xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision c7fc81e6595865296738fe0f8ffe692ea41b1ffc)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 #include "llvm/Transforms/Utils/LoopUtils.h"
82 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101   "verify-indvars", cl::Hidden,
102   cl::desc("Verify the ScalarEvolution result after running indvars"));
103 
104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
110                clEnumValN(OnlyCheapRepl, "cheap",
111                           "only replace exit value when the cost is cheap"),
112                clEnumValN(AlwaysRepl, "always",
113                           "always replace exit value whenever possible")));
114 
115 static cl::opt<bool> UsePostIncrementRanges(
116   "indvars-post-increment-ranges", cl::Hidden,
117   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
118   cl::init(true));
119 
120 static cl::opt<bool>
121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
122             cl::desc("Disable Linear Function Test Replace optimization"));
123 
124 namespace {
125 
126 struct RewritePhi;
127 
128 class IndVarSimplify {
129   LoopInfo *LI;
130   ScalarEvolution *SE;
131   DominatorTree *DT;
132   const DataLayout &DL;
133   TargetLibraryInfo *TLI;
134   const TargetTransformInfo *TTI;
135 
136   SmallVector<WeakTrackingVH, 16> DeadInsts;
137   bool Changed = false;
138 
139   bool isValidRewrite(Value *FromVal, Value *ToVal);
140 
141   void handleFloatingPointIV(Loop *L, PHINode *PH);
142   void rewriteNonIntegerIVs(Loop *L);
143 
144   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
145 
146   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
147   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
148   void rewriteFirstIterationLoopExitValues(Loop *L);
149 
150   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
151                                    PHINode *IndVar, SCEVExpander &Rewriter);
152 
153   void sinkUnusedInvariants(Loop *L);
154 
155   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
156                             Instruction *InsertPt, Type *Ty);
157 
158 public:
159   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
160                  const DataLayout &DL, TargetLibraryInfo *TLI,
161                  TargetTransformInfo *TTI)
162       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
163 
164   bool run(Loop *L);
165 };
166 
167 } // end anonymous namespace
168 
169 /// Return true if the SCEV expansion generated by the rewriter can replace the
170 /// original value. SCEV guarantees that it produces the same value, but the way
171 /// it is produced may be illegal IR.  Ideally, this function will only be
172 /// called for verification.
173 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
174   // If an SCEV expression subsumed multiple pointers, its expansion could
175   // reassociate the GEP changing the base pointer. This is illegal because the
176   // final address produced by a GEP chain must be inbounds relative to its
177   // underlying object. Otherwise basic alias analysis, among other things,
178   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
179   // producing an expression involving multiple pointers. Until then, we must
180   // bail out here.
181   //
182   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
183   // because it understands lcssa phis while SCEV does not.
184   Value *FromPtr = FromVal;
185   Value *ToPtr = ToVal;
186   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
187     FromPtr = GEP->getPointerOperand();
188   }
189   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
190     ToPtr = GEP->getPointerOperand();
191   }
192   if (FromPtr != FromVal || ToPtr != ToVal) {
193     // Quickly check the common case
194     if (FromPtr == ToPtr)
195       return true;
196 
197     // SCEV may have rewritten an expression that produces the GEP's pointer
198     // operand. That's ok as long as the pointer operand has the same base
199     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
200     // base of a recurrence. This handles the case in which SCEV expansion
201     // converts a pointer type recurrence into a nonrecurrent pointer base
202     // indexed by an integer recurrence.
203 
204     // If the GEP base pointer is a vector of pointers, abort.
205     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
206       return false;
207 
208     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
209     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
210     if (FromBase == ToBase)
211       return true;
212 
213     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
214           << *FromBase << " != " << *ToBase << "\n");
215 
216     return false;
217   }
218   return true;
219 }
220 
221 /// Determine the insertion point for this user. By default, insert immediately
222 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
223 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
224 /// common dominator for the incoming blocks.
225 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
226                                           DominatorTree *DT, LoopInfo *LI) {
227   PHINode *PHI = dyn_cast<PHINode>(User);
228   if (!PHI)
229     return User;
230 
231   Instruction *InsertPt = nullptr;
232   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
233     if (PHI->getIncomingValue(i) != Def)
234       continue;
235 
236     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
237     if (!InsertPt) {
238       InsertPt = InsertBB->getTerminator();
239       continue;
240     }
241     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
242     InsertPt = InsertBB->getTerminator();
243   }
244   assert(InsertPt && "Missing phi operand");
245 
246   auto *DefI = dyn_cast<Instruction>(Def);
247   if (!DefI)
248     return InsertPt;
249 
250   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
251 
252   auto *L = LI->getLoopFor(DefI->getParent());
253   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
254 
255   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
256     if (LI->getLoopFor(DTN->getBlock()) == L)
257       return DTN->getBlock()->getTerminator();
258 
259   llvm_unreachable("DefI dominates InsertPt!");
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
264 //===----------------------------------------------------------------------===//
265 
266 /// Convert APF to an integer, if possible.
267 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
268   bool isExact = false;
269   // See if we can convert this to an int64_t
270   uint64_t UIntVal;
271   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
272                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
273       !isExact)
274     return false;
275   IntVal = UIntVal;
276   return true;
277 }
278 
279 /// If the loop has floating induction variable then insert corresponding
280 /// integer induction variable if possible.
281 /// For example,
282 /// for(double i = 0; i < 10000; ++i)
283 ///   bar(i)
284 /// is converted into
285 /// for(int i = 0; i < 10000; ++i)
286 ///   bar((double)i);
287 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
288   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
289   unsigned BackEdge     = IncomingEdge^1;
290 
291   // Check incoming value.
292   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
293 
294   int64_t InitValue;
295   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
296     return;
297 
298   // Check IV increment. Reject this PN if increment operation is not
299   // an add or increment value can not be represented by an integer.
300   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
301   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
302 
303   // If this is not an add of the PHI with a constantfp, or if the constant fp
304   // is not an integer, bail out.
305   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
306   int64_t IncValue;
307   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
308       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
309     return;
310 
311   // Check Incr uses. One user is PN and the other user is an exit condition
312   // used by the conditional terminator.
313   Value::user_iterator IncrUse = Incr->user_begin();
314   Instruction *U1 = cast<Instruction>(*IncrUse++);
315   if (IncrUse == Incr->user_end()) return;
316   Instruction *U2 = cast<Instruction>(*IncrUse++);
317   if (IncrUse != Incr->user_end()) return;
318 
319   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
320   // only used by a branch, we can't transform it.
321   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
322   if (!Compare)
323     Compare = dyn_cast<FCmpInst>(U2);
324   if (!Compare || !Compare->hasOneUse() ||
325       !isa<BranchInst>(Compare->user_back()))
326     return;
327 
328   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
329 
330   // We need to verify that the branch actually controls the iteration count
331   // of the loop.  If not, the new IV can overflow and no one will notice.
332   // The branch block must be in the loop and one of the successors must be out
333   // of the loop.
334   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
335   if (!L->contains(TheBr->getParent()) ||
336       (L->contains(TheBr->getSuccessor(0)) &&
337        L->contains(TheBr->getSuccessor(1))))
338     return;
339 
340   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
341   // transform it.
342   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
343   int64_t ExitValue;
344   if (ExitValueVal == nullptr ||
345       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
346     return;
347 
348   // Find new predicate for integer comparison.
349   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
350   switch (Compare->getPredicate()) {
351   default: return;  // Unknown comparison.
352   case CmpInst::FCMP_OEQ:
353   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
354   case CmpInst::FCMP_ONE:
355   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
356   case CmpInst::FCMP_OGT:
357   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
358   case CmpInst::FCMP_OGE:
359   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
360   case CmpInst::FCMP_OLT:
361   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
362   case CmpInst::FCMP_OLE:
363   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
364   }
365 
366   // We convert the floating point induction variable to a signed i32 value if
367   // we can.  This is only safe if the comparison will not overflow in a way
368   // that won't be trapped by the integer equivalent operations.  Check for this
369   // now.
370   // TODO: We could use i64 if it is native and the range requires it.
371 
372   // The start/stride/exit values must all fit in signed i32.
373   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
374     return;
375 
376   // If not actually striding (add x, 0.0), avoid touching the code.
377   if (IncValue == 0)
378     return;
379 
380   // Positive and negative strides have different safety conditions.
381   if (IncValue > 0) {
382     // If we have a positive stride, we require the init to be less than the
383     // exit value.
384     if (InitValue >= ExitValue)
385       return;
386 
387     uint32_t Range = uint32_t(ExitValue-InitValue);
388     // Check for infinite loop, either:
389     // while (i <= Exit) or until (i > Exit)
390     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
391       if (++Range == 0) return;  // Range overflows.
392     }
393 
394     unsigned Leftover = Range % uint32_t(IncValue);
395 
396     // If this is an equality comparison, we require that the strided value
397     // exactly land on the exit value, otherwise the IV condition will wrap
398     // around and do things the fp IV wouldn't.
399     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
400         Leftover != 0)
401       return;
402 
403     // If the stride would wrap around the i32 before exiting, we can't
404     // transform the IV.
405     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
406       return;
407   } else {
408     // If we have a negative stride, we require the init to be greater than the
409     // exit value.
410     if (InitValue <= ExitValue)
411       return;
412 
413     uint32_t Range = uint32_t(InitValue-ExitValue);
414     // Check for infinite loop, either:
415     // while (i >= Exit) or until (i < Exit)
416     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
417       if (++Range == 0) return;  // Range overflows.
418     }
419 
420     unsigned Leftover = Range % uint32_t(-IncValue);
421 
422     // If this is an equality comparison, we require that the strided value
423     // exactly land on the exit value, otherwise the IV condition will wrap
424     // around and do things the fp IV wouldn't.
425     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
426         Leftover != 0)
427       return;
428 
429     // If the stride would wrap around the i32 before exiting, we can't
430     // transform the IV.
431     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
432       return;
433   }
434 
435   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
436 
437   // Insert new integer induction variable.
438   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
439   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
440                       PN->getIncomingBlock(IncomingEdge));
441 
442   Value *NewAdd =
443     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
444                               Incr->getName()+".int", Incr);
445   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
446 
447   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
448                                       ConstantInt::get(Int32Ty, ExitValue),
449                                       Compare->getName());
450 
451   // In the following deletions, PN may become dead and may be deleted.
452   // Use a WeakTrackingVH to observe whether this happens.
453   WeakTrackingVH WeakPH = PN;
454 
455   // Delete the old floating point exit comparison.  The branch starts using the
456   // new comparison.
457   NewCompare->takeName(Compare);
458   Compare->replaceAllUsesWith(NewCompare);
459   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
460 
461   // Delete the old floating point increment.
462   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
463   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
464 
465   // If the FP induction variable still has uses, this is because something else
466   // in the loop uses its value.  In order to canonicalize the induction
467   // variable, we chose to eliminate the IV and rewrite it in terms of an
468   // int->fp cast.
469   //
470   // We give preference to sitofp over uitofp because it is faster on most
471   // platforms.
472   if (WeakPH) {
473     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
474                                  &*PN->getParent()->getFirstInsertionPt());
475     PN->replaceAllUsesWith(Conv);
476     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
477   }
478   Changed = true;
479 }
480 
481 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
482   // First step.  Check to see if there are any floating-point recurrences.
483   // If there are, change them into integer recurrences, permitting analysis by
484   // the SCEV routines.
485   BasicBlock *Header = L->getHeader();
486 
487   SmallVector<WeakTrackingVH, 8> PHIs;
488   for (PHINode &PN : Header->phis())
489     PHIs.push_back(&PN);
490 
491   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
492     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
493       handleFloatingPointIV(L, PN);
494 
495   // If the loop previously had floating-point IV, ScalarEvolution
496   // may not have been able to compute a trip count. Now that we've done some
497   // re-writing, the trip count may be computable.
498   if (Changed)
499     SE->forgetLoop(L);
500 }
501 
502 namespace {
503 
504 // Collect information about PHI nodes which can be transformed in
505 // rewriteLoopExitValues.
506 struct RewritePhi {
507   PHINode *PN;
508 
509   // Ith incoming value.
510   unsigned Ith;
511 
512   // Exit value after expansion.
513   Value *Val;
514 
515   // High Cost when expansion.
516   bool HighCost;
517 
518   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
519       : PN(P), Ith(I), Val(V), HighCost(H) {}
520 };
521 
522 } // end anonymous namespace
523 
524 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
525                                           Loop *L, Instruction *InsertPt,
526                                           Type *ResultTy) {
527   // Before expanding S into an expensive LLVM expression, see if we can use an
528   // already existing value as the expansion for S.
529   if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L))
530     if (ExistingValue->getType() == ResultTy)
531       return ExistingValue;
532 
533   // We didn't find anything, fall back to using SCEVExpander.
534   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
535 }
536 
537 //===----------------------------------------------------------------------===//
538 // rewriteLoopExitValues - Optimize IV users outside the loop.
539 // As a side effect, reduces the amount of IV processing within the loop.
540 //===----------------------------------------------------------------------===//
541 
542 /// Check to see if this loop has a computable loop-invariant execution count.
543 /// If so, this means that we can compute the final value of any expressions
544 /// that are recurrent in the loop, and substitute the exit values from the loop
545 /// into any instructions outside of the loop that use the final values of the
546 /// current expressions.
547 ///
548 /// This is mostly redundant with the regular IndVarSimplify activities that
549 /// happen later, except that it's more powerful in some cases, because it's
550 /// able to brute-force evaluate arbitrary instructions as long as they have
551 /// constant operands at the beginning of the loop.
552 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
553   // Check a pre-condition.
554   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
555          "Indvars did not preserve LCSSA!");
556 
557   SmallVector<BasicBlock*, 8> ExitBlocks;
558   L->getUniqueExitBlocks(ExitBlocks);
559 
560   SmallVector<RewritePhi, 8> RewritePhiSet;
561   // Find all values that are computed inside the loop, but used outside of it.
562   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
563   // the exit blocks of the loop to find them.
564   for (BasicBlock *ExitBB : ExitBlocks) {
565     // If there are no PHI nodes in this exit block, then no values defined
566     // inside the loop are used on this path, skip it.
567     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
568     if (!PN) continue;
569 
570     unsigned NumPreds = PN->getNumIncomingValues();
571 
572     // Iterate over all of the PHI nodes.
573     BasicBlock::iterator BBI = ExitBB->begin();
574     while ((PN = dyn_cast<PHINode>(BBI++))) {
575       if (PN->use_empty())
576         continue; // dead use, don't replace it
577 
578       if (!SE->isSCEVable(PN->getType()))
579         continue;
580 
581       // It's necessary to tell ScalarEvolution about this explicitly so that
582       // it can walk the def-use list and forget all SCEVs, as it may not be
583       // watching the PHI itself. Once the new exit value is in place, there
584       // may not be a def-use connection between the loop and every instruction
585       // which got a SCEVAddRecExpr for that loop.
586       SE->forgetValue(PN);
587 
588       // Iterate over all of the values in all the PHI nodes.
589       for (unsigned i = 0; i != NumPreds; ++i) {
590         // If the value being merged in is not integer or is not defined
591         // in the loop, skip it.
592         Value *InVal = PN->getIncomingValue(i);
593         if (!isa<Instruction>(InVal))
594           continue;
595 
596         // If this pred is for a subloop, not L itself, skip it.
597         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
598           continue; // The Block is in a subloop, skip it.
599 
600         // Check that InVal is defined in the loop.
601         Instruction *Inst = cast<Instruction>(InVal);
602         if (!L->contains(Inst))
603           continue;
604 
605         // Okay, this instruction has a user outside of the current loop
606         // and varies predictably *inside* the loop.  Evaluate the value it
607         // contains when the loop exits, if possible.
608         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
609         if (!SE->isLoopInvariant(ExitValue, L) ||
610             !isSafeToExpand(ExitValue, *SE))
611           continue;
612 
613         // Computing the value outside of the loop brings no benefit if :
614         //  - it is definitely used inside the loop in a way which can not be
615         //    optimized away.
616         //  - no use outside of the loop can take advantage of hoisting the
617         //    computation out of the loop
618         if (ExitValue->getSCEVType()>=scMulExpr) {
619           unsigned NumHardInternalUses = 0;
620           unsigned NumSoftExternalUses = 0;
621           unsigned NumUses = 0;
622           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
623                IB != IE && NumUses <= 6; ++IB) {
624             Instruction *UseInstr = cast<Instruction>(*IB);
625             unsigned Opc = UseInstr->getOpcode();
626             NumUses++;
627             if (L->contains(UseInstr)) {
628               if (Opc == Instruction::Call || Opc == Instruction::Ret)
629                 NumHardInternalUses++;
630             } else {
631               if (Opc == Instruction::PHI) {
632                 // Do not count the Phi as a use. LCSSA may have inserted
633                 // plenty of trivial ones.
634                 NumUses--;
635                 for (auto PB = UseInstr->user_begin(),
636                           PE = UseInstr->user_end();
637                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
638                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
639                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
640                     NumSoftExternalUses++;
641                 }
642                 continue;
643               }
644               if (Opc != Instruction::Call && Opc != Instruction::Ret)
645                 NumSoftExternalUses++;
646             }
647           }
648           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
649             continue;
650         }
651 
652         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
653         Value *ExitVal =
654             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
655 
656         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
657                      << "  LoopVal = " << *Inst << "\n");
658 
659         if (!isValidRewrite(Inst, ExitVal)) {
660           DeadInsts.push_back(ExitVal);
661           continue;
662         }
663 
664         // Collect all the candidate PHINodes to be rewritten.
665         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
666       }
667     }
668   }
669 
670   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
671 
672   // Transformation.
673   for (const RewritePhi &Phi : RewritePhiSet) {
674     PHINode *PN = Phi.PN;
675     Value *ExitVal = Phi.Val;
676 
677     // Only do the rewrite when the ExitValue can be expanded cheaply.
678     // If LoopCanBeDel is true, rewrite exit value aggressively.
679     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
680       DeadInsts.push_back(ExitVal);
681       continue;
682     }
683 
684     Changed = true;
685     ++NumReplaced;
686     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
687     PN->setIncomingValue(Phi.Ith, ExitVal);
688 
689     // If this instruction is dead now, delete it. Don't do it now to avoid
690     // invalidating iterators.
691     if (isInstructionTriviallyDead(Inst, TLI))
692       DeadInsts.push_back(Inst);
693 
694     // Replace PN with ExitVal if that is legal and does not break LCSSA.
695     if (PN->getNumIncomingValues() == 1 &&
696         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
697       PN->replaceAllUsesWith(ExitVal);
698       PN->eraseFromParent();
699     }
700   }
701 
702   // The insertion point instruction may have been deleted; clear it out
703   // so that the rewriter doesn't trip over it later.
704   Rewriter.clearInsertPoint();
705 }
706 
707 //===---------------------------------------------------------------------===//
708 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
709 // they will exit at the first iteration.
710 //===---------------------------------------------------------------------===//
711 
712 /// Check to see if this loop has loop invariant conditions which lead to loop
713 /// exits. If so, we know that if the exit path is taken, it is at the first
714 /// loop iteration. This lets us predict exit values of PHI nodes that live in
715 /// loop header.
716 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
717   // Verify the input to the pass is already in LCSSA form.
718   assert(L->isLCSSAForm(*DT));
719 
720   SmallVector<BasicBlock *, 8> ExitBlocks;
721   L->getUniqueExitBlocks(ExitBlocks);
722   auto *LoopHeader = L->getHeader();
723   assert(LoopHeader && "Invalid loop");
724 
725   for (auto *ExitBB : ExitBlocks) {
726     // If there are no more PHI nodes in this exit block, then no more
727     // values defined inside the loop are used on this path.
728     for (PHINode &PN : ExitBB->phis()) {
729       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
730            IncomingValIdx != E; ++IncomingValIdx) {
731         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
732 
733         // We currently only support loop exits from loop header. If the
734         // incoming block is not loop header, we need to recursively check
735         // all conditions starting from loop header are loop invariants.
736         // Additional support might be added in the future.
737         if (IncomingBB != LoopHeader)
738           continue;
739 
740         // Get condition that leads to the exit path.
741         auto *TermInst = IncomingBB->getTerminator();
742 
743         Value *Cond = nullptr;
744         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
745           // Must be a conditional branch, otherwise the block
746           // should not be in the loop.
747           Cond = BI->getCondition();
748         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
749           Cond = SI->getCondition();
750         else
751           continue;
752 
753         if (!L->isLoopInvariant(Cond))
754           continue;
755 
756         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
757 
758         // Only deal with PHIs.
759         if (!ExitVal)
760           continue;
761 
762         // If ExitVal is a PHI on the loop header, then we know its
763         // value along this exit because the exit can only be taken
764         // on the first iteration.
765         auto *LoopPreheader = L->getLoopPreheader();
766         assert(LoopPreheader && "Invalid loop");
767         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
768         if (PreheaderIdx != -1) {
769           assert(ExitVal->getParent() == LoopHeader &&
770                  "ExitVal must be in loop header");
771           PN.setIncomingValue(IncomingValIdx,
772                               ExitVal->getIncomingValue(PreheaderIdx));
773         }
774       }
775     }
776   }
777 }
778 
779 /// Check whether it is possible to delete the loop after rewriting exit
780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
781 /// aggressively.
782 bool IndVarSimplify::canLoopBeDeleted(
783     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
784   BasicBlock *Preheader = L->getLoopPreheader();
785   // If there is no preheader, the loop will not be deleted.
786   if (!Preheader)
787     return false;
788 
789   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
790   // We obviate multiple ExitingBlocks case for simplicity.
791   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
792   // after exit value rewriting, we can enhance the logic here.
793   SmallVector<BasicBlock *, 4> ExitingBlocks;
794   L->getExitingBlocks(ExitingBlocks);
795   SmallVector<BasicBlock *, 8> ExitBlocks;
796   L->getUniqueExitBlocks(ExitBlocks);
797   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
798     return false;
799 
800   BasicBlock *ExitBlock = ExitBlocks[0];
801   BasicBlock::iterator BI = ExitBlock->begin();
802   while (PHINode *P = dyn_cast<PHINode>(BI)) {
803     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
804 
805     // If the Incoming value of P is found in RewritePhiSet, we know it
806     // could be rewritten to use a loop invariant value in transformation
807     // phase later. Skip it in the loop invariant check below.
808     bool found = false;
809     for (const RewritePhi &Phi : RewritePhiSet) {
810       unsigned i = Phi.Ith;
811       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
812         found = true;
813         break;
814       }
815     }
816 
817     Instruction *I;
818     if (!found && (I = dyn_cast<Instruction>(Incoming)))
819       if (!L->hasLoopInvariantOperands(I))
820         return false;
821 
822     ++BI;
823   }
824 
825   for (auto *BB : L->blocks())
826     if (llvm::any_of(*BB, [](Instruction &I) {
827           return I.mayHaveSideEffects();
828         }))
829       return false;
830 
831   return true;
832 }
833 
834 //===----------------------------------------------------------------------===//
835 //  IV Widening - Extend the width of an IV to cover its widest uses.
836 //===----------------------------------------------------------------------===//
837 
838 namespace {
839 
840 // Collect information about induction variables that are used by sign/zero
841 // extend operations. This information is recorded by CollectExtend and provides
842 // the input to WidenIV.
843 struct WideIVInfo {
844   PHINode *NarrowIV = nullptr;
845 
846   // Widest integer type created [sz]ext
847   Type *WidestNativeType = nullptr;
848 
849   // Was a sext user seen before a zext?
850   bool IsSigned = false;
851 };
852 
853 } // end anonymous namespace
854 
855 /// Update information about the induction variable that is extended by this
856 /// sign or zero extend operation. This is used to determine the final width of
857 /// the IV before actually widening it.
858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
859                         const TargetTransformInfo *TTI) {
860   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
861   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
862     return;
863 
864   Type *Ty = Cast->getType();
865   uint64_t Width = SE->getTypeSizeInBits(Ty);
866   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
867     return;
868 
869   // Check that `Cast` actually extends the induction variable (we rely on this
870   // later).  This takes care of cases where `Cast` is extending a truncation of
871   // the narrow induction variable, and thus can end up being narrower than the
872   // "narrow" induction variable.
873   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
874   if (NarrowIVWidth >= Width)
875     return;
876 
877   // Cast is either an sext or zext up to this point.
878   // We should not widen an indvar if arithmetics on the wider indvar are more
879   // expensive than those on the narrower indvar. We check only the cost of ADD
880   // because at least an ADD is required to increment the induction variable. We
881   // could compute more comprehensively the cost of all instructions on the
882   // induction variable when necessary.
883   if (TTI &&
884       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
885           TTI->getArithmeticInstrCost(Instruction::Add,
886                                       Cast->getOperand(0)->getType())) {
887     return;
888   }
889 
890   if (!WI.WidestNativeType) {
891     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
892     WI.IsSigned = IsSigned;
893     return;
894   }
895 
896   // We extend the IV to satisfy the sign of its first user, arbitrarily.
897   if (WI.IsSigned != IsSigned)
898     return;
899 
900   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
901     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
902 }
903 
904 namespace {
905 
906 /// Record a link in the Narrow IV def-use chain along with the WideIV that
907 /// computes the same value as the Narrow IV def.  This avoids caching Use*
908 /// pointers.
909 struct NarrowIVDefUse {
910   Instruction *NarrowDef = nullptr;
911   Instruction *NarrowUse = nullptr;
912   Instruction *WideDef = nullptr;
913 
914   // True if the narrow def is never negative.  Tracking this information lets
915   // us use a sign extension instead of a zero extension or vice versa, when
916   // profitable and legal.
917   bool NeverNegative = false;
918 
919   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
920                  bool NeverNegative)
921       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
922         NeverNegative(NeverNegative) {}
923 };
924 
925 /// The goal of this transform is to remove sign and zero extends without
926 /// creating any new induction variables. To do this, it creates a new phi of
927 /// the wider type and redirects all users, either removing extends or inserting
928 /// truncs whenever we stop propagating the type.
929 class WidenIV {
930   // Parameters
931   PHINode *OrigPhi;
932   Type *WideType;
933 
934   // Context
935   LoopInfo        *LI;
936   Loop            *L;
937   ScalarEvolution *SE;
938   DominatorTree   *DT;
939 
940   // Does the module have any calls to the llvm.experimental.guard intrinsic
941   // at all? If not we can avoid scanning instructions looking for guards.
942   bool HasGuards;
943 
944   // Result
945   PHINode *WidePhi = nullptr;
946   Instruction *WideInc = nullptr;
947   const SCEV *WideIncExpr = nullptr;
948   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
949 
950   SmallPtrSet<Instruction *,16> Widened;
951   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
952 
953   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
954 
955   // A map tracking the kind of extension used to widen each narrow IV
956   // and narrow IV user.
957   // Key: pointer to a narrow IV or IV user.
958   // Value: the kind of extension used to widen this Instruction.
959   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
960 
961   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
962 
963   // A map with control-dependent ranges for post increment IV uses. The key is
964   // a pair of IV def and a use of this def denoting the context. The value is
965   // a ConstantRange representing possible values of the def at the given
966   // context.
967   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
968 
969   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
970                                               Instruction *UseI) {
971     DefUserPair Key(Def, UseI);
972     auto It = PostIncRangeInfos.find(Key);
973     return It == PostIncRangeInfos.end()
974                ? Optional<ConstantRange>(None)
975                : Optional<ConstantRange>(It->second);
976   }
977 
978   void calculatePostIncRanges(PHINode *OrigPhi);
979   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
980 
981   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
982     DefUserPair Key(Def, UseI);
983     auto It = PostIncRangeInfos.find(Key);
984     if (It == PostIncRangeInfos.end())
985       PostIncRangeInfos.insert({Key, R});
986     else
987       It->second = R.intersectWith(It->second);
988   }
989 
990 public:
991   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
992           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
993           bool HasGuards)
994       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
995         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
996         HasGuards(HasGuards), DeadInsts(DI) {
997     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
998     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
999   }
1000 
1001   PHINode *createWideIV(SCEVExpander &Rewriter);
1002 
1003 protected:
1004   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1005                           Instruction *Use);
1006 
1007   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1008   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1009                                      const SCEVAddRecExpr *WideAR);
1010   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1011 
1012   ExtendKind getExtendKind(Instruction *I);
1013 
1014   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1015 
1016   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1017 
1018   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1019 
1020   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1021                               unsigned OpCode) const;
1022 
1023   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1024 
1025   bool widenLoopCompare(NarrowIVDefUse DU);
1026 
1027   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1028 };
1029 
1030 } // end anonymous namespace
1031 
1032 /// Perform a quick domtree based check for loop invariance assuming that V is
1033 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1034 /// purpose.
1035 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1036   Instruction *Inst = dyn_cast<Instruction>(V);
1037   if (!Inst)
1038     return true;
1039 
1040   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1041 }
1042 
1043 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1044                                  bool IsSigned, Instruction *Use) {
1045   // Set the debug location and conservative insertion point.
1046   IRBuilder<> Builder(Use);
1047   // Hoist the insertion point into loop preheaders as far as possible.
1048   for (const Loop *L = LI->getLoopFor(Use->getParent());
1049        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1050        L = L->getParentLoop())
1051     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1052 
1053   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1054                     Builder.CreateZExt(NarrowOper, WideType);
1055 }
1056 
1057 /// Instantiate a wide operation to replace a narrow operation. This only needs
1058 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1059 /// 0 for any operation we decide not to clone.
1060 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1061                                   const SCEVAddRecExpr *WideAR) {
1062   unsigned Opcode = DU.NarrowUse->getOpcode();
1063   switch (Opcode) {
1064   default:
1065     return nullptr;
1066   case Instruction::Add:
1067   case Instruction::Mul:
1068   case Instruction::UDiv:
1069   case Instruction::Sub:
1070     return cloneArithmeticIVUser(DU, WideAR);
1071 
1072   case Instruction::And:
1073   case Instruction::Or:
1074   case Instruction::Xor:
1075   case Instruction::Shl:
1076   case Instruction::LShr:
1077   case Instruction::AShr:
1078     return cloneBitwiseIVUser(DU);
1079   }
1080 }
1081 
1082 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1083   Instruction *NarrowUse = DU.NarrowUse;
1084   Instruction *NarrowDef = DU.NarrowDef;
1085   Instruction *WideDef = DU.WideDef;
1086 
1087   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1088 
1089   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1090   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1091   // invariant and will be folded or hoisted. If it actually comes from a
1092   // widened IV, it should be removed during a future call to widenIVUse.
1093   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1094   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1095                    ? WideDef
1096                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1097                                       IsSigned, NarrowUse);
1098   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1099                    ? WideDef
1100                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1101                                       IsSigned, NarrowUse);
1102 
1103   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1104   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1105                                         NarrowBO->getName());
1106   IRBuilder<> Builder(NarrowUse);
1107   Builder.Insert(WideBO);
1108   WideBO->copyIRFlags(NarrowBO);
1109   return WideBO;
1110 }
1111 
1112 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1113                                             const SCEVAddRecExpr *WideAR) {
1114   Instruction *NarrowUse = DU.NarrowUse;
1115   Instruction *NarrowDef = DU.NarrowDef;
1116   Instruction *WideDef = DU.WideDef;
1117 
1118   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1119 
1120   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1121 
1122   // We're trying to find X such that
1123   //
1124   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1125   //
1126   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1127   // and check using SCEV if any of them are correct.
1128 
1129   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1130   // correct solution to X.
1131   auto GuessNonIVOperand = [&](bool SignExt) {
1132     const SCEV *WideLHS;
1133     const SCEV *WideRHS;
1134 
1135     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1136       if (SignExt)
1137         return SE->getSignExtendExpr(S, Ty);
1138       return SE->getZeroExtendExpr(S, Ty);
1139     };
1140 
1141     if (IVOpIdx == 0) {
1142       WideLHS = SE->getSCEV(WideDef);
1143       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1144       WideRHS = GetExtend(NarrowRHS, WideType);
1145     } else {
1146       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1147       WideLHS = GetExtend(NarrowLHS, WideType);
1148       WideRHS = SE->getSCEV(WideDef);
1149     }
1150 
1151     // WideUse is "WideDef `op.wide` X" as described in the comment.
1152     const SCEV *WideUse = nullptr;
1153 
1154     switch (NarrowUse->getOpcode()) {
1155     default:
1156       llvm_unreachable("No other possibility!");
1157 
1158     case Instruction::Add:
1159       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1160       break;
1161 
1162     case Instruction::Mul:
1163       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1164       break;
1165 
1166     case Instruction::UDiv:
1167       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1168       break;
1169 
1170     case Instruction::Sub:
1171       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1172       break;
1173     }
1174 
1175     return WideUse == WideAR;
1176   };
1177 
1178   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1179   if (!GuessNonIVOperand(SignExtend)) {
1180     SignExtend = !SignExtend;
1181     if (!GuessNonIVOperand(SignExtend))
1182       return nullptr;
1183   }
1184 
1185   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1186                    ? WideDef
1187                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1188                                       SignExtend, NarrowUse);
1189   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1190                    ? WideDef
1191                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1192                                       SignExtend, NarrowUse);
1193 
1194   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1195   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1196                                         NarrowBO->getName());
1197 
1198   IRBuilder<> Builder(NarrowUse);
1199   Builder.Insert(WideBO);
1200   WideBO->copyIRFlags(NarrowBO);
1201   return WideBO;
1202 }
1203 
1204 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1205   auto It = ExtendKindMap.find(I);
1206   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1207   return It->second;
1208 }
1209 
1210 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1211                                      unsigned OpCode) const {
1212   if (OpCode == Instruction::Add)
1213     return SE->getAddExpr(LHS, RHS);
1214   if (OpCode == Instruction::Sub)
1215     return SE->getMinusSCEV(LHS, RHS);
1216   if (OpCode == Instruction::Mul)
1217     return SE->getMulExpr(LHS, RHS);
1218 
1219   llvm_unreachable("Unsupported opcode.");
1220 }
1221 
1222 /// No-wrap operations can transfer sign extension of their result to their
1223 /// operands. Generate the SCEV value for the widened operation without
1224 /// actually modifying the IR yet. If the expression after extending the
1225 /// operands is an AddRec for this loop, return the AddRec and the kind of
1226 /// extension used.
1227 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1228   // Handle the common case of add<nsw/nuw>
1229   const unsigned OpCode = DU.NarrowUse->getOpcode();
1230   // Only Add/Sub/Mul instructions supported yet.
1231   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1232       OpCode != Instruction::Mul)
1233     return {nullptr, Unknown};
1234 
1235   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1236   // if extending the other will lead to a recurrence.
1237   const unsigned ExtendOperIdx =
1238       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1239   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1240 
1241   const SCEV *ExtendOperExpr = nullptr;
1242   const OverflowingBinaryOperator *OBO =
1243     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1244   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1245   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1246     ExtendOperExpr = SE->getSignExtendExpr(
1247       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1248   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1249     ExtendOperExpr = SE->getZeroExtendExpr(
1250       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1251   else
1252     return {nullptr, Unknown};
1253 
1254   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1255   // flags. This instruction may be guarded by control flow that the no-wrap
1256   // behavior depends on. Non-control-equivalent instructions can be mapped to
1257   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1258   // semantics to those operations.
1259   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1260   const SCEV *rhs = ExtendOperExpr;
1261 
1262   // Let's swap operands to the initial order for the case of non-commutative
1263   // operations, like SUB. See PR21014.
1264   if (ExtendOperIdx == 0)
1265     std::swap(lhs, rhs);
1266   const SCEVAddRecExpr *AddRec =
1267       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1268 
1269   if (!AddRec || AddRec->getLoop() != L)
1270     return {nullptr, Unknown};
1271 
1272   return {AddRec, ExtKind};
1273 }
1274 
1275 /// Is this instruction potentially interesting for further simplification after
1276 /// widening it's type? In other words, can the extend be safely hoisted out of
1277 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1278 /// so, return the extended recurrence and the kind of extension used. Otherwise
1279 /// return {nullptr, Unknown}.
1280 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1281   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1282     return {nullptr, Unknown};
1283 
1284   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1285   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1286       SE->getTypeSizeInBits(WideType)) {
1287     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1288     // index. So don't follow this use.
1289     return {nullptr, Unknown};
1290   }
1291 
1292   const SCEV *WideExpr;
1293   ExtendKind ExtKind;
1294   if (DU.NeverNegative) {
1295     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1296     if (isa<SCEVAddRecExpr>(WideExpr))
1297       ExtKind = SignExtended;
1298     else {
1299       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1300       ExtKind = ZeroExtended;
1301     }
1302   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1303     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1304     ExtKind = SignExtended;
1305   } else {
1306     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1307     ExtKind = ZeroExtended;
1308   }
1309   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1310   if (!AddRec || AddRec->getLoop() != L)
1311     return {nullptr, Unknown};
1312   return {AddRec, ExtKind};
1313 }
1314 
1315 /// This IV user cannot be widen. Replace this use of the original narrow IV
1316 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1317 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1318   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1319         << " for user " << *DU.NarrowUse << "\n");
1320   IRBuilder<> Builder(
1321       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1322   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1323   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1324 }
1325 
1326 /// If the narrow use is a compare instruction, then widen the compare
1327 //  (and possibly the other operand).  The extend operation is hoisted into the
1328 // loop preheader as far as possible.
1329 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1330   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1331   if (!Cmp)
1332     return false;
1333 
1334   // We can legally widen the comparison in the following two cases:
1335   //
1336   //  - The signedness of the IV extension and comparison match
1337   //
1338   //  - The narrow IV is always positive (and thus its sign extension is equal
1339   //    to its zero extension).  For instance, let's say we're zero extending
1340   //    %narrow for the following use
1341   //
1342   //      icmp slt i32 %narrow, %val   ... (A)
1343   //
1344   //    and %narrow is always positive.  Then
1345   //
1346   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1347   //          == icmp slt i32 zext(%narrow), sext(%val)
1348   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1349   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1350     return false;
1351 
1352   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1353   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1354   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1355   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1356 
1357   // Widen the compare instruction.
1358   IRBuilder<> Builder(
1359       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1360   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1361 
1362   // Widen the other operand of the compare, if necessary.
1363   if (CastWidth < IVWidth) {
1364     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1365     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1366   }
1367   return true;
1368 }
1369 
1370 /// Determine whether an individual user of the narrow IV can be widened. If so,
1371 /// return the wide clone of the user.
1372 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1373   assert(ExtendKindMap.count(DU.NarrowDef) &&
1374          "Should already know the kind of extension used to widen NarrowDef");
1375 
1376   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1377   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1378     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1379       // For LCSSA phis, sink the truncate outside the loop.
1380       // After SimplifyCFG most loop exit targets have a single predecessor.
1381       // Otherwise fall back to a truncate within the loop.
1382       if (UsePhi->getNumOperands() != 1)
1383         truncateIVUse(DU, DT, LI);
1384       else {
1385         // Widening the PHI requires us to insert a trunc.  The logical place
1386         // for this trunc is in the same BB as the PHI.  This is not possible if
1387         // the BB is terminated by a catchswitch.
1388         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1389           return nullptr;
1390 
1391         PHINode *WidePhi =
1392           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1393                           UsePhi);
1394         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1395         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1396         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1397         UsePhi->replaceAllUsesWith(Trunc);
1398         DeadInsts.emplace_back(UsePhi);
1399         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1400               << " to " << *WidePhi << "\n");
1401       }
1402       return nullptr;
1403     }
1404   }
1405 
1406   // This narrow use can be widened by a sext if it's non-negative or its narrow
1407   // def was widended by a sext. Same for zext.
1408   auto canWidenBySExt = [&]() {
1409     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1410   };
1411   auto canWidenByZExt = [&]() {
1412     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1413   };
1414 
1415   // Our raison d'etre! Eliminate sign and zero extension.
1416   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1417       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1418     Value *NewDef = DU.WideDef;
1419     if (DU.NarrowUse->getType() != WideType) {
1420       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1421       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1422       if (CastWidth < IVWidth) {
1423         // The cast isn't as wide as the IV, so insert a Trunc.
1424         IRBuilder<> Builder(DU.NarrowUse);
1425         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1426       }
1427       else {
1428         // A wider extend was hidden behind a narrower one. This may induce
1429         // another round of IV widening in which the intermediate IV becomes
1430         // dead. It should be very rare.
1431         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1432               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1433         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1434         NewDef = DU.NarrowUse;
1435       }
1436     }
1437     if (NewDef != DU.NarrowUse) {
1438       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1439             << " replaced by " << *DU.WideDef << "\n");
1440       ++NumElimExt;
1441       DU.NarrowUse->replaceAllUsesWith(NewDef);
1442       DeadInsts.emplace_back(DU.NarrowUse);
1443     }
1444     // Now that the extend is gone, we want to expose it's uses for potential
1445     // further simplification. We don't need to directly inform SimplifyIVUsers
1446     // of the new users, because their parent IV will be processed later as a
1447     // new loop phi. If we preserved IVUsers analysis, we would also want to
1448     // push the uses of WideDef here.
1449 
1450     // No further widening is needed. The deceased [sz]ext had done it for us.
1451     return nullptr;
1452   }
1453 
1454   // Does this user itself evaluate to a recurrence after widening?
1455   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1456   if (!WideAddRec.first)
1457     WideAddRec = getWideRecurrence(DU);
1458 
1459   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1460   if (!WideAddRec.first) {
1461     // If use is a loop condition, try to promote the condition instead of
1462     // truncating the IV first.
1463     if (widenLoopCompare(DU))
1464       return nullptr;
1465 
1466     // This user does not evaluate to a recurrence after widening, so don't
1467     // follow it. Instead insert a Trunc to kill off the original use,
1468     // eventually isolating the original narrow IV so it can be removed.
1469     truncateIVUse(DU, DT, LI);
1470     return nullptr;
1471   }
1472   // Assume block terminators cannot evaluate to a recurrence. We can't to
1473   // insert a Trunc after a terminator if there happens to be a critical edge.
1474   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1475          "SCEV is not expected to evaluate a block terminator");
1476 
1477   // Reuse the IV increment that SCEVExpander created as long as it dominates
1478   // NarrowUse.
1479   Instruction *WideUse = nullptr;
1480   if (WideAddRec.first == WideIncExpr &&
1481       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1482     WideUse = WideInc;
1483   else {
1484     WideUse = cloneIVUser(DU, WideAddRec.first);
1485     if (!WideUse)
1486       return nullptr;
1487   }
1488   // Evaluation of WideAddRec ensured that the narrow expression could be
1489   // extended outside the loop without overflow. This suggests that the wide use
1490   // evaluates to the same expression as the extended narrow use, but doesn't
1491   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1492   // where it fails, we simply throw away the newly created wide use.
1493   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1494     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1495           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n");
1496     DeadInsts.emplace_back(WideUse);
1497     return nullptr;
1498   }
1499 
1500   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1501   // Returning WideUse pushes it on the worklist.
1502   return WideUse;
1503 }
1504 
1505 /// Add eligible users of NarrowDef to NarrowIVUsers.
1506 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1507   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1508   bool NonNegativeDef =
1509       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1510                            SE->getConstant(NarrowSCEV->getType(), 0));
1511   for (User *U : NarrowDef->users()) {
1512     Instruction *NarrowUser = cast<Instruction>(U);
1513 
1514     // Handle data flow merges and bizarre phi cycles.
1515     if (!Widened.insert(NarrowUser).second)
1516       continue;
1517 
1518     bool NonNegativeUse = false;
1519     if (!NonNegativeDef) {
1520       // We might have a control-dependent range information for this context.
1521       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1522         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1523     }
1524 
1525     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1526                                NonNegativeDef || NonNegativeUse);
1527   }
1528 }
1529 
1530 /// Process a single induction variable. First use the SCEVExpander to create a
1531 /// wide induction variable that evaluates to the same recurrence as the
1532 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1533 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1534 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1535 ///
1536 /// It would be simpler to delete uses as they are processed, but we must avoid
1537 /// invalidating SCEV expressions.
1538 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1539   // Is this phi an induction variable?
1540   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1541   if (!AddRec)
1542     return nullptr;
1543 
1544   // Widen the induction variable expression.
1545   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1546                                ? SE->getSignExtendExpr(AddRec, WideType)
1547                                : SE->getZeroExtendExpr(AddRec, WideType);
1548 
1549   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1550          "Expect the new IV expression to preserve its type");
1551 
1552   // Can the IV be extended outside the loop without overflow?
1553   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1554   if (!AddRec || AddRec->getLoop() != L)
1555     return nullptr;
1556 
1557   // An AddRec must have loop-invariant operands. Since this AddRec is
1558   // materialized by a loop header phi, the expression cannot have any post-loop
1559   // operands, so they must dominate the loop header.
1560   assert(
1561       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1562       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1563       "Loop header phi recurrence inputs do not dominate the loop");
1564 
1565   // Iterate over IV uses (including transitive ones) looking for IV increments
1566   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1567   // the increment calculate control-dependent range information basing on
1568   // dominating conditions inside of the loop (e.g. a range check inside of the
1569   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1570   //
1571   // Control-dependent range information is later used to prove that a narrow
1572   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1573   // this on demand because when pushNarrowIVUsers needs this information some
1574   // of the dominating conditions might be already widened.
1575   if (UsePostIncrementRanges)
1576     calculatePostIncRanges(OrigPhi);
1577 
1578   // The rewriter provides a value for the desired IV expression. This may
1579   // either find an existing phi or materialize a new one. Either way, we
1580   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1581   // of the phi-SCC dominates the loop entry.
1582   Instruction *InsertPt = &L->getHeader()->front();
1583   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1584 
1585   // Remembering the WideIV increment generated by SCEVExpander allows
1586   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1587   // employ a general reuse mechanism because the call above is the only call to
1588   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1589   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1590     WideInc =
1591       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1592     WideIncExpr = SE->getSCEV(WideInc);
1593     // Propagate the debug location associated with the original loop increment
1594     // to the new (widened) increment.
1595     auto *OrigInc =
1596       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1597     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1598   }
1599 
1600   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1601   ++NumWidened;
1602 
1603   // Traverse the def-use chain using a worklist starting at the original IV.
1604   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1605 
1606   Widened.insert(OrigPhi);
1607   pushNarrowIVUsers(OrigPhi, WidePhi);
1608 
1609   while (!NarrowIVUsers.empty()) {
1610     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1611 
1612     // Process a def-use edge. This may replace the use, so don't hold a
1613     // use_iterator across it.
1614     Instruction *WideUse = widenIVUse(DU, Rewriter);
1615 
1616     // Follow all def-use edges from the previous narrow use.
1617     if (WideUse)
1618       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1619 
1620     // widenIVUse may have removed the def-use edge.
1621     if (DU.NarrowDef->use_empty())
1622       DeadInsts.emplace_back(DU.NarrowDef);
1623   }
1624 
1625   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1626   // evaluate the same recurrence, we can just copy the debug info over.
1627   SmallVector<DbgValueInst *, 1> DbgValues;
1628   llvm::findDbgValues(DbgValues, OrigPhi);
1629   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1630                                      ValueAsMetadata::get(WidePhi));
1631   for (auto &DbgValue : DbgValues)
1632     DbgValue->setOperand(0, MDPhi);
1633   return WidePhi;
1634 }
1635 
1636 /// Calculates control-dependent range for the given def at the given context
1637 /// by looking at dominating conditions inside of the loop
1638 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1639                                     Instruction *NarrowUser) {
1640   using namespace llvm::PatternMatch;
1641 
1642   Value *NarrowDefLHS;
1643   const APInt *NarrowDefRHS;
1644   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1645                                  m_APInt(NarrowDefRHS))) ||
1646       !NarrowDefRHS->isNonNegative())
1647     return;
1648 
1649   auto UpdateRangeFromCondition = [&] (Value *Condition,
1650                                        bool TrueDest) {
1651     CmpInst::Predicate Pred;
1652     Value *CmpRHS;
1653     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1654                                  m_Value(CmpRHS))))
1655       return;
1656 
1657     CmpInst::Predicate P =
1658             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1659 
1660     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1661     auto CmpConstrainedLHSRange =
1662             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1663     auto NarrowDefRange =
1664             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1665 
1666     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1667   };
1668 
1669   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1670     if (!HasGuards)
1671       return;
1672 
1673     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1674                                      Ctx->getParent()->rend())) {
1675       Value *C = nullptr;
1676       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1677         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1678     }
1679   };
1680 
1681   UpdateRangeFromGuards(NarrowUser);
1682 
1683   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1684   // If NarrowUserBB is statically unreachable asking dominator queries may
1685   // yield surprising results. (e.g. the block may not have a dom tree node)
1686   if (!DT->isReachableFromEntry(NarrowUserBB))
1687     return;
1688 
1689   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1690        L->contains(DTB->getBlock());
1691        DTB = DTB->getIDom()) {
1692     auto *BB = DTB->getBlock();
1693     auto *TI = BB->getTerminator();
1694     UpdateRangeFromGuards(TI);
1695 
1696     auto *BI = dyn_cast<BranchInst>(TI);
1697     if (!BI || !BI->isConditional())
1698       continue;
1699 
1700     auto *TrueSuccessor = BI->getSuccessor(0);
1701     auto *FalseSuccessor = BI->getSuccessor(1);
1702 
1703     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1704       return BBE.isSingleEdge() &&
1705              DT->dominates(BBE, NarrowUser->getParent());
1706     };
1707 
1708     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1709       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1710 
1711     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1712       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1713   }
1714 }
1715 
1716 /// Calculates PostIncRangeInfos map for the given IV
1717 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1718   SmallPtrSet<Instruction *, 16> Visited;
1719   SmallVector<Instruction *, 6> Worklist;
1720   Worklist.push_back(OrigPhi);
1721   Visited.insert(OrigPhi);
1722 
1723   while (!Worklist.empty()) {
1724     Instruction *NarrowDef = Worklist.pop_back_val();
1725 
1726     for (Use &U : NarrowDef->uses()) {
1727       auto *NarrowUser = cast<Instruction>(U.getUser());
1728 
1729       // Don't go looking outside the current loop.
1730       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1731       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1732         continue;
1733 
1734       if (!Visited.insert(NarrowUser).second)
1735         continue;
1736 
1737       Worklist.push_back(NarrowUser);
1738 
1739       calculatePostIncRange(NarrowDef, NarrowUser);
1740     }
1741   }
1742 }
1743 
1744 //===----------------------------------------------------------------------===//
1745 //  Live IV Reduction - Minimize IVs live across the loop.
1746 //===----------------------------------------------------------------------===//
1747 
1748 //===----------------------------------------------------------------------===//
1749 //  Simplification of IV users based on SCEV evaluation.
1750 //===----------------------------------------------------------------------===//
1751 
1752 namespace {
1753 
1754 class IndVarSimplifyVisitor : public IVVisitor {
1755   ScalarEvolution *SE;
1756   const TargetTransformInfo *TTI;
1757   PHINode *IVPhi;
1758 
1759 public:
1760   WideIVInfo WI;
1761 
1762   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1763                         const TargetTransformInfo *TTI,
1764                         const DominatorTree *DTree)
1765     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1766     DT = DTree;
1767     WI.NarrowIV = IVPhi;
1768   }
1769 
1770   // Implement the interface used by simplifyUsersOfIV.
1771   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1772 };
1773 
1774 } // end anonymous namespace
1775 
1776 /// Iteratively perform simplification on a worklist of IV users. Each
1777 /// successive simplification may push more users which may themselves be
1778 /// candidates for simplification.
1779 ///
1780 /// Sign/Zero extend elimination is interleaved with IV simplification.
1781 void IndVarSimplify::simplifyAndExtend(Loop *L,
1782                                        SCEVExpander &Rewriter,
1783                                        LoopInfo *LI) {
1784   SmallVector<WideIVInfo, 8> WideIVs;
1785 
1786   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1787           Intrinsic::getName(Intrinsic::experimental_guard));
1788   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1789 
1790   SmallVector<PHINode*, 8> LoopPhis;
1791   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1792     LoopPhis.push_back(cast<PHINode>(I));
1793   }
1794   // Each round of simplification iterates through the SimplifyIVUsers worklist
1795   // for all current phis, then determines whether any IVs can be
1796   // widened. Widening adds new phis to LoopPhis, inducing another round of
1797   // simplification on the wide IVs.
1798   while (!LoopPhis.empty()) {
1799     // Evaluate as many IV expressions as possible before widening any IVs. This
1800     // forces SCEV to set no-wrap flags before evaluating sign/zero
1801     // extension. The first time SCEV attempts to normalize sign/zero extension,
1802     // the result becomes final. So for the most predictable results, we delay
1803     // evaluation of sign/zero extend evaluation until needed, and avoid running
1804     // other SCEV based analysis prior to simplifyAndExtend.
1805     do {
1806       PHINode *CurrIV = LoopPhis.pop_back_val();
1807 
1808       // Information about sign/zero extensions of CurrIV.
1809       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1810 
1811       Changed |=
1812           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1813 
1814       if (Visitor.WI.WidestNativeType) {
1815         WideIVs.push_back(Visitor.WI);
1816       }
1817     } while(!LoopPhis.empty());
1818 
1819     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1820       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1821       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1822         Changed = true;
1823         LoopPhis.push_back(WidePhi);
1824       }
1825     }
1826   }
1827 }
1828 
1829 //===----------------------------------------------------------------------===//
1830 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1831 //===----------------------------------------------------------------------===//
1832 
1833 /// Return true if this loop's backedge taken count expression can be safely and
1834 /// cheaply expanded into an instruction sequence that can be used by
1835 /// linearFunctionTestReplace.
1836 ///
1837 /// TODO: This fails for pointer-type loop counters with greater than one byte
1838 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1839 /// we could skip this check in the case that the LFTR loop counter (chosen by
1840 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1841 /// the loop test to an inequality test by checking the target data's alignment
1842 /// of element types (given that the initial pointer value originates from or is
1843 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1844 /// However, we don't yet have a strong motivation for converting loop tests
1845 /// into inequality tests.
1846 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1847                                         SCEVExpander &Rewriter) {
1848   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1849   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1850       BackedgeTakenCount->isZero())
1851     return false;
1852 
1853   if (!L->getExitingBlock())
1854     return false;
1855 
1856   // Can't rewrite non-branch yet.
1857   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1858     return false;
1859 
1860   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1861     return false;
1862 
1863   return true;
1864 }
1865 
1866 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1867 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1868   Instruction *IncI = dyn_cast<Instruction>(IncV);
1869   if (!IncI)
1870     return nullptr;
1871 
1872   switch (IncI->getOpcode()) {
1873   case Instruction::Add:
1874   case Instruction::Sub:
1875     break;
1876   case Instruction::GetElementPtr:
1877     // An IV counter must preserve its type.
1878     if (IncI->getNumOperands() == 2)
1879       break;
1880     LLVM_FALLTHROUGH;
1881   default:
1882     return nullptr;
1883   }
1884 
1885   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1886   if (Phi && Phi->getParent() == L->getHeader()) {
1887     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1888       return Phi;
1889     return nullptr;
1890   }
1891   if (IncI->getOpcode() == Instruction::GetElementPtr)
1892     return nullptr;
1893 
1894   // Allow add/sub to be commuted.
1895   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1896   if (Phi && Phi->getParent() == L->getHeader()) {
1897     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1898       return Phi;
1899   }
1900   return nullptr;
1901 }
1902 
1903 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1904 static ICmpInst *getLoopTest(Loop *L) {
1905   assert(L->getExitingBlock() && "expected loop exit");
1906 
1907   BasicBlock *LatchBlock = L->getLoopLatch();
1908   // Don't bother with LFTR if the loop is not properly simplified.
1909   if (!LatchBlock)
1910     return nullptr;
1911 
1912   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1913   assert(BI && "expected exit branch");
1914 
1915   return dyn_cast<ICmpInst>(BI->getCondition());
1916 }
1917 
1918 /// linearFunctionTestReplace policy. Return true unless we can show that the
1919 /// current exit test is already sufficiently canonical.
1920 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1921   // Do LFTR to simplify the exit condition to an ICMP.
1922   ICmpInst *Cond = getLoopTest(L);
1923   if (!Cond)
1924     return true;
1925 
1926   // Do LFTR to simplify the exit ICMP to EQ/NE
1927   ICmpInst::Predicate Pred = Cond->getPredicate();
1928   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1929     return true;
1930 
1931   // Look for a loop invariant RHS
1932   Value *LHS = Cond->getOperand(0);
1933   Value *RHS = Cond->getOperand(1);
1934   if (!isLoopInvariant(RHS, L, DT)) {
1935     if (!isLoopInvariant(LHS, L, DT))
1936       return true;
1937     std::swap(LHS, RHS);
1938   }
1939   // Look for a simple IV counter LHS
1940   PHINode *Phi = dyn_cast<PHINode>(LHS);
1941   if (!Phi)
1942     Phi = getLoopPhiForCounter(LHS, L, DT);
1943 
1944   if (!Phi)
1945     return true;
1946 
1947   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1948   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1949   if (Idx < 0)
1950     return true;
1951 
1952   // Do LFTR if the exit condition's IV is *not* a simple counter.
1953   Value *IncV = Phi->getIncomingValue(Idx);
1954   return Phi != getLoopPhiForCounter(IncV, L, DT);
1955 }
1956 
1957 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1958 /// down to checking that all operands are constant and listing instructions
1959 /// that may hide undef.
1960 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1961                                unsigned Depth) {
1962   if (isa<Constant>(V))
1963     return !isa<UndefValue>(V);
1964 
1965   if (Depth >= 6)
1966     return false;
1967 
1968   // Conservatively handle non-constant non-instructions. For example, Arguments
1969   // may be undef.
1970   Instruction *I = dyn_cast<Instruction>(V);
1971   if (!I)
1972     return false;
1973 
1974   // Load and return values may be undef.
1975   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1976     return false;
1977 
1978   // Optimistically handle other instructions.
1979   for (Value *Op : I->operands()) {
1980     if (!Visited.insert(Op).second)
1981       continue;
1982     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1983       return false;
1984   }
1985   return true;
1986 }
1987 
1988 /// Return true if the given value is concrete. We must prove that undef can
1989 /// never reach it.
1990 ///
1991 /// TODO: If we decide that this is a good approach to checking for undef, we
1992 /// may factor it into a common location.
1993 static bool hasConcreteDef(Value *V) {
1994   SmallPtrSet<Value*, 8> Visited;
1995   Visited.insert(V);
1996   return hasConcreteDefImpl(V, Visited, 0);
1997 }
1998 
1999 /// Return true if this IV has any uses other than the (soon to be rewritten)
2000 /// loop exit test.
2001 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2002   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2003   Value *IncV = Phi->getIncomingValue(LatchIdx);
2004 
2005   for (User *U : Phi->users())
2006     if (U != Cond && U != IncV) return false;
2007 
2008   for (User *U : IncV->users())
2009     if (U != Cond && U != Phi) return false;
2010   return true;
2011 }
2012 
2013 /// Find an affine IV in canonical form.
2014 ///
2015 /// BECount may be an i8* pointer type. The pointer difference is already
2016 /// valid count without scaling the address stride, so it remains a pointer
2017 /// expression as far as SCEV is concerned.
2018 ///
2019 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2020 ///
2021 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2022 ///
2023 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2024 /// This is difficult in general for SCEV because of potential overflow. But we
2025 /// could at least handle constant BECounts.
2026 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2027                                 ScalarEvolution *SE, DominatorTree *DT) {
2028   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2029 
2030   Value *Cond =
2031     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2032 
2033   // Loop over all of the PHI nodes, looking for a simple counter.
2034   PHINode *BestPhi = nullptr;
2035   const SCEV *BestInit = nullptr;
2036   BasicBlock *LatchBlock = L->getLoopLatch();
2037   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2038   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2039 
2040   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2041     PHINode *Phi = cast<PHINode>(I);
2042     if (!SE->isSCEVable(Phi->getType()))
2043       continue;
2044 
2045     // Avoid comparing an integer IV against a pointer Limit.
2046     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2047       continue;
2048 
2049     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2050     if (!AR || AR->getLoop() != L || !AR->isAffine())
2051       continue;
2052 
2053     // AR may be a pointer type, while BECount is an integer type.
2054     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2055     // AR may not be a narrower type, or we may never exit.
2056     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2057     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2058       continue;
2059 
2060     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2061     if (!Step || !Step->isOne())
2062       continue;
2063 
2064     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2065     Value *IncV = Phi->getIncomingValue(LatchIdx);
2066     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2067       continue;
2068 
2069     // Avoid reusing a potentially undef value to compute other values that may
2070     // have originally had a concrete definition.
2071     if (!hasConcreteDef(Phi)) {
2072       // We explicitly allow unknown phis as long as they are already used by
2073       // the loop test. In this case we assume that performing LFTR could not
2074       // increase the number of undef users.
2075       if (ICmpInst *Cond = getLoopTest(L)) {
2076         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2077             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2078           continue;
2079         }
2080       }
2081     }
2082     const SCEV *Init = AR->getStart();
2083 
2084     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2085       // Don't force a live loop counter if another IV can be used.
2086       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2087         continue;
2088 
2089       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2090       // also prefers integer to pointer IVs.
2091       if (BestInit->isZero() != Init->isZero()) {
2092         if (BestInit->isZero())
2093           continue;
2094       }
2095       // If two IVs both count from zero or both count from nonzero then the
2096       // narrower is likely a dead phi that has been widened. Use the wider phi
2097       // to allow the other to be eliminated.
2098       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2099         continue;
2100     }
2101     BestPhi = Phi;
2102     BestInit = Init;
2103   }
2104   return BestPhi;
2105 }
2106 
2107 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2108 /// the new loop test.
2109 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2110                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2111   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2112   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2113   const SCEV *IVInit = AR->getStart();
2114 
2115   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2116   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2117   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2118   // the existing GEPs whenever possible.
2119   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2120     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2121     // signed value. IVCount on the other hand represents the loop trip count,
2122     // which is an unsigned value. FindLoopCounter only allows induction
2123     // variables that have a positive unit stride of one. This means we don't
2124     // have to handle the case of negative offsets (yet) and just need to zero
2125     // extend IVCount.
2126     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2127     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2128 
2129     // Expand the code for the iteration count.
2130     assert(SE->isLoopInvariant(IVOffset, L) &&
2131            "Computed iteration count is not loop invariant!");
2132     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2133     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2134 
2135     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2136     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2137     // We could handle pointer IVs other than i8*, but we need to compensate for
2138     // gep index scaling. See canExpandBackedgeTakenCount comments.
2139     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2140                              cast<PointerType>(GEPBase->getType())
2141                                  ->getElementType())->isOne() &&
2142            "unit stride pointer IV must be i8*");
2143 
2144     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2145     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2146   } else {
2147     // In any other case, convert both IVInit and IVCount to integers before
2148     // comparing. This may result in SCEV expansion of pointers, but in practice
2149     // SCEV will fold the pointer arithmetic away as such:
2150     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2151     //
2152     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2153     // for simple memset-style loops.
2154     //
2155     // IVInit integer and IVCount pointer would only occur if a canonical IV
2156     // were generated on top of case #2, which is not expected.
2157 
2158     const SCEV *IVLimit = nullptr;
2159     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2160     // For non-zero Start, compute IVCount here.
2161     if (AR->getStart()->isZero())
2162       IVLimit = IVCount;
2163     else {
2164       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2165       const SCEV *IVInit = AR->getStart();
2166 
2167       // For integer IVs, truncate the IV before computing IVInit + BECount.
2168       if (SE->getTypeSizeInBits(IVInit->getType())
2169           > SE->getTypeSizeInBits(IVCount->getType()))
2170         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2171 
2172       IVLimit = SE->getAddExpr(IVInit, IVCount);
2173     }
2174     // Expand the code for the iteration count.
2175     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2176     IRBuilder<> Builder(BI);
2177     assert(SE->isLoopInvariant(IVLimit, L) &&
2178            "Computed iteration count is not loop invariant!");
2179     // Ensure that we generate the same type as IndVar, or a smaller integer
2180     // type. In the presence of null pointer values, we have an integer type
2181     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2182     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2183       IndVar->getType() : IVCount->getType();
2184     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2185   }
2186 }
2187 
2188 /// This method rewrites the exit condition of the loop to be a canonical !=
2189 /// comparison against the incremented loop induction variable.  This pass is
2190 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2191 /// determine a loop-invariant trip count of the loop, which is actually a much
2192 /// broader range than just linear tests.
2193 Value *IndVarSimplify::
2194 linearFunctionTestReplace(Loop *L,
2195                           const SCEV *BackedgeTakenCount,
2196                           PHINode *IndVar,
2197                           SCEVExpander &Rewriter) {
2198   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2199 
2200   // Initialize CmpIndVar and IVCount to their preincremented values.
2201   Value *CmpIndVar = IndVar;
2202   const SCEV *IVCount = BackedgeTakenCount;
2203 
2204   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2205 
2206   // If the exiting block is the same as the backedge block, we prefer to
2207   // compare against the post-incremented value, otherwise we must compare
2208   // against the preincremented value.
2209   if (L->getExitingBlock() == L->getLoopLatch()) {
2210     // Add one to the "backedge-taken" count to get the trip count.
2211     // This addition may overflow, which is valid as long as the comparison is
2212     // truncated to BackedgeTakenCount->getType().
2213     IVCount = SE->getAddExpr(BackedgeTakenCount,
2214                              SE->getOne(BackedgeTakenCount->getType()));
2215     // The BackedgeTaken expression contains the number of times that the
2216     // backedge branches to the loop header.  This is one less than the
2217     // number of times the loop executes, so use the incremented indvar.
2218     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2219   }
2220 
2221   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2222   assert(ExitCnt->getType()->isPointerTy() ==
2223              IndVar->getType()->isPointerTy() &&
2224          "genLoopLimit missed a cast");
2225 
2226   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2227   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2228   ICmpInst::Predicate P;
2229   if (L->contains(BI->getSuccessor(0)))
2230     P = ICmpInst::ICMP_NE;
2231   else
2232     P = ICmpInst::ICMP_EQ;
2233 
2234   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2235                << "      LHS:" << *CmpIndVar << '\n'
2236                << "       op:\t"
2237                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
2238                << "      RHS:\t" << *ExitCnt << "\n"
2239                << "  IVCount:\t" << *IVCount << "\n");
2240 
2241   IRBuilder<> Builder(BI);
2242 
2243   // The new loop exit condition should reuse the debug location of the
2244   // original loop exit condition.
2245   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2246     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2247 
2248   // LFTR can ignore IV overflow and truncate to the width of
2249   // BECount. This avoids materializing the add(zext(add)) expression.
2250   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2251   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2252   if (CmpIndVarSize > ExitCntSize) {
2253     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2254     const SCEV *ARStart = AR->getStart();
2255     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2256     // For constant IVCount, avoid truncation.
2257     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2258       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2259       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2260       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2261       // above such that IVCount is now zero.
2262       if (IVCount != BackedgeTakenCount && Count == 0) {
2263         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2264         ++Count;
2265       }
2266       else
2267         Count = Count.zext(CmpIndVarSize);
2268       APInt NewLimit;
2269       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2270         NewLimit = Start - Count;
2271       else
2272         NewLimit = Start + Count;
2273       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2274 
2275       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2276     } else {
2277       // We try to extend trip count first. If that doesn't work we truncate IV.
2278       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2279       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2280       // one of the two holds, extend the trip count, otherwise we truncate IV.
2281       bool Extended = false;
2282       const SCEV *IV = SE->getSCEV(CmpIndVar);
2283       const SCEV *ZExtTrunc =
2284            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2285                                                      ExitCnt->getType()),
2286                                  CmpIndVar->getType());
2287 
2288       if (ZExtTrunc == IV) {
2289         Extended = true;
2290         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2291                                      "wide.trip.count");
2292       } else {
2293         const SCEV *SExtTrunc =
2294           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2295                                                     ExitCnt->getType()),
2296                                 CmpIndVar->getType());
2297         if (SExtTrunc == IV) {
2298           Extended = true;
2299           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2300                                        "wide.trip.count");
2301         }
2302       }
2303 
2304       if (!Extended)
2305         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2306                                         "lftr.wideiv");
2307     }
2308   }
2309   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2310   Value *OrigCond = BI->getCondition();
2311   // It's tempting to use replaceAllUsesWith here to fully replace the old
2312   // comparison, but that's not immediately safe, since users of the old
2313   // comparison may not be dominated by the new comparison. Instead, just
2314   // update the branch to use the new comparison; in the common case this
2315   // will make old comparison dead.
2316   BI->setCondition(Cond);
2317   DeadInsts.push_back(OrigCond);
2318 
2319   ++NumLFTR;
2320   Changed = true;
2321   return Cond;
2322 }
2323 
2324 //===----------------------------------------------------------------------===//
2325 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2326 //===----------------------------------------------------------------------===//
2327 
2328 /// If there's a single exit block, sink any loop-invariant values that
2329 /// were defined in the preheader but not used inside the loop into the
2330 /// exit block to reduce register pressure in the loop.
2331 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2332   BasicBlock *ExitBlock = L->getExitBlock();
2333   if (!ExitBlock) return;
2334 
2335   BasicBlock *Preheader = L->getLoopPreheader();
2336   if (!Preheader) return;
2337 
2338   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2339   BasicBlock::iterator I(Preheader->getTerminator());
2340   while (I != Preheader->begin()) {
2341     --I;
2342     // New instructions were inserted at the end of the preheader.
2343     if (isa<PHINode>(I))
2344       break;
2345 
2346     // Don't move instructions which might have side effects, since the side
2347     // effects need to complete before instructions inside the loop.  Also don't
2348     // move instructions which might read memory, since the loop may modify
2349     // memory. Note that it's okay if the instruction might have undefined
2350     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2351     // block.
2352     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2353       continue;
2354 
2355     // Skip debug info intrinsics.
2356     if (isa<DbgInfoIntrinsic>(I))
2357       continue;
2358 
2359     // Skip eh pad instructions.
2360     if (I->isEHPad())
2361       continue;
2362 
2363     // Don't sink alloca: we never want to sink static alloca's out of the
2364     // entry block, and correctly sinking dynamic alloca's requires
2365     // checks for stacksave/stackrestore intrinsics.
2366     // FIXME: Refactor this check somehow?
2367     if (isa<AllocaInst>(I))
2368       continue;
2369 
2370     // Determine if there is a use in or before the loop (direct or
2371     // otherwise).
2372     bool UsedInLoop = false;
2373     for (Use &U : I->uses()) {
2374       Instruction *User = cast<Instruction>(U.getUser());
2375       BasicBlock *UseBB = User->getParent();
2376       if (PHINode *P = dyn_cast<PHINode>(User)) {
2377         unsigned i =
2378           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2379         UseBB = P->getIncomingBlock(i);
2380       }
2381       if (UseBB == Preheader || L->contains(UseBB)) {
2382         UsedInLoop = true;
2383         break;
2384       }
2385     }
2386 
2387     // If there is, the def must remain in the preheader.
2388     if (UsedInLoop)
2389       continue;
2390 
2391     // Otherwise, sink it to the exit block.
2392     Instruction *ToMove = &*I;
2393     bool Done = false;
2394 
2395     if (I != Preheader->begin()) {
2396       // Skip debug info intrinsics.
2397       do {
2398         --I;
2399       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2400 
2401       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2402         Done = true;
2403     } else {
2404       Done = true;
2405     }
2406 
2407     ToMove->moveBefore(*ExitBlock, InsertPt);
2408     if (Done) break;
2409     InsertPt = ToMove->getIterator();
2410   }
2411 }
2412 
2413 //===----------------------------------------------------------------------===//
2414 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2415 //===----------------------------------------------------------------------===//
2416 
2417 bool IndVarSimplify::run(Loop *L) {
2418   // We need (and expect!) the incoming loop to be in LCSSA.
2419   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2420          "LCSSA required to run indvars!");
2421 
2422   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2423   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2424   //    canonicalization can be a pessimization without LSR to "clean up"
2425   //    afterwards.
2426   //  - We depend on having a preheader; in particular,
2427   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2428   //    and we're in trouble if we can't find the induction variable even when
2429   //    we've manually inserted one.
2430   //  - LFTR relies on having a single backedge.
2431   if (!L->isLoopSimplifyForm())
2432     return false;
2433 
2434   // If there are any floating-point recurrences, attempt to
2435   // transform them to use integer recurrences.
2436   rewriteNonIntegerIVs(L);
2437 
2438   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2439 
2440   // Create a rewriter object which we'll use to transform the code with.
2441   SCEVExpander Rewriter(*SE, DL, "indvars");
2442 #ifndef NDEBUG
2443   Rewriter.setDebugType(DEBUG_TYPE);
2444 #endif
2445 
2446   // Eliminate redundant IV users.
2447   //
2448   // Simplification works best when run before other consumers of SCEV. We
2449   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2450   // other expressions involving loop IVs have been evaluated. This helps SCEV
2451   // set no-wrap flags before normalizing sign/zero extension.
2452   Rewriter.disableCanonicalMode();
2453   simplifyAndExtend(L, Rewriter, LI);
2454 
2455   // Check to see if this loop has a computable loop-invariant execution count.
2456   // If so, this means that we can compute the final value of any expressions
2457   // that are recurrent in the loop, and substitute the exit values from the
2458   // loop into any instructions outside of the loop that use the final values of
2459   // the current expressions.
2460   //
2461   if (ReplaceExitValue != NeverRepl &&
2462       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2463     rewriteLoopExitValues(L, Rewriter);
2464 
2465   // Eliminate redundant IV cycles.
2466   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2467 
2468   // If we have a trip count expression, rewrite the loop's exit condition
2469   // using it.  We can currently only handle loops with a single exit.
2470   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2471       needsLFTR(L, DT)) {
2472     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2473     if (IndVar) {
2474       // Check preconditions for proper SCEVExpander operation. SCEV does not
2475       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2476       // pass that uses the SCEVExpander must do it. This does not work well for
2477       // loop passes because SCEVExpander makes assumptions about all loops,
2478       // while LoopPassManager only forces the current loop to be simplified.
2479       //
2480       // FIXME: SCEV expansion has no way to bail out, so the caller must
2481       // explicitly check any assumptions made by SCEV. Brittle.
2482       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2483       if (!AR || AR->getLoop()->getLoopPreheader())
2484         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2485                                         Rewriter);
2486     }
2487   }
2488   // Clear the rewriter cache, because values that are in the rewriter's cache
2489   // can be deleted in the loop below, causing the AssertingVH in the cache to
2490   // trigger.
2491   Rewriter.clear();
2492 
2493   // Now that we're done iterating through lists, clean up any instructions
2494   // which are now dead.
2495   while (!DeadInsts.empty())
2496     if (Instruction *Inst =
2497             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2498       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2499 
2500   // The Rewriter may not be used from this point on.
2501 
2502   // Loop-invariant instructions in the preheader that aren't used in the
2503   // loop may be sunk below the loop to reduce register pressure.
2504   sinkUnusedInvariants(L);
2505 
2506   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2507   // trip count and therefore can further simplify exit values in addition to
2508   // rewriteLoopExitValues.
2509   rewriteFirstIterationLoopExitValues(L);
2510 
2511   // Clean up dead instructions.
2512   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2513 
2514   // Check a post-condition.
2515   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2516          "Indvars did not preserve LCSSA!");
2517 
2518   // Verify that LFTR, and any other change have not interfered with SCEV's
2519   // ability to compute trip count.
2520 #ifndef NDEBUG
2521   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2522     SE->forgetLoop(L);
2523     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2524     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2525         SE->getTypeSizeInBits(NewBECount->getType()))
2526       NewBECount = SE->getTruncateOrNoop(NewBECount,
2527                                          BackedgeTakenCount->getType());
2528     else
2529       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2530                                                  NewBECount->getType());
2531     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2532   }
2533 #endif
2534 
2535   return Changed;
2536 }
2537 
2538 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2539                                           LoopStandardAnalysisResults &AR,
2540                                           LPMUpdater &) {
2541   Function *F = L.getHeader()->getParent();
2542   const DataLayout &DL = F->getParent()->getDataLayout();
2543 
2544   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2545   if (!IVS.run(&L))
2546     return PreservedAnalyses::all();
2547 
2548   auto PA = getLoopPassPreservedAnalyses();
2549   PA.preserveSet<CFGAnalyses>();
2550   return PA;
2551 }
2552 
2553 namespace {
2554 
2555 struct IndVarSimplifyLegacyPass : public LoopPass {
2556   static char ID; // Pass identification, replacement for typeid
2557 
2558   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2559     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2560   }
2561 
2562   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2563     if (skipLoop(L))
2564       return false;
2565 
2566     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2567     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2568     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2569     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2570     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2571     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2572     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2573     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2574 
2575     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2576     return IVS.run(L);
2577   }
2578 
2579   void getAnalysisUsage(AnalysisUsage &AU) const override {
2580     AU.setPreservesCFG();
2581     getLoopAnalysisUsage(AU);
2582   }
2583 };
2584 
2585 } // end anonymous namespace
2586 
2587 char IndVarSimplifyLegacyPass::ID = 0;
2588 
2589 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2590                       "Induction Variable Simplification", false, false)
2591 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2592 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2593                     "Induction Variable Simplification", false, false)
2594 
2595 Pass *llvm::createIndVarSimplifyPass() {
2596   return new IndVarSimplifyLegacyPass();
2597 }
2598