 113 114 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 115 116 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 117 PHINode *IndVar, SCEVExpander &Rewriter); 118 119 void SinkUnusedInvariants(Loop *L); 120 }; 121 } 122 123 char IndVarSimplify::ID = 0; 124 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 125 "Induction Variable Simplification", false, false) 126 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 127 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 128 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 129 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 130 INITIALIZE_PASS_DEPENDENCY(LCSSA) 131 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 132 "Induction Variable Simplification", false, false) 133 134 Pass *llvm::createIndVarSimplifyPass() { 135 return new IndVarSimplify(); 136 } 137 138 /// isValidRewrite - Return true if the SCEV expansion generated by the 139 /// rewriter can replace the original value. SCEV guarantees that it 140 /// produces the same value, but the way it is produced may be illegal IR. 141 /// Ideally, this function will only be called for verification. 142 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 143 // If an SCEV expression subsumed multiple pointers, its expansion could 144 // reassociate the GEP changing the base pointer. This is illegal because the 145 // final address produced by a GEP chain must be inbounds relative to its 146 // underlying object. Otherwise basic alias analysis, among other things, 147 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 148 // producing an expression involving multiple pointers. Until then, we must 149 // bail out here. 150 // 151 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 152 // because it understands lcssa phis while SCEV does not. 153 Value *FromPtr = FromVal; 154 Value *ToPtr = ToVal; 155 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 156 FromPtr = GEP->getPointerOperand(); 157 } 158 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 159 ToPtr = GEP->getPointerOperand(); 160 } 161 if (FromPtr != FromVal || ToPtr != ToVal) { 162 // Quickly check the common case 163 if (FromPtr == ToPtr) 164 return true; 165 166 // SCEV may have rewritten an expression that produces the GEP's pointer 167 // operand. That's ok as long as the pointer operand has the same base 168 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 169 // base of a recurrence. This handles the case in which SCEV expansion 170 // converts a pointer type recurrence into a nonrecurrent pointer base 171 // indexed by an integer recurrence. 172 173 // If the GEP base pointer is a vector of pointers, abort. 174 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 175 return false; 176 177 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 178 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 179 if (FromBase == ToBase) 180 return true; 181 182 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 183 << *FromBase << " != " << *ToBase << "\n"); 184 185 return false; 186 } 187 return true; 188 } 189 190 /// Determine the insertion point for this user. By default, insert immediately 191 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 192 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 193 /// common dominator for the incoming blocks. 194 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 195 DominatorTree *DT) { 196 PHINode *PHI = dyn_cast<PHINode>(User); 197 if (!PHI) 198 return User; 199 200 Instruction *InsertPt = nullptr; 201 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 202 if (PHI->getIncomingValue(i) != Def) 203 continue; 204 205 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 206 if (!InsertPt) { 207 InsertPt = InsertBB->getTerminator(); 208 continue; 209 } 210 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 211 InsertPt = InsertBB->getTerminator(); 212 } 213 assert(InsertPt && "Missing phi operand"); 214 assert((!isa<Instruction>(Def) || 215 DT->dominates(cast<Instruction>(Def), InsertPt)) && 216 "def does not dominate all uses"); 217 return InsertPt; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 222 //===----------------------------------------------------------------------===// 223 224 /// ConvertToSInt - Convert APF to an integer, if possible. 225 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 226 bool isExact = false; 227 // See if we can convert this to an int64_t 228 uint64_t UIntVal; 229 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 230 &isExact) != APFloat::opOK || !isExact) 231 return false; 232 IntVal = UIntVal; 233 return true; 234 } 235 236 /// HandleFloatingPointIV - If the loop has floating induction variable 237 /// then insert corresponding integer induction variable if possible. 238 /// For example, 239 /// for(double i = 0; i < 10000; ++i) 240 /// bar(i) 241 /// is converted into 242 /// for(int i = 0; i < 10000; ++i) 243 /// bar((double)i); 244 /// 245 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 246 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 247 unsigned BackEdge = IncomingEdge^1; 248 249 // Check incoming value. 250 ConstantFP *InitValueVal = 251 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 252 253 int64_t InitValue; 254 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 255 return; 256 257 // Check IV increment. Reject this PN if increment operation is not 258 // an add or increment value can not be represented by an integer. 259 BinaryOperator *Incr = 260 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 261 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 262 263 // If this is not an add of the PHI with a constantfp, or if the constant fp 264 // is not an integer, bail out. 265 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 266 int64_t IncValue; 267 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 268 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 269 return; 270 271 // Check Incr uses. One user is PN and the other user is an exit condition 272 // used by the conditional terminator. 273 Value::user_iterator IncrUse = Incr->user_begin(); 274 Instruction *U1 = cast<Instruction>(*IncrUse++); 275 if (IncrUse == Incr->user_end()) return; 276 Instruction *U2 = cast<Instruction>(*IncrUse++); 277 if (IncrUse != Incr->user_end()) return; 278 279 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 280 // only used by a branch, we can't transform it. 281 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 282 if (!Compare) 283 Compare = dyn_cast<FCmpInst>(U2); 284 if (!Compare || !Compare->hasOneUse() || 285 !isa<BranchInst>(Compare->user_back())) 286 return; 287 288 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 289 290 // We need to verify that the branch actually controls the iteration count 291 // of the loop. If not, the new IV can overflow and no one will notice. 292 // The branch block must be in the loop and one of the successors must be out 293 // of the loop. 294 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 295 if (!L->contains(TheBr->getParent()) || 296 (L->contains(TheBr->getSuccessor(0)) && 297 L->contains(TheBr->getSuccessor(1)))) 298 return; 299 300 301 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 302 // transform it. 303 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 304 int64_t ExitValue; 305 if (ExitValueVal == nullptr || 306 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 307 return; 308 309 // Find new predicate for integer comparison. 310 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 311 switch (Compare->getPredicate()) { 312 default: return; // Unknown comparison. 313 case CmpInst::FCMP_OEQ: 314 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 315 case CmpInst::FCMP_ONE: 316 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 317 case CmpInst::FCMP_OGT: 318 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 319 case CmpInst::FCMP_OGE: 320 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 321 case CmpInst::FCMP_OLT: 322 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 323 case CmpInst::FCMP_OLE: 324 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 325 } 326 327 // We convert the floating point induction variable to a signed i32 value if 328 // we can. This is only safe if the comparison will not overflow in a way 329 // that won't be trapped by the integer equivalent operations. Check for this 330 // now. 331 // TODO: We could use i64 if it is native and the range requires it. 332 333 // The start/stride/exit values must all fit in signed i32. 334 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 335 return; 336 337 // If not actually striding (add x, 0.0), avoid touching the code. 338 if (IncValue == 0) 339 return; 340 341 // Positive and negative strides have different safety conditions. 342 if (IncValue > 0) { 343 // If we have a positive stride, we require the init to be less than the 344 // exit value. 345 if (InitValue >= ExitValue) 346 return; 347 348 uint32_t Range = uint32_t(ExitValue-InitValue); 349 // Check for infinite loop, either: 350 // while (i <= Exit) or until (i > Exit) 351 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 352 if (++Range == 0) return; // Range overflows. 353 } 354 355 unsigned Leftover = Range % uint32_t(IncValue); 356 357 // If this is an equality comparison, we require that the strided value 358 // exactly land on the exit value, otherwise the IV condition will wrap 359 // around and do things the fp IV wouldn't. 360 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 361 Leftover != 0) 362 return; 363 364 // If the stride would wrap around the i32 before exiting, we can't 365 // transform the IV. 366 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 367 return; 368 369 } else { 370 // If we have a negative stride, we require the init to be greater than the 371 // exit value. 372 if (InitValue <= ExitValue) 373 return; 374 375 uint32_t Range = uint32_t(InitValue-ExitValue); 376 // Check for infinite loop, either: 377 // while (i >= Exit) or until (i < Exit) 378 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 379 if (++Range == 0) return; // Range overflows. 380 } 381 382 unsigned Leftover = Range % uint32_t(-IncValue); 383 384 // If this is an equality comparison, we require that the strided value 385 // exactly land on the exit value, otherwise the IV condition will wrap 386 // around and do things the fp IV wouldn't. 387 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 388 Leftover != 0) 389 return; 390 391 // If the stride would wrap around the i32 before exiting, we can't 392 // transform the IV. 393 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 394 return; 395 } 396 397 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 398 399 // Insert new integer induction variable. 400 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 401 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 402 PN->getIncomingBlock(IncomingEdge)); 403 404 Value *NewAdd = 405 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 406 Incr->getName()+".int", Incr); 407 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 408 409 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 410 ConstantInt::get(Int32Ty, ExitValue), 411 Compare->getName()); 412 413 // In the following deletions, PN may become dead and may be deleted. 414 // Use a WeakVH to observe whether this happens. 415 WeakVH WeakPH = PN; 416 417 // Delete the old floating point exit comparison. The branch starts using the 418 // new comparison. 419 NewCompare->takeName(Compare); 420 Compare->replaceAllUsesWith(NewCompare); 421 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 422 423 // Delete the old floating point increment. 424 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 425 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 426 427 // If the FP induction variable still has uses, this is because something else 428 // in the loop uses its value. In order to canonicalize the induction 429 // variable, we chose to eliminate the IV and rewrite it in terms of an 430 // int->fp cast. 431 // 432 // We give preference to sitofp over uitofp because it is faster on most 433 // platforms. 434 if (WeakPH) { 435 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 436 PN->getParent()->getFirstInsertionPt()); 437 PN->replaceAllUsesWith(Conv); 438 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 439 } 440 Changed = true; 441 } 442 443 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 444 // First step. Check to see if there are any floating-point recurrences. 445 // If there are, change them into integer recurrences, permitting analysis by 446 // the SCEV routines. 447 // 448 BasicBlock *Header = L->getHeader(); 449 450 SmallVector<WeakVH, 8> PHIs; 451 for (BasicBlock::iterator I = Header->begin(); 452 PHINode *PN = dyn_cast<PHINode>(I); ++I) 453 PHIs.push_back(PN); 454 455 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 456 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 457 HandleFloatingPointIV(L, PN); 458 459 // If the loop previously had floating-point IV, ScalarEvolution 460 // may not have been able to compute a trip count. Now that we've done some 461 // re-writing, the trip count may be computable. 462 if (Changed) 463 SE->forgetLoop(L); 464 } 465 466 //===----------------------------------------------------------------------===// 467 // RewriteLoopExitValues - Optimize IV users outside the loop. 468 // As a side effect, reduces the amount of IV processing within the loop. 469 //===----------------------------------------------------------------------===// 470 471 /// RewriteLoopExitValues - Check to see if this loop has a computable 472 /// loop-invariant execution count. If so, this means that we can compute the 473 /// final value of any expressions that are recurrent in the loop, and 474 /// substitute the exit values from the loop into any instructions outside of 475 /// the loop that use the final values of the current expressions. 476 /// 477 /// This is mostly redundant with the regular IndVarSimplify activities that 478 /// happen later, except that it's more powerful in some cases, because it's 479 /// able to brute-force evaluate arbitrary instructions as long as they have 480 /// constant operands at the beginning of the loop. 481 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 482 // Verify the input to the pass in already in LCSSA form. 483 assert(L->isLCSSAForm(*DT)); 484 485 SmallVector<BasicBlock*, 8> ExitBlocks; 486 L->getUniqueExitBlocks(ExitBlocks); 487 488 // Find all values that are computed inside the loop, but used outside of it. 489 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 490 // the exit blocks of the loop to find them. 491 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 492 BasicBlock *ExitBB = ExitBlocks[i]; 493 494 // If there are no PHI nodes in this exit block, then no values defined 495 // inside the loop are used on this path, skip it. 496 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 497 if (!PN) continue; 498 499 unsigned NumPreds = PN->getNumIncomingValues(); 500 501 // We would like to be able to RAUW single-incoming value PHI nodes. We 502 // have to be certain this is safe even when this is an LCSSA PHI node. 503 // While the computed exit value is no longer varying in *this* loop, the 504 // exit block may be an exit block for an outer containing loop as well, 505 // the exit value may be varying in the outer loop, and thus it may still 506 // require an LCSSA PHI node. The safe case is when this is 507 // single-predecessor PHI node (LCSSA) and the exit block containing it is 508 // part of the enclosing loop, or this is the outer most loop of the nest. 509 // In either case the exit value could (at most) be varying in the same 510 // loop body as the phi node itself. Thus if it is in turn used outside of 511 // an enclosing loop it will only be via a separate LCSSA node. 512 bool LCSSASafePhiForRAUW = 513 NumPreds == 1 && 514 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 515 516 // Iterate over all of the PHI nodes. 517 BasicBlock::iterator BBI = ExitBB->begin(); 518 while ((PN = dyn_cast<PHINode>(BBI++))) { 519 if (PN->use_empty()) 520 continue; // dead use, don't replace it 521 522 // SCEV only supports integer expressions for now. 523 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 524 continue; 525 526 // It's necessary to tell ScalarEvolution about this explicitly so that 527 // it can walk the def-use list and forget all SCEVs, as it may not be 528 // watching the PHI itself. Once the new exit value is in place, there 529 // may not be a def-use connection between the loop and every instruction 530 // which got a SCEVAddRecExpr for that loop. 531 SE->forgetValue(PN); 532 533 // Iterate over all of the values in all the PHI nodes. 534 for (unsigned i = 0; i != NumPreds; ++i) { 535 // If the value being merged in is not integer or is not defined 536 // in the loop, skip it. 537 Value *InVal = PN->getIncomingValue(i); 538 if (!isa<Instruction>(InVal)) 539 continue; 540 541 // If this pred is for a subloop, not L itself, skip it. 542 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 543 continue; // The Block is in a subloop, skip it. 544 545 // Check that InVal is defined in the loop. 546 Instruction *Inst = cast<Instruction>(InVal); 547 if (!L->contains(Inst)) 548 continue; 549 550 // Okay, this instruction has a user outside of the current loop 551 // and varies predictably *inside* the loop. Evaluate the value it 552 // contains when the loop exits, if possible. 553 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 554 if (!SE->isLoopInvariant(ExitValue, L) || 555 !isSafeToExpand(ExitValue, *SE)) 556 continue; 557 558 // Computing the value outside of the loop brings no benefit if : 559 // - it is definitely used inside the loop in a way which can not be 560 // optimized away. 561 // - no use outside of the loop can take advantage of hoisting the 562 // computation out of the loop 563 if (ExitValue->getSCEVType()>=scMulExpr) { 564 unsigned NumHardInternalUses = 0; 565 unsigned NumSoftExternalUses = 0; 566 unsigned NumUses = 0; 567 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 568 IB != IE && NumUses <= 6; ++IB) { 569 Instruction *UseInstr = cast<Instruction>(*IB); 570 unsigned Opc = UseInstr->getOpcode(); 571 NumUses++; 572 if (L->contains(UseInstr)) { 573 if (Opc == Instruction::Call || Opc == Instruction::Ret) 574 NumHardInternalUses++; 575 } else { 576 if (Opc == Instruction::PHI) { 577 // Do not count the Phi as a use. LCSSA may have inserted 578 // plenty of trivial ones. 579 NumUses--; 580 for (auto PB = UseInstr->user_begin(), 581 PE = UseInstr->user_end(); 582 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 583 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 584 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 585 NumSoftExternalUses++; 586 } 587 continue; 588 } 589 if (Opc != Instruction::Call && Opc != Instruction::Ret) 590 NumSoftExternalUses++; 591 } 592 } 593 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 594 continue; 595 } 596 597 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 598 599 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 600 << " LoopVal = " << *Inst << "\n"); 601 602 if (!isValidRewrite(Inst, ExitVal)) { 603 DeadInsts.push_back(ExitVal); 604 continue; 605 } 606 Changed = true; 607 ++NumReplaced; 608 609 PN->setIncomingValue(i, ExitVal); 610 611 // If this instruction is dead now, delete it. Don't do it now to avoid 612 // invalidating iterators. 613 if (isInstructionTriviallyDead(Inst, TLI)) 614 DeadInsts.push_back(Inst); 615 616 // If we determined that this PHI is safe to replace even if an LCSSA 617 // PHI, do so. 618 if (LCSSASafePhiForRAUW) { 619 PN->replaceAllUsesWith(ExitVal); 620 PN->eraseFromParent(); 621 } 622 } 623 624 // If we were unable to completely replace the PHI node, clone the PHI 625 // and delete the original one. This lets IVUsers and any other maps 626 // purge the original user from their records. 627 if (!LCSSASafePhiForRAUW) { 628 PHINode *NewPN = cast<PHINode>(PN->clone()); 629 NewPN->takeName(PN); 630 NewPN->insertBefore(PN); 631 PN->replaceAllUsesWith(NewPN); 632 PN->eraseFromParent(); 633 } 634 } 635 } 636 637 // The insertion point instruction may have been deleted; clear it out 638 // so that the rewriter doesn't trip over it later. 639 Rewriter.clearInsertPoint(); 640 } 641 642 //===----------------------------------------------------------------------===// 643 // IV Widening - Extend the width of an IV to cover its widest uses. 644 //===----------------------------------------------------------------------===// 645 646 namespace { 647 // Collect information about induction variables that are used by sign/zero 648 // extend operations. This information is recorded by CollectExtend and 649 // provides the input to WidenIV. 650 struct WideIVInfo { 651 PHINode *NarrowIV; 652 Type *WidestNativeType; // Widest integer type created [sz]ext 653 bool IsSigned; // Was a sext user seen before a zext? 654 655 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 656 IsSigned(false) {} 657 }; 658 } 659 660 /// visitCast - Update information about the induction variable that is 661 /// extended by this sign or zero extend operation. This is used to determine 662 /// the final width of the IV before actually widening it. 663 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 664 const DataLayout *DL) { 665 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 666 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 667 return; 668 669 Type *Ty = Cast->getType(); 670 uint64_t Width = SE->getTypeSizeInBits(Ty); 671 if (DL && !DL->isLegalInteger(Width)) 672 return; 673 674 if (!WI.WidestNativeType) { 675 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 676 WI.IsSigned = IsSigned; 677 return; 678 } 679 680 // We extend the IV to satisfy the sign of its first user, arbitrarily. 681 if (WI.IsSigned != IsSigned) 682 return; 683 684 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 685 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 686 } 687 688 namespace { 689 690 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 691 /// WideIV that computes the same value as the Narrow IV def. This avoids 692 /// caching Use* pointers. 693 struct NarrowIVDefUse { 694 Instruction *NarrowDef; 695 Instruction *NarrowUse; 696 Instruction *WideDef; 697 698 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 699 700 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 701 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 702 }; 703 704 /// WidenIV - The goal of this transform is to remove sign and zero extends 705 /// without creating any new induction variables. To do this, it creates a new 706 /// phi of the wider type and redirects all users, either removing extends or 707 /// inserting truncs whenever we stop propagating the type. 708 /// 709 class WidenIV { 710 // Parameters 711 PHINode *OrigPhi; 712 Type *WideType; 713 bool IsSigned; 714 715 // Context 716 LoopInfo *LI; 717 Loop *L; 718 ScalarEvolution *SE; 719 DominatorTree *DT; 720 721 // Result 722 PHINode *WidePhi; 723 Instruction *WideInc; 724 const SCEV *WideIncExpr; 725 SmallVectorImpl<WeakVH> &DeadInsts; 726 727 SmallPtrSet<Instruction*,16> Widened; 728 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 729 730 public: 731 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 732 ScalarEvolution *SEv, DominatorTree *DTree, 733 SmallVectorImpl<WeakVH> &DI) : 734 OrigPhi(WI.NarrowIV), 735 WideType(WI.WidestNativeType), 736 IsSigned(WI.IsSigned), 737 LI(LInfo), 738 L(LI->getLoopFor(OrigPhi->getParent())), 739 SE(SEv), 740 DT(DTree), 741 WidePhi(nullptr), 742 WideInc(nullptr), 743 WideIncExpr(nullptr), 744 DeadInsts(DI) { 745 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 746 } 747 748 PHINode *CreateWideIV(SCEVExpander &Rewriter); 749 750 protected: 751 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 752 Instruction *Use); 753 754 Instruction *CloneIVUser(NarrowIVDefUse DU); 755 756 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 757 758 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 759 760 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 761 unsigned OpCode) const; 762 763 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 764 765 bool WidenLoopCompare(NarrowIVDefUse DU); 766 767 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 768 }; 769 } // anonymous namespace 770 771 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 772 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 773 /// gratuitous for this purpose. 774 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 775 Instruction *Inst = dyn_cast<Instruction>(V); 776 if (!Inst) 777 return true; 778 779 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 780 } 781 782 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 783 Instruction *Use) { 784 // Set the debug location and conservative insertion point. 785 IRBuilder<> Builder(Use); 786 // Hoist the insertion point into loop preheaders as far as possible. 787 for (const Loop *L = LI->getLoopFor(Use->getParent()); 788 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 789 L = L->getParentLoop()) 790 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 791 792 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 793 Builder.CreateZExt(NarrowOper, WideType); 794 } 795 796 /// CloneIVUser - Instantiate a wide operation to replace a narrow 797 /// operation. This only needs to handle operations that can evaluation to 798 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 799 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 800 unsigned Opcode = DU.NarrowUse->getOpcode(); 801 switch (Opcode) { 802 default: 803 return nullptr; 804 case Instruction::Add: 805 case Instruction::Mul: 806 case Instruction::UDiv: 807 case Instruction::Sub: 808 case Instruction::And: 809 case Instruction::Or: 810 case Instruction::Xor: 811 case Instruction::Shl: 812 case Instruction::LShr: 813 case Instruction::AShr: 814 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 815 816 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 817 // anything about the narrow operand yet so must insert a [sz]ext. It is 818 // probably loop invariant and will be folded or hoisted. If it actually 819 // comes from a widened IV, it should be removed during a future call to 820 // WidenIVUse. 821 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 822 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 823 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 824 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 825 826 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 827 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 828 LHS, RHS, 829 NarrowBO->getName()); 830 IRBuilder<> Builder(DU.NarrowUse); 831 Builder.Insert(WideBO); 832 if (const OverflowingBinaryOperator *OBO = 833 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 834 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 835 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 836 } 837 return WideBO; 838 } 839 } 840 841 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 842 unsigned OpCode) const { 843 if (OpCode == Instruction::Add) 844 return SE->getAddExpr(LHS, RHS); 845 if (OpCode == Instruction::Sub) 846 return SE->getMinusSCEV(LHS, RHS); 847 if (OpCode == Instruction::Mul) 848 return SE->getMulExpr(LHS, RHS); 849 850 llvm_unreachable("Unsupported opcode."); 851 } 852 853 /// No-wrap operations can transfer sign extension of their result to their 854 /// operands. Generate the SCEV value for the widened operation without 855 /// actually modifying the IR yet. If the expression after extending the 856 /// operands is an AddRec for this loop, return it. 857 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 858 859 // Handle the common case of add<nsw/nuw> 860 const unsigned OpCode = DU.NarrowUse->getOpcode(); 861 // Only Add/Sub/Mul instructions supported yet. 862 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 863 OpCode != Instruction::Mul) 864 return nullptr; 865 866 // One operand (NarrowDef) has already been extended to WideDef. Now determine 867 // if extending the other will lead to a recurrence. 868 const unsigned ExtendOperIdx = 869 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 870 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 871 872 const SCEV *ExtendOperExpr = nullptr; 873 const OverflowingBinaryOperator *OBO = 874 cast<OverflowingBinaryOperator>(DU.NarrowUse); 875 if (IsSigned && OBO->hasNoSignedWrap()) 876 ExtendOperExpr = SE->getSignExtendExpr( 877 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 878 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 879 ExtendOperExpr = SE->getZeroExtendExpr( 880 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 881 else 882 return nullptr; 883 884 // When creating this SCEV expr, don't apply the current operations NSW or NUW 885 // flags. This instruction may be guarded by control flow that the no-wrap 886 // behavior depends on. Non-control-equivalent instructions can be mapped to 887 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 888 // semantics to those operations. 889 const SCEV *lhs = SE->getSCEV(DU.WideDef); 890 const SCEV *rhs = ExtendOperExpr; 891 892 // Let's swap operands to the initial order for the case of non-commutative 893 // operations, like SUB. See PR21014. 894 if (ExtendOperIdx == 0) 895 std::swap(lhs, rhs); 896 const SCEVAddRecExpr *AddRec = 897 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 898 899 if (!AddRec || AddRec->getLoop() != L) 900 return nullptr; 901 return AddRec; 902 } 903 904 /// GetWideRecurrence - Is this instruction potentially interesting from 905 /// IVUsers' perspective after widening it's type? In other words, can the 906 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 907 /// recurrence on the same loop. If so, return the sign or zero extended 908 /// recurrence. Otherwise return NULL. 909 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 910 if (!SE->isSCEVable(NarrowUse->getType())) 911 return nullptr; 912 913 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 914 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 915 >= SE->getTypeSizeInBits(WideType)) { 916 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 917 // index. So don't follow this use. 918 return nullptr; 919 } 920 921 const SCEV *WideExpr = IsSigned ? 922 SE->getSignExtendExpr(NarrowExpr, WideType) : 923 SE->getZeroExtendExpr(NarrowExpr, WideType); 924 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 925 if (!AddRec || AddRec->getLoop() != L) 926 return nullptr; 927 return AddRec; 928 } 929 930 /// This IV user cannot be widen. Replace this use of the original narrow IV 931 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 932 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 933 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 934 << " for user " << *DU.NarrowUse << "\n"); 935 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 936 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 937 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 938 } 939 940 /// If the narrow use is a compare instruction, then widen the compare 941 // (and possibly the other operand). The extend operation is hoisted into the 942 // loop preheader as far as possible. 943 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 944 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 945 if (!Cmp) 946 return false; 947 948 // Sign of IV user and compare must match. 949 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate())) 950 return false; 951 952 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 953 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 954 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 955 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 956 957 // Widen the compare instruction. 958 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 959 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 960 961 // Widen the other operand of the compare, if necessary. 962 if (CastWidth < IVWidth) { 963 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp); 964 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 965 } 966 return true; 967 } 968 969 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 970 /// widened. If so, return the wide clone of the user. 971 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 972 973 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 974 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 975 if (LI->getLoopFor(UsePhi->getParent()) != L) { 976 // For LCSSA phis, sink the truncate outside the loop. 977 // After SimplifyCFG most loop exit targets have a single predecessor. 978 // Otherwise fall back to a truncate within the loop. 979 if (UsePhi->getNumOperands() != 1) 980 truncateIVUse(DU, DT); 981 else { 982 PHINode *WidePhi = 983 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 984 UsePhi); 985 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 986 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 987 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 988 UsePhi->replaceAllUsesWith(Trunc); 989 DeadInsts.push_back(UsePhi); 990 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 991 << " to " << *WidePhi << "\n"); 992 } 993 return nullptr; 994 } 995 } 996 // Our raison d'etre! Eliminate sign and zero extension. 997 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 998 Value *NewDef = DU.WideDef; 999 if (DU.NarrowUse->getType() != WideType) { 1000 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1001 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1002 if (CastWidth < IVWidth) { 1003 // The cast isn't as wide as the IV, so insert a Trunc. 1004 IRBuilder<> Builder(DU.NarrowUse); 1005 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1006 } 1007 else { 1008 // A wider extend was hidden behind a narrower one. This may induce 1009 // another round of IV widening in which the intermediate IV becomes 1010 // dead. It should be very rare. 1011 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1012 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1013 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1014 NewDef = DU.NarrowUse; 1015 } 1016 } 1017 if (NewDef != DU.NarrowUse) { 1018 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1019 << " replaced by " << *DU.WideDef << "\n"); 1020 ++NumElimExt; 1021 DU.NarrowUse->replaceAllUsesWith(NewDef); 1022 DeadInsts.push_back(DU.NarrowUse); 1023 } 1024 // Now that the extend is gone, we want to expose it's uses for potential 1025 // further simplification. We don't need to directly inform SimplifyIVUsers 1026 // of the new users, because their parent IV will be processed later as a 1027 // new loop phi. If we preserved IVUsers analysis, we would also want to 1028 // push the uses of WideDef here. 1029 1030 // No further widening is needed. The deceased [sz]ext had done it for us. 1031 return nullptr; 1032 } 1033 1034 // Does this user itself evaluate to a recurrence after widening? 1035 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1036 if (!WideAddRec) 1037 WideAddRec = GetExtendedOperandRecurrence(DU); 1038 1039 if (!WideAddRec) { 1040 // If use is a loop condition, try to promote the condition instead of 1041 // truncating the IV first. 1042 if (WidenLoopCompare(DU)) 1043 return nullptr; 1044 1045 // This user does not evaluate to a recurence after widening, so don't 1046 // follow it. Instead insert a Trunc to kill off the original use, 1047 // eventually isolating the original narrow IV so it can be removed. 1048 truncateIVUse(DU, DT); 1049 return nullptr; 1050 } 1051 // Assume block terminators cannot evaluate to a recurrence. We can't to 1052 // insert a Trunc after a terminator if there happens to be a critical edge. 1053 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1054 "SCEV is not expected to evaluate a block terminator"); 1055 1056 // Reuse the IV increment that SCEVExpander created as long as it dominates 1057 // NarrowUse. 1058 Instruction *WideUse = nullptr; 1059 if (WideAddRec == WideIncExpr 1060 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1061 WideUse = WideInc; 1062 else { 1063 WideUse = CloneIVUser(DU); 1064 if (!WideUse) 1065 return nullptr; 1066 } 1067 // Evaluation of WideAddRec ensured that the narrow expression could be 1068 // extended outside the loop without overflow. This suggests that the wide use 1069 // evaluates to the same expression as the extended narrow use, but doesn't 1070 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1071 // where it fails, we simply throw away the newly created wide use. 1072 if (WideAddRec != SE->getSCEV(WideUse)) { 1073 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1074 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1075 DeadInsts.push_back(WideUse); 1076 return nullptr; 1077 } 1078 1079 // Returning WideUse pushes it on the worklist. 1080 return WideUse; 1081 } 1082 1083 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1084 /// 1085 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1086 for (User *U : NarrowDef->users()) { 1087 Instruction *NarrowUser = cast<Instruction>(U); 1088 1089 // Handle data flow merges and bizarre phi cycles. 1090 if (!Widened.insert(NarrowUser)) 1091 continue; 1092 1093 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1094 } 1095 } 1096 1097 /// CreateWideIV - Process a single induction variable. First use the 1098 /// SCEVExpander to create a wide induction variable that evaluates to the same 1099 /// recurrence as the original narrow IV. Then use a worklist to forward 1100 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1101 /// interesting IV users, the narrow IV will be isolated for removal by 1102 /// DeleteDeadPHIs. 1103 /// 1104 /// It would be simpler to delete uses as they are processed, but we must avoid 1105 /// invalidating SCEV expressions. 1106 /// 1107 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1108 // Is this phi an induction variable? 1109 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1110 if (!AddRec) 1111 return nullptr; 1112 1113 // Widen the induction variable expression. 1114 const SCEV *WideIVExpr = IsSigned ? 1115 SE->getSignExtendExpr(AddRec, WideType) : 1116 SE->getZeroExtendExpr(AddRec, WideType); 1117 1118 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1119 "Expect the new IV expression to preserve its type"); 1120 1121 // Can the IV be extended outside the loop without overflow? 1122 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1123 if (!AddRec || AddRec->getLoop() != L) 1124 return nullptr; 1125 1126 // An AddRec must have loop-invariant operands. Since this AddRec is 1127 // materialized by a loop header phi, the expression cannot have any post-loop 1128 // operands, so they must dominate the loop header. 1129 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1130 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1131 && "Loop header phi recurrence inputs do not dominate the loop"); 1132 1133 // The rewriter provides a value for the desired IV expression. This may 1134 // either find an existing phi or materialize a new one. Either way, we 1135 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1136 // of the phi-SCC dominates the loop entry. 1137 Instruction *InsertPt = L->getHeader()->begin(); 1138 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1139 1140 // Remembering the WideIV increment generated by SCEVExpander allows 1141 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1142 // employ a general reuse mechanism because the call above is the only call to 1143 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1144 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1145 WideInc = 1146 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1147 WideIncExpr = SE->getSCEV(WideInc); 1148 } 1149 1150 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1151 ++NumWidened; 1152 1153 // Traverse the def-use chain using a worklist starting at the original IV. 1154 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1155 1156 Widened.insert(OrigPhi); 1157 pushNarrowIVUsers(OrigPhi, WidePhi); 1158 1159 while (!NarrowIVUsers.empty()) { 1160 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1161 1162 // Process a def-use edge. This may replace the use, so don't hold a 1163 // use_iterator across it. 1164 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1165 1166 // Follow all def-use edges from the previous narrow use. 1167 if (WideUse) 1168 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1169 1170 // WidenIVUse may have removed the def-use edge. 1171 if (DU.NarrowDef->use_empty()) 1172 DeadInsts.push_back(DU.NarrowDef); 1173 } 1174 return WidePhi; 1175 } 1176 1177 //===----------------------------------------------------------------------===// 1178 // Live IV Reduction - Minimize IVs live across the loop. 1179 //===----------------------------------------------------------------------===// 1180 1181 1182 //===----------------------------------------------------------------------===// 1183 // Simplification of IV users based on SCEV evaluation. 1184 //===----------------------------------------------------------------------===// 1185 1186 namespace { 1187 class IndVarSimplifyVisitor : public IVVisitor { 1188 ScalarEvolution *SE; 1189 const DataLayout *DL; 1190 PHINode *IVPhi; 1191 1192 public: 1193 WideIVInfo WI; 1194 1195 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1196 const DataLayout *DL, const DominatorTree *DTree): 1197 SE(SCEV), DL(DL), IVPhi(IV) { 1198 DT = DTree; 1199 WI.NarrowIV = IVPhi; 1200 if (ReduceLiveIVs) 1201 setSplitOverflowIntrinsics(); 1202 } 1203 1204 // Implement the interface used by simplifyUsersOfIV. 1205 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); } 1206 }; 1207 } 1208 1209 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1210 /// users. Each successive simplification may push more users which may 1211 /// themselves be candidates for simplification. 1212 /// 1213 /// Sign/Zero extend elimination is interleaved with IV simplification. 1214 /// 1215 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1216 SCEVExpander &Rewriter, 1217 LPPassManager &LPM) { 1218 SmallVector<WideIVInfo, 8> WideIVs; 1219 1220 SmallVector<PHINode*, 8> LoopPhis; 1221 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1222 LoopPhis.push_back(cast<PHINode>(I)); 1223 } 1224 // Each round of simplification iterates through the SimplifyIVUsers worklist 1225 // for all current phis, then determines whether any IVs can be 1226 // widened. Widening adds new phis to LoopPhis, inducing another round of 1227 // simplification on the wide IVs. 1228 while (!LoopPhis.empty()) { 1229 // Evaluate as many IV expressions as possible before widening any IVs. This 1230 // forces SCEV to set no-wrap flags before evaluating sign/zero 1231 // extension. The first time SCEV attempts to normalize sign/zero extension, 1232 // the result becomes final. So for the most predictable results, we delay 1233 // evaluation of sign/zero extend evaluation until needed, and avoid running 1234 // other SCEV based analysis prior to SimplifyAndExtend. 1235 do { 1236 PHINode *CurrIV = LoopPhis.pop_back_val(); 1237 1238 // Information about sign/zero extensions of CurrIV. 1239 IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT); 1240 1241 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1242 1243 if (Visitor.WI.WidestNativeType) { 1244 WideIVs.push_back(Visitor.WI); 1245 } 1246 } while(!LoopPhis.empty()); 1247 1248 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1249 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1250 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1251 Changed = true; 1252 LoopPhis.push_back(WidePhi); 1253 } 1254 } 1255 } 1256 } 1257 1258 //===----------------------------------------------------------------------===// 1259 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1260 //===----------------------------------------------------------------------===// 1261 1262 /// Check for expressions that ScalarEvolution generates to compute 1263 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1264 /// expanding them may incur additional cost (albeit in the loop preheader). 1265 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1266 SmallPtrSetImpl<const SCEV*> &Processed, 1267 ScalarEvolution *SE) { 1268 if (!Processed.insert(S)) 1269 return false; 1270 1271 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1272 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1273 // precise expression, rather than a UDiv from the user's code. If we can't 1274 // find a UDiv in the code with some simple searching, assume the former and 1275 // forego rewriting the loop. 1276 if (isa<SCEVUDivExpr>(S)) { 1277 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1278 if (!OrigCond) return true; 1279 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1280 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1281 if (R != S) { 1282 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1283 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1284 if (L != S) 1285 return true; 1286 } 1287 } 1288 1289 // Recurse past add expressions, which commonly occur in the 1290 // BackedgeTakenCount. They may already exist in program code, and if not, 1291 // they are not too expensive rematerialize. 1292 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1293 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1294 I != E; ++I) { 1295 if (isHighCostExpansion(*I, BI, Processed, SE)) 1296 return true; 1297 } 1298 return false; 1299 } 1300 1301 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1302 // the exit condition. 1303 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1304 return true; 1305 1306 // If we haven't recognized an expensive SCEV pattern, assume it's an 1307 // expression produced by program code. 1308 return false; 1309 } 1310 1311 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1312 /// count expression can be safely and cheaply expanded into an instruction 1313 /// sequence that can be used by LinearFunctionTestReplace. 1314 /// 1315 /// TODO: This fails for pointer-type loop counters with greater than one byte 1316 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1317 /// we could skip this check in the case that the LFTR loop counter (chosen by 1318 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1319 /// the loop test to an inequality test by checking the target data's alignment 1320 /// of element types (given that the initial pointer value originates from or is 1321 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1322 /// However, we don't yet have a strong motivation for converting loop tests 1323 /// into inequality tests. 1324 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1325 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1326 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1327 BackedgeTakenCount->isZero()) 1328 return false; 1329 1330 if (!L->getExitingBlock()) 1331 return false; 1332 1333 // Can't rewrite non-branch yet. 1334 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1335 if (!BI) 1336 return false; 1337 1338 SmallPtrSet<const SCEV*, 8> Processed; 1339 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1340 return false; 1341 1342 return true; 1343 } 1344 1345 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1346 /// invariant value to the phi. 1347 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1348 Instruction *IncI = dyn_cast<Instruction>(IncV); 1349 if (!IncI) 1350 return nullptr; 1351 1352 switch (IncI->getOpcode()) { 1353 case Instruction::Add: 1354 case Instruction::Sub: 1355 break; 1356 case Instruction::GetElementPtr: 1357 // An IV counter must preserve its type. 1358 if (IncI->getNumOperands() == 2) 1359 break; 1360 default: 1361 return nullptr; 1362 } 1363 1364 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1365 if (Phi && Phi->getParent() == L->getHeader()) { 1366 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1367 return Phi; 1368 return nullptr; 1369 } 1370 if (IncI->getOpcode() == Instruction::GetElementPtr) 1371 return nullptr; 1372 1373 // Allow add/sub to be commuted. 1374 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1375 if (Phi && Phi->getParent() == L->getHeader()) { 1376 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1377 return Phi; 1378 } 1379 return nullptr; 1380 } 1381 1382 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1383 static ICmpInst *getLoopTest(Loop *L) { 1384 assert(L->getExitingBlock() && "expected loop exit"); 1385 1386 BasicBlock *LatchBlock = L->getLoopLatch(); 1387 // Don't bother with LFTR if the loop is not properly simplified. 1388 if (!LatchBlock) 1389 return nullptr; 1390 1391 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1392 assert(BI && "expected exit branch"); 1393 1394 return dyn_cast<ICmpInst>(BI->getCondition()); 1395 } 1396 1397 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1398 /// that the current exit test is already sufficiently canonical. 1399 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1400 // Do LFTR to simplify the exit condition to an ICMP. 1401 ICmpInst *Cond = getLoopTest(L); 1402 if (!Cond) 1403 return true; 1404 1405 // Do LFTR to simplify the exit ICMP to EQ/NE 1406 ICmpInst::Predicate Pred = Cond->getPredicate(); 1407 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1408 return true; 1409 1410 // Look for a loop invariant RHS 1411 Value *LHS = Cond->getOperand(0); 1412 Value *RHS = Cond->getOperand(1); 1413 if (!isLoopInvariant(RHS, L, DT)) { 1414 if (!isLoopInvariant(LHS, L, DT)) 1415 return true; 1416 std::swap(LHS, RHS); 1417 } 1418 // Look for a simple IV counter LHS 1419 PHINode *Phi = dyn_cast<PHINode>(LHS); 1420 if (!Phi) 1421 Phi = getLoopPhiForCounter(LHS, L, DT); 1422 1423 if (!Phi) 1424 return true; 1425 1426 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1427 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1428 if (Idx < 0) 1429 return true; 1430 1431 // Do LFTR if the exit condition's IV is *not* a simple counter. 1432 Value *IncV = Phi->getIncomingValue(Idx); 1433 return Phi != getLoopPhiForCounter(IncV, L, DT); 1434 } 1435 1436 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1437 /// down to checking that all operands are constant and listing instructions 1438 /// that may hide undef. 1439 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1440 unsigned Depth) { 1441 if (isa<Constant>(V)) 1442 return !isa<UndefValue>(V); 1443 1444 if (Depth >= 6) 1445 return false; 1446 1447 // Conservatively handle non-constant non-instructions. For example, Arguments 1448 // may be undef. 1449 Instruction *I = dyn_cast<Instruction>(V); 1450 if (!I) 1451 return false; 1452 1453 // Load and return values may be undef. 1454 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1455 return false; 1456 1457 // Optimistically handle other instructions. 1458 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1459 if (!Visited.insert(*OI)) 1460 continue; 1461 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1462 return false; 1463 } 1464 return true; 1465 } 1466 1467 /// Return true if the given value is concrete. We must prove that undef can 1468 /// never reach it. 1469 /// 1470 /// TODO: If we decide that this is a good approach to checking for undef, we 1471 /// may factor it into a common location. 1472 static bool hasConcreteDef(Value *V) { 1473 SmallPtrSet<Value*, 8> Visited; 1474 Visited.insert(V); 1475 return hasConcreteDefImpl(V, Visited, 0); 1476 } 1477 1478 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1479 /// be rewritten) loop exit test. 1480 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1481 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1482 Value *IncV = Phi->getIncomingValue(LatchIdx); 1483 1484 for (User *U : Phi->users()) 1485 if (U != Cond && U != IncV) return false; 1486 1487 for (User *U : IncV->users()) 1488 if (U != Cond && U != Phi) return false; 1489 return true; 1490 } 1491 1492 /// FindLoopCounter - Find an affine IV in canonical form. 1493 /// 1494 /// BECount may be an i8* pointer type. The pointer difference is already 1495 /// valid count without scaling the address stride, so it remains a pointer 1496 /// expression as far as SCEV is concerned. 1497 /// 1498 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1499 /// 1500 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1501 /// 1502 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1503 /// This is difficult in general for SCEV because of potential overflow. But we 1504 /// could at least handle constant BECounts. 1505 static PHINode * 1506 FindLoopCounter(Loop *L, const SCEV *BECount, 1507 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) { 1508 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1509 1510 Value *Cond = 1511 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1512 1513 // Loop over all of the PHI nodes, looking for a simple counter. 1514 PHINode *BestPhi = nullptr; 1515 const SCEV *BestInit = nullptr; 1516 BasicBlock *LatchBlock = L->getLoopLatch(); 1517 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1518 1519 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1520 PHINode *Phi = cast<PHINode>(I); 1521 if (!SE->isSCEVable(Phi->getType())) 1522 continue; 1523 1524 // Avoid comparing an integer IV against a pointer Limit. 1525 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1526 continue; 1527 1528 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1529 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1530 continue; 1531 1532 // AR may be a pointer type, while BECount is an integer type. 1533 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1534 // AR may not be a narrower type, or we may never exit. 1535 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1536 if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth))) 1537 continue; 1538 1539 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1540 if (!Step || !Step->isOne()) 1541 continue; 1542 1543 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1544 Value *IncV = Phi->getIncomingValue(LatchIdx); 1545 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1546 continue; 1547 1548 // Avoid reusing a potentially undef value to compute other values that may 1549 // have originally had a concrete definition. 1550 if (!hasConcreteDef(Phi)) { 1551 // We explicitly allow unknown phis as long as they are already used by 1552 // the loop test. In this case we assume that performing LFTR could not 1553 // increase the number of undef users. 1554 if (ICmpInst *Cond = getLoopTest(L)) { 1555 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1556 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1557 continue; 1558 } 1559 } 1560 } 1561 const SCEV *Init = AR->getStart(); 1562 1563 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1564 // Don't force a live loop counter if another IV can be used. 1565 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1566 continue; 1567 1568 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1569 // also prefers integer to pointer IVs. 1570 if (BestInit->isZero() != Init->isZero()) { 1571 if (BestInit->isZero()) 1572 continue; 1573 } 1574 // If two IVs both count from zero or both count from nonzero then the 1575 // narrower is likely a dead phi that has been widened. Use the wider phi 1576 // to allow the other to be eliminated. 1577 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1578 continue; 1579 } 1580 BestPhi = Phi; 1581 BestInit = Init; 1582 } 1583 return BestPhi; 1584 } 1585 1586 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1587 /// holds the RHS of the new loop test. 1588 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1589 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1590 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1591 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1592 const SCEV *IVInit = AR->getStart(); 1593 1594 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1595 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1596 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1597 // the existing GEPs whenever possible. 1598 if (IndVar->getType()->isPointerTy() 1599 && !IVCount->getType()->isPointerTy()) { 1600 1601 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1602 // signed value. IVCount on the other hand represents the loop trip count, 1603 // which is an unsigned value. FindLoopCounter only allows induction 1604 // variables that have a positive unit stride of one. This means we don't 1605 // have to handle the case of negative offsets (yet) and just need to zero 1606 // extend IVCount. 1607 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1608 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1609 1610 // Expand the code for the iteration count. 1611 assert(SE->isLoopInvariant(IVOffset, L) && 1612 "Computed iteration count is not loop invariant!"); 1613 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1614 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1615 1616 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1617 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1618 // We could handle pointer IVs other than i8*, but we need to compensate for 1619 // gep index scaling. See canExpandBackedgeTakenCount comments. 1620 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1621 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1622 && "unit stride pointer IV must be i8*"); 1623 1624 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1625 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1626 } 1627 else { 1628 // In any other case, convert both IVInit and IVCount to integers before 1629 // comparing. This may result in SCEV expension of pointers, but in practice 1630 // SCEV will fold the pointer arithmetic away as such: 1631 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1632 // 1633 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1634 // for simple memset-style loops. 1635 // 1636 // IVInit integer and IVCount pointer would only occur if a canonical IV 1637 // were generated on top of case #2, which is not expected. 1638 1639 const SCEV *IVLimit = nullptr; 1640 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1641 // For non-zero Start, compute IVCount here. 1642 if (AR->getStart()->isZero()) 1643 IVLimit = IVCount; 1644 else { 1645 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1646 const SCEV *IVInit = AR->getStart(); 1647 1648 // For integer IVs, truncate the IV before computing IVInit + BECount. 1649 if (SE->getTypeSizeInBits(IVInit->getType()) 1650 > SE->getTypeSizeInBits(IVCount->getType())) 1651 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1652 1653 IVLimit = SE->getAddExpr(IVInit, IVCount); 1654 } 1655 // Expand the code for the iteration count. 1656 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1657 IRBuilder<> Builder(BI); 1658 assert(SE->isLoopInvariant(IVLimit, L) && 1659 "Computed iteration count is not loop invariant!"); 1660 // Ensure that we generate the same type as IndVar, or a smaller integer 1661 // type. In the presence of null pointer values, we have an integer type 1662 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1663 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1664 IndVar->getType() : IVCount->getType(); 1665 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1666 } 1667 } 1668 1669 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1670 /// loop to be a canonical != comparison against the incremented loop induction 1671 /// variable. This pass is able to rewrite the exit tests of any loop where the 1672 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1673 /// is actually a much broader range than just linear tests. 1674 Value *IndVarSimplify:: 1675 LinearFunctionTestReplace(Loop *L, 1676 const SCEV *BackedgeTakenCount, 1677 PHINode *IndVar, 1678 SCEVExpander &Rewriter) { 1679 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1680 1681 // Initialize CmpIndVar and IVCount to their preincremented values. 1682 Value *CmpIndVar = IndVar; 1683 const SCEV *IVCount = BackedgeTakenCount; 1684 1685 // If the exiting block is the same as the backedge block, we prefer to 1686 // compare against the post-incremented value, otherwise we must compare 1687 // against the preincremented value. 1688 if (L->getExitingBlock() == L->getLoopLatch()) { 1689 // The BackedgeTaken expression contains the number of times that the 1690 // backedge branches to the loop header. This is one less than the 1691 // number of times the loop executes, so use the incremented indvar. 1692 llvm::Value *IncrementedIndvar = 1693 IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1694 const auto *IncrementedIndvarSCEV = 1695 cast<SCEVAddRecExpr>(SE->getSCEV(IncrementedIndvar)); 1696 // It is unsafe to use the incremented indvar if it has a wrapping flag, we 1697 // don't want to compare against a poison value. Check the SCEV that 1698 // corresponds to the incremented indvar, the SCEVExpander will only insert 1699 // flags in the IR if the SCEV originally had wrapping flags. 1700 // FIXME: In theory, SCEV could drop flags even though they exist in IR. 1701 // A more robust solution would involve getting a new expression for 1702 // CmpIndVar by applying non-NSW/NUW AddExprs. 1703 if (!ScalarEvolution::maskFlags(IncrementedIndvarSCEV->getNoWrapFlags(), 1704 SCEV::FlagNUW | SCEV::FlagNSW)) { 1705 // Add one to the "backedge-taken" count to get the trip count. 1706 // This addition may overflow, which is valid as long as the comparison is 1707 // truncated to BackedgeTakenCount->getType(). 1708 IVCount = 1709 SE->getAddExpr(BackedgeTakenCount, 1710 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1711 CmpIndVar = IncrementedIndvar; 1712 } 1713 } 1714 1715 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1716 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1717 && "genLoopLimit missed a cast"); 1718 1719 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1720 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1721 ICmpInst::Predicate P; 1722 if (L->contains(BI->getSuccessor(0))) 1723 P = ICmpInst::ICMP_NE; 1724 else 1725 P = ICmpInst::ICMP_EQ; 1726 1727 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1728 << " LHS:" << *CmpIndVar << '\n' 1729 << " op:\t" 1730 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1731 << " RHS:\t" << *ExitCnt << "\n" 1732 << " IVCount:\t" << *IVCount << "\n"); 1733 1734 IRBuilder<> Builder(BI); 1735 1736 // LFTR can ignore IV overflow and truncate to the width of 1737 // BECount. This avoids materializing the add(zext(add)) expression. 1738 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1739 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1740 if (CmpIndVarSize > ExitCntSize) { 1741 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1742 const SCEV *ARStart = AR->getStart(); 1743 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1744 // For constant IVCount, avoid truncation. 1745 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1746 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1747 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1748 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1749 // above such that IVCount is now zero. 1750 if (IVCount != BackedgeTakenCount && Count == 0) { 1751 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1752 ++Count; 1753 } 1754 else 1755 Count = Count.zext(CmpIndVarSize); 1756 APInt NewLimit; 1757 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1758 NewLimit = Start - Count; 1759 else 1760 NewLimit = Start + Count; 1761 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1762 1763 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1764 } else { 1765 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1766 "lftr.wideiv"); 1767 } 1768 } 1769 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1770 Value *OrigCond = BI->getCondition(); 1771 // It's tempting to use replaceAllUsesWith here to fully replace the old 1772 // comparison, but that's not immediately safe, since users of the old 1773 // comparison may not be dominated by the new comparison. Instead, just 1774 // update the branch to use the new comparison; in the common case this 1775 // will make old comparison dead. 1776 BI->setCondition(Cond); 1777 DeadInsts.push_back(OrigCond); 1778 1779 ++NumLFTR; 1780 Changed = true; 1781 return Cond; 1782 } 1783 1784 //===----------------------------------------------------------------------===// 1785 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1786 //===----------------------------------------------------------------------===// 1787 1788 /// If there's a single exit block, sink any loop-invariant values that 1789 /// were defined in the preheader but not used inside the loop into the 1790 /// exit block to reduce register pressure in the loop. 1791 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1792 BasicBlock *ExitBlock = L->getExitBlock(); 1793 if (!ExitBlock) return; 1794 1795 BasicBlock *Preheader = L->getLoopPreheader(); 1796 if (!Preheader) return; 1797 1798 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1799 BasicBlock::iterator I = Preheader->getTerminator(); 1800 while (I != Preheader->begin()) { 1801 --I; 1802 // New instructions were inserted at the end of the preheader. 1803 if (isa<PHINode>(I)) 1804 break; 1805 1806 // Don't move instructions which might have side effects, since the side 1807 // effects need to complete before instructions inside the loop. Also don't 1808 // move instructions which might read memory, since the loop may modify 1809 // memory. Note that it's okay if the instruction might have undefined 1810 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1811 // block. 1812 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1813 continue; 1814 1815 // Skip debug info intrinsics. 1816 if (isa<DbgInfoIntrinsic>(I)) 1817 continue; 1818 1819 // Skip landingpad instructions. 1820 if (isa<LandingPadInst>(I)) 1821 continue; 1822 1823 // Don't sink alloca: we never want to sink static alloca's out of the 1824 // entry block, and correctly sinking dynamic alloca's requires 1825 // checks for stacksave/stackrestore intrinsics. 1826 // FIXME: Refactor this check somehow? 1827 if (isa<AllocaInst>(I)) 1828 continue; 1829 1830 // Determine if there is a use in or before the loop (direct or 1831 // otherwise). 1832 bool UsedInLoop = false; 1833 for (Use &U : I->uses()) { 1834 Instruction *User = cast<Instruction>(U.getUser()); 1835 BasicBlock *UseBB = User->getParent(); 1836 if (PHINode *P = dyn_cast<PHINode>(User)) { 1837 unsigned i = 1838 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1839 UseBB = P->getIncomingBlock(i); 1840 } 1841 if (UseBB == Preheader || L->contains(UseBB)) { 1842 UsedInLoop = true; 1843 break; 1844 } 1845 } 1846 1847 // If there is, the def must remain in the preheader. 1848 if (UsedInLoop) 1849 continue; 1850 1851 // Otherwise, sink it to the exit block. 1852 Instruction *ToMove = I; 1853 bool Done = false; 1854 1855 if (I != Preheader->begin()) { 1856 // Skip debug info intrinsics. 1857 do { 1858 --I; 1859 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1860 1861 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1862 Done = true; 1863 } else { 1864 Done = true; 1865 } 1866 1867 ToMove->moveBefore(InsertPt); 1868 if (Done) break; 1869 InsertPt = ToMove; 1870 } 1871 } 1872 1873 //===----------------------------------------------------------------------===// 1874 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1875 //===----------------------------------------------------------------------===// 1876 1877 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1878 if (skipOptnoneFunction(L)) 1879 return false; 1880 1881 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1882 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1883 // canonicalization can be a pessimization without LSR to "clean up" 1884 // afterwards. 1885 // - We depend on having a preheader; in particular, 1886 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1887 // and we're in trouble if we can't find the induction variable even when 1888 // we've manually inserted one. 1889 if (!L->isLoopSimplifyForm()) 1890 return false; 1891 1892 LI = &getAnalysis<LoopInfo>(); 1893 SE = &getAnalysis<ScalarEvolution>(); 1894 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1895 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1896 DL = DLP ? &DLP->getDataLayout() : nullptr; 1897 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1898 1899 DeadInsts.clear(); 1900 Changed = false; 1901 1902 // If there are any floating-point recurrences, attempt to 1903 // transform them to use integer recurrences. 1904 RewriteNonIntegerIVs(L); 1905 1906 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1907 1908 // Create a rewriter object which we'll use to transform the code with. 1909 SCEVExpander Rewriter(*SE, "indvars"); 1910 #ifndef NDEBUG 1911 Rewriter.setDebugType(DEBUG_TYPE); 1912 #endif 1913 1914 // Eliminate redundant IV users. 1915 // 1916 // Simplification works best when run before other consumers of SCEV. We 1917 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1918 // other expressions involving loop IVs have been evaluated. This helps SCEV 1919 // set no-wrap flags before normalizing sign/zero extension. 1920 Rewriter.disableCanonicalMode(); 1921 SimplifyAndExtend(L, Rewriter, LPM); 1922 1923 // Check to see if this loop has a computable loop-invariant execution count. 1924 // If so, this means that we can compute the final value of any expressions 1925 // that are recurrent in the loop, and substitute the exit values from the 1926 // loop into any instructions outside of the loop that use the final values of 1927 // the current expressions. 1928 // 1929 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1930 RewriteLoopExitValues(L, Rewriter); 1931 1932 // Eliminate redundant IV cycles. 1933 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1934 1935 // If we have a trip count expression, rewrite the loop's exit condition 1936 // using it. We can currently only handle loops with a single exit. 1937 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1938 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL); 1939 if (IndVar) { 1940 // Check preconditions for proper SCEVExpander operation. SCEV does not 1941 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1942 // pass that uses the SCEVExpander must do it. This does not work well for 1943 // loop passes because SCEVExpander makes assumptions about all loops, 1944 // while LoopPassManager only forces the current loop to be simplified. 1945 // 1946 // FIXME: SCEV expansion has no way to bail out, so the caller must 1947 // explicitly check any assumptions made by SCEV. Brittle. 1948 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1949 if (!AR || AR->getLoop()->getLoopPreheader()) 1950 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1951 Rewriter); 1952 } 1953 } 1954 // Clear the rewriter cache, because values that are in the rewriter's cache 1955 // can be deleted in the loop below, causing the AssertingVH in the cache to 1956 // trigger. 1957 Rewriter.clear(); 1958 1959 // Now that we're done iterating through lists, clean up any instructions 1960 // which are now dead. 1961 while (!DeadInsts.empty()) 1962 if (Instruction *Inst = 1963 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1964 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1965 1966 // The Rewriter may not be used from this point on. 1967 1968 // Loop-invariant instructions in the preheader that aren't used in the 1969 // loop may be sunk below the loop to reduce register pressure. 1970 SinkUnusedInvariants(L); 1971 1972 // Clean up dead instructions. 1973 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1974 // Check a post-condition. 1975 assert(L->isLCSSAForm(*DT) && 1976 "Indvars did not leave the loop in lcssa form!"); 1977 1978 // Verify that LFTR, and any other change have not interfered with SCEV's 1979 // ability to compute trip count. 1980 #ifndef NDEBUG 1981 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1982 SE->forgetLoop(L); 1983 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1984 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1985 SE->getTypeSizeInBits(NewBECount->getType())) 1986 NewBECount = SE->getTruncateOrNoop(NewBECount, 1987 BackedgeTakenCount->getType()); 1988 else 1989 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1990 NewBECount->getType()); 1991 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1992 } 1993 #endif 1994 1995 return Changed; 1996 } 1997