1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 } 89 90 namespace { 91 class IndVarSimplify : public LoopPass { 92 LoopInfo *LI; 93 ScalarEvolution *SE; 94 DominatorTree *DT; 95 TargetLibraryInfo *TLI; 96 const TargetTransformInfo *TTI; 97 98 SmallVector<WeakVH, 16> DeadInsts; 99 bool Changed; 100 public: 101 102 static char ID; // Pass identification, replacement for typeid 103 IndVarSimplify() 104 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 105 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 106 } 107 108 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 109 110 void getAnalysisUsage(AnalysisUsage &AU) const override { 111 AU.addRequired<DominatorTreeWrapperPass>(); 112 AU.addRequired<LoopInfoWrapperPass>(); 113 AU.addRequired<ScalarEvolutionWrapperPass>(); 114 AU.addRequiredID(LoopSimplifyID); 115 AU.addRequiredID(LCSSAID); 116 AU.addPreserved<GlobalsAAWrapperPass>(); 117 AU.addPreserved<ScalarEvolutionWrapperPass>(); 118 AU.addPreservedID(LoopSimplifyID); 119 AU.addPreservedID(LCSSAID); 120 AU.setPreservesCFG(); 121 } 122 123 private: 124 void releaseMemory() override { 125 DeadInsts.clear(); 126 } 127 128 bool isValidRewrite(Value *FromVal, Value *ToVal); 129 130 void HandleFloatingPointIV(Loop *L, PHINode *PH); 131 void RewriteNonIntegerIVs(Loop *L); 132 133 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 134 135 bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 136 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 137 138 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 139 PHINode *IndVar, SCEVExpander &Rewriter); 140 141 void SinkUnusedInvariants(Loop *L); 142 143 Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 144 Instruction *InsertPt, Type *Ty); 145 }; 146 } 147 148 char IndVarSimplify::ID = 0; 149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 150 "Induction Variable Simplification", false, false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 155 INITIALIZE_PASS_DEPENDENCY(LCSSA) 156 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 157 "Induction Variable Simplification", false, false) 158 159 Pass *llvm::createIndVarSimplifyPass() { 160 return new IndVarSimplify(); 161 } 162 163 /// Return true if the SCEV expansion generated by the rewriter can replace the 164 /// original value. SCEV guarantees that it produces the same value, but the way 165 /// it is produced may be illegal IR. Ideally, this function will only be 166 /// called for verification. 167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 168 // If an SCEV expression subsumed multiple pointers, its expansion could 169 // reassociate the GEP changing the base pointer. This is illegal because the 170 // final address produced by a GEP chain must be inbounds relative to its 171 // underlying object. Otherwise basic alias analysis, among other things, 172 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 173 // producing an expression involving multiple pointers. Until then, we must 174 // bail out here. 175 // 176 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 177 // because it understands lcssa phis while SCEV does not. 178 Value *FromPtr = FromVal; 179 Value *ToPtr = ToVal; 180 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 181 FromPtr = GEP->getPointerOperand(); 182 } 183 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 184 ToPtr = GEP->getPointerOperand(); 185 } 186 if (FromPtr != FromVal || ToPtr != ToVal) { 187 // Quickly check the common case 188 if (FromPtr == ToPtr) 189 return true; 190 191 // SCEV may have rewritten an expression that produces the GEP's pointer 192 // operand. That's ok as long as the pointer operand has the same base 193 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 194 // base of a recurrence. This handles the case in which SCEV expansion 195 // converts a pointer type recurrence into a nonrecurrent pointer base 196 // indexed by an integer recurrence. 197 198 // If the GEP base pointer is a vector of pointers, abort. 199 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 200 return false; 201 202 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 203 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 204 if (FromBase == ToBase) 205 return true; 206 207 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 208 << *FromBase << " != " << *ToBase << "\n"); 209 210 return false; 211 } 212 return true; 213 } 214 215 /// Determine the insertion point for this user. By default, insert immediately 216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 218 /// common dominator for the incoming blocks. 219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 220 DominatorTree *DT) { 221 PHINode *PHI = dyn_cast<PHINode>(User); 222 if (!PHI) 223 return User; 224 225 Instruction *InsertPt = nullptr; 226 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 227 if (PHI->getIncomingValue(i) != Def) 228 continue; 229 230 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 231 if (!InsertPt) { 232 InsertPt = InsertBB->getTerminator(); 233 continue; 234 } 235 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 236 InsertPt = InsertBB->getTerminator(); 237 } 238 assert(InsertPt && "Missing phi operand"); 239 assert((!isa<Instruction>(Def) || 240 DT->dominates(cast<Instruction>(Def), InsertPt)) && 241 "def does not dominate all uses"); 242 return InsertPt; 243 } 244 245 //===----------------------------------------------------------------------===// 246 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 247 //===----------------------------------------------------------------------===// 248 249 /// Convert APF to an integer, if possible. 250 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 251 bool isExact = false; 252 // See if we can convert this to an int64_t 253 uint64_t UIntVal; 254 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 255 &isExact) != APFloat::opOK || !isExact) 256 return false; 257 IntVal = UIntVal; 258 return true; 259 } 260 261 /// If the loop has floating induction variable then insert corresponding 262 /// integer induction variable if possible. 263 /// For example, 264 /// for(double i = 0; i < 10000; ++i) 265 /// bar(i) 266 /// is converted into 267 /// for(int i = 0; i < 10000; ++i) 268 /// bar((double)i); 269 /// 270 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 271 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 272 unsigned BackEdge = IncomingEdge^1; 273 274 // Check incoming value. 275 ConstantFP *InitValueVal = 276 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 277 278 int64_t InitValue; 279 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 280 return; 281 282 // Check IV increment. Reject this PN if increment operation is not 283 // an add or increment value can not be represented by an integer. 284 BinaryOperator *Incr = 285 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 286 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 287 288 // If this is not an add of the PHI with a constantfp, or if the constant fp 289 // is not an integer, bail out. 290 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 291 int64_t IncValue; 292 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 293 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 294 return; 295 296 // Check Incr uses. One user is PN and the other user is an exit condition 297 // used by the conditional terminator. 298 Value::user_iterator IncrUse = Incr->user_begin(); 299 Instruction *U1 = cast<Instruction>(*IncrUse++); 300 if (IncrUse == Incr->user_end()) return; 301 Instruction *U2 = cast<Instruction>(*IncrUse++); 302 if (IncrUse != Incr->user_end()) return; 303 304 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 305 // only used by a branch, we can't transform it. 306 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 307 if (!Compare) 308 Compare = dyn_cast<FCmpInst>(U2); 309 if (!Compare || !Compare->hasOneUse() || 310 !isa<BranchInst>(Compare->user_back())) 311 return; 312 313 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 314 315 // We need to verify that the branch actually controls the iteration count 316 // of the loop. If not, the new IV can overflow and no one will notice. 317 // The branch block must be in the loop and one of the successors must be out 318 // of the loop. 319 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 320 if (!L->contains(TheBr->getParent()) || 321 (L->contains(TheBr->getSuccessor(0)) && 322 L->contains(TheBr->getSuccessor(1)))) 323 return; 324 325 326 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 327 // transform it. 328 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 329 int64_t ExitValue; 330 if (ExitValueVal == nullptr || 331 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 332 return; 333 334 // Find new predicate for integer comparison. 335 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 336 switch (Compare->getPredicate()) { 337 default: return; // Unknown comparison. 338 case CmpInst::FCMP_OEQ: 339 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 340 case CmpInst::FCMP_ONE: 341 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 342 case CmpInst::FCMP_OGT: 343 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 344 case CmpInst::FCMP_OGE: 345 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 346 case CmpInst::FCMP_OLT: 347 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 348 case CmpInst::FCMP_OLE: 349 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 350 } 351 352 // We convert the floating point induction variable to a signed i32 value if 353 // we can. This is only safe if the comparison will not overflow in a way 354 // that won't be trapped by the integer equivalent operations. Check for this 355 // now. 356 // TODO: We could use i64 if it is native and the range requires it. 357 358 // The start/stride/exit values must all fit in signed i32. 359 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 360 return; 361 362 // If not actually striding (add x, 0.0), avoid touching the code. 363 if (IncValue == 0) 364 return; 365 366 // Positive and negative strides have different safety conditions. 367 if (IncValue > 0) { 368 // If we have a positive stride, we require the init to be less than the 369 // exit value. 370 if (InitValue >= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(ExitValue-InitValue); 374 // Check for infinite loop, either: 375 // while (i <= Exit) or until (i > Exit) 376 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 392 return; 393 394 } else { 395 // If we have a negative stride, we require the init to be greater than the 396 // exit value. 397 if (InitValue <= ExitValue) 398 return; 399 400 uint32_t Range = uint32_t(InitValue-ExitValue); 401 // Check for infinite loop, either: 402 // while (i >= Exit) or until (i < Exit) 403 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 404 if (++Range == 0) return; // Range overflows. 405 } 406 407 unsigned Leftover = Range % uint32_t(-IncValue); 408 409 // If this is an equality comparison, we require that the strided value 410 // exactly land on the exit value, otherwise the IV condition will wrap 411 // around and do things the fp IV wouldn't. 412 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 413 Leftover != 0) 414 return; 415 416 // If the stride would wrap around the i32 before exiting, we can't 417 // transform the IV. 418 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 419 return; 420 } 421 422 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 423 424 // Insert new integer induction variable. 425 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 426 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 427 PN->getIncomingBlock(IncomingEdge)); 428 429 Value *NewAdd = 430 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 431 Incr->getName()+".int", Incr); 432 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 433 434 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 435 ConstantInt::get(Int32Ty, ExitValue), 436 Compare->getName()); 437 438 // In the following deletions, PN may become dead and may be deleted. 439 // Use a WeakVH to observe whether this happens. 440 WeakVH WeakPH = PN; 441 442 // Delete the old floating point exit comparison. The branch starts using the 443 // new comparison. 444 NewCompare->takeName(Compare); 445 Compare->replaceAllUsesWith(NewCompare); 446 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 447 448 // Delete the old floating point increment. 449 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 450 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 451 452 // If the FP induction variable still has uses, this is because something else 453 // in the loop uses its value. In order to canonicalize the induction 454 // variable, we chose to eliminate the IV and rewrite it in terms of an 455 // int->fp cast. 456 // 457 // We give preference to sitofp over uitofp because it is faster on most 458 // platforms. 459 if (WeakPH) { 460 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 461 PN->getParent()->getFirstInsertionPt()); 462 PN->replaceAllUsesWith(Conv); 463 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 464 } 465 Changed = true; 466 } 467 468 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 469 // First step. Check to see if there are any floating-point recurrences. 470 // If there are, change them into integer recurrences, permitting analysis by 471 // the SCEV routines. 472 // 473 BasicBlock *Header = L->getHeader(); 474 475 SmallVector<WeakVH, 8> PHIs; 476 for (BasicBlock::iterator I = Header->begin(); 477 PHINode *PN = dyn_cast<PHINode>(I); ++I) 478 PHIs.push_back(PN); 479 480 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 481 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 482 HandleFloatingPointIV(L, PN); 483 484 // If the loop previously had floating-point IV, ScalarEvolution 485 // may not have been able to compute a trip count. Now that we've done some 486 // re-writing, the trip count may be computable. 487 if (Changed) 488 SE->forgetLoop(L); 489 } 490 491 namespace { 492 // Collect information about PHI nodes which can be transformed in 493 // RewriteLoopExitValues. 494 struct RewritePhi { 495 PHINode *PN; 496 unsigned Ith; // Ith incoming value. 497 Value *Val; // Exit value after expansion. 498 bool HighCost; // High Cost when expansion. 499 bool SafePhi; // LCSSASafePhiForRAUW. 500 501 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 502 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 503 }; 504 } 505 506 Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 507 Loop *L, Instruction *InsertPt, 508 Type *ResultTy) { 509 // Before expanding S into an expensive LLVM expression, see if we can use an 510 // already existing value as the expansion for S. 511 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 512 if (ExistingValue->getType() == ResultTy) 513 return ExistingValue; 514 515 // We didn't find anything, fall back to using SCEVExpander. 516 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 517 } 518 519 //===----------------------------------------------------------------------===// 520 // RewriteLoopExitValues - Optimize IV users outside the loop. 521 // As a side effect, reduces the amount of IV processing within the loop. 522 //===----------------------------------------------------------------------===// 523 524 /// Check to see if this loop has a computable loop-invariant execution count. 525 /// If so, this means that we can compute the final value of any expressions 526 /// that are recurrent in the loop, and substitute the exit values from the loop 527 /// into any instructions outside of the loop that use the final values of the 528 /// current expressions. 529 /// 530 /// This is mostly redundant with the regular IndVarSimplify activities that 531 /// happen later, except that it's more powerful in some cases, because it's 532 /// able to brute-force evaluate arbitrary instructions as long as they have 533 /// constant operands at the beginning of the loop. 534 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 535 // Verify the input to the pass in already in LCSSA form. 536 assert(L->isLCSSAForm(*DT)); 537 538 SmallVector<BasicBlock*, 8> ExitBlocks; 539 L->getUniqueExitBlocks(ExitBlocks); 540 541 SmallVector<RewritePhi, 8> RewritePhiSet; 542 // Find all values that are computed inside the loop, but used outside of it. 543 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 544 // the exit blocks of the loop to find them. 545 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 546 BasicBlock *ExitBB = ExitBlocks[i]; 547 548 // If there are no PHI nodes in this exit block, then no values defined 549 // inside the loop are used on this path, skip it. 550 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 551 if (!PN) continue; 552 553 unsigned NumPreds = PN->getNumIncomingValues(); 554 555 // We would like to be able to RAUW single-incoming value PHI nodes. We 556 // have to be certain this is safe even when this is an LCSSA PHI node. 557 // While the computed exit value is no longer varying in *this* loop, the 558 // exit block may be an exit block for an outer containing loop as well, 559 // the exit value may be varying in the outer loop, and thus it may still 560 // require an LCSSA PHI node. The safe case is when this is 561 // single-predecessor PHI node (LCSSA) and the exit block containing it is 562 // part of the enclosing loop, or this is the outer most loop of the nest. 563 // In either case the exit value could (at most) be varying in the same 564 // loop body as the phi node itself. Thus if it is in turn used outside of 565 // an enclosing loop it will only be via a separate LCSSA node. 566 bool LCSSASafePhiForRAUW = 567 NumPreds == 1 && 568 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 569 570 // Iterate over all of the PHI nodes. 571 BasicBlock::iterator BBI = ExitBB->begin(); 572 while ((PN = dyn_cast<PHINode>(BBI++))) { 573 if (PN->use_empty()) 574 continue; // dead use, don't replace it 575 576 // SCEV only supports integer expressions for now. 577 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 578 continue; 579 580 // It's necessary to tell ScalarEvolution about this explicitly so that 581 // it can walk the def-use list and forget all SCEVs, as it may not be 582 // watching the PHI itself. Once the new exit value is in place, there 583 // may not be a def-use connection between the loop and every instruction 584 // which got a SCEVAddRecExpr for that loop. 585 SE->forgetValue(PN); 586 587 // Iterate over all of the values in all the PHI nodes. 588 for (unsigned i = 0; i != NumPreds; ++i) { 589 // If the value being merged in is not integer or is not defined 590 // in the loop, skip it. 591 Value *InVal = PN->getIncomingValue(i); 592 if (!isa<Instruction>(InVal)) 593 continue; 594 595 // If this pred is for a subloop, not L itself, skip it. 596 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 597 continue; // The Block is in a subloop, skip it. 598 599 // Check that InVal is defined in the loop. 600 Instruction *Inst = cast<Instruction>(InVal); 601 if (!L->contains(Inst)) 602 continue; 603 604 // Okay, this instruction has a user outside of the current loop 605 // and varies predictably *inside* the loop. Evaluate the value it 606 // contains when the loop exits, if possible. 607 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 608 if (!SE->isLoopInvariant(ExitValue, L) || 609 !isSafeToExpand(ExitValue, *SE)) 610 continue; 611 612 // Computing the value outside of the loop brings no benefit if : 613 // - it is definitely used inside the loop in a way which can not be 614 // optimized away. 615 // - no use outside of the loop can take advantage of hoisting the 616 // computation out of the loop 617 if (ExitValue->getSCEVType()>=scMulExpr) { 618 unsigned NumHardInternalUses = 0; 619 unsigned NumSoftExternalUses = 0; 620 unsigned NumUses = 0; 621 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 622 IB != IE && NumUses <= 6; ++IB) { 623 Instruction *UseInstr = cast<Instruction>(*IB); 624 unsigned Opc = UseInstr->getOpcode(); 625 NumUses++; 626 if (L->contains(UseInstr)) { 627 if (Opc == Instruction::Call || Opc == Instruction::Ret) 628 NumHardInternalUses++; 629 } else { 630 if (Opc == Instruction::PHI) { 631 // Do not count the Phi as a use. LCSSA may have inserted 632 // plenty of trivial ones. 633 NumUses--; 634 for (auto PB = UseInstr->user_begin(), 635 PE = UseInstr->user_end(); 636 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 637 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 638 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 639 NumSoftExternalUses++; 640 } 641 continue; 642 } 643 if (Opc != Instruction::Call && Opc != Instruction::Ret) 644 NumSoftExternalUses++; 645 } 646 } 647 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 648 continue; 649 } 650 651 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 652 Value *ExitVal = 653 ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 654 655 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 656 << " LoopVal = " << *Inst << "\n"); 657 658 if (!isValidRewrite(Inst, ExitVal)) { 659 DeadInsts.push_back(ExitVal); 660 continue; 661 } 662 663 // Collect all the candidate PHINodes to be rewritten. 664 RewritePhiSet.push_back( 665 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 666 } 667 } 668 } 669 670 bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet); 671 672 // Transformation. 673 for (const RewritePhi &Phi : RewritePhiSet) { 674 PHINode *PN = Phi.PN; 675 Value *ExitVal = Phi.Val; 676 677 // Only do the rewrite when the ExitValue can be expanded cheaply. 678 // If LoopCanBeDel is true, rewrite exit value aggressively. 679 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 680 DeadInsts.push_back(ExitVal); 681 continue; 682 } 683 684 Changed = true; 685 ++NumReplaced; 686 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 687 PN->setIncomingValue(Phi.Ith, ExitVal); 688 689 // If this instruction is dead now, delete it. Don't do it now to avoid 690 // invalidating iterators. 691 if (isInstructionTriviallyDead(Inst, TLI)) 692 DeadInsts.push_back(Inst); 693 694 // If we determined that this PHI is safe to replace even if an LCSSA 695 // PHI, do so. 696 if (Phi.SafePhi) { 697 PN->replaceAllUsesWith(ExitVal); 698 PN->eraseFromParent(); 699 } 700 } 701 702 // The insertion point instruction may have been deleted; clear it out 703 // so that the rewriter doesn't trip over it later. 704 Rewriter.clearInsertPoint(); 705 } 706 707 /// Check whether it is possible to delete the loop after rewriting exit 708 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 709 /// aggressively. 710 bool IndVarSimplify::CanLoopBeDeleted( 711 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 712 713 BasicBlock *Preheader = L->getLoopPreheader(); 714 // If there is no preheader, the loop will not be deleted. 715 if (!Preheader) 716 return false; 717 718 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 719 // We obviate multiple ExitingBlocks case for simplicity. 720 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 721 // after exit value rewriting, we can enhance the logic here. 722 SmallVector<BasicBlock *, 4> ExitingBlocks; 723 L->getExitingBlocks(ExitingBlocks); 724 SmallVector<BasicBlock *, 8> ExitBlocks; 725 L->getUniqueExitBlocks(ExitBlocks); 726 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 727 return false; 728 729 BasicBlock *ExitBlock = ExitBlocks[0]; 730 BasicBlock::iterator BI = ExitBlock->begin(); 731 while (PHINode *P = dyn_cast<PHINode>(BI)) { 732 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 733 734 // If the Incoming value of P is found in RewritePhiSet, we know it 735 // could be rewritten to use a loop invariant value in transformation 736 // phase later. Skip it in the loop invariant check below. 737 bool found = false; 738 for (const RewritePhi &Phi : RewritePhiSet) { 739 unsigned i = Phi.Ith; 740 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 741 found = true; 742 break; 743 } 744 } 745 746 Instruction *I; 747 if (!found && (I = dyn_cast<Instruction>(Incoming))) 748 if (!L->hasLoopInvariantOperands(I)) 749 return false; 750 751 ++BI; 752 } 753 754 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 755 LI != LE; ++LI) { 756 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 757 ++BI) { 758 if (BI->mayHaveSideEffects()) 759 return false; 760 } 761 } 762 763 return true; 764 } 765 766 //===----------------------------------------------------------------------===// 767 // IV Widening - Extend the width of an IV to cover its widest uses. 768 //===----------------------------------------------------------------------===// 769 770 namespace { 771 // Collect information about induction variables that are used by sign/zero 772 // extend operations. This information is recorded by CollectExtend and provides 773 // the input to WidenIV. 774 struct WideIVInfo { 775 PHINode *NarrowIV = nullptr; 776 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 777 bool IsSigned = false; // Was a sext user seen before a zext? 778 }; 779 } 780 781 /// Update information about the induction variable that is extended by this 782 /// sign or zero extend operation. This is used to determine the final width of 783 /// the IV before actually widening it. 784 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 785 const TargetTransformInfo *TTI) { 786 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 787 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 788 return; 789 790 Type *Ty = Cast->getType(); 791 uint64_t Width = SE->getTypeSizeInBits(Ty); 792 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 793 return; 794 795 // Cast is either an sext or zext up to this point. 796 // We should not widen an indvar if arithmetics on the wider indvar are more 797 // expensive than those on the narrower indvar. We check only the cost of ADD 798 // because at least an ADD is required to increment the induction variable. We 799 // could compute more comprehensively the cost of all instructions on the 800 // induction variable when necessary. 801 if (TTI && 802 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 803 TTI->getArithmeticInstrCost(Instruction::Add, 804 Cast->getOperand(0)->getType())) { 805 return; 806 } 807 808 if (!WI.WidestNativeType) { 809 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 810 WI.IsSigned = IsSigned; 811 return; 812 } 813 814 // We extend the IV to satisfy the sign of its first user, arbitrarily. 815 if (WI.IsSigned != IsSigned) 816 return; 817 818 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 819 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 820 } 821 822 namespace { 823 824 /// Record a link in the Narrow IV def-use chain along with the WideIV that 825 /// computes the same value as the Narrow IV def. This avoids caching Use* 826 /// pointers. 827 struct NarrowIVDefUse { 828 Instruction *NarrowDef = nullptr; 829 Instruction *NarrowUse = nullptr; 830 Instruction *WideDef = nullptr; 831 832 // True if the narrow def is never negative. Tracking this information lets 833 // us use a sign extension instead of a zero extension or vice versa, when 834 // profitable and legal. 835 bool NeverNegative = false; 836 837 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 838 bool NeverNegative) 839 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 840 NeverNegative(NeverNegative) {} 841 }; 842 843 /// The goal of this transform is to remove sign and zero extends without 844 /// creating any new induction variables. To do this, it creates a new phi of 845 /// the wider type and redirects all users, either removing extends or inserting 846 /// truncs whenever we stop propagating the type. 847 /// 848 class WidenIV { 849 // Parameters 850 PHINode *OrigPhi; 851 Type *WideType; 852 bool IsSigned; 853 854 // Context 855 LoopInfo *LI; 856 Loop *L; 857 ScalarEvolution *SE; 858 DominatorTree *DT; 859 860 // Result 861 PHINode *WidePhi; 862 Instruction *WideInc; 863 const SCEV *WideIncExpr; 864 SmallVectorImpl<WeakVH> &DeadInsts; 865 866 SmallPtrSet<Instruction*,16> Widened; 867 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 868 869 public: 870 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 871 ScalarEvolution *SEv, DominatorTree *DTree, 872 SmallVectorImpl<WeakVH> &DI) : 873 OrigPhi(WI.NarrowIV), 874 WideType(WI.WidestNativeType), 875 IsSigned(WI.IsSigned), 876 LI(LInfo), 877 L(LI->getLoopFor(OrigPhi->getParent())), 878 SE(SEv), 879 DT(DTree), 880 WidePhi(nullptr), 881 WideInc(nullptr), 882 WideIncExpr(nullptr), 883 DeadInsts(DI) { 884 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 885 } 886 887 PHINode *CreateWideIV(SCEVExpander &Rewriter); 888 889 protected: 890 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 891 Instruction *Use); 892 893 Instruction *CloneIVUser(NarrowIVDefUse DU); 894 895 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 896 897 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 898 899 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 900 unsigned OpCode) const; 901 902 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 903 904 bool WidenLoopCompare(NarrowIVDefUse DU); 905 906 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 907 }; 908 } // anonymous namespace 909 910 /// Perform a quick domtree based check for loop invariance assuming that V is 911 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 912 /// purpose. 913 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 914 Instruction *Inst = dyn_cast<Instruction>(V); 915 if (!Inst) 916 return true; 917 918 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 919 } 920 921 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 922 Instruction *Use) { 923 // Set the debug location and conservative insertion point. 924 IRBuilder<> Builder(Use); 925 // Hoist the insertion point into loop preheaders as far as possible. 926 for (const Loop *L = LI->getLoopFor(Use->getParent()); 927 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 928 L = L->getParentLoop()) 929 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 930 931 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 932 Builder.CreateZExt(NarrowOper, WideType); 933 } 934 935 /// Instantiate a wide operation to replace a narrow operation. This only needs 936 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 937 /// 0 for any operation we decide not to clone. 938 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 939 unsigned Opcode = DU.NarrowUse->getOpcode(); 940 switch (Opcode) { 941 default: 942 return nullptr; 943 case Instruction::Add: 944 case Instruction::Mul: 945 case Instruction::UDiv: 946 case Instruction::Sub: 947 case Instruction::And: 948 case Instruction::Or: 949 case Instruction::Xor: 950 case Instruction::Shl: 951 case Instruction::LShr: 952 case Instruction::AShr: 953 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 954 955 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 956 // anything about the narrow operand yet so must insert a [sz]ext. It is 957 // probably loop invariant and will be folded or hoisted. If it actually 958 // comes from a widened IV, it should be removed during a future call to 959 // WidenIVUse. 960 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 961 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 962 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 963 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 964 965 auto *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 966 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 967 NarrowBO->getName()); 968 IRBuilder<> Builder(DU.NarrowUse); 969 Builder.Insert(WideBO); 970 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 971 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 972 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 973 } 974 return WideBO; 975 } 976 } 977 978 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 979 unsigned OpCode) const { 980 if (OpCode == Instruction::Add) 981 return SE->getAddExpr(LHS, RHS); 982 if (OpCode == Instruction::Sub) 983 return SE->getMinusSCEV(LHS, RHS); 984 if (OpCode == Instruction::Mul) 985 return SE->getMulExpr(LHS, RHS); 986 987 llvm_unreachable("Unsupported opcode."); 988 } 989 990 /// No-wrap operations can transfer sign extension of their result to their 991 /// operands. Generate the SCEV value for the widened operation without 992 /// actually modifying the IR yet. If the expression after extending the 993 /// operands is an AddRec for this loop, return it. 994 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 995 996 // Handle the common case of add<nsw/nuw> 997 const unsigned OpCode = DU.NarrowUse->getOpcode(); 998 // Only Add/Sub/Mul instructions supported yet. 999 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1000 OpCode != Instruction::Mul) 1001 return nullptr; 1002 1003 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1004 // if extending the other will lead to a recurrence. 1005 const unsigned ExtendOperIdx = 1006 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1007 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1008 1009 const SCEV *ExtendOperExpr = nullptr; 1010 const OverflowingBinaryOperator *OBO = 1011 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1012 if (IsSigned && OBO->hasNoSignedWrap()) 1013 ExtendOperExpr = SE->getSignExtendExpr( 1014 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1015 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1016 ExtendOperExpr = SE->getZeroExtendExpr( 1017 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1018 else 1019 return nullptr; 1020 1021 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1022 // flags. This instruction may be guarded by control flow that the no-wrap 1023 // behavior depends on. Non-control-equivalent instructions can be mapped to 1024 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1025 // semantics to those operations. 1026 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1027 const SCEV *rhs = ExtendOperExpr; 1028 1029 // Let's swap operands to the initial order for the case of non-commutative 1030 // operations, like SUB. See PR21014. 1031 if (ExtendOperIdx == 0) 1032 std::swap(lhs, rhs); 1033 const SCEVAddRecExpr *AddRec = 1034 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 1035 1036 if (!AddRec || AddRec->getLoop() != L) 1037 return nullptr; 1038 return AddRec; 1039 } 1040 1041 /// Is this instruction potentially interesting for further simplification after 1042 /// widening it's type? In other words, can the extend be safely hoisted out of 1043 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1044 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1045 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 1046 if (!SE->isSCEVable(NarrowUse->getType())) 1047 return nullptr; 1048 1049 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1050 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1051 >= SE->getTypeSizeInBits(WideType)) { 1052 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1053 // index. So don't follow this use. 1054 return nullptr; 1055 } 1056 1057 const SCEV *WideExpr = IsSigned ? 1058 SE->getSignExtendExpr(NarrowExpr, WideType) : 1059 SE->getZeroExtendExpr(NarrowExpr, WideType); 1060 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1061 if (!AddRec || AddRec->getLoop() != L) 1062 return nullptr; 1063 return AddRec; 1064 } 1065 1066 /// This IV user cannot be widen. Replace this use of the original narrow IV 1067 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1068 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1069 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1070 << " for user " << *DU.NarrowUse << "\n"); 1071 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1072 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1073 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1074 } 1075 1076 /// If the narrow use is a compare instruction, then widen the compare 1077 // (and possibly the other operand). The extend operation is hoisted into the 1078 // loop preheader as far as possible. 1079 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 1080 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1081 if (!Cmp) 1082 return false; 1083 1084 // We can legally widen the comparison in the following two cases: 1085 // 1086 // - The signedness of the IV extension and comparison match 1087 // 1088 // - The narrow IV is always positive (and thus its sign extension is equal 1089 // to its zero extension). For instance, let's say we're zero extending 1090 // %narrow for the following use 1091 // 1092 // icmp slt i32 %narrow, %val ... (A) 1093 // 1094 // and %narrow is always positive. Then 1095 // 1096 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1097 // == icmp slt i32 zext(%narrow), sext(%val) 1098 1099 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1100 return false; 1101 1102 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1103 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1104 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1105 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1106 1107 // Widen the compare instruction. 1108 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1109 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1110 1111 // Widen the other operand of the compare, if necessary. 1112 if (CastWidth < IVWidth) { 1113 Value *ExtOp = getExtend(Op, WideType, Cmp->isSigned(), Cmp); 1114 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1115 } 1116 return true; 1117 } 1118 1119 /// Determine whether an individual user of the narrow IV can be widened. If so, 1120 /// return the wide clone of the user. 1121 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1122 1123 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1124 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1125 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1126 // For LCSSA phis, sink the truncate outside the loop. 1127 // After SimplifyCFG most loop exit targets have a single predecessor. 1128 // Otherwise fall back to a truncate within the loop. 1129 if (UsePhi->getNumOperands() != 1) 1130 truncateIVUse(DU, DT); 1131 else { 1132 PHINode *WidePhi = 1133 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1134 UsePhi); 1135 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1136 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 1137 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1138 UsePhi->replaceAllUsesWith(Trunc); 1139 DeadInsts.emplace_back(UsePhi); 1140 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1141 << " to " << *WidePhi << "\n"); 1142 } 1143 return nullptr; 1144 } 1145 } 1146 // Our raison d'etre! Eliminate sign and zero extension. 1147 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1148 Value *NewDef = DU.WideDef; 1149 if (DU.NarrowUse->getType() != WideType) { 1150 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1151 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1152 if (CastWidth < IVWidth) { 1153 // The cast isn't as wide as the IV, so insert a Trunc. 1154 IRBuilder<> Builder(DU.NarrowUse); 1155 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1156 } 1157 else { 1158 // A wider extend was hidden behind a narrower one. This may induce 1159 // another round of IV widening in which the intermediate IV becomes 1160 // dead. It should be very rare. 1161 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1162 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1163 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1164 NewDef = DU.NarrowUse; 1165 } 1166 } 1167 if (NewDef != DU.NarrowUse) { 1168 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1169 << " replaced by " << *DU.WideDef << "\n"); 1170 ++NumElimExt; 1171 DU.NarrowUse->replaceAllUsesWith(NewDef); 1172 DeadInsts.emplace_back(DU.NarrowUse); 1173 } 1174 // Now that the extend is gone, we want to expose it's uses for potential 1175 // further simplification. We don't need to directly inform SimplifyIVUsers 1176 // of the new users, because their parent IV will be processed later as a 1177 // new loop phi. If we preserved IVUsers analysis, we would also want to 1178 // push the uses of WideDef here. 1179 1180 // No further widening is needed. The deceased [sz]ext had done it for us. 1181 return nullptr; 1182 } 1183 1184 // Does this user itself evaluate to a recurrence after widening? 1185 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1186 if (!WideAddRec) 1187 WideAddRec = GetExtendedOperandRecurrence(DU); 1188 1189 if (!WideAddRec) { 1190 // If use is a loop condition, try to promote the condition instead of 1191 // truncating the IV first. 1192 if (WidenLoopCompare(DU)) 1193 return nullptr; 1194 1195 // This user does not evaluate to a recurence after widening, so don't 1196 // follow it. Instead insert a Trunc to kill off the original use, 1197 // eventually isolating the original narrow IV so it can be removed. 1198 truncateIVUse(DU, DT); 1199 return nullptr; 1200 } 1201 // Assume block terminators cannot evaluate to a recurrence. We can't to 1202 // insert a Trunc after a terminator if there happens to be a critical edge. 1203 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1204 "SCEV is not expected to evaluate a block terminator"); 1205 1206 // Reuse the IV increment that SCEVExpander created as long as it dominates 1207 // NarrowUse. 1208 Instruction *WideUse = nullptr; 1209 if (WideAddRec == WideIncExpr 1210 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1211 WideUse = WideInc; 1212 else { 1213 WideUse = CloneIVUser(DU); 1214 if (!WideUse) 1215 return nullptr; 1216 } 1217 // Evaluation of WideAddRec ensured that the narrow expression could be 1218 // extended outside the loop without overflow. This suggests that the wide use 1219 // evaluates to the same expression as the extended narrow use, but doesn't 1220 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1221 // where it fails, we simply throw away the newly created wide use. 1222 if (WideAddRec != SE->getSCEV(WideUse)) { 1223 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1224 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1225 DeadInsts.emplace_back(WideUse); 1226 return nullptr; 1227 } 1228 1229 // Returning WideUse pushes it on the worklist. 1230 return WideUse; 1231 } 1232 1233 /// Add eligible users of NarrowDef to NarrowIVUsers. 1234 /// 1235 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1236 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1237 bool NeverNegative = 1238 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1239 SE->getConstant(NarrowSCEV->getType(), 0)); 1240 for (User *U : NarrowDef->users()) { 1241 Instruction *NarrowUser = cast<Instruction>(U); 1242 1243 // Handle data flow merges and bizarre phi cycles. 1244 if (!Widened.insert(NarrowUser).second) 1245 continue; 1246 1247 NarrowIVUsers.push_back( 1248 NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative)); 1249 } 1250 } 1251 1252 /// Process a single induction variable. First use the SCEVExpander to create a 1253 /// wide induction variable that evaluates to the same recurrence as the 1254 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1255 /// def-use chain. After WidenIVUse has processed all interesting IV users, the 1256 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1257 /// 1258 /// It would be simpler to delete uses as they are processed, but we must avoid 1259 /// invalidating SCEV expressions. 1260 /// 1261 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1262 // Is this phi an induction variable? 1263 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1264 if (!AddRec) 1265 return nullptr; 1266 1267 // Widen the induction variable expression. 1268 const SCEV *WideIVExpr = IsSigned ? 1269 SE->getSignExtendExpr(AddRec, WideType) : 1270 SE->getZeroExtendExpr(AddRec, WideType); 1271 1272 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1273 "Expect the new IV expression to preserve its type"); 1274 1275 // Can the IV be extended outside the loop without overflow? 1276 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1277 if (!AddRec || AddRec->getLoop() != L) 1278 return nullptr; 1279 1280 // An AddRec must have loop-invariant operands. Since this AddRec is 1281 // materialized by a loop header phi, the expression cannot have any post-loop 1282 // operands, so they must dominate the loop header. 1283 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1284 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1285 && "Loop header phi recurrence inputs do not dominate the loop"); 1286 1287 // The rewriter provides a value for the desired IV expression. This may 1288 // either find an existing phi or materialize a new one. Either way, we 1289 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1290 // of the phi-SCC dominates the loop entry. 1291 Instruction *InsertPt = L->getHeader()->begin(); 1292 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1293 1294 // Remembering the WideIV increment generated by SCEVExpander allows 1295 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1296 // employ a general reuse mechanism because the call above is the only call to 1297 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1298 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1299 WideInc = 1300 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1301 WideIncExpr = SE->getSCEV(WideInc); 1302 } 1303 1304 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1305 ++NumWidened; 1306 1307 // Traverse the def-use chain using a worklist starting at the original IV. 1308 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1309 1310 Widened.insert(OrigPhi); 1311 pushNarrowIVUsers(OrigPhi, WidePhi); 1312 1313 while (!NarrowIVUsers.empty()) { 1314 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1315 1316 // Process a def-use edge. This may replace the use, so don't hold a 1317 // use_iterator across it. 1318 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1319 1320 // Follow all def-use edges from the previous narrow use. 1321 if (WideUse) 1322 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1323 1324 // WidenIVUse may have removed the def-use edge. 1325 if (DU.NarrowDef->use_empty()) 1326 DeadInsts.emplace_back(DU.NarrowDef); 1327 } 1328 return WidePhi; 1329 } 1330 1331 //===----------------------------------------------------------------------===// 1332 // Live IV Reduction - Minimize IVs live across the loop. 1333 //===----------------------------------------------------------------------===// 1334 1335 1336 //===----------------------------------------------------------------------===// 1337 // Simplification of IV users based on SCEV evaluation. 1338 //===----------------------------------------------------------------------===// 1339 1340 namespace { 1341 class IndVarSimplifyVisitor : public IVVisitor { 1342 ScalarEvolution *SE; 1343 const TargetTransformInfo *TTI; 1344 PHINode *IVPhi; 1345 1346 public: 1347 WideIVInfo WI; 1348 1349 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1350 const TargetTransformInfo *TTI, 1351 const DominatorTree *DTree) 1352 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1353 DT = DTree; 1354 WI.NarrowIV = IVPhi; 1355 if (ReduceLiveIVs) 1356 setSplitOverflowIntrinsics(); 1357 } 1358 1359 // Implement the interface used by simplifyUsersOfIV. 1360 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1361 }; 1362 } 1363 1364 /// Iteratively perform simplification on a worklist of IV users. Each 1365 /// successive simplification may push more users which may themselves be 1366 /// candidates for simplification. 1367 /// 1368 /// Sign/Zero extend elimination is interleaved with IV simplification. 1369 /// 1370 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1371 SCEVExpander &Rewriter, 1372 LPPassManager &LPM) { 1373 SmallVector<WideIVInfo, 8> WideIVs; 1374 1375 SmallVector<PHINode*, 8> LoopPhis; 1376 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1377 LoopPhis.push_back(cast<PHINode>(I)); 1378 } 1379 // Each round of simplification iterates through the SimplifyIVUsers worklist 1380 // for all current phis, then determines whether any IVs can be 1381 // widened. Widening adds new phis to LoopPhis, inducing another round of 1382 // simplification on the wide IVs. 1383 while (!LoopPhis.empty()) { 1384 // Evaluate as many IV expressions as possible before widening any IVs. This 1385 // forces SCEV to set no-wrap flags before evaluating sign/zero 1386 // extension. The first time SCEV attempts to normalize sign/zero extension, 1387 // the result becomes final. So for the most predictable results, we delay 1388 // evaluation of sign/zero extend evaluation until needed, and avoid running 1389 // other SCEV based analysis prior to SimplifyAndExtend. 1390 do { 1391 PHINode *CurrIV = LoopPhis.pop_back_val(); 1392 1393 // Information about sign/zero extensions of CurrIV. 1394 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1395 1396 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, &LPM, DeadInsts, &Visitor); 1397 1398 if (Visitor.WI.WidestNativeType) { 1399 WideIVs.push_back(Visitor.WI); 1400 } 1401 } while(!LoopPhis.empty()); 1402 1403 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1404 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1405 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1406 Changed = true; 1407 LoopPhis.push_back(WidePhi); 1408 } 1409 } 1410 } 1411 } 1412 1413 //===----------------------------------------------------------------------===// 1414 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1415 //===----------------------------------------------------------------------===// 1416 1417 /// Return true if this loop's backedge taken count expression can be safely and 1418 /// cheaply expanded into an instruction sequence that can be used by 1419 /// LinearFunctionTestReplace. 1420 /// 1421 /// TODO: This fails for pointer-type loop counters with greater than one byte 1422 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1423 /// we could skip this check in the case that the LFTR loop counter (chosen by 1424 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1425 /// the loop test to an inequality test by checking the target data's alignment 1426 /// of element types (given that the initial pointer value originates from or is 1427 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1428 /// However, we don't yet have a strong motivation for converting loop tests 1429 /// into inequality tests. 1430 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1431 SCEVExpander &Rewriter) { 1432 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1433 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1434 BackedgeTakenCount->isZero()) 1435 return false; 1436 1437 if (!L->getExitingBlock()) 1438 return false; 1439 1440 // Can't rewrite non-branch yet. 1441 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1442 return false; 1443 1444 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1445 return false; 1446 1447 return true; 1448 } 1449 1450 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1451 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1452 Instruction *IncI = dyn_cast<Instruction>(IncV); 1453 if (!IncI) 1454 return nullptr; 1455 1456 switch (IncI->getOpcode()) { 1457 case Instruction::Add: 1458 case Instruction::Sub: 1459 break; 1460 case Instruction::GetElementPtr: 1461 // An IV counter must preserve its type. 1462 if (IncI->getNumOperands() == 2) 1463 break; 1464 default: 1465 return nullptr; 1466 } 1467 1468 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1469 if (Phi && Phi->getParent() == L->getHeader()) { 1470 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1471 return Phi; 1472 return nullptr; 1473 } 1474 if (IncI->getOpcode() == Instruction::GetElementPtr) 1475 return nullptr; 1476 1477 // Allow add/sub to be commuted. 1478 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1479 if (Phi && Phi->getParent() == L->getHeader()) { 1480 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1481 return Phi; 1482 } 1483 return nullptr; 1484 } 1485 1486 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1487 static ICmpInst *getLoopTest(Loop *L) { 1488 assert(L->getExitingBlock() && "expected loop exit"); 1489 1490 BasicBlock *LatchBlock = L->getLoopLatch(); 1491 // Don't bother with LFTR if the loop is not properly simplified. 1492 if (!LatchBlock) 1493 return nullptr; 1494 1495 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1496 assert(BI && "expected exit branch"); 1497 1498 return dyn_cast<ICmpInst>(BI->getCondition()); 1499 } 1500 1501 /// LinearFunctionTestReplace policy. Return true unless we can show that the 1502 /// current exit test is already sufficiently canonical. 1503 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1504 // Do LFTR to simplify the exit condition to an ICMP. 1505 ICmpInst *Cond = getLoopTest(L); 1506 if (!Cond) 1507 return true; 1508 1509 // Do LFTR to simplify the exit ICMP to EQ/NE 1510 ICmpInst::Predicate Pred = Cond->getPredicate(); 1511 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1512 return true; 1513 1514 // Look for a loop invariant RHS 1515 Value *LHS = Cond->getOperand(0); 1516 Value *RHS = Cond->getOperand(1); 1517 if (!isLoopInvariant(RHS, L, DT)) { 1518 if (!isLoopInvariant(LHS, L, DT)) 1519 return true; 1520 std::swap(LHS, RHS); 1521 } 1522 // Look for a simple IV counter LHS 1523 PHINode *Phi = dyn_cast<PHINode>(LHS); 1524 if (!Phi) 1525 Phi = getLoopPhiForCounter(LHS, L, DT); 1526 1527 if (!Phi) 1528 return true; 1529 1530 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1531 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1532 if (Idx < 0) 1533 return true; 1534 1535 // Do LFTR if the exit condition's IV is *not* a simple counter. 1536 Value *IncV = Phi->getIncomingValue(Idx); 1537 return Phi != getLoopPhiForCounter(IncV, L, DT); 1538 } 1539 1540 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1541 /// down to checking that all operands are constant and listing instructions 1542 /// that may hide undef. 1543 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1544 unsigned Depth) { 1545 if (isa<Constant>(V)) 1546 return !isa<UndefValue>(V); 1547 1548 if (Depth >= 6) 1549 return false; 1550 1551 // Conservatively handle non-constant non-instructions. For example, Arguments 1552 // may be undef. 1553 Instruction *I = dyn_cast<Instruction>(V); 1554 if (!I) 1555 return false; 1556 1557 // Load and return values may be undef. 1558 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1559 return false; 1560 1561 // Optimistically handle other instructions. 1562 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1563 if (!Visited.insert(*OI).second) 1564 continue; 1565 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1566 return false; 1567 } 1568 return true; 1569 } 1570 1571 /// Return true if the given value is concrete. We must prove that undef can 1572 /// never reach it. 1573 /// 1574 /// TODO: If we decide that this is a good approach to checking for undef, we 1575 /// may factor it into a common location. 1576 static bool hasConcreteDef(Value *V) { 1577 SmallPtrSet<Value*, 8> Visited; 1578 Visited.insert(V); 1579 return hasConcreteDefImpl(V, Visited, 0); 1580 } 1581 1582 /// Return true if this IV has any uses other than the (soon to be rewritten) 1583 /// loop exit test. 1584 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1585 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1586 Value *IncV = Phi->getIncomingValue(LatchIdx); 1587 1588 for (User *U : Phi->users()) 1589 if (U != Cond && U != IncV) return false; 1590 1591 for (User *U : IncV->users()) 1592 if (U != Cond && U != Phi) return false; 1593 return true; 1594 } 1595 1596 /// Find an affine IV in canonical form. 1597 /// 1598 /// BECount may be an i8* pointer type. The pointer difference is already 1599 /// valid count without scaling the address stride, so it remains a pointer 1600 /// expression as far as SCEV is concerned. 1601 /// 1602 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1603 /// 1604 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1605 /// 1606 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1607 /// This is difficult in general for SCEV because of potential overflow. But we 1608 /// could at least handle constant BECounts. 1609 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1610 ScalarEvolution *SE, DominatorTree *DT) { 1611 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1612 1613 Value *Cond = 1614 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1615 1616 // Loop over all of the PHI nodes, looking for a simple counter. 1617 PHINode *BestPhi = nullptr; 1618 const SCEV *BestInit = nullptr; 1619 BasicBlock *LatchBlock = L->getLoopLatch(); 1620 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1621 1622 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1623 PHINode *Phi = cast<PHINode>(I); 1624 if (!SE->isSCEVable(Phi->getType())) 1625 continue; 1626 1627 // Avoid comparing an integer IV against a pointer Limit. 1628 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1629 continue; 1630 1631 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1632 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1633 continue; 1634 1635 // AR may be a pointer type, while BECount is an integer type. 1636 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1637 // AR may not be a narrower type, or we may never exit. 1638 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1639 if (PhiWidth < BCWidth || 1640 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1641 continue; 1642 1643 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1644 if (!Step || !Step->isOne()) 1645 continue; 1646 1647 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1648 Value *IncV = Phi->getIncomingValue(LatchIdx); 1649 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1650 continue; 1651 1652 // Avoid reusing a potentially undef value to compute other values that may 1653 // have originally had a concrete definition. 1654 if (!hasConcreteDef(Phi)) { 1655 // We explicitly allow unknown phis as long as they are already used by 1656 // the loop test. In this case we assume that performing LFTR could not 1657 // increase the number of undef users. 1658 if (ICmpInst *Cond = getLoopTest(L)) { 1659 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1660 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1661 continue; 1662 } 1663 } 1664 } 1665 const SCEV *Init = AR->getStart(); 1666 1667 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1668 // Don't force a live loop counter if another IV can be used. 1669 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1670 continue; 1671 1672 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1673 // also prefers integer to pointer IVs. 1674 if (BestInit->isZero() != Init->isZero()) { 1675 if (BestInit->isZero()) 1676 continue; 1677 } 1678 // If two IVs both count from zero or both count from nonzero then the 1679 // narrower is likely a dead phi that has been widened. Use the wider phi 1680 // to allow the other to be eliminated. 1681 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1682 continue; 1683 } 1684 BestPhi = Phi; 1685 BestInit = Init; 1686 } 1687 return BestPhi; 1688 } 1689 1690 /// Help LinearFunctionTestReplace by generating a value that holds the RHS of 1691 /// the new loop test. 1692 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1693 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1694 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1695 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1696 const SCEV *IVInit = AR->getStart(); 1697 1698 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1699 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1700 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1701 // the existing GEPs whenever possible. 1702 if (IndVar->getType()->isPointerTy() 1703 && !IVCount->getType()->isPointerTy()) { 1704 1705 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1706 // signed value. IVCount on the other hand represents the loop trip count, 1707 // which is an unsigned value. FindLoopCounter only allows induction 1708 // variables that have a positive unit stride of one. This means we don't 1709 // have to handle the case of negative offsets (yet) and just need to zero 1710 // extend IVCount. 1711 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1712 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1713 1714 // Expand the code for the iteration count. 1715 assert(SE->isLoopInvariant(IVOffset, L) && 1716 "Computed iteration count is not loop invariant!"); 1717 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1718 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1719 1720 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1721 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1722 // We could handle pointer IVs other than i8*, but we need to compensate for 1723 // gep index scaling. See canExpandBackedgeTakenCount comments. 1724 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1725 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1726 && "unit stride pointer IV must be i8*"); 1727 1728 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1729 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1730 } 1731 else { 1732 // In any other case, convert both IVInit and IVCount to integers before 1733 // comparing. This may result in SCEV expension of pointers, but in practice 1734 // SCEV will fold the pointer arithmetic away as such: 1735 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1736 // 1737 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1738 // for simple memset-style loops. 1739 // 1740 // IVInit integer and IVCount pointer would only occur if a canonical IV 1741 // were generated on top of case #2, which is not expected. 1742 1743 const SCEV *IVLimit = nullptr; 1744 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1745 // For non-zero Start, compute IVCount here. 1746 if (AR->getStart()->isZero()) 1747 IVLimit = IVCount; 1748 else { 1749 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1750 const SCEV *IVInit = AR->getStart(); 1751 1752 // For integer IVs, truncate the IV before computing IVInit + BECount. 1753 if (SE->getTypeSizeInBits(IVInit->getType()) 1754 > SE->getTypeSizeInBits(IVCount->getType())) 1755 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1756 1757 IVLimit = SE->getAddExpr(IVInit, IVCount); 1758 } 1759 // Expand the code for the iteration count. 1760 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1761 IRBuilder<> Builder(BI); 1762 assert(SE->isLoopInvariant(IVLimit, L) && 1763 "Computed iteration count is not loop invariant!"); 1764 // Ensure that we generate the same type as IndVar, or a smaller integer 1765 // type. In the presence of null pointer values, we have an integer type 1766 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1767 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1768 IndVar->getType() : IVCount->getType(); 1769 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1770 } 1771 } 1772 1773 /// This method rewrites the exit condition of the loop to be a canonical != 1774 /// comparison against the incremented loop induction variable. This pass is 1775 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1776 /// determine a loop-invariant trip count of the loop, which is actually a much 1777 /// broader range than just linear tests. 1778 Value *IndVarSimplify:: 1779 LinearFunctionTestReplace(Loop *L, 1780 const SCEV *BackedgeTakenCount, 1781 PHINode *IndVar, 1782 SCEVExpander &Rewriter) { 1783 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1784 1785 // Initialize CmpIndVar and IVCount to their preincremented values. 1786 Value *CmpIndVar = IndVar; 1787 const SCEV *IVCount = BackedgeTakenCount; 1788 1789 // If the exiting block is the same as the backedge block, we prefer to 1790 // compare against the post-incremented value, otherwise we must compare 1791 // against the preincremented value. 1792 if (L->getExitingBlock() == L->getLoopLatch()) { 1793 // Add one to the "backedge-taken" count to get the trip count. 1794 // This addition may overflow, which is valid as long as the comparison is 1795 // truncated to BackedgeTakenCount->getType(). 1796 IVCount = SE->getAddExpr(BackedgeTakenCount, 1797 SE->getOne(BackedgeTakenCount->getType())); 1798 // The BackedgeTaken expression contains the number of times that the 1799 // backedge branches to the loop header. This is one less than the 1800 // number of times the loop executes, so use the incremented indvar. 1801 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1802 } 1803 1804 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1805 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1806 && "genLoopLimit missed a cast"); 1807 1808 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1809 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1810 ICmpInst::Predicate P; 1811 if (L->contains(BI->getSuccessor(0))) 1812 P = ICmpInst::ICMP_NE; 1813 else 1814 P = ICmpInst::ICMP_EQ; 1815 1816 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1817 << " LHS:" << *CmpIndVar << '\n' 1818 << " op:\t" 1819 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1820 << " RHS:\t" << *ExitCnt << "\n" 1821 << " IVCount:\t" << *IVCount << "\n"); 1822 1823 IRBuilder<> Builder(BI); 1824 1825 // LFTR can ignore IV overflow and truncate to the width of 1826 // BECount. This avoids materializing the add(zext(add)) expression. 1827 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1828 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1829 if (CmpIndVarSize > ExitCntSize) { 1830 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1831 const SCEV *ARStart = AR->getStart(); 1832 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1833 // For constant IVCount, avoid truncation. 1834 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1835 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1836 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1837 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1838 // above such that IVCount is now zero. 1839 if (IVCount != BackedgeTakenCount && Count == 0) { 1840 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1841 ++Count; 1842 } 1843 else 1844 Count = Count.zext(CmpIndVarSize); 1845 APInt NewLimit; 1846 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1847 NewLimit = Start - Count; 1848 else 1849 NewLimit = Start + Count; 1850 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1851 1852 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1853 } else { 1854 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1855 "lftr.wideiv"); 1856 } 1857 } 1858 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1859 Value *OrigCond = BI->getCondition(); 1860 // It's tempting to use replaceAllUsesWith here to fully replace the old 1861 // comparison, but that's not immediately safe, since users of the old 1862 // comparison may not be dominated by the new comparison. Instead, just 1863 // update the branch to use the new comparison; in the common case this 1864 // will make old comparison dead. 1865 BI->setCondition(Cond); 1866 DeadInsts.push_back(OrigCond); 1867 1868 ++NumLFTR; 1869 Changed = true; 1870 return Cond; 1871 } 1872 1873 //===----------------------------------------------------------------------===// 1874 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1875 //===----------------------------------------------------------------------===// 1876 1877 /// If there's a single exit block, sink any loop-invariant values that 1878 /// were defined in the preheader but not used inside the loop into the 1879 /// exit block to reduce register pressure in the loop. 1880 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1881 BasicBlock *ExitBlock = L->getExitBlock(); 1882 if (!ExitBlock) return; 1883 1884 BasicBlock *Preheader = L->getLoopPreheader(); 1885 if (!Preheader) return; 1886 1887 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1888 BasicBlock::iterator I = Preheader->getTerminator(); 1889 while (I != Preheader->begin()) { 1890 --I; 1891 // New instructions were inserted at the end of the preheader. 1892 if (isa<PHINode>(I)) 1893 break; 1894 1895 // Don't move instructions which might have side effects, since the side 1896 // effects need to complete before instructions inside the loop. Also don't 1897 // move instructions which might read memory, since the loop may modify 1898 // memory. Note that it's okay if the instruction might have undefined 1899 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1900 // block. 1901 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1902 continue; 1903 1904 // Skip debug info intrinsics. 1905 if (isa<DbgInfoIntrinsic>(I)) 1906 continue; 1907 1908 // Skip eh pad instructions. 1909 if (I->isEHPad()) 1910 continue; 1911 1912 // Don't sink alloca: we never want to sink static alloca's out of the 1913 // entry block, and correctly sinking dynamic alloca's requires 1914 // checks for stacksave/stackrestore intrinsics. 1915 // FIXME: Refactor this check somehow? 1916 if (isa<AllocaInst>(I)) 1917 continue; 1918 1919 // Determine if there is a use in or before the loop (direct or 1920 // otherwise). 1921 bool UsedInLoop = false; 1922 for (Use &U : I->uses()) { 1923 Instruction *User = cast<Instruction>(U.getUser()); 1924 BasicBlock *UseBB = User->getParent(); 1925 if (PHINode *P = dyn_cast<PHINode>(User)) { 1926 unsigned i = 1927 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1928 UseBB = P->getIncomingBlock(i); 1929 } 1930 if (UseBB == Preheader || L->contains(UseBB)) { 1931 UsedInLoop = true; 1932 break; 1933 } 1934 } 1935 1936 // If there is, the def must remain in the preheader. 1937 if (UsedInLoop) 1938 continue; 1939 1940 // Otherwise, sink it to the exit block. 1941 Instruction *ToMove = I; 1942 bool Done = false; 1943 1944 if (I != Preheader->begin()) { 1945 // Skip debug info intrinsics. 1946 do { 1947 --I; 1948 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1949 1950 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1951 Done = true; 1952 } else { 1953 Done = true; 1954 } 1955 1956 ToMove->moveBefore(InsertPt); 1957 if (Done) break; 1958 InsertPt = ToMove; 1959 } 1960 } 1961 1962 //===----------------------------------------------------------------------===// 1963 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1964 //===----------------------------------------------------------------------===// 1965 1966 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1967 if (skipOptnoneFunction(L)) 1968 return false; 1969 1970 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1971 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1972 // canonicalization can be a pessimization without LSR to "clean up" 1973 // afterwards. 1974 // - We depend on having a preheader; in particular, 1975 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1976 // and we're in trouble if we can't find the induction variable even when 1977 // we've manually inserted one. 1978 if (!L->isLoopSimplifyForm()) 1979 return false; 1980 1981 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1982 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1983 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1984 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1985 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1986 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1987 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1988 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1989 1990 DeadInsts.clear(); 1991 Changed = false; 1992 1993 // If there are any floating-point recurrences, attempt to 1994 // transform them to use integer recurrences. 1995 RewriteNonIntegerIVs(L); 1996 1997 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1998 1999 // Create a rewriter object which we'll use to transform the code with. 2000 SCEVExpander Rewriter(*SE, DL, "indvars"); 2001 #ifndef NDEBUG 2002 Rewriter.setDebugType(DEBUG_TYPE); 2003 #endif 2004 2005 // Eliminate redundant IV users. 2006 // 2007 // Simplification works best when run before other consumers of SCEV. We 2008 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2009 // other expressions involving loop IVs have been evaluated. This helps SCEV 2010 // set no-wrap flags before normalizing sign/zero extension. 2011 Rewriter.disableCanonicalMode(); 2012 SimplifyAndExtend(L, Rewriter, LPM); 2013 2014 // Check to see if this loop has a computable loop-invariant execution count. 2015 // If so, this means that we can compute the final value of any expressions 2016 // that are recurrent in the loop, and substitute the exit values from the 2017 // loop into any instructions outside of the loop that use the final values of 2018 // the current expressions. 2019 // 2020 if (ReplaceExitValue != NeverRepl && 2021 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2022 RewriteLoopExitValues(L, Rewriter); 2023 2024 // Eliminate redundant IV cycles. 2025 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2026 2027 // If we have a trip count expression, rewrite the loop's exit condition 2028 // using it. We can currently only handle loops with a single exit. 2029 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2030 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2031 if (IndVar) { 2032 // Check preconditions for proper SCEVExpander operation. SCEV does not 2033 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2034 // pass that uses the SCEVExpander must do it. This does not work well for 2035 // loop passes because SCEVExpander makes assumptions about all loops, 2036 // while LoopPassManager only forces the current loop to be simplified. 2037 // 2038 // FIXME: SCEV expansion has no way to bail out, so the caller must 2039 // explicitly check any assumptions made by SCEV. Brittle. 2040 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2041 if (!AR || AR->getLoop()->getLoopPreheader()) 2042 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2043 Rewriter); 2044 } 2045 } 2046 // Clear the rewriter cache, because values that are in the rewriter's cache 2047 // can be deleted in the loop below, causing the AssertingVH in the cache to 2048 // trigger. 2049 Rewriter.clear(); 2050 2051 // Now that we're done iterating through lists, clean up any instructions 2052 // which are now dead. 2053 while (!DeadInsts.empty()) 2054 if (Instruction *Inst = 2055 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2056 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2057 2058 // The Rewriter may not be used from this point on. 2059 2060 // Loop-invariant instructions in the preheader that aren't used in the 2061 // loop may be sunk below the loop to reduce register pressure. 2062 SinkUnusedInvariants(L); 2063 2064 // Clean up dead instructions. 2065 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2066 // Check a post-condition. 2067 assert(L->isLCSSAForm(*DT) && 2068 "Indvars did not leave the loop in lcssa form!"); 2069 2070 // Verify that LFTR, and any other change have not interfered with SCEV's 2071 // ability to compute trip count. 2072 #ifndef NDEBUG 2073 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2074 SE->forgetLoop(L); 2075 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2076 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2077 SE->getTypeSizeInBits(NewBECount->getType())) 2078 NewBECount = SE->getTruncateOrNoop(NewBECount, 2079 BackedgeTakenCount->getType()); 2080 else 2081 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2082 NewBECount->getType()); 2083 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2084 } 2085 #endif 2086 2087 return Changed; 2088 } 2089