1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/Local.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 bool Changed = false; 138 139 bool isValidRewrite(Value *FromVal, Value *ToVal); 140 141 void handleFloatingPointIV(Loop *L, PHINode *PH); 142 void rewriteNonIntegerIVs(Loop *L); 143 144 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 145 146 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 147 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 148 void rewriteFirstIterationLoopExitValues(Loop *L); 149 150 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 void sinkUnusedInvariants(Loop *L); 154 155 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 156 Instruction *InsertPt, Type *Ty); 157 158 public: 159 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 160 const DataLayout &DL, TargetLibraryInfo *TLI, 161 TargetTransformInfo *TTI) 162 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 163 164 bool run(Loop *L); 165 }; 166 167 } // end anonymous namespace 168 169 /// Return true if the SCEV expansion generated by the rewriter can replace the 170 /// original value. SCEV guarantees that it produces the same value, but the way 171 /// it is produced may be illegal IR. Ideally, this function will only be 172 /// called for verification. 173 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 174 // If an SCEV expression subsumed multiple pointers, its expansion could 175 // reassociate the GEP changing the base pointer. This is illegal because the 176 // final address produced by a GEP chain must be inbounds relative to its 177 // underlying object. Otherwise basic alias analysis, among other things, 178 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 179 // producing an expression involving multiple pointers. Until then, we must 180 // bail out here. 181 // 182 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 183 // because it understands lcssa phis while SCEV does not. 184 Value *FromPtr = FromVal; 185 Value *ToPtr = ToVal; 186 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 187 FromPtr = GEP->getPointerOperand(); 188 } 189 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 190 ToPtr = GEP->getPointerOperand(); 191 } 192 if (FromPtr != FromVal || ToPtr != ToVal) { 193 // Quickly check the common case 194 if (FromPtr == ToPtr) 195 return true; 196 197 // SCEV may have rewritten an expression that produces the GEP's pointer 198 // operand. That's ok as long as the pointer operand has the same base 199 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 200 // base of a recurrence. This handles the case in which SCEV expansion 201 // converts a pointer type recurrence into a nonrecurrent pointer base 202 // indexed by an integer recurrence. 203 204 // If the GEP base pointer is a vector of pointers, abort. 205 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 206 return false; 207 208 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 209 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 210 if (FromBase == ToBase) 211 return true; 212 213 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 214 << *FromBase << " != " << *ToBase << "\n"); 215 216 return false; 217 } 218 return true; 219 } 220 221 /// Determine the insertion point for this user. By default, insert immediately 222 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 223 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 224 /// common dominator for the incoming blocks. 225 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 226 DominatorTree *DT, LoopInfo *LI) { 227 PHINode *PHI = dyn_cast<PHINode>(User); 228 if (!PHI) 229 return User; 230 231 Instruction *InsertPt = nullptr; 232 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 233 if (PHI->getIncomingValue(i) != Def) 234 continue; 235 236 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 237 if (!InsertPt) { 238 InsertPt = InsertBB->getTerminator(); 239 continue; 240 } 241 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 242 InsertPt = InsertBB->getTerminator(); 243 } 244 assert(InsertPt && "Missing phi operand"); 245 246 auto *DefI = dyn_cast<Instruction>(Def); 247 if (!DefI) 248 return InsertPt; 249 250 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 251 252 auto *L = LI->getLoopFor(DefI->getParent()); 253 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 254 255 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 256 if (LI->getLoopFor(DTN->getBlock()) == L) 257 return DTN->getBlock()->getTerminator(); 258 259 llvm_unreachable("DefI dominates InsertPt!"); 260 } 261 262 //===----------------------------------------------------------------------===// 263 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 264 //===----------------------------------------------------------------------===// 265 266 /// Convert APF to an integer, if possible. 267 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 268 bool isExact = false; 269 // See if we can convert this to an int64_t 270 uint64_t UIntVal; 271 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 272 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 273 !isExact) 274 return false; 275 IntVal = UIntVal; 276 return true; 277 } 278 279 /// If the loop has floating induction variable then insert corresponding 280 /// integer induction variable if possible. 281 /// For example, 282 /// for(double i = 0; i < 10000; ++i) 283 /// bar(i) 284 /// is converted into 285 /// for(int i = 0; i < 10000; ++i) 286 /// bar((double)i); 287 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 288 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 289 unsigned BackEdge = IncomingEdge^1; 290 291 // Check incoming value. 292 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 293 294 int64_t InitValue; 295 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 296 return; 297 298 // Check IV increment. Reject this PN if increment operation is not 299 // an add or increment value can not be represented by an integer. 300 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 301 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 302 303 // If this is not an add of the PHI with a constantfp, or if the constant fp 304 // is not an integer, bail out. 305 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 306 int64_t IncValue; 307 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 308 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 309 return; 310 311 // Check Incr uses. One user is PN and the other user is an exit condition 312 // used by the conditional terminator. 313 Value::user_iterator IncrUse = Incr->user_begin(); 314 Instruction *U1 = cast<Instruction>(*IncrUse++); 315 if (IncrUse == Incr->user_end()) return; 316 Instruction *U2 = cast<Instruction>(*IncrUse++); 317 if (IncrUse != Incr->user_end()) return; 318 319 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 320 // only used by a branch, we can't transform it. 321 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 322 if (!Compare) 323 Compare = dyn_cast<FCmpInst>(U2); 324 if (!Compare || !Compare->hasOneUse() || 325 !isa<BranchInst>(Compare->user_back())) 326 return; 327 328 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 329 330 // We need to verify that the branch actually controls the iteration count 331 // of the loop. If not, the new IV can overflow and no one will notice. 332 // The branch block must be in the loop and one of the successors must be out 333 // of the loop. 334 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 335 if (!L->contains(TheBr->getParent()) || 336 (L->contains(TheBr->getSuccessor(0)) && 337 L->contains(TheBr->getSuccessor(1)))) 338 return; 339 340 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 341 // transform it. 342 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 343 int64_t ExitValue; 344 if (ExitValueVal == nullptr || 345 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 346 return; 347 348 // Find new predicate for integer comparison. 349 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 350 switch (Compare->getPredicate()) { 351 default: return; // Unknown comparison. 352 case CmpInst::FCMP_OEQ: 353 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 354 case CmpInst::FCMP_ONE: 355 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 356 case CmpInst::FCMP_OGT: 357 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 358 case CmpInst::FCMP_OGE: 359 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 360 case CmpInst::FCMP_OLT: 361 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 362 case CmpInst::FCMP_OLE: 363 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 364 } 365 366 // We convert the floating point induction variable to a signed i32 value if 367 // we can. This is only safe if the comparison will not overflow in a way 368 // that won't be trapped by the integer equivalent operations. Check for this 369 // now. 370 // TODO: We could use i64 if it is native and the range requires it. 371 372 // The start/stride/exit values must all fit in signed i32. 373 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 374 return; 375 376 // If not actually striding (add x, 0.0), avoid touching the code. 377 if (IncValue == 0) 378 return; 379 380 // Positive and negative strides have different safety conditions. 381 if (IncValue > 0) { 382 // If we have a positive stride, we require the init to be less than the 383 // exit value. 384 if (InitValue >= ExitValue) 385 return; 386 387 uint32_t Range = uint32_t(ExitValue-InitValue); 388 // Check for infinite loop, either: 389 // while (i <= Exit) or until (i > Exit) 390 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 391 if (++Range == 0) return; // Range overflows. 392 } 393 394 unsigned Leftover = Range % uint32_t(IncValue); 395 396 // If this is an equality comparison, we require that the strided value 397 // exactly land on the exit value, otherwise the IV condition will wrap 398 // around and do things the fp IV wouldn't. 399 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 400 Leftover != 0) 401 return; 402 403 // If the stride would wrap around the i32 before exiting, we can't 404 // transform the IV. 405 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 406 return; 407 } else { 408 // If we have a negative stride, we require the init to be greater than the 409 // exit value. 410 if (InitValue <= ExitValue) 411 return; 412 413 uint32_t Range = uint32_t(InitValue-ExitValue); 414 // Check for infinite loop, either: 415 // while (i >= Exit) or until (i < Exit) 416 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 417 if (++Range == 0) return; // Range overflows. 418 } 419 420 unsigned Leftover = Range % uint32_t(-IncValue); 421 422 // If this is an equality comparison, we require that the strided value 423 // exactly land on the exit value, otherwise the IV condition will wrap 424 // around and do things the fp IV wouldn't. 425 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 426 Leftover != 0) 427 return; 428 429 // If the stride would wrap around the i32 before exiting, we can't 430 // transform the IV. 431 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 432 return; 433 } 434 435 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 436 437 // Insert new integer induction variable. 438 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 439 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 440 PN->getIncomingBlock(IncomingEdge)); 441 442 Value *NewAdd = 443 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 444 Incr->getName()+".int", Incr); 445 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 446 447 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 448 ConstantInt::get(Int32Ty, ExitValue), 449 Compare->getName()); 450 451 // In the following deletions, PN may become dead and may be deleted. 452 // Use a WeakTrackingVH to observe whether this happens. 453 WeakTrackingVH WeakPH = PN; 454 455 // Delete the old floating point exit comparison. The branch starts using the 456 // new comparison. 457 NewCompare->takeName(Compare); 458 Compare->replaceAllUsesWith(NewCompare); 459 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 460 461 // Delete the old floating point increment. 462 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 463 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 464 465 // If the FP induction variable still has uses, this is because something else 466 // in the loop uses its value. In order to canonicalize the induction 467 // variable, we chose to eliminate the IV and rewrite it in terms of an 468 // int->fp cast. 469 // 470 // We give preference to sitofp over uitofp because it is faster on most 471 // platforms. 472 if (WeakPH) { 473 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 474 &*PN->getParent()->getFirstInsertionPt()); 475 PN->replaceAllUsesWith(Conv); 476 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 477 } 478 Changed = true; 479 } 480 481 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 482 // First step. Check to see if there are any floating-point recurrences. 483 // If there are, change them into integer recurrences, permitting analysis by 484 // the SCEV routines. 485 BasicBlock *Header = L->getHeader(); 486 487 SmallVector<WeakTrackingVH, 8> PHIs; 488 for (PHINode &PN : Header->phis()) 489 PHIs.push_back(&PN); 490 491 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 492 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 493 handleFloatingPointIV(L, PN); 494 495 // If the loop previously had floating-point IV, ScalarEvolution 496 // may not have been able to compute a trip count. Now that we've done some 497 // re-writing, the trip count may be computable. 498 if (Changed) 499 SE->forgetLoop(L); 500 } 501 502 namespace { 503 504 // Collect information about PHI nodes which can be transformed in 505 // rewriteLoopExitValues. 506 struct RewritePhi { 507 PHINode *PN; 508 509 // Ith incoming value. 510 unsigned Ith; 511 512 // Exit value after expansion. 513 Value *Val; 514 515 // High Cost when expansion. 516 bool HighCost; 517 518 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 519 : PN(P), Ith(I), Val(V), HighCost(H) {} 520 }; 521 522 } // end anonymous namespace 523 524 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 525 Loop *L, Instruction *InsertPt, 526 Type *ResultTy) { 527 // Before expanding S into an expensive LLVM expression, see if we can use an 528 // already existing value as the expansion for S. 529 if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L)) 530 if (ExistingValue->getType() == ResultTy) 531 return ExistingValue; 532 533 // We didn't find anything, fall back to using SCEVExpander. 534 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // rewriteLoopExitValues - Optimize IV users outside the loop. 539 // As a side effect, reduces the amount of IV processing within the loop. 540 //===----------------------------------------------------------------------===// 541 542 /// Check to see if this loop has a computable loop-invariant execution count. 543 /// If so, this means that we can compute the final value of any expressions 544 /// that are recurrent in the loop, and substitute the exit values from the loop 545 /// into any instructions outside of the loop that use the final values of the 546 /// current expressions. 547 /// 548 /// This is mostly redundant with the regular IndVarSimplify activities that 549 /// happen later, except that it's more powerful in some cases, because it's 550 /// able to brute-force evaluate arbitrary instructions as long as they have 551 /// constant operands at the beginning of the loop. 552 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 553 // Check a pre-condition. 554 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 555 "Indvars did not preserve LCSSA!"); 556 557 SmallVector<BasicBlock*, 8> ExitBlocks; 558 L->getUniqueExitBlocks(ExitBlocks); 559 560 SmallVector<RewritePhi, 8> RewritePhiSet; 561 // Find all values that are computed inside the loop, but used outside of it. 562 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 563 // the exit blocks of the loop to find them. 564 for (BasicBlock *ExitBB : ExitBlocks) { 565 // If there are no PHI nodes in this exit block, then no values defined 566 // inside the loop are used on this path, skip it. 567 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 568 if (!PN) continue; 569 570 unsigned NumPreds = PN->getNumIncomingValues(); 571 572 // Iterate over all of the PHI nodes. 573 BasicBlock::iterator BBI = ExitBB->begin(); 574 while ((PN = dyn_cast<PHINode>(BBI++))) { 575 if (PN->use_empty()) 576 continue; // dead use, don't replace it 577 578 if (!SE->isSCEVable(PN->getType())) 579 continue; 580 581 // It's necessary to tell ScalarEvolution about this explicitly so that 582 // it can walk the def-use list and forget all SCEVs, as it may not be 583 // watching the PHI itself. Once the new exit value is in place, there 584 // may not be a def-use connection between the loop and every instruction 585 // which got a SCEVAddRecExpr for that loop. 586 SE->forgetValue(PN); 587 588 // Iterate over all of the values in all the PHI nodes. 589 for (unsigned i = 0; i != NumPreds; ++i) { 590 // If the value being merged in is not integer or is not defined 591 // in the loop, skip it. 592 Value *InVal = PN->getIncomingValue(i); 593 if (!isa<Instruction>(InVal)) 594 continue; 595 596 // If this pred is for a subloop, not L itself, skip it. 597 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 598 continue; // The Block is in a subloop, skip it. 599 600 // Check that InVal is defined in the loop. 601 Instruction *Inst = cast<Instruction>(InVal); 602 if (!L->contains(Inst)) 603 continue; 604 605 // Okay, this instruction has a user outside of the current loop 606 // and varies predictably *inside* the loop. Evaluate the value it 607 // contains when the loop exits, if possible. 608 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 609 if (!SE->isLoopInvariant(ExitValue, L) || 610 !isSafeToExpand(ExitValue, *SE)) 611 continue; 612 613 // Computing the value outside of the loop brings no benefit if : 614 // - it is definitely used inside the loop in a way which can not be 615 // optimized away. 616 // - no use outside of the loop can take advantage of hoisting the 617 // computation out of the loop 618 if (ExitValue->getSCEVType()>=scMulExpr) { 619 unsigned NumHardInternalUses = 0; 620 unsigned NumSoftExternalUses = 0; 621 unsigned NumUses = 0; 622 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 623 IB != IE && NumUses <= 6; ++IB) { 624 Instruction *UseInstr = cast<Instruction>(*IB); 625 unsigned Opc = UseInstr->getOpcode(); 626 NumUses++; 627 if (L->contains(UseInstr)) { 628 if (Opc == Instruction::Call || Opc == Instruction::Ret) 629 NumHardInternalUses++; 630 } else { 631 if (Opc == Instruction::PHI) { 632 // Do not count the Phi as a use. LCSSA may have inserted 633 // plenty of trivial ones. 634 NumUses--; 635 for (auto PB = UseInstr->user_begin(), 636 PE = UseInstr->user_end(); 637 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 638 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 639 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 640 NumSoftExternalUses++; 641 } 642 continue; 643 } 644 if (Opc != Instruction::Call && Opc != Instruction::Ret) 645 NumSoftExternalUses++; 646 } 647 } 648 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 649 continue; 650 } 651 652 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 653 Value *ExitVal = 654 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 655 656 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 657 << " LoopVal = " << *Inst << "\n"); 658 659 if (!isValidRewrite(Inst, ExitVal)) { 660 DeadInsts.push_back(ExitVal); 661 continue; 662 } 663 664 // Collect all the candidate PHINodes to be rewritten. 665 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 666 } 667 } 668 } 669 670 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 671 672 // Transformation. 673 for (const RewritePhi &Phi : RewritePhiSet) { 674 PHINode *PN = Phi.PN; 675 Value *ExitVal = Phi.Val; 676 677 // Only do the rewrite when the ExitValue can be expanded cheaply. 678 // If LoopCanBeDel is true, rewrite exit value aggressively. 679 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 680 DeadInsts.push_back(ExitVal); 681 continue; 682 } 683 684 Changed = true; 685 ++NumReplaced; 686 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 687 PN->setIncomingValue(Phi.Ith, ExitVal); 688 689 // If this instruction is dead now, delete it. Don't do it now to avoid 690 // invalidating iterators. 691 if (isInstructionTriviallyDead(Inst, TLI)) 692 DeadInsts.push_back(Inst); 693 694 // Replace PN with ExitVal if that is legal and does not break LCSSA. 695 if (PN->getNumIncomingValues() == 1 && 696 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 697 PN->replaceAllUsesWith(ExitVal); 698 PN->eraseFromParent(); 699 } 700 } 701 702 // The insertion point instruction may have been deleted; clear it out 703 // so that the rewriter doesn't trip over it later. 704 Rewriter.clearInsertPoint(); 705 } 706 707 //===---------------------------------------------------------------------===// 708 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 709 // they will exit at the first iteration. 710 //===---------------------------------------------------------------------===// 711 712 /// Check to see if this loop has loop invariant conditions which lead to loop 713 /// exits. If so, we know that if the exit path is taken, it is at the first 714 /// loop iteration. This lets us predict exit values of PHI nodes that live in 715 /// loop header. 716 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 717 // Verify the input to the pass is already in LCSSA form. 718 assert(L->isLCSSAForm(*DT)); 719 720 SmallVector<BasicBlock *, 8> ExitBlocks; 721 L->getUniqueExitBlocks(ExitBlocks); 722 auto *LoopHeader = L->getHeader(); 723 assert(LoopHeader && "Invalid loop"); 724 725 for (auto *ExitBB : ExitBlocks) { 726 // If there are no more PHI nodes in this exit block, then no more 727 // values defined inside the loop are used on this path. 728 for (PHINode &PN : ExitBB->phis()) { 729 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 730 IncomingValIdx != E; ++IncomingValIdx) { 731 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 732 733 // We currently only support loop exits from loop header. If the 734 // incoming block is not loop header, we need to recursively check 735 // all conditions starting from loop header are loop invariants. 736 // Additional support might be added in the future. 737 if (IncomingBB != LoopHeader) 738 continue; 739 740 // Get condition that leads to the exit path. 741 auto *TermInst = IncomingBB->getTerminator(); 742 743 Value *Cond = nullptr; 744 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 745 // Must be a conditional branch, otherwise the block 746 // should not be in the loop. 747 Cond = BI->getCondition(); 748 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 749 Cond = SI->getCondition(); 750 else 751 continue; 752 753 if (!L->isLoopInvariant(Cond)) 754 continue; 755 756 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 757 758 // Only deal with PHIs. 759 if (!ExitVal) 760 continue; 761 762 // If ExitVal is a PHI on the loop header, then we know its 763 // value along this exit because the exit can only be taken 764 // on the first iteration. 765 auto *LoopPreheader = L->getLoopPreheader(); 766 assert(LoopPreheader && "Invalid loop"); 767 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 768 if (PreheaderIdx != -1) { 769 assert(ExitVal->getParent() == LoopHeader && 770 "ExitVal must be in loop header"); 771 PN.setIncomingValue(IncomingValIdx, 772 ExitVal->getIncomingValue(PreheaderIdx)); 773 } 774 } 775 } 776 } 777 } 778 779 /// Check whether it is possible to delete the loop after rewriting exit 780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 781 /// aggressively. 782 bool IndVarSimplify::canLoopBeDeleted( 783 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 784 BasicBlock *Preheader = L->getLoopPreheader(); 785 // If there is no preheader, the loop will not be deleted. 786 if (!Preheader) 787 return false; 788 789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 790 // We obviate multiple ExitingBlocks case for simplicity. 791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 792 // after exit value rewriting, we can enhance the logic here. 793 SmallVector<BasicBlock *, 4> ExitingBlocks; 794 L->getExitingBlocks(ExitingBlocks); 795 SmallVector<BasicBlock *, 8> ExitBlocks; 796 L->getUniqueExitBlocks(ExitBlocks); 797 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 798 return false; 799 800 BasicBlock *ExitBlock = ExitBlocks[0]; 801 BasicBlock::iterator BI = ExitBlock->begin(); 802 while (PHINode *P = dyn_cast<PHINode>(BI)) { 803 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 804 805 // If the Incoming value of P is found in RewritePhiSet, we know it 806 // could be rewritten to use a loop invariant value in transformation 807 // phase later. Skip it in the loop invariant check below. 808 bool found = false; 809 for (const RewritePhi &Phi : RewritePhiSet) { 810 unsigned i = Phi.Ith; 811 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 812 found = true; 813 break; 814 } 815 } 816 817 Instruction *I; 818 if (!found && (I = dyn_cast<Instruction>(Incoming))) 819 if (!L->hasLoopInvariantOperands(I)) 820 return false; 821 822 ++BI; 823 } 824 825 for (auto *BB : L->blocks()) 826 if (llvm::any_of(*BB, [](Instruction &I) { 827 return I.mayHaveSideEffects(); 828 })) 829 return false; 830 831 return true; 832 } 833 834 //===----------------------------------------------------------------------===// 835 // IV Widening - Extend the width of an IV to cover its widest uses. 836 //===----------------------------------------------------------------------===// 837 838 namespace { 839 840 // Collect information about induction variables that are used by sign/zero 841 // extend operations. This information is recorded by CollectExtend and provides 842 // the input to WidenIV. 843 struct WideIVInfo { 844 PHINode *NarrowIV = nullptr; 845 846 // Widest integer type created [sz]ext 847 Type *WidestNativeType = nullptr; 848 849 // Was a sext user seen before a zext? 850 bool IsSigned = false; 851 }; 852 853 } // end anonymous namespace 854 855 /// Update information about the induction variable that is extended by this 856 /// sign or zero extend operation. This is used to determine the final width of 857 /// the IV before actually widening it. 858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 859 const TargetTransformInfo *TTI) { 860 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 861 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 862 return; 863 864 Type *Ty = Cast->getType(); 865 uint64_t Width = SE->getTypeSizeInBits(Ty); 866 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 867 return; 868 869 // Check that `Cast` actually extends the induction variable (we rely on this 870 // later). This takes care of cases where `Cast` is extending a truncation of 871 // the narrow induction variable, and thus can end up being narrower than the 872 // "narrow" induction variable. 873 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 874 if (NarrowIVWidth >= Width) 875 return; 876 877 // Cast is either an sext or zext up to this point. 878 // We should not widen an indvar if arithmetics on the wider indvar are more 879 // expensive than those on the narrower indvar. We check only the cost of ADD 880 // because at least an ADD is required to increment the induction variable. We 881 // could compute more comprehensively the cost of all instructions on the 882 // induction variable when necessary. 883 if (TTI && 884 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 885 TTI->getArithmeticInstrCost(Instruction::Add, 886 Cast->getOperand(0)->getType())) { 887 return; 888 } 889 890 if (!WI.WidestNativeType) { 891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 892 WI.IsSigned = IsSigned; 893 return; 894 } 895 896 // We extend the IV to satisfy the sign of its first user, arbitrarily. 897 if (WI.IsSigned != IsSigned) 898 return; 899 900 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 901 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 902 } 903 904 namespace { 905 906 /// Record a link in the Narrow IV def-use chain along with the WideIV that 907 /// computes the same value as the Narrow IV def. This avoids caching Use* 908 /// pointers. 909 struct NarrowIVDefUse { 910 Instruction *NarrowDef = nullptr; 911 Instruction *NarrowUse = nullptr; 912 Instruction *WideDef = nullptr; 913 914 // True if the narrow def is never negative. Tracking this information lets 915 // us use a sign extension instead of a zero extension or vice versa, when 916 // profitable and legal. 917 bool NeverNegative = false; 918 919 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 920 bool NeverNegative) 921 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 922 NeverNegative(NeverNegative) {} 923 }; 924 925 /// The goal of this transform is to remove sign and zero extends without 926 /// creating any new induction variables. To do this, it creates a new phi of 927 /// the wider type and redirects all users, either removing extends or inserting 928 /// truncs whenever we stop propagating the type. 929 class WidenIV { 930 // Parameters 931 PHINode *OrigPhi; 932 Type *WideType; 933 934 // Context 935 LoopInfo *LI; 936 Loop *L; 937 ScalarEvolution *SE; 938 DominatorTree *DT; 939 940 // Does the module have any calls to the llvm.experimental.guard intrinsic 941 // at all? If not we can avoid scanning instructions looking for guards. 942 bool HasGuards; 943 944 // Result 945 PHINode *WidePhi = nullptr; 946 Instruction *WideInc = nullptr; 947 const SCEV *WideIncExpr = nullptr; 948 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 949 950 SmallPtrSet<Instruction *,16> Widened; 951 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 952 953 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 954 955 // A map tracking the kind of extension used to widen each narrow IV 956 // and narrow IV user. 957 // Key: pointer to a narrow IV or IV user. 958 // Value: the kind of extension used to widen this Instruction. 959 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 960 961 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 962 963 // A map with control-dependent ranges for post increment IV uses. The key is 964 // a pair of IV def and a use of this def denoting the context. The value is 965 // a ConstantRange representing possible values of the def at the given 966 // context. 967 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 968 969 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 970 Instruction *UseI) { 971 DefUserPair Key(Def, UseI); 972 auto It = PostIncRangeInfos.find(Key); 973 return It == PostIncRangeInfos.end() 974 ? Optional<ConstantRange>(None) 975 : Optional<ConstantRange>(It->second); 976 } 977 978 void calculatePostIncRanges(PHINode *OrigPhi); 979 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 980 981 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 982 DefUserPair Key(Def, UseI); 983 auto It = PostIncRangeInfos.find(Key); 984 if (It == PostIncRangeInfos.end()) 985 PostIncRangeInfos.insert({Key, R}); 986 else 987 It->second = R.intersectWith(It->second); 988 } 989 990 public: 991 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 992 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 993 bool HasGuards) 994 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 995 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 996 HasGuards(HasGuards), DeadInsts(DI) { 997 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 998 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 999 } 1000 1001 PHINode *createWideIV(SCEVExpander &Rewriter); 1002 1003 protected: 1004 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1005 Instruction *Use); 1006 1007 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1008 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1009 const SCEVAddRecExpr *WideAR); 1010 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1011 1012 ExtendKind getExtendKind(Instruction *I); 1013 1014 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1015 1016 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1017 1018 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1019 1020 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1021 unsigned OpCode) const; 1022 1023 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1024 1025 bool widenLoopCompare(NarrowIVDefUse DU); 1026 1027 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1028 }; 1029 1030 } // end anonymous namespace 1031 1032 /// Perform a quick domtree based check for loop invariance assuming that V is 1033 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1034 /// purpose. 1035 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1036 Instruction *Inst = dyn_cast<Instruction>(V); 1037 if (!Inst) 1038 return true; 1039 1040 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1041 } 1042 1043 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1044 bool IsSigned, Instruction *Use) { 1045 // Set the debug location and conservative insertion point. 1046 IRBuilder<> Builder(Use); 1047 // Hoist the insertion point into loop preheaders as far as possible. 1048 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1049 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1050 L = L->getParentLoop()) 1051 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1052 1053 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1054 Builder.CreateZExt(NarrowOper, WideType); 1055 } 1056 1057 /// Instantiate a wide operation to replace a narrow operation. This only needs 1058 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1059 /// 0 for any operation we decide not to clone. 1060 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1061 const SCEVAddRecExpr *WideAR) { 1062 unsigned Opcode = DU.NarrowUse->getOpcode(); 1063 switch (Opcode) { 1064 default: 1065 return nullptr; 1066 case Instruction::Add: 1067 case Instruction::Mul: 1068 case Instruction::UDiv: 1069 case Instruction::Sub: 1070 return cloneArithmeticIVUser(DU, WideAR); 1071 1072 case Instruction::And: 1073 case Instruction::Or: 1074 case Instruction::Xor: 1075 case Instruction::Shl: 1076 case Instruction::LShr: 1077 case Instruction::AShr: 1078 return cloneBitwiseIVUser(DU); 1079 } 1080 } 1081 1082 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1083 Instruction *NarrowUse = DU.NarrowUse; 1084 Instruction *NarrowDef = DU.NarrowDef; 1085 Instruction *WideDef = DU.WideDef; 1086 1087 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1088 1089 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1090 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1091 // invariant and will be folded or hoisted. If it actually comes from a 1092 // widened IV, it should be removed during a future call to widenIVUse. 1093 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1094 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1095 ? WideDef 1096 : createExtendInst(NarrowUse->getOperand(0), WideType, 1097 IsSigned, NarrowUse); 1098 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1099 ? WideDef 1100 : createExtendInst(NarrowUse->getOperand(1), WideType, 1101 IsSigned, NarrowUse); 1102 1103 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1104 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1105 NarrowBO->getName()); 1106 IRBuilder<> Builder(NarrowUse); 1107 Builder.Insert(WideBO); 1108 WideBO->copyIRFlags(NarrowBO); 1109 return WideBO; 1110 } 1111 1112 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1113 const SCEVAddRecExpr *WideAR) { 1114 Instruction *NarrowUse = DU.NarrowUse; 1115 Instruction *NarrowDef = DU.NarrowDef; 1116 Instruction *WideDef = DU.WideDef; 1117 1118 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1119 1120 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1121 1122 // We're trying to find X such that 1123 // 1124 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1125 // 1126 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1127 // and check using SCEV if any of them are correct. 1128 1129 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1130 // correct solution to X. 1131 auto GuessNonIVOperand = [&](bool SignExt) { 1132 const SCEV *WideLHS; 1133 const SCEV *WideRHS; 1134 1135 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1136 if (SignExt) 1137 return SE->getSignExtendExpr(S, Ty); 1138 return SE->getZeroExtendExpr(S, Ty); 1139 }; 1140 1141 if (IVOpIdx == 0) { 1142 WideLHS = SE->getSCEV(WideDef); 1143 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1144 WideRHS = GetExtend(NarrowRHS, WideType); 1145 } else { 1146 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1147 WideLHS = GetExtend(NarrowLHS, WideType); 1148 WideRHS = SE->getSCEV(WideDef); 1149 } 1150 1151 // WideUse is "WideDef `op.wide` X" as described in the comment. 1152 const SCEV *WideUse = nullptr; 1153 1154 switch (NarrowUse->getOpcode()) { 1155 default: 1156 llvm_unreachable("No other possibility!"); 1157 1158 case Instruction::Add: 1159 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1160 break; 1161 1162 case Instruction::Mul: 1163 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1164 break; 1165 1166 case Instruction::UDiv: 1167 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1168 break; 1169 1170 case Instruction::Sub: 1171 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1172 break; 1173 } 1174 1175 return WideUse == WideAR; 1176 }; 1177 1178 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1179 if (!GuessNonIVOperand(SignExtend)) { 1180 SignExtend = !SignExtend; 1181 if (!GuessNonIVOperand(SignExtend)) 1182 return nullptr; 1183 } 1184 1185 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1186 ? WideDef 1187 : createExtendInst(NarrowUse->getOperand(0), WideType, 1188 SignExtend, NarrowUse); 1189 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1190 ? WideDef 1191 : createExtendInst(NarrowUse->getOperand(1), WideType, 1192 SignExtend, NarrowUse); 1193 1194 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1195 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1196 NarrowBO->getName()); 1197 1198 IRBuilder<> Builder(NarrowUse); 1199 Builder.Insert(WideBO); 1200 WideBO->copyIRFlags(NarrowBO); 1201 return WideBO; 1202 } 1203 1204 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1205 auto It = ExtendKindMap.find(I); 1206 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1207 return It->second; 1208 } 1209 1210 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1211 unsigned OpCode) const { 1212 if (OpCode == Instruction::Add) 1213 return SE->getAddExpr(LHS, RHS); 1214 if (OpCode == Instruction::Sub) 1215 return SE->getMinusSCEV(LHS, RHS); 1216 if (OpCode == Instruction::Mul) 1217 return SE->getMulExpr(LHS, RHS); 1218 1219 llvm_unreachable("Unsupported opcode."); 1220 } 1221 1222 /// No-wrap operations can transfer sign extension of their result to their 1223 /// operands. Generate the SCEV value for the widened operation without 1224 /// actually modifying the IR yet. If the expression after extending the 1225 /// operands is an AddRec for this loop, return the AddRec and the kind of 1226 /// extension used. 1227 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1228 // Handle the common case of add<nsw/nuw> 1229 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1230 // Only Add/Sub/Mul instructions supported yet. 1231 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1232 OpCode != Instruction::Mul) 1233 return {nullptr, Unknown}; 1234 1235 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1236 // if extending the other will lead to a recurrence. 1237 const unsigned ExtendOperIdx = 1238 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1239 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1240 1241 const SCEV *ExtendOperExpr = nullptr; 1242 const OverflowingBinaryOperator *OBO = 1243 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1244 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1245 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1246 ExtendOperExpr = SE->getSignExtendExpr( 1247 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1248 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1249 ExtendOperExpr = SE->getZeroExtendExpr( 1250 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1251 else 1252 return {nullptr, Unknown}; 1253 1254 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1255 // flags. This instruction may be guarded by control flow that the no-wrap 1256 // behavior depends on. Non-control-equivalent instructions can be mapped to 1257 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1258 // semantics to those operations. 1259 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1260 const SCEV *rhs = ExtendOperExpr; 1261 1262 // Let's swap operands to the initial order for the case of non-commutative 1263 // operations, like SUB. See PR21014. 1264 if (ExtendOperIdx == 0) 1265 std::swap(lhs, rhs); 1266 const SCEVAddRecExpr *AddRec = 1267 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1268 1269 if (!AddRec || AddRec->getLoop() != L) 1270 return {nullptr, Unknown}; 1271 1272 return {AddRec, ExtKind}; 1273 } 1274 1275 /// Is this instruction potentially interesting for further simplification after 1276 /// widening it's type? In other words, can the extend be safely hoisted out of 1277 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1278 /// so, return the extended recurrence and the kind of extension used. Otherwise 1279 /// return {nullptr, Unknown}. 1280 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1281 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1282 return {nullptr, Unknown}; 1283 1284 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1285 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1286 SE->getTypeSizeInBits(WideType)) { 1287 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1288 // index. So don't follow this use. 1289 return {nullptr, Unknown}; 1290 } 1291 1292 const SCEV *WideExpr; 1293 ExtendKind ExtKind; 1294 if (DU.NeverNegative) { 1295 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1296 if (isa<SCEVAddRecExpr>(WideExpr)) 1297 ExtKind = SignExtended; 1298 else { 1299 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1300 ExtKind = ZeroExtended; 1301 } 1302 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1303 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1304 ExtKind = SignExtended; 1305 } else { 1306 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1307 ExtKind = ZeroExtended; 1308 } 1309 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1310 if (!AddRec || AddRec->getLoop() != L) 1311 return {nullptr, Unknown}; 1312 return {AddRec, ExtKind}; 1313 } 1314 1315 /// This IV user cannot be widen. Replace this use of the original narrow IV 1316 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1317 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1318 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1319 << " for user " << *DU.NarrowUse << "\n"); 1320 IRBuilder<> Builder( 1321 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1322 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1323 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1324 } 1325 1326 /// If the narrow use is a compare instruction, then widen the compare 1327 // (and possibly the other operand). The extend operation is hoisted into the 1328 // loop preheader as far as possible. 1329 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1330 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1331 if (!Cmp) 1332 return false; 1333 1334 // We can legally widen the comparison in the following two cases: 1335 // 1336 // - The signedness of the IV extension and comparison match 1337 // 1338 // - The narrow IV is always positive (and thus its sign extension is equal 1339 // to its zero extension). For instance, let's say we're zero extending 1340 // %narrow for the following use 1341 // 1342 // icmp slt i32 %narrow, %val ... (A) 1343 // 1344 // and %narrow is always positive. Then 1345 // 1346 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1347 // == icmp slt i32 zext(%narrow), sext(%val) 1348 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1349 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1350 return false; 1351 1352 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1353 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1354 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1355 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1356 1357 // Widen the compare instruction. 1358 IRBuilder<> Builder( 1359 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1360 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1361 1362 // Widen the other operand of the compare, if necessary. 1363 if (CastWidth < IVWidth) { 1364 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1365 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1366 } 1367 return true; 1368 } 1369 1370 /// Determine whether an individual user of the narrow IV can be widened. If so, 1371 /// return the wide clone of the user. 1372 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1373 assert(ExtendKindMap.count(DU.NarrowDef) && 1374 "Should already know the kind of extension used to widen NarrowDef"); 1375 1376 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1377 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1378 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1379 // For LCSSA phis, sink the truncate outside the loop. 1380 // After SimplifyCFG most loop exit targets have a single predecessor. 1381 // Otherwise fall back to a truncate within the loop. 1382 if (UsePhi->getNumOperands() != 1) 1383 truncateIVUse(DU, DT, LI); 1384 else { 1385 // Widening the PHI requires us to insert a trunc. The logical place 1386 // for this trunc is in the same BB as the PHI. This is not possible if 1387 // the BB is terminated by a catchswitch. 1388 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1389 return nullptr; 1390 1391 PHINode *WidePhi = 1392 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1393 UsePhi); 1394 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1395 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1396 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1397 UsePhi->replaceAllUsesWith(Trunc); 1398 DeadInsts.emplace_back(UsePhi); 1399 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1400 << " to " << *WidePhi << "\n"); 1401 } 1402 return nullptr; 1403 } 1404 } 1405 1406 // This narrow use can be widened by a sext if it's non-negative or its narrow 1407 // def was widended by a sext. Same for zext. 1408 auto canWidenBySExt = [&]() { 1409 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1410 }; 1411 auto canWidenByZExt = [&]() { 1412 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1413 }; 1414 1415 // Our raison d'etre! Eliminate sign and zero extension. 1416 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1417 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1418 Value *NewDef = DU.WideDef; 1419 if (DU.NarrowUse->getType() != WideType) { 1420 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1421 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1422 if (CastWidth < IVWidth) { 1423 // The cast isn't as wide as the IV, so insert a Trunc. 1424 IRBuilder<> Builder(DU.NarrowUse); 1425 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1426 } 1427 else { 1428 // A wider extend was hidden behind a narrower one. This may induce 1429 // another round of IV widening in which the intermediate IV becomes 1430 // dead. It should be very rare. 1431 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1432 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1433 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1434 NewDef = DU.NarrowUse; 1435 } 1436 } 1437 if (NewDef != DU.NarrowUse) { 1438 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1439 << " replaced by " << *DU.WideDef << "\n"); 1440 ++NumElimExt; 1441 DU.NarrowUse->replaceAllUsesWith(NewDef); 1442 DeadInsts.emplace_back(DU.NarrowUse); 1443 } 1444 // Now that the extend is gone, we want to expose it's uses for potential 1445 // further simplification. We don't need to directly inform SimplifyIVUsers 1446 // of the new users, because their parent IV will be processed later as a 1447 // new loop phi. If we preserved IVUsers analysis, we would also want to 1448 // push the uses of WideDef here. 1449 1450 // No further widening is needed. The deceased [sz]ext had done it for us. 1451 return nullptr; 1452 } 1453 1454 // Does this user itself evaluate to a recurrence after widening? 1455 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1456 if (!WideAddRec.first) 1457 WideAddRec = getWideRecurrence(DU); 1458 1459 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1460 if (!WideAddRec.first) { 1461 // If use is a loop condition, try to promote the condition instead of 1462 // truncating the IV first. 1463 if (widenLoopCompare(DU)) 1464 return nullptr; 1465 1466 // This user does not evaluate to a recurrence after widening, so don't 1467 // follow it. Instead insert a Trunc to kill off the original use, 1468 // eventually isolating the original narrow IV so it can be removed. 1469 truncateIVUse(DU, DT, LI); 1470 return nullptr; 1471 } 1472 // Assume block terminators cannot evaluate to a recurrence. We can't to 1473 // insert a Trunc after a terminator if there happens to be a critical edge. 1474 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1475 "SCEV is not expected to evaluate a block terminator"); 1476 1477 // Reuse the IV increment that SCEVExpander created as long as it dominates 1478 // NarrowUse. 1479 Instruction *WideUse = nullptr; 1480 if (WideAddRec.first == WideIncExpr && 1481 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1482 WideUse = WideInc; 1483 else { 1484 WideUse = cloneIVUser(DU, WideAddRec.first); 1485 if (!WideUse) 1486 return nullptr; 1487 } 1488 // Evaluation of WideAddRec ensured that the narrow expression could be 1489 // extended outside the loop without overflow. This suggests that the wide use 1490 // evaluates to the same expression as the extended narrow use, but doesn't 1491 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1492 // where it fails, we simply throw away the newly created wide use. 1493 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1494 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1495 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n"); 1496 DeadInsts.emplace_back(WideUse); 1497 return nullptr; 1498 } 1499 1500 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1501 // Returning WideUse pushes it on the worklist. 1502 return WideUse; 1503 } 1504 1505 /// Add eligible users of NarrowDef to NarrowIVUsers. 1506 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1507 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1508 bool NonNegativeDef = 1509 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1510 SE->getConstant(NarrowSCEV->getType(), 0)); 1511 for (User *U : NarrowDef->users()) { 1512 Instruction *NarrowUser = cast<Instruction>(U); 1513 1514 // Handle data flow merges and bizarre phi cycles. 1515 if (!Widened.insert(NarrowUser).second) 1516 continue; 1517 1518 bool NonNegativeUse = false; 1519 if (!NonNegativeDef) { 1520 // We might have a control-dependent range information for this context. 1521 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1522 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1523 } 1524 1525 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1526 NonNegativeDef || NonNegativeUse); 1527 } 1528 } 1529 1530 /// Process a single induction variable. First use the SCEVExpander to create a 1531 /// wide induction variable that evaluates to the same recurrence as the 1532 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1533 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1534 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1535 /// 1536 /// It would be simpler to delete uses as they are processed, but we must avoid 1537 /// invalidating SCEV expressions. 1538 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1539 // Is this phi an induction variable? 1540 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1541 if (!AddRec) 1542 return nullptr; 1543 1544 // Widen the induction variable expression. 1545 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1546 ? SE->getSignExtendExpr(AddRec, WideType) 1547 : SE->getZeroExtendExpr(AddRec, WideType); 1548 1549 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1550 "Expect the new IV expression to preserve its type"); 1551 1552 // Can the IV be extended outside the loop without overflow? 1553 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1554 if (!AddRec || AddRec->getLoop() != L) 1555 return nullptr; 1556 1557 // An AddRec must have loop-invariant operands. Since this AddRec is 1558 // materialized by a loop header phi, the expression cannot have any post-loop 1559 // operands, so they must dominate the loop header. 1560 assert( 1561 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1562 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1563 "Loop header phi recurrence inputs do not dominate the loop"); 1564 1565 // Iterate over IV uses (including transitive ones) looking for IV increments 1566 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1567 // the increment calculate control-dependent range information basing on 1568 // dominating conditions inside of the loop (e.g. a range check inside of the 1569 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1570 // 1571 // Control-dependent range information is later used to prove that a narrow 1572 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1573 // this on demand because when pushNarrowIVUsers needs this information some 1574 // of the dominating conditions might be already widened. 1575 if (UsePostIncrementRanges) 1576 calculatePostIncRanges(OrigPhi); 1577 1578 // The rewriter provides a value for the desired IV expression. This may 1579 // either find an existing phi or materialize a new one. Either way, we 1580 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1581 // of the phi-SCC dominates the loop entry. 1582 Instruction *InsertPt = &L->getHeader()->front(); 1583 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1584 1585 // Remembering the WideIV increment generated by SCEVExpander allows 1586 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1587 // employ a general reuse mechanism because the call above is the only call to 1588 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1589 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1590 WideInc = 1591 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1592 WideIncExpr = SE->getSCEV(WideInc); 1593 // Propagate the debug location associated with the original loop increment 1594 // to the new (widened) increment. 1595 auto *OrigInc = 1596 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1597 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1598 } 1599 1600 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1601 ++NumWidened; 1602 1603 // Traverse the def-use chain using a worklist starting at the original IV. 1604 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1605 1606 Widened.insert(OrigPhi); 1607 pushNarrowIVUsers(OrigPhi, WidePhi); 1608 1609 while (!NarrowIVUsers.empty()) { 1610 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1611 1612 // Process a def-use edge. This may replace the use, so don't hold a 1613 // use_iterator across it. 1614 Instruction *WideUse = widenIVUse(DU, Rewriter); 1615 1616 // Follow all def-use edges from the previous narrow use. 1617 if (WideUse) 1618 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1619 1620 // widenIVUse may have removed the def-use edge. 1621 if (DU.NarrowDef->use_empty()) 1622 DeadInsts.emplace_back(DU.NarrowDef); 1623 } 1624 1625 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1626 // evaluate the same recurrence, we can just copy the debug info over. 1627 SmallVector<DbgValueInst *, 1> DbgValues; 1628 llvm::findDbgValues(DbgValues, OrigPhi); 1629 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1630 ValueAsMetadata::get(WidePhi)); 1631 for (auto &DbgValue : DbgValues) 1632 DbgValue->setOperand(0, MDPhi); 1633 return WidePhi; 1634 } 1635 1636 /// Calculates control-dependent range for the given def at the given context 1637 /// by looking at dominating conditions inside of the loop 1638 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1639 Instruction *NarrowUser) { 1640 using namespace llvm::PatternMatch; 1641 1642 Value *NarrowDefLHS; 1643 const APInt *NarrowDefRHS; 1644 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1645 m_APInt(NarrowDefRHS))) || 1646 !NarrowDefRHS->isNonNegative()) 1647 return; 1648 1649 auto UpdateRangeFromCondition = [&] (Value *Condition, 1650 bool TrueDest) { 1651 CmpInst::Predicate Pred; 1652 Value *CmpRHS; 1653 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1654 m_Value(CmpRHS)))) 1655 return; 1656 1657 CmpInst::Predicate P = 1658 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1659 1660 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1661 auto CmpConstrainedLHSRange = 1662 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1663 auto NarrowDefRange = 1664 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1665 1666 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1667 }; 1668 1669 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1670 if (!HasGuards) 1671 return; 1672 1673 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1674 Ctx->getParent()->rend())) { 1675 Value *C = nullptr; 1676 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1677 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1678 } 1679 }; 1680 1681 UpdateRangeFromGuards(NarrowUser); 1682 1683 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1684 // If NarrowUserBB is statically unreachable asking dominator queries may 1685 // yield surprising results. (e.g. the block may not have a dom tree node) 1686 if (!DT->isReachableFromEntry(NarrowUserBB)) 1687 return; 1688 1689 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1690 L->contains(DTB->getBlock()); 1691 DTB = DTB->getIDom()) { 1692 auto *BB = DTB->getBlock(); 1693 auto *TI = BB->getTerminator(); 1694 UpdateRangeFromGuards(TI); 1695 1696 auto *BI = dyn_cast<BranchInst>(TI); 1697 if (!BI || !BI->isConditional()) 1698 continue; 1699 1700 auto *TrueSuccessor = BI->getSuccessor(0); 1701 auto *FalseSuccessor = BI->getSuccessor(1); 1702 1703 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1704 return BBE.isSingleEdge() && 1705 DT->dominates(BBE, NarrowUser->getParent()); 1706 }; 1707 1708 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1709 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1710 1711 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1712 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1713 } 1714 } 1715 1716 /// Calculates PostIncRangeInfos map for the given IV 1717 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1718 SmallPtrSet<Instruction *, 16> Visited; 1719 SmallVector<Instruction *, 6> Worklist; 1720 Worklist.push_back(OrigPhi); 1721 Visited.insert(OrigPhi); 1722 1723 while (!Worklist.empty()) { 1724 Instruction *NarrowDef = Worklist.pop_back_val(); 1725 1726 for (Use &U : NarrowDef->uses()) { 1727 auto *NarrowUser = cast<Instruction>(U.getUser()); 1728 1729 // Don't go looking outside the current loop. 1730 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1731 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1732 continue; 1733 1734 if (!Visited.insert(NarrowUser).second) 1735 continue; 1736 1737 Worklist.push_back(NarrowUser); 1738 1739 calculatePostIncRange(NarrowDef, NarrowUser); 1740 } 1741 } 1742 } 1743 1744 //===----------------------------------------------------------------------===// 1745 // Live IV Reduction - Minimize IVs live across the loop. 1746 //===----------------------------------------------------------------------===// 1747 1748 //===----------------------------------------------------------------------===// 1749 // Simplification of IV users based on SCEV evaluation. 1750 //===----------------------------------------------------------------------===// 1751 1752 namespace { 1753 1754 class IndVarSimplifyVisitor : public IVVisitor { 1755 ScalarEvolution *SE; 1756 const TargetTransformInfo *TTI; 1757 PHINode *IVPhi; 1758 1759 public: 1760 WideIVInfo WI; 1761 1762 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1763 const TargetTransformInfo *TTI, 1764 const DominatorTree *DTree) 1765 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1766 DT = DTree; 1767 WI.NarrowIV = IVPhi; 1768 } 1769 1770 // Implement the interface used by simplifyUsersOfIV. 1771 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1772 }; 1773 1774 } // end anonymous namespace 1775 1776 /// Iteratively perform simplification on a worklist of IV users. Each 1777 /// successive simplification may push more users which may themselves be 1778 /// candidates for simplification. 1779 /// 1780 /// Sign/Zero extend elimination is interleaved with IV simplification. 1781 void IndVarSimplify::simplifyAndExtend(Loop *L, 1782 SCEVExpander &Rewriter, 1783 LoopInfo *LI) { 1784 SmallVector<WideIVInfo, 8> WideIVs; 1785 1786 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1787 Intrinsic::getName(Intrinsic::experimental_guard)); 1788 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1789 1790 SmallVector<PHINode*, 8> LoopPhis; 1791 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1792 LoopPhis.push_back(cast<PHINode>(I)); 1793 } 1794 // Each round of simplification iterates through the SimplifyIVUsers worklist 1795 // for all current phis, then determines whether any IVs can be 1796 // widened. Widening adds new phis to LoopPhis, inducing another round of 1797 // simplification on the wide IVs. 1798 while (!LoopPhis.empty()) { 1799 // Evaluate as many IV expressions as possible before widening any IVs. This 1800 // forces SCEV to set no-wrap flags before evaluating sign/zero 1801 // extension. The first time SCEV attempts to normalize sign/zero extension, 1802 // the result becomes final. So for the most predictable results, we delay 1803 // evaluation of sign/zero extend evaluation until needed, and avoid running 1804 // other SCEV based analysis prior to simplifyAndExtend. 1805 do { 1806 PHINode *CurrIV = LoopPhis.pop_back_val(); 1807 1808 // Information about sign/zero extensions of CurrIV. 1809 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1810 1811 Changed |= 1812 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1813 1814 if (Visitor.WI.WidestNativeType) { 1815 WideIVs.push_back(Visitor.WI); 1816 } 1817 } while(!LoopPhis.empty()); 1818 1819 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1820 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1821 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1822 Changed = true; 1823 LoopPhis.push_back(WidePhi); 1824 } 1825 } 1826 } 1827 } 1828 1829 //===----------------------------------------------------------------------===// 1830 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1831 //===----------------------------------------------------------------------===// 1832 1833 /// Return true if this loop's backedge taken count expression can be safely and 1834 /// cheaply expanded into an instruction sequence that can be used by 1835 /// linearFunctionTestReplace. 1836 /// 1837 /// TODO: This fails for pointer-type loop counters with greater than one byte 1838 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1839 /// we could skip this check in the case that the LFTR loop counter (chosen by 1840 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1841 /// the loop test to an inequality test by checking the target data's alignment 1842 /// of element types (given that the initial pointer value originates from or is 1843 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1844 /// However, we don't yet have a strong motivation for converting loop tests 1845 /// into inequality tests. 1846 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1847 SCEVExpander &Rewriter) { 1848 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1849 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1850 BackedgeTakenCount->isZero()) 1851 return false; 1852 1853 if (!L->getExitingBlock()) 1854 return false; 1855 1856 // Can't rewrite non-branch yet. 1857 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1858 return false; 1859 1860 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1861 return false; 1862 1863 return true; 1864 } 1865 1866 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1867 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1868 Instruction *IncI = dyn_cast<Instruction>(IncV); 1869 if (!IncI) 1870 return nullptr; 1871 1872 switch (IncI->getOpcode()) { 1873 case Instruction::Add: 1874 case Instruction::Sub: 1875 break; 1876 case Instruction::GetElementPtr: 1877 // An IV counter must preserve its type. 1878 if (IncI->getNumOperands() == 2) 1879 break; 1880 LLVM_FALLTHROUGH; 1881 default: 1882 return nullptr; 1883 } 1884 1885 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1886 if (Phi && Phi->getParent() == L->getHeader()) { 1887 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1888 return Phi; 1889 return nullptr; 1890 } 1891 if (IncI->getOpcode() == Instruction::GetElementPtr) 1892 return nullptr; 1893 1894 // Allow add/sub to be commuted. 1895 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1896 if (Phi && Phi->getParent() == L->getHeader()) { 1897 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1898 return Phi; 1899 } 1900 return nullptr; 1901 } 1902 1903 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1904 static ICmpInst *getLoopTest(Loop *L) { 1905 assert(L->getExitingBlock() && "expected loop exit"); 1906 1907 BasicBlock *LatchBlock = L->getLoopLatch(); 1908 // Don't bother with LFTR if the loop is not properly simplified. 1909 if (!LatchBlock) 1910 return nullptr; 1911 1912 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1913 assert(BI && "expected exit branch"); 1914 1915 return dyn_cast<ICmpInst>(BI->getCondition()); 1916 } 1917 1918 /// linearFunctionTestReplace policy. Return true unless we can show that the 1919 /// current exit test is already sufficiently canonical. 1920 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1921 // Do LFTR to simplify the exit condition to an ICMP. 1922 ICmpInst *Cond = getLoopTest(L); 1923 if (!Cond) 1924 return true; 1925 1926 // Do LFTR to simplify the exit ICMP to EQ/NE 1927 ICmpInst::Predicate Pred = Cond->getPredicate(); 1928 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1929 return true; 1930 1931 // Look for a loop invariant RHS 1932 Value *LHS = Cond->getOperand(0); 1933 Value *RHS = Cond->getOperand(1); 1934 if (!isLoopInvariant(RHS, L, DT)) { 1935 if (!isLoopInvariant(LHS, L, DT)) 1936 return true; 1937 std::swap(LHS, RHS); 1938 } 1939 // Look for a simple IV counter LHS 1940 PHINode *Phi = dyn_cast<PHINode>(LHS); 1941 if (!Phi) 1942 Phi = getLoopPhiForCounter(LHS, L, DT); 1943 1944 if (!Phi) 1945 return true; 1946 1947 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1948 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1949 if (Idx < 0) 1950 return true; 1951 1952 // Do LFTR if the exit condition's IV is *not* a simple counter. 1953 Value *IncV = Phi->getIncomingValue(Idx); 1954 return Phi != getLoopPhiForCounter(IncV, L, DT); 1955 } 1956 1957 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1958 /// down to checking that all operands are constant and listing instructions 1959 /// that may hide undef. 1960 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1961 unsigned Depth) { 1962 if (isa<Constant>(V)) 1963 return !isa<UndefValue>(V); 1964 1965 if (Depth >= 6) 1966 return false; 1967 1968 // Conservatively handle non-constant non-instructions. For example, Arguments 1969 // may be undef. 1970 Instruction *I = dyn_cast<Instruction>(V); 1971 if (!I) 1972 return false; 1973 1974 // Load and return values may be undef. 1975 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1976 return false; 1977 1978 // Optimistically handle other instructions. 1979 for (Value *Op : I->operands()) { 1980 if (!Visited.insert(Op).second) 1981 continue; 1982 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1983 return false; 1984 } 1985 return true; 1986 } 1987 1988 /// Return true if the given value is concrete. We must prove that undef can 1989 /// never reach it. 1990 /// 1991 /// TODO: If we decide that this is a good approach to checking for undef, we 1992 /// may factor it into a common location. 1993 static bool hasConcreteDef(Value *V) { 1994 SmallPtrSet<Value*, 8> Visited; 1995 Visited.insert(V); 1996 return hasConcreteDefImpl(V, Visited, 0); 1997 } 1998 1999 /// Return true if this IV has any uses other than the (soon to be rewritten) 2000 /// loop exit test. 2001 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2002 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2003 Value *IncV = Phi->getIncomingValue(LatchIdx); 2004 2005 for (User *U : Phi->users()) 2006 if (U != Cond && U != IncV) return false; 2007 2008 for (User *U : IncV->users()) 2009 if (U != Cond && U != Phi) return false; 2010 return true; 2011 } 2012 2013 /// Find an affine IV in canonical form. 2014 /// 2015 /// BECount may be an i8* pointer type. The pointer difference is already 2016 /// valid count without scaling the address stride, so it remains a pointer 2017 /// expression as far as SCEV is concerned. 2018 /// 2019 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2020 /// 2021 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2022 /// 2023 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2024 /// This is difficult in general for SCEV because of potential overflow. But we 2025 /// could at least handle constant BECounts. 2026 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2027 ScalarEvolution *SE, DominatorTree *DT) { 2028 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2029 2030 Value *Cond = 2031 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2032 2033 // Loop over all of the PHI nodes, looking for a simple counter. 2034 PHINode *BestPhi = nullptr; 2035 const SCEV *BestInit = nullptr; 2036 BasicBlock *LatchBlock = L->getLoopLatch(); 2037 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2038 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2039 2040 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2041 PHINode *Phi = cast<PHINode>(I); 2042 if (!SE->isSCEVable(Phi->getType())) 2043 continue; 2044 2045 // Avoid comparing an integer IV against a pointer Limit. 2046 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2047 continue; 2048 2049 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2050 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2051 continue; 2052 2053 // AR may be a pointer type, while BECount is an integer type. 2054 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2055 // AR may not be a narrower type, or we may never exit. 2056 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2057 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2058 continue; 2059 2060 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2061 if (!Step || !Step->isOne()) 2062 continue; 2063 2064 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2065 Value *IncV = Phi->getIncomingValue(LatchIdx); 2066 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2067 continue; 2068 2069 // Avoid reusing a potentially undef value to compute other values that may 2070 // have originally had a concrete definition. 2071 if (!hasConcreteDef(Phi)) { 2072 // We explicitly allow unknown phis as long as they are already used by 2073 // the loop test. In this case we assume that performing LFTR could not 2074 // increase the number of undef users. 2075 if (ICmpInst *Cond = getLoopTest(L)) { 2076 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2077 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2078 continue; 2079 } 2080 } 2081 } 2082 const SCEV *Init = AR->getStart(); 2083 2084 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2085 // Don't force a live loop counter if another IV can be used. 2086 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2087 continue; 2088 2089 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2090 // also prefers integer to pointer IVs. 2091 if (BestInit->isZero() != Init->isZero()) { 2092 if (BestInit->isZero()) 2093 continue; 2094 } 2095 // If two IVs both count from zero or both count from nonzero then the 2096 // narrower is likely a dead phi that has been widened. Use the wider phi 2097 // to allow the other to be eliminated. 2098 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2099 continue; 2100 } 2101 BestPhi = Phi; 2102 BestInit = Init; 2103 } 2104 return BestPhi; 2105 } 2106 2107 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2108 /// the new loop test. 2109 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2110 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2111 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2112 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2113 const SCEV *IVInit = AR->getStart(); 2114 2115 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2116 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2117 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2118 // the existing GEPs whenever possible. 2119 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2120 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2121 // signed value. IVCount on the other hand represents the loop trip count, 2122 // which is an unsigned value. FindLoopCounter only allows induction 2123 // variables that have a positive unit stride of one. This means we don't 2124 // have to handle the case of negative offsets (yet) and just need to zero 2125 // extend IVCount. 2126 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2127 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2128 2129 // Expand the code for the iteration count. 2130 assert(SE->isLoopInvariant(IVOffset, L) && 2131 "Computed iteration count is not loop invariant!"); 2132 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2133 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2134 2135 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2136 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2137 // We could handle pointer IVs other than i8*, but we need to compensate for 2138 // gep index scaling. See canExpandBackedgeTakenCount comments. 2139 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2140 cast<PointerType>(GEPBase->getType()) 2141 ->getElementType())->isOne() && 2142 "unit stride pointer IV must be i8*"); 2143 2144 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2145 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2146 } else { 2147 // In any other case, convert both IVInit and IVCount to integers before 2148 // comparing. This may result in SCEV expansion of pointers, but in practice 2149 // SCEV will fold the pointer arithmetic away as such: 2150 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2151 // 2152 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2153 // for simple memset-style loops. 2154 // 2155 // IVInit integer and IVCount pointer would only occur if a canonical IV 2156 // were generated on top of case #2, which is not expected. 2157 2158 const SCEV *IVLimit = nullptr; 2159 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2160 // For non-zero Start, compute IVCount here. 2161 if (AR->getStart()->isZero()) 2162 IVLimit = IVCount; 2163 else { 2164 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2165 const SCEV *IVInit = AR->getStart(); 2166 2167 // For integer IVs, truncate the IV before computing IVInit + BECount. 2168 if (SE->getTypeSizeInBits(IVInit->getType()) 2169 > SE->getTypeSizeInBits(IVCount->getType())) 2170 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2171 2172 IVLimit = SE->getAddExpr(IVInit, IVCount); 2173 } 2174 // Expand the code for the iteration count. 2175 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2176 IRBuilder<> Builder(BI); 2177 assert(SE->isLoopInvariant(IVLimit, L) && 2178 "Computed iteration count is not loop invariant!"); 2179 // Ensure that we generate the same type as IndVar, or a smaller integer 2180 // type. In the presence of null pointer values, we have an integer type 2181 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2182 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2183 IndVar->getType() : IVCount->getType(); 2184 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2185 } 2186 } 2187 2188 /// This method rewrites the exit condition of the loop to be a canonical != 2189 /// comparison against the incremented loop induction variable. This pass is 2190 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2191 /// determine a loop-invariant trip count of the loop, which is actually a much 2192 /// broader range than just linear tests. 2193 Value *IndVarSimplify:: 2194 linearFunctionTestReplace(Loop *L, 2195 const SCEV *BackedgeTakenCount, 2196 PHINode *IndVar, 2197 SCEVExpander &Rewriter) { 2198 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2199 2200 // Initialize CmpIndVar and IVCount to their preincremented values. 2201 Value *CmpIndVar = IndVar; 2202 const SCEV *IVCount = BackedgeTakenCount; 2203 2204 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2205 2206 // If the exiting block is the same as the backedge block, we prefer to 2207 // compare against the post-incremented value, otherwise we must compare 2208 // against the preincremented value. 2209 if (L->getExitingBlock() == L->getLoopLatch()) { 2210 // Add one to the "backedge-taken" count to get the trip count. 2211 // This addition may overflow, which is valid as long as the comparison is 2212 // truncated to BackedgeTakenCount->getType(). 2213 IVCount = SE->getAddExpr(BackedgeTakenCount, 2214 SE->getOne(BackedgeTakenCount->getType())); 2215 // The BackedgeTaken expression contains the number of times that the 2216 // backedge branches to the loop header. This is one less than the 2217 // number of times the loop executes, so use the incremented indvar. 2218 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2219 } 2220 2221 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2222 assert(ExitCnt->getType()->isPointerTy() == 2223 IndVar->getType()->isPointerTy() && 2224 "genLoopLimit missed a cast"); 2225 2226 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2227 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2228 ICmpInst::Predicate P; 2229 if (L->contains(BI->getSuccessor(0))) 2230 P = ICmpInst::ICMP_NE; 2231 else 2232 P = ICmpInst::ICMP_EQ; 2233 2234 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2235 << " LHS:" << *CmpIndVar << '\n' 2236 << " op:\t" 2237 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 2238 << " RHS:\t" << *ExitCnt << "\n" 2239 << " IVCount:\t" << *IVCount << "\n"); 2240 2241 IRBuilder<> Builder(BI); 2242 2243 // The new loop exit condition should reuse the debug location of the 2244 // original loop exit condition. 2245 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2246 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2247 2248 // LFTR can ignore IV overflow and truncate to the width of 2249 // BECount. This avoids materializing the add(zext(add)) expression. 2250 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2251 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2252 if (CmpIndVarSize > ExitCntSize) { 2253 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2254 const SCEV *ARStart = AR->getStart(); 2255 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2256 // For constant IVCount, avoid truncation. 2257 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2258 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2259 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2260 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2261 // above such that IVCount is now zero. 2262 if (IVCount != BackedgeTakenCount && Count == 0) { 2263 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2264 ++Count; 2265 } 2266 else 2267 Count = Count.zext(CmpIndVarSize); 2268 APInt NewLimit; 2269 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2270 NewLimit = Start - Count; 2271 else 2272 NewLimit = Start + Count; 2273 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2274 2275 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2276 } else { 2277 // We try to extend trip count first. If that doesn't work we truncate IV. 2278 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2279 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2280 // one of the two holds, extend the trip count, otherwise we truncate IV. 2281 bool Extended = false; 2282 const SCEV *IV = SE->getSCEV(CmpIndVar); 2283 const SCEV *ZExtTrunc = 2284 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2285 ExitCnt->getType()), 2286 CmpIndVar->getType()); 2287 2288 if (ZExtTrunc == IV) { 2289 Extended = true; 2290 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2291 "wide.trip.count"); 2292 } else { 2293 const SCEV *SExtTrunc = 2294 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2295 ExitCnt->getType()), 2296 CmpIndVar->getType()); 2297 if (SExtTrunc == IV) { 2298 Extended = true; 2299 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2300 "wide.trip.count"); 2301 } 2302 } 2303 2304 if (!Extended) 2305 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2306 "lftr.wideiv"); 2307 } 2308 } 2309 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2310 Value *OrigCond = BI->getCondition(); 2311 // It's tempting to use replaceAllUsesWith here to fully replace the old 2312 // comparison, but that's not immediately safe, since users of the old 2313 // comparison may not be dominated by the new comparison. Instead, just 2314 // update the branch to use the new comparison; in the common case this 2315 // will make old comparison dead. 2316 BI->setCondition(Cond); 2317 DeadInsts.push_back(OrigCond); 2318 2319 ++NumLFTR; 2320 Changed = true; 2321 return Cond; 2322 } 2323 2324 //===----------------------------------------------------------------------===// 2325 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2326 //===----------------------------------------------------------------------===// 2327 2328 /// If there's a single exit block, sink any loop-invariant values that 2329 /// were defined in the preheader but not used inside the loop into the 2330 /// exit block to reduce register pressure in the loop. 2331 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2332 BasicBlock *ExitBlock = L->getExitBlock(); 2333 if (!ExitBlock) return; 2334 2335 BasicBlock *Preheader = L->getLoopPreheader(); 2336 if (!Preheader) return; 2337 2338 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2339 BasicBlock::iterator I(Preheader->getTerminator()); 2340 while (I != Preheader->begin()) { 2341 --I; 2342 // New instructions were inserted at the end of the preheader. 2343 if (isa<PHINode>(I)) 2344 break; 2345 2346 // Don't move instructions which might have side effects, since the side 2347 // effects need to complete before instructions inside the loop. Also don't 2348 // move instructions which might read memory, since the loop may modify 2349 // memory. Note that it's okay if the instruction might have undefined 2350 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2351 // block. 2352 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2353 continue; 2354 2355 // Skip debug info intrinsics. 2356 if (isa<DbgInfoIntrinsic>(I)) 2357 continue; 2358 2359 // Skip eh pad instructions. 2360 if (I->isEHPad()) 2361 continue; 2362 2363 // Don't sink alloca: we never want to sink static alloca's out of the 2364 // entry block, and correctly sinking dynamic alloca's requires 2365 // checks for stacksave/stackrestore intrinsics. 2366 // FIXME: Refactor this check somehow? 2367 if (isa<AllocaInst>(I)) 2368 continue; 2369 2370 // Determine if there is a use in or before the loop (direct or 2371 // otherwise). 2372 bool UsedInLoop = false; 2373 for (Use &U : I->uses()) { 2374 Instruction *User = cast<Instruction>(U.getUser()); 2375 BasicBlock *UseBB = User->getParent(); 2376 if (PHINode *P = dyn_cast<PHINode>(User)) { 2377 unsigned i = 2378 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2379 UseBB = P->getIncomingBlock(i); 2380 } 2381 if (UseBB == Preheader || L->contains(UseBB)) { 2382 UsedInLoop = true; 2383 break; 2384 } 2385 } 2386 2387 // If there is, the def must remain in the preheader. 2388 if (UsedInLoop) 2389 continue; 2390 2391 // Otherwise, sink it to the exit block. 2392 Instruction *ToMove = &*I; 2393 bool Done = false; 2394 2395 if (I != Preheader->begin()) { 2396 // Skip debug info intrinsics. 2397 do { 2398 --I; 2399 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2400 2401 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2402 Done = true; 2403 } else { 2404 Done = true; 2405 } 2406 2407 ToMove->moveBefore(*ExitBlock, InsertPt); 2408 if (Done) break; 2409 InsertPt = ToMove->getIterator(); 2410 } 2411 } 2412 2413 //===----------------------------------------------------------------------===// 2414 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2415 //===----------------------------------------------------------------------===// 2416 2417 bool IndVarSimplify::run(Loop *L) { 2418 // We need (and expect!) the incoming loop to be in LCSSA. 2419 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2420 "LCSSA required to run indvars!"); 2421 2422 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2423 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2424 // canonicalization can be a pessimization without LSR to "clean up" 2425 // afterwards. 2426 // - We depend on having a preheader; in particular, 2427 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2428 // and we're in trouble if we can't find the induction variable even when 2429 // we've manually inserted one. 2430 // - LFTR relies on having a single backedge. 2431 if (!L->isLoopSimplifyForm()) 2432 return false; 2433 2434 // If there are any floating-point recurrences, attempt to 2435 // transform them to use integer recurrences. 2436 rewriteNonIntegerIVs(L); 2437 2438 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2439 2440 // Create a rewriter object which we'll use to transform the code with. 2441 SCEVExpander Rewriter(*SE, DL, "indvars"); 2442 #ifndef NDEBUG 2443 Rewriter.setDebugType(DEBUG_TYPE); 2444 #endif 2445 2446 // Eliminate redundant IV users. 2447 // 2448 // Simplification works best when run before other consumers of SCEV. We 2449 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2450 // other expressions involving loop IVs have been evaluated. This helps SCEV 2451 // set no-wrap flags before normalizing sign/zero extension. 2452 Rewriter.disableCanonicalMode(); 2453 simplifyAndExtend(L, Rewriter, LI); 2454 2455 // Check to see if this loop has a computable loop-invariant execution count. 2456 // If so, this means that we can compute the final value of any expressions 2457 // that are recurrent in the loop, and substitute the exit values from the 2458 // loop into any instructions outside of the loop that use the final values of 2459 // the current expressions. 2460 // 2461 if (ReplaceExitValue != NeverRepl && 2462 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2463 rewriteLoopExitValues(L, Rewriter); 2464 2465 // Eliminate redundant IV cycles. 2466 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2467 2468 // If we have a trip count expression, rewrite the loop's exit condition 2469 // using it. We can currently only handle loops with a single exit. 2470 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2471 needsLFTR(L, DT)) { 2472 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2473 if (IndVar) { 2474 // Check preconditions for proper SCEVExpander operation. SCEV does not 2475 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2476 // pass that uses the SCEVExpander must do it. This does not work well for 2477 // loop passes because SCEVExpander makes assumptions about all loops, 2478 // while LoopPassManager only forces the current loop to be simplified. 2479 // 2480 // FIXME: SCEV expansion has no way to bail out, so the caller must 2481 // explicitly check any assumptions made by SCEV. Brittle. 2482 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2483 if (!AR || AR->getLoop()->getLoopPreheader()) 2484 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2485 Rewriter); 2486 } 2487 } 2488 // Clear the rewriter cache, because values that are in the rewriter's cache 2489 // can be deleted in the loop below, causing the AssertingVH in the cache to 2490 // trigger. 2491 Rewriter.clear(); 2492 2493 // Now that we're done iterating through lists, clean up any instructions 2494 // which are now dead. 2495 while (!DeadInsts.empty()) 2496 if (Instruction *Inst = 2497 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2498 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2499 2500 // The Rewriter may not be used from this point on. 2501 2502 // Loop-invariant instructions in the preheader that aren't used in the 2503 // loop may be sunk below the loop to reduce register pressure. 2504 sinkUnusedInvariants(L); 2505 2506 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2507 // trip count and therefore can further simplify exit values in addition to 2508 // rewriteLoopExitValues. 2509 rewriteFirstIterationLoopExitValues(L); 2510 2511 // Clean up dead instructions. 2512 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2513 2514 // Check a post-condition. 2515 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2516 "Indvars did not preserve LCSSA!"); 2517 2518 // Verify that LFTR, and any other change have not interfered with SCEV's 2519 // ability to compute trip count. 2520 #ifndef NDEBUG 2521 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2522 SE->forgetLoop(L); 2523 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2524 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2525 SE->getTypeSizeInBits(NewBECount->getType())) 2526 NewBECount = SE->getTruncateOrNoop(NewBECount, 2527 BackedgeTakenCount->getType()); 2528 else 2529 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2530 NewBECount->getType()); 2531 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2532 } 2533 #endif 2534 2535 return Changed; 2536 } 2537 2538 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2539 LoopStandardAnalysisResults &AR, 2540 LPMUpdater &) { 2541 Function *F = L.getHeader()->getParent(); 2542 const DataLayout &DL = F->getParent()->getDataLayout(); 2543 2544 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2545 if (!IVS.run(&L)) 2546 return PreservedAnalyses::all(); 2547 2548 auto PA = getLoopPassPreservedAnalyses(); 2549 PA.preserveSet<CFGAnalyses>(); 2550 return PA; 2551 } 2552 2553 namespace { 2554 2555 struct IndVarSimplifyLegacyPass : public LoopPass { 2556 static char ID; // Pass identification, replacement for typeid 2557 2558 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2559 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2560 } 2561 2562 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2563 if (skipLoop(L)) 2564 return false; 2565 2566 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2567 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2568 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2569 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2570 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2571 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2572 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2573 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2574 2575 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2576 return IVS.run(L); 2577 } 2578 2579 void getAnalysisUsage(AnalysisUsage &AU) const override { 2580 AU.setPreservesCFG(); 2581 getLoopAnalysisUsage(AU); 2582 } 2583 }; 2584 2585 } // end anonymous namespace 2586 2587 char IndVarSimplifyLegacyPass::ID = 0; 2588 2589 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2590 "Induction Variable Simplification", false, false) 2591 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2592 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2593 "Induction Variable Simplification", false, false) 2594 2595 Pass *llvm::createIndVarSimplifyPass() { 2596 return new IndVarSimplifyLegacyPass(); 2597 } 2598