xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision c7868bf064f915582a1064b532c1c5fa745d92ba)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // Additionally, unless -disable-iv-rewrite is on, this transformation makes the
15 // following changes to each loop with an identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
61 #include "llvm/Target/TargetData.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/ADT/SmallVector.h"
64 #include "llvm/ADT/Statistic.h"
65 using namespace llvm;
66 
67 STATISTIC(NumRemoved     , "Number of aux indvars removed");
68 STATISTIC(NumWidened     , "Number of indvars widened");
69 STATISTIC(NumInserted    , "Number of canonical indvars added");
70 STATISTIC(NumReplaced    , "Number of exit values replaced");
71 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
74 
75 namespace llvm {
76   cl::opt<bool> DisableIVRewrite(
77     "disable-iv-rewrite", cl::Hidden,
78     cl::desc("Disable canonical induction variable rewriting"));
79 
80   // Trip count verification can be enabled by default under NDEBUG if we
81   // implement a strong expression equivalence checker in SCEV. Until then, we
82   // use the verify-indvars flag, which may assert in some cases.
83   cl::opt<bool> VerifyIndvars(
84     "verify-indvars", cl::Hidden,
85     cl::desc("Verify the ScalarEvolution result after running indvars"));
86 }
87 
88 // Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
89 // LFTR purposes.
90 static cl::opt<bool> ForceLFTR(
91   "force-lftr", cl::Hidden,
92   cl::desc("Enable forced linear function test replacement"));
93 
94 namespace {
95   class IndVarSimplify : public LoopPass {
96     IVUsers         *IU;
97     LoopInfo        *LI;
98     ScalarEvolution *SE;
99     DominatorTree   *DT;
100     TargetData      *TD;
101 
102     SmallVector<WeakVH, 16> DeadInsts;
103     bool Changed;
104   public:
105 
106     static char ID; // Pass identification, replacement for typeid
107     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
108                        Changed(false) {
109       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
110     }
111 
112     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
113 
114     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
115       AU.addRequired<DominatorTree>();
116       AU.addRequired<LoopInfo>();
117       AU.addRequired<ScalarEvolution>();
118       AU.addRequiredID(LoopSimplifyID);
119       AU.addRequiredID(LCSSAID);
120       if (!DisableIVRewrite)
121         AU.addRequired<IVUsers>();
122       AU.addPreserved<ScalarEvolution>();
123       AU.addPreservedID(LoopSimplifyID);
124       AU.addPreservedID(LCSSAID);
125       if (!DisableIVRewrite)
126         AU.addPreserved<IVUsers>();
127       AU.setPreservesCFG();
128     }
129 
130   private:
131     virtual void releaseMemory() {
132       DeadInsts.clear();
133     }
134 
135     bool isValidRewrite(Value *FromVal, Value *ToVal);
136 
137     void HandleFloatingPointIV(Loop *L, PHINode *PH);
138     void RewriteNonIntegerIVs(Loop *L);
139 
140     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
141 
142     void SimplifyCongruentIVs(Loop *L);
143 
144     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
145 
146     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
147 
148     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
149                                      PHINode *IndVar, SCEVExpander &Rewriter);
150 
151     void SinkUnusedInvariants(Loop *L);
152   };
153 }
154 
155 char IndVarSimplify::ID = 0;
156 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
159 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
160 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
161 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
162 INITIALIZE_PASS_DEPENDENCY(LCSSA)
163 INITIALIZE_PASS_DEPENDENCY(IVUsers)
164 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
165                 "Induction Variable Simplification", false, false)
166 
167 Pass *llvm::createIndVarSimplifyPass() {
168   return new IndVarSimplify();
169 }
170 
171 /// isValidRewrite - Return true if the SCEV expansion generated by the
172 /// rewriter can replace the original value. SCEV guarantees that it
173 /// produces the same value, but the way it is produced may be illegal IR.
174 /// Ideally, this function will only be called for verification.
175 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
176   // If an SCEV expression subsumed multiple pointers, its expansion could
177   // reassociate the GEP changing the base pointer. This is illegal because the
178   // final address produced by a GEP chain must be inbounds relative to its
179   // underlying object. Otherwise basic alias analysis, among other things,
180   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181   // producing an expression involving multiple pointers. Until then, we must
182   // bail out here.
183   //
184   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185   // because it understands lcssa phis while SCEV does not.
186   Value *FromPtr = FromVal;
187   Value *ToPtr = ToVal;
188   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
189     FromPtr = GEP->getPointerOperand();
190   }
191   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
192     ToPtr = GEP->getPointerOperand();
193   }
194   if (FromPtr != FromVal || ToPtr != ToVal) {
195     // Quickly check the common case
196     if (FromPtr == ToPtr)
197       return true;
198 
199     // SCEV may have rewritten an expression that produces the GEP's pointer
200     // operand. That's ok as long as the pointer operand has the same base
201     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202     // base of a recurrence. This handles the case in which SCEV expansion
203     // converts a pointer type recurrence into a nonrecurrent pointer base
204     // indexed by an integer recurrence.
205     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
206     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
207     if (FromBase == ToBase)
208       return true;
209 
210     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
211           << *FromBase << " != " << *ToBase << "\n");
212 
213     return false;
214   }
215   return true;
216 }
217 
218 /// Determine the insertion point for this user. By default, insert immediately
219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
221 /// common dominator for the incoming blocks.
222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
223                                           DominatorTree *DT) {
224   PHINode *PHI = dyn_cast<PHINode>(User);
225   if (!PHI)
226     return User;
227 
228   Instruction *InsertPt = 0;
229   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
230     if (PHI->getIncomingValue(i) != Def)
231       continue;
232 
233     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
234     if (!InsertPt) {
235       InsertPt = InsertBB->getTerminator();
236       continue;
237     }
238     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
239     InsertPt = InsertBB->getTerminator();
240   }
241   assert(InsertPt && "Missing phi operand");
242   assert((!isa<Instruction>(Def) ||
243           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
244          "def does not dominate all uses");
245   return InsertPt;
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
250 //===----------------------------------------------------------------------===//
251 
252 /// ConvertToSInt - Convert APF to an integer, if possible.
253 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
254   bool isExact = false;
255   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
256     return false;
257   // See if we can convert this to an int64_t
258   uint64_t UIntVal;
259   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
260                            &isExact) != APFloat::opOK || !isExact)
261     return false;
262   IntVal = UIntVal;
263   return true;
264 }
265 
266 /// HandleFloatingPointIV - If the loop has floating induction variable
267 /// then insert corresponding integer induction variable if possible.
268 /// For example,
269 /// for(double i = 0; i < 10000; ++i)
270 ///   bar(i)
271 /// is converted into
272 /// for(int i = 0; i < 10000; ++i)
273 ///   bar((double)i);
274 ///
275 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
276   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
277   unsigned BackEdge     = IncomingEdge^1;
278 
279   // Check incoming value.
280   ConstantFP *InitValueVal =
281     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
282 
283   int64_t InitValue;
284   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
285     return;
286 
287   // Check IV increment. Reject this PN if increment operation is not
288   // an add or increment value can not be represented by an integer.
289   BinaryOperator *Incr =
290     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
291   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
292 
293   // If this is not an add of the PHI with a constantfp, or if the constant fp
294   // is not an integer, bail out.
295   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
296   int64_t IncValue;
297   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
298       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
299     return;
300 
301   // Check Incr uses. One user is PN and the other user is an exit condition
302   // used by the conditional terminator.
303   Value::use_iterator IncrUse = Incr->use_begin();
304   Instruction *U1 = cast<Instruction>(*IncrUse++);
305   if (IncrUse == Incr->use_end()) return;
306   Instruction *U2 = cast<Instruction>(*IncrUse++);
307   if (IncrUse != Incr->use_end()) return;
308 
309   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
310   // only used by a branch, we can't transform it.
311   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
312   if (!Compare)
313     Compare = dyn_cast<FCmpInst>(U2);
314   if (Compare == 0 || !Compare->hasOneUse() ||
315       !isa<BranchInst>(Compare->use_back()))
316     return;
317 
318   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
319 
320   // We need to verify that the branch actually controls the iteration count
321   // of the loop.  If not, the new IV can overflow and no one will notice.
322   // The branch block must be in the loop and one of the successors must be out
323   // of the loop.
324   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
325   if (!L->contains(TheBr->getParent()) ||
326       (L->contains(TheBr->getSuccessor(0)) &&
327        L->contains(TheBr->getSuccessor(1))))
328     return;
329 
330 
331   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
332   // transform it.
333   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
334   int64_t ExitValue;
335   if (ExitValueVal == 0 ||
336       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
337     return;
338 
339   // Find new predicate for integer comparison.
340   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
341   switch (Compare->getPredicate()) {
342   default: return;  // Unknown comparison.
343   case CmpInst::FCMP_OEQ:
344   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
345   case CmpInst::FCMP_ONE:
346   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
347   case CmpInst::FCMP_OGT:
348   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
349   case CmpInst::FCMP_OGE:
350   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
351   case CmpInst::FCMP_OLT:
352   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
353   case CmpInst::FCMP_OLE:
354   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
355   }
356 
357   // We convert the floating point induction variable to a signed i32 value if
358   // we can.  This is only safe if the comparison will not overflow in a way
359   // that won't be trapped by the integer equivalent operations.  Check for this
360   // now.
361   // TODO: We could use i64 if it is native and the range requires it.
362 
363   // The start/stride/exit values must all fit in signed i32.
364   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
365     return;
366 
367   // If not actually striding (add x, 0.0), avoid touching the code.
368   if (IncValue == 0)
369     return;
370 
371   // Positive and negative strides have different safety conditions.
372   if (IncValue > 0) {
373     // If we have a positive stride, we require the init to be less than the
374     // exit value and an equality or less than comparison.
375     if (InitValue >= ExitValue ||
376         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
377       return;
378 
379     uint32_t Range = uint32_t(ExitValue-InitValue);
380     if (NewPred == CmpInst::ICMP_SLE) {
381       // Normalize SLE -> SLT, check for infinite loop.
382       if (++Range == 0) return;  // Range overflows.
383     }
384 
385     unsigned Leftover = Range % uint32_t(IncValue);
386 
387     // If this is an equality comparison, we require that the strided value
388     // exactly land on the exit value, otherwise the IV condition will wrap
389     // around and do things the fp IV wouldn't.
390     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
391         Leftover != 0)
392       return;
393 
394     // If the stride would wrap around the i32 before exiting, we can't
395     // transform the IV.
396     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
397       return;
398 
399   } else {
400     // If we have a negative stride, we require the init to be greater than the
401     // exit value and an equality or greater than comparison.
402     if (InitValue >= ExitValue ||
403         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
404       return;
405 
406     uint32_t Range = uint32_t(InitValue-ExitValue);
407     if (NewPred == CmpInst::ICMP_SGE) {
408       // Normalize SGE -> SGT, check for infinite loop.
409       if (++Range == 0) return;  // Range overflows.
410     }
411 
412     unsigned Leftover = Range % uint32_t(-IncValue);
413 
414     // If this is an equality comparison, we require that the strided value
415     // exactly land on the exit value, otherwise the IV condition will wrap
416     // around and do things the fp IV wouldn't.
417     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
418         Leftover != 0)
419       return;
420 
421     // If the stride would wrap around the i32 before exiting, we can't
422     // transform the IV.
423     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
424       return;
425   }
426 
427   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
428 
429   // Insert new integer induction variable.
430   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
431   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
432                       PN->getIncomingBlock(IncomingEdge));
433 
434   Value *NewAdd =
435     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
436                               Incr->getName()+".int", Incr);
437   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
438 
439   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
440                                       ConstantInt::get(Int32Ty, ExitValue),
441                                       Compare->getName());
442 
443   // In the following deletions, PN may become dead and may be deleted.
444   // Use a WeakVH to observe whether this happens.
445   WeakVH WeakPH = PN;
446 
447   // Delete the old floating point exit comparison.  The branch starts using the
448   // new comparison.
449   NewCompare->takeName(Compare);
450   Compare->replaceAllUsesWith(NewCompare);
451   RecursivelyDeleteTriviallyDeadInstructions(Compare);
452 
453   // Delete the old floating point increment.
454   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
455   RecursivelyDeleteTriviallyDeadInstructions(Incr);
456 
457   // If the FP induction variable still has uses, this is because something else
458   // in the loop uses its value.  In order to canonicalize the induction
459   // variable, we chose to eliminate the IV and rewrite it in terms of an
460   // int->fp cast.
461   //
462   // We give preference to sitofp over uitofp because it is faster on most
463   // platforms.
464   if (WeakPH) {
465     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
466                                  PN->getParent()->getFirstInsertionPt());
467     PN->replaceAllUsesWith(Conv);
468     RecursivelyDeleteTriviallyDeadInstructions(PN);
469   }
470 
471   // Add a new IVUsers entry for the newly-created integer PHI.
472   if (IU)
473     IU->AddUsersIfInteresting(NewPHI);
474 
475   Changed = true;
476 }
477 
478 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
479   // First step.  Check to see if there are any floating-point recurrences.
480   // If there are, change them into integer recurrences, permitting analysis by
481   // the SCEV routines.
482   //
483   BasicBlock *Header = L->getHeader();
484 
485   SmallVector<WeakVH, 8> PHIs;
486   for (BasicBlock::iterator I = Header->begin();
487        PHINode *PN = dyn_cast<PHINode>(I); ++I)
488     PHIs.push_back(PN);
489 
490   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
491     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
492       HandleFloatingPointIV(L, PN);
493 
494   // If the loop previously had floating-point IV, ScalarEvolution
495   // may not have been able to compute a trip count. Now that we've done some
496   // re-writing, the trip count may be computable.
497   if (Changed)
498     SE->forgetLoop(L);
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // RewriteLoopExitValues - Optimize IV users outside the loop.
503 // As a side effect, reduces the amount of IV processing within the loop.
504 //===----------------------------------------------------------------------===//
505 
506 /// RewriteLoopExitValues - Check to see if this loop has a computable
507 /// loop-invariant execution count.  If so, this means that we can compute the
508 /// final value of any expressions that are recurrent in the loop, and
509 /// substitute the exit values from the loop into any instructions outside of
510 /// the loop that use the final values of the current expressions.
511 ///
512 /// This is mostly redundant with the regular IndVarSimplify activities that
513 /// happen later, except that it's more powerful in some cases, because it's
514 /// able to brute-force evaluate arbitrary instructions as long as they have
515 /// constant operands at the beginning of the loop.
516 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
517   // Verify the input to the pass in already in LCSSA form.
518   assert(L->isLCSSAForm(*DT));
519 
520   SmallVector<BasicBlock*, 8> ExitBlocks;
521   L->getUniqueExitBlocks(ExitBlocks);
522 
523   // Find all values that are computed inside the loop, but used outside of it.
524   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
525   // the exit blocks of the loop to find them.
526   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
527     BasicBlock *ExitBB = ExitBlocks[i];
528 
529     // If there are no PHI nodes in this exit block, then no values defined
530     // inside the loop are used on this path, skip it.
531     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
532     if (!PN) continue;
533 
534     unsigned NumPreds = PN->getNumIncomingValues();
535 
536     // Iterate over all of the PHI nodes.
537     BasicBlock::iterator BBI = ExitBB->begin();
538     while ((PN = dyn_cast<PHINode>(BBI++))) {
539       if (PN->use_empty())
540         continue; // dead use, don't replace it
541 
542       // SCEV only supports integer expressions for now.
543       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
544         continue;
545 
546       // It's necessary to tell ScalarEvolution about this explicitly so that
547       // it can walk the def-use list and forget all SCEVs, as it may not be
548       // watching the PHI itself. Once the new exit value is in place, there
549       // may not be a def-use connection between the loop and every instruction
550       // which got a SCEVAddRecExpr for that loop.
551       SE->forgetValue(PN);
552 
553       // Iterate over all of the values in all the PHI nodes.
554       for (unsigned i = 0; i != NumPreds; ++i) {
555         // If the value being merged in is not integer or is not defined
556         // in the loop, skip it.
557         Value *InVal = PN->getIncomingValue(i);
558         if (!isa<Instruction>(InVal))
559           continue;
560 
561         // If this pred is for a subloop, not L itself, skip it.
562         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
563           continue; // The Block is in a subloop, skip it.
564 
565         // Check that InVal is defined in the loop.
566         Instruction *Inst = cast<Instruction>(InVal);
567         if (!L->contains(Inst))
568           continue;
569 
570         // Okay, this instruction has a user outside of the current loop
571         // and varies predictably *inside* the loop.  Evaluate the value it
572         // contains when the loop exits, if possible.
573         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
574         if (!SE->isLoopInvariant(ExitValue, L))
575           continue;
576 
577         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
578 
579         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
580                      << "  LoopVal = " << *Inst << "\n");
581 
582         if (!isValidRewrite(Inst, ExitVal)) {
583           DeadInsts.push_back(ExitVal);
584           continue;
585         }
586         Changed = true;
587         ++NumReplaced;
588 
589         PN->setIncomingValue(i, ExitVal);
590 
591         // If this instruction is dead now, delete it.
592         RecursivelyDeleteTriviallyDeadInstructions(Inst);
593 
594         if (NumPreds == 1) {
595           // Completely replace a single-pred PHI. This is safe, because the
596           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
597           // node anymore.
598           PN->replaceAllUsesWith(ExitVal);
599           RecursivelyDeleteTriviallyDeadInstructions(PN);
600         }
601       }
602       if (NumPreds != 1) {
603         // Clone the PHI and delete the original one. This lets IVUsers and
604         // any other maps purge the original user from their records.
605         PHINode *NewPN = cast<PHINode>(PN->clone());
606         NewPN->takeName(PN);
607         NewPN->insertBefore(PN);
608         PN->replaceAllUsesWith(NewPN);
609         PN->eraseFromParent();
610       }
611     }
612   }
613 
614   // The insertion point instruction may have been deleted; clear it out
615   // so that the rewriter doesn't trip over it later.
616   Rewriter.clearInsertPoint();
617 }
618 
619 //===----------------------------------------------------------------------===//
620 //  Rewrite IV users based on a canonical IV.
621 //  To be replaced by -disable-iv-rewrite.
622 //===----------------------------------------------------------------------===//
623 
624 /// FIXME: It is an extremely bad idea to indvar substitute anything more
625 /// complex than affine induction variables.  Doing so will put expensive
626 /// polynomial evaluations inside of the loop, and the str reduction pass
627 /// currently can only reduce affine polynomials.  For now just disable
628 /// indvar subst on anything more complex than an affine addrec, unless
629 /// it can be expanded to a trivial value.
630 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
631   // Loop-invariant values are safe.
632   if (SE->isLoopInvariant(S, L)) return true;
633 
634   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
635   // to transform them into efficient code.
636   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
637     return AR->isAffine();
638 
639   // An add is safe it all its operands are safe.
640   if (const SCEVCommutativeExpr *Commutative
641       = dyn_cast<SCEVCommutativeExpr>(S)) {
642     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
643          E = Commutative->op_end(); I != E; ++I)
644       if (!isSafe(*I, L, SE)) return false;
645     return true;
646   }
647 
648   // A cast is safe if its operand is.
649   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
650     return isSafe(C->getOperand(), L, SE);
651 
652   // A udiv is safe if its operands are.
653   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
654     return isSafe(UD->getLHS(), L, SE) &&
655            isSafe(UD->getRHS(), L, SE);
656 
657   // SCEVUnknown is always safe.
658   if (isa<SCEVUnknown>(S))
659     return true;
660 
661   // Nothing else is safe.
662   return false;
663 }
664 
665 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
666   // Rewrite all induction variable expressions in terms of the canonical
667   // induction variable.
668   //
669   // If there were induction variables of other sizes or offsets, manually
670   // add the offsets to the primary induction variable and cast, avoiding
671   // the need for the code evaluation methods to insert induction variables
672   // of different sizes.
673   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
674     Value *Op = UI->getOperandValToReplace();
675     Type *UseTy = Op->getType();
676     Instruction *User = UI->getUser();
677 
678     // Compute the final addrec to expand into code.
679     const SCEV *AR = IU->getReplacementExpr(*UI);
680 
681     // Evaluate the expression out of the loop, if possible.
682     if (!L->contains(UI->getUser())) {
683       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
684       if (SE->isLoopInvariant(ExitVal, L))
685         AR = ExitVal;
686     }
687 
688     // FIXME: It is an extremely bad idea to indvar substitute anything more
689     // complex than affine induction variables.  Doing so will put expensive
690     // polynomial evaluations inside of the loop, and the str reduction pass
691     // currently can only reduce affine polynomials.  For now just disable
692     // indvar subst on anything more complex than an affine addrec, unless
693     // it can be expanded to a trivial value.
694     if (!isSafe(AR, L, SE))
695       continue;
696 
697     // Determine the insertion point for this user. By default, insert
698     // immediately before the user. The SCEVExpander class will automatically
699     // hoist loop invariants out of the loop. For PHI nodes, there may be
700     // multiple uses, so compute the nearest common dominator for the
701     // incoming blocks.
702     Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
703 
704     // Now expand it into actual Instructions and patch it into place.
705     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
706 
707     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
708                  << "   into = " << *NewVal << "\n");
709 
710     if (!isValidRewrite(Op, NewVal)) {
711       DeadInsts.push_back(NewVal);
712       continue;
713     }
714     // Inform ScalarEvolution that this value is changing. The change doesn't
715     // affect its value, but it does potentially affect which use lists the
716     // value will be on after the replacement, which affects ScalarEvolution's
717     // ability to walk use lists and drop dangling pointers when a value is
718     // deleted.
719     SE->forgetValue(User);
720 
721     // Patch the new value into place.
722     if (Op->hasName())
723       NewVal->takeName(Op);
724     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
725       NewValI->setDebugLoc(User->getDebugLoc());
726     User->replaceUsesOfWith(Op, NewVal);
727     UI->setOperandValToReplace(NewVal);
728 
729     ++NumRemoved;
730     Changed = true;
731 
732     // The old value may be dead now.
733     DeadInsts.push_back(Op);
734   }
735 }
736 
737 //===----------------------------------------------------------------------===//
738 //  IV Widening - Extend the width of an IV to cover its widest uses.
739 //===----------------------------------------------------------------------===//
740 
741 namespace {
742   // Collect information about induction variables that are used by sign/zero
743   // extend operations. This information is recorded by CollectExtend and
744   // provides the input to WidenIV.
745   struct WideIVInfo {
746     Type *WidestNativeType; // Widest integer type created [sz]ext
747     bool IsSigned;          // Was an sext user seen before a zext?
748 
749     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
750   };
751 
752   class WideIVVisitor : public IVVisitor {
753     ScalarEvolution *SE;
754     const TargetData *TD;
755 
756   public:
757     WideIVInfo WI;
758 
759     WideIVVisitor(ScalarEvolution *SCEV, const TargetData *TData) :
760       SE(SCEV), TD(TData) {}
761 
762     // Implement the interface used by simplifyUsersOfIV.
763     virtual void visitCast(CastInst *Cast);
764   };
765 }
766 
767 /// visitCast - Update information about the induction variable that is
768 /// extended by this sign or zero extend operation. This is used to determine
769 /// the final width of the IV before actually widening it.
770 void WideIVVisitor::visitCast(CastInst *Cast) {
771   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
772   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
773     return;
774 
775   Type *Ty = Cast->getType();
776   uint64_t Width = SE->getTypeSizeInBits(Ty);
777   if (TD && !TD->isLegalInteger(Width))
778     return;
779 
780   if (!WI.WidestNativeType) {
781     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
782     WI.IsSigned = IsSigned;
783     return;
784   }
785 
786   // We extend the IV to satisfy the sign of its first user, arbitrarily.
787   if (WI.IsSigned != IsSigned)
788     return;
789 
790   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
791     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
792 }
793 
794 namespace {
795 
796 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
797 /// WideIV that computes the same value as the Narrow IV def.  This avoids
798 /// caching Use* pointers.
799 struct NarrowIVDefUse {
800   Instruction *NarrowDef;
801   Instruction *NarrowUse;
802   Instruction *WideDef;
803 
804   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
805 
806   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
807     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
808 };
809 
810 /// WidenIV - The goal of this transform is to remove sign and zero extends
811 /// without creating any new induction variables. To do this, it creates a new
812 /// phi of the wider type and redirects all users, either removing extends or
813 /// inserting truncs whenever we stop propagating the type.
814 ///
815 class WidenIV {
816   // Parameters
817   PHINode *OrigPhi;
818   Type *WideType;
819   bool IsSigned;
820 
821   // Context
822   LoopInfo        *LI;
823   Loop            *L;
824   ScalarEvolution *SE;
825   DominatorTree   *DT;
826 
827   // Result
828   PHINode *WidePhi;
829   Instruction *WideInc;
830   const SCEV *WideIncExpr;
831   SmallVectorImpl<WeakVH> &DeadInsts;
832 
833   SmallPtrSet<Instruction*,16> Widened;
834   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
835 
836 public:
837   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
838           ScalarEvolution *SEv, DominatorTree *DTree,
839           SmallVectorImpl<WeakVH> &DI) :
840     OrigPhi(PN),
841     WideType(WI.WidestNativeType),
842     IsSigned(WI.IsSigned),
843     LI(LInfo),
844     L(LI->getLoopFor(OrigPhi->getParent())),
845     SE(SEv),
846     DT(DTree),
847     WidePhi(0),
848     WideInc(0),
849     WideIncExpr(0),
850     DeadInsts(DI) {
851     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
852   }
853 
854   PHINode *CreateWideIV(SCEVExpander &Rewriter);
855 
856 protected:
857   Instruction *CloneIVUser(NarrowIVDefUse DU);
858 
859   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
860 
861   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
862 
863   Instruction *WidenIVUse(NarrowIVDefUse DU);
864 
865   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
866 };
867 } // anonymous namespace
868 
869 static Value *getExtend( Value *NarrowOper, Type *WideType,
870                                bool IsSigned, IRBuilder<> &Builder) {
871   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
872                     Builder.CreateZExt(NarrowOper, WideType);
873 }
874 
875 /// CloneIVUser - Instantiate a wide operation to replace a narrow
876 /// operation. This only needs to handle operations that can evaluation to
877 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
878 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
879   unsigned Opcode = DU.NarrowUse->getOpcode();
880   switch (Opcode) {
881   default:
882     return 0;
883   case Instruction::Add:
884   case Instruction::Mul:
885   case Instruction::UDiv:
886   case Instruction::Sub:
887   case Instruction::And:
888   case Instruction::Or:
889   case Instruction::Xor:
890   case Instruction::Shl:
891   case Instruction::LShr:
892   case Instruction::AShr:
893     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
894 
895     IRBuilder<> Builder(DU.NarrowUse);
896 
897     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
898     // anything about the narrow operand yet so must insert a [sz]ext. It is
899     // probably loop invariant and will be folded or hoisted. If it actually
900     // comes from a widened IV, it should be removed during a future call to
901     // WidenIVUse.
902     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
903       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
904     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
905       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
906 
907     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
908     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
909                                                     LHS, RHS,
910                                                     NarrowBO->getName());
911     Builder.Insert(WideBO);
912     if (const OverflowingBinaryOperator *OBO =
913         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
914       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
915       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
916     }
917     return WideBO;
918   }
919   llvm_unreachable(0);
920 }
921 
922 /// HoistStep - Attempt to hoist an IV increment above a potential use.
923 ///
924 /// To successfully hoist, two criteria must be met:
925 /// - IncV operands dominate InsertPos and
926 /// - InsertPos dominates IncV
927 ///
928 /// Meeting the second condition means that we don't need to check all of IncV's
929 /// existing uses (it's moving up in the domtree).
930 ///
931 /// This does not yet recursively hoist the operands, although that would
932 /// not be difficult.
933 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
934                       const DominatorTree *DT)
935 {
936   if (DT->dominates(IncV, InsertPos))
937     return true;
938 
939   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
940     return false;
941 
942   if (IncV->mayHaveSideEffects())
943     return false;
944 
945   // Attempt to hoist IncV
946   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
947        OI != OE; ++OI) {
948     Instruction *OInst = dyn_cast<Instruction>(OI);
949     if (OInst && !DT->dominates(OInst, InsertPos))
950       return false;
951   }
952   IncV->moveBefore(InsertPos);
953   return true;
954 }
955 
956 /// No-wrap operations can transfer sign extension of their result to their
957 /// operands. Generate the SCEV value for the widened operation without
958 /// actually modifying the IR yet. If the expression after extending the
959 /// operands is an AddRec for this loop, return it.
960 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
961   // Handle the common case of add<nsw/nuw>
962   if (DU.NarrowUse->getOpcode() != Instruction::Add)
963     return 0;
964 
965   // One operand (NarrowDef) has already been extended to WideDef. Now determine
966   // if extending the other will lead to a recurrence.
967   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
968   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
969 
970   const SCEV *ExtendOperExpr = 0;
971   const OverflowingBinaryOperator *OBO =
972     cast<OverflowingBinaryOperator>(DU.NarrowUse);
973   if (IsSigned && OBO->hasNoSignedWrap())
974     ExtendOperExpr = SE->getSignExtendExpr(
975       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
976   else if(!IsSigned && OBO->hasNoUnsignedWrap())
977     ExtendOperExpr = SE->getZeroExtendExpr(
978       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
979   else
980     return 0;
981 
982   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
983     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr,
984                    IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW));
985 
986   if (!AddRec || AddRec->getLoop() != L)
987     return 0;
988   return AddRec;
989 }
990 
991 /// GetWideRecurrence - Is this instruction potentially interesting from
992 /// IVUsers' perspective after widening it's type? In other words, can the
993 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
994 /// recurrence on the same loop. If so, return the sign or zero extended
995 /// recurrence. Otherwise return NULL.
996 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
997   if (!SE->isSCEVable(NarrowUse->getType()))
998     return 0;
999 
1000   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1001   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1002       >= SE->getTypeSizeInBits(WideType)) {
1003     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1004     // index. So don't follow this use.
1005     return 0;
1006   }
1007 
1008   const SCEV *WideExpr = IsSigned ?
1009     SE->getSignExtendExpr(NarrowExpr, WideType) :
1010     SE->getZeroExtendExpr(NarrowExpr, WideType);
1011   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1012   if (!AddRec || AddRec->getLoop() != L)
1013     return 0;
1014   return AddRec;
1015 }
1016 
1017 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
1018 /// widened. If so, return the wide clone of the user.
1019 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
1020 
1021   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1022   if (isa<PHINode>(DU.NarrowUse) &&
1023       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
1024     return 0;
1025 
1026   // Our raison d'etre! Eliminate sign and zero extension.
1027   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1028     Value *NewDef = DU.WideDef;
1029     if (DU.NarrowUse->getType() != WideType) {
1030       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1031       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1032       if (CastWidth < IVWidth) {
1033         // The cast isn't as wide as the IV, so insert a Trunc.
1034         IRBuilder<> Builder(DU.NarrowUse);
1035         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1036       }
1037       else {
1038         // A wider extend was hidden behind a narrower one. This may induce
1039         // another round of IV widening in which the intermediate IV becomes
1040         // dead. It should be very rare.
1041         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1042               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1043         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1044         NewDef = DU.NarrowUse;
1045       }
1046     }
1047     if (NewDef != DU.NarrowUse) {
1048       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1049             << " replaced by " << *DU.WideDef << "\n");
1050       ++NumElimExt;
1051       DU.NarrowUse->replaceAllUsesWith(NewDef);
1052       DeadInsts.push_back(DU.NarrowUse);
1053     }
1054     // Now that the extend is gone, we want to expose it's uses for potential
1055     // further simplification. We don't need to directly inform SimplifyIVUsers
1056     // of the new users, because their parent IV will be processed later as a
1057     // new loop phi. If we preserved IVUsers analysis, we would also want to
1058     // push the uses of WideDef here.
1059 
1060     // No further widening is needed. The deceased [sz]ext had done it for us.
1061     return 0;
1062   }
1063 
1064   // Does this user itself evaluate to a recurrence after widening?
1065   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1066   if (!WideAddRec) {
1067       WideAddRec = GetExtendedOperandRecurrence(DU);
1068   }
1069   if (!WideAddRec) {
1070     // This user does not evaluate to a recurence after widening, so don't
1071     // follow it. Instead insert a Trunc to kill off the original use,
1072     // eventually isolating the original narrow IV so it can be removed.
1073     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1074     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1075     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1076     return 0;
1077   }
1078   // Assume block terminators cannot evaluate to a recurrence. We can't to
1079   // insert a Trunc after a terminator if there happens to be a critical edge.
1080   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1081          "SCEV is not expected to evaluate a block terminator");
1082 
1083   // Reuse the IV increment that SCEVExpander created as long as it dominates
1084   // NarrowUse.
1085   Instruction *WideUse = 0;
1086   if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
1087     WideUse = WideInc;
1088   }
1089   else {
1090     WideUse = CloneIVUser(DU);
1091     if (!WideUse)
1092       return 0;
1093   }
1094   // Evaluation of WideAddRec ensured that the narrow expression could be
1095   // extended outside the loop without overflow. This suggests that the wide use
1096   // evaluates to the same expression as the extended narrow use, but doesn't
1097   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1098   // where it fails, we simply throw away the newly created wide use.
1099   if (WideAddRec != SE->getSCEV(WideUse)) {
1100     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1101           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1102     DeadInsts.push_back(WideUse);
1103     return 0;
1104   }
1105 
1106   // Returning WideUse pushes it on the worklist.
1107   return WideUse;
1108 }
1109 
1110 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1111 ///
1112 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1113   for (Value::use_iterator UI = NarrowDef->use_begin(),
1114          UE = NarrowDef->use_end(); UI != UE; ++UI) {
1115     Instruction *NarrowUse = cast<Instruction>(*UI);
1116 
1117     // Handle data flow merges and bizarre phi cycles.
1118     if (!Widened.insert(NarrowUse))
1119       continue;
1120 
1121     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1122   }
1123 }
1124 
1125 /// CreateWideIV - Process a single induction variable. First use the
1126 /// SCEVExpander to create a wide induction variable that evaluates to the same
1127 /// recurrence as the original narrow IV. Then use a worklist to forward
1128 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1129 /// interesting IV users, the narrow IV will be isolated for removal by
1130 /// DeleteDeadPHIs.
1131 ///
1132 /// It would be simpler to delete uses as they are processed, but we must avoid
1133 /// invalidating SCEV expressions.
1134 ///
1135 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1136   // Is this phi an induction variable?
1137   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1138   if (!AddRec)
1139     return NULL;
1140 
1141   // Widen the induction variable expression.
1142   const SCEV *WideIVExpr = IsSigned ?
1143     SE->getSignExtendExpr(AddRec, WideType) :
1144     SE->getZeroExtendExpr(AddRec, WideType);
1145 
1146   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1147          "Expect the new IV expression to preserve its type");
1148 
1149   // Can the IV be extended outside the loop without overflow?
1150   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1151   if (!AddRec || AddRec->getLoop() != L)
1152     return NULL;
1153 
1154   // An AddRec must have loop-invariant operands. Since this AddRec is
1155   // materialized by a loop header phi, the expression cannot have any post-loop
1156   // operands, so they must dominate the loop header.
1157   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1158          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1159          && "Loop header phi recurrence inputs do not dominate the loop");
1160 
1161   // The rewriter provides a value for the desired IV expression. This may
1162   // either find an existing phi or materialize a new one. Either way, we
1163   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1164   // of the phi-SCC dominates the loop entry.
1165   Instruction *InsertPt = L->getHeader()->begin();
1166   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1167 
1168   // Remembering the WideIV increment generated by SCEVExpander allows
1169   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1170   // employ a general reuse mechanism because the call above is the only call to
1171   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1172   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1173     WideInc =
1174       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1175     WideIncExpr = SE->getSCEV(WideInc);
1176   }
1177 
1178   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1179   ++NumWidened;
1180 
1181   // Traverse the def-use chain using a worklist starting at the original IV.
1182   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1183 
1184   Widened.insert(OrigPhi);
1185   pushNarrowIVUsers(OrigPhi, WidePhi);
1186 
1187   while (!NarrowIVUsers.empty()) {
1188     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1189 
1190     // Process a def-use edge. This may replace the use, so don't hold a
1191     // use_iterator across it.
1192     Instruction *WideUse = WidenIVUse(DU);
1193 
1194     // Follow all def-use edges from the previous narrow use.
1195     if (WideUse)
1196       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1197 
1198     // WidenIVUse may have removed the def-use edge.
1199     if (DU.NarrowDef->use_empty())
1200       DeadInsts.push_back(DU.NarrowDef);
1201   }
1202   return WidePhi;
1203 }
1204 
1205 //===----------------------------------------------------------------------===//
1206 //  Simplification of IV users based on SCEV evaluation.
1207 //===----------------------------------------------------------------------===//
1208 
1209 
1210 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1211 /// users. Each successive simplification may push more users which may
1212 /// themselves be candidates for simplification.
1213 ///
1214 /// Sign/Zero extend elimination is interleaved with IV simplification.
1215 ///
1216 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1217                                        SCEVExpander &Rewriter,
1218                                        LPPassManager &LPM) {
1219   std::map<PHINode *, WideIVInfo> WideIVMap;
1220 
1221   SmallVector<PHINode*, 8> LoopPhis;
1222   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1223     LoopPhis.push_back(cast<PHINode>(I));
1224   }
1225   // Each round of simplification iterates through the SimplifyIVUsers worklist
1226   // for all current phis, then determines whether any IVs can be
1227   // widened. Widening adds new phis to LoopPhis, inducing another round of
1228   // simplification on the wide IVs.
1229   while (!LoopPhis.empty()) {
1230     // Evaluate as many IV expressions as possible before widening any IVs. This
1231     // forces SCEV to set no-wrap flags before evaluating sign/zero
1232     // extension. The first time SCEV attempts to normalize sign/zero extension,
1233     // the result becomes final. So for the most predictable results, we delay
1234     // evaluation of sign/zero extend evaluation until needed, and avoid running
1235     // other SCEV based analysis prior to SimplifyAndExtend.
1236     do {
1237       PHINode *CurrIV = LoopPhis.pop_back_val();
1238 
1239       // Information about sign/zero extensions of CurrIV.
1240       WideIVVisitor WIV(SE, TD);
1241 
1242       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1243 
1244       if (WIV.WI.WidestNativeType) {
1245         WideIVMap[CurrIV] = WIV.WI;
1246       }
1247     } while(!LoopPhis.empty());
1248 
1249     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1250            E = WideIVMap.end(); I != E; ++I) {
1251       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1252       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1253         Changed = true;
1254         LoopPhis.push_back(WidePhi);
1255       }
1256     }
1257     WideIVMap.clear();
1258   }
1259 }
1260 
1261 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1262 /// replace them with their chosen representative.
1263 ///
1264 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1265   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1266   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1267     PHINode *Phi = cast<PHINode>(I);
1268     if (!SE->isSCEVable(Phi->getType()))
1269       continue;
1270 
1271     const SCEV *S = SE->getSCEV(Phi);
1272     std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1273       ExprToIVMap.insert(std::make_pair(S, Phi));
1274     if (Tmp.second)
1275       continue;
1276     PHINode *OrigPhi = Tmp.first->second;
1277 
1278     // If one phi derives from the other via GEPs, types may differ.
1279     if (OrigPhi->getType() != Phi->getType())
1280       continue;
1281 
1282     // Replacing the congruent phi is sufficient because acyclic redundancy
1283     // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1284     // that a phi is congruent, it's almost certain to be the head of an IV
1285     // user cycle that is isomorphic with the original phi. So it's worth
1286     // eagerly cleaning up the common case of a single IV increment.
1287     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1288       Instruction *OrigInc =
1289         cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1290       Instruction *IsomorphicInc =
1291         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1292       if (OrigInc != IsomorphicInc &&
1293           OrigInc->getType() == IsomorphicInc->getType() &&
1294           SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1295           HoistStep(OrigInc, IsomorphicInc, DT)) {
1296         DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1297               << *IsomorphicInc << '\n');
1298         IsomorphicInc->replaceAllUsesWith(OrigInc);
1299         DeadInsts.push_back(IsomorphicInc);
1300       }
1301     }
1302     DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1303     ++NumElimIV;
1304     Phi->replaceAllUsesWith(OrigPhi);
1305     DeadInsts.push_back(Phi);
1306   }
1307 }
1308 
1309 //===----------------------------------------------------------------------===//
1310 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1311 //===----------------------------------------------------------------------===//
1312 
1313 /// Check for expressions that ScalarEvolution generates to compute
1314 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1315 /// expanding them may incur additional cost (albeit in the loop preheader).
1316 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1317                                 ScalarEvolution *SE) {
1318   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1319   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1320   // precise expression, rather than a UDiv from the user's code. If we can't
1321   // find a UDiv in the code with some simple searching, assume the former and
1322   // forego rewriting the loop.
1323   if (isa<SCEVUDivExpr>(S)) {
1324     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1325     if (!OrigCond) return true;
1326     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1327     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1328     if (R != S) {
1329       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1330       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1331       if (L != S)
1332         return true;
1333     }
1334   }
1335 
1336   if (!DisableIVRewrite || ForceLFTR)
1337     return false;
1338 
1339   // Recurse past add expressions, which commonly occur in the
1340   // BackedgeTakenCount. They may already exist in program code, and if not,
1341   // they are not too expensive rematerialize.
1342   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1343     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1344          I != E; ++I) {
1345       if (isHighCostExpansion(*I, BI, SE))
1346         return true;
1347     }
1348     return false;
1349   }
1350 
1351   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1352   // the exit condition.
1353   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1354     return true;
1355 
1356   // If we haven't recognized an expensive SCEV patter, assume its an expression
1357   // produced by program code.
1358   return false;
1359 }
1360 
1361 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1362 /// count expression can be safely and cheaply expanded into an instruction
1363 /// sequence that can be used by LinearFunctionTestReplace.
1364 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1365   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1366   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1367       BackedgeTakenCount->isZero())
1368     return false;
1369 
1370   if (!L->getExitingBlock())
1371     return false;
1372 
1373   // Can't rewrite non-branch yet.
1374   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1375   if (!BI)
1376     return false;
1377 
1378   if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1379     return false;
1380 
1381   return true;
1382 }
1383 
1384 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1385 /// through Truncs.
1386 ///
1387 /// TODO: Unnecessary when ForceLFTR is removed.
1388 static Type *getBackedgeIVType(Loop *L) {
1389   if (!L->getExitingBlock())
1390     return 0;
1391 
1392   // Can't rewrite non-branch yet.
1393   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1394   if (!BI)
1395     return 0;
1396 
1397   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1398   if (!Cond)
1399     return 0;
1400 
1401   Type *Ty = 0;
1402   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1403       OI != OE; ++OI) {
1404     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1405     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1406     if (!Trunc)
1407       continue;
1408 
1409     return Trunc->getSrcTy();
1410   }
1411   return Ty;
1412 }
1413 
1414 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
1415 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1416 /// gratuitous for this purpose.
1417 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1418   Instruction *Inst = dyn_cast<Instruction>(V);
1419   if (!Inst)
1420     return true;
1421 
1422   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1423 }
1424 
1425 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1426 /// invariant value to the phi.
1427 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1428   Instruction *IncI = dyn_cast<Instruction>(IncV);
1429   if (!IncI)
1430     return 0;
1431 
1432   switch (IncI->getOpcode()) {
1433   case Instruction::Add:
1434   case Instruction::Sub:
1435     break;
1436   case Instruction::GetElementPtr:
1437     // An IV counter must preserve its type.
1438     if (IncI->getNumOperands() == 2)
1439       break;
1440   default:
1441     return 0;
1442   }
1443 
1444   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1445   if (Phi && Phi->getParent() == L->getHeader()) {
1446     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1447       return Phi;
1448     return 0;
1449   }
1450   if (IncI->getOpcode() == Instruction::GetElementPtr)
1451     return 0;
1452 
1453   // Allow add/sub to be commuted.
1454   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1455   if (Phi && Phi->getParent() == L->getHeader()) {
1456     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1457       return Phi;
1458   }
1459   return 0;
1460 }
1461 
1462 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1463 /// that the current exit test is already sufficiently canonical.
1464 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1465   assert(L->getExitingBlock() && "expected loop exit");
1466 
1467   BasicBlock *LatchBlock = L->getLoopLatch();
1468   // Don't bother with LFTR if the loop is not properly simplified.
1469   if (!LatchBlock)
1470     return false;
1471 
1472   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1473   assert(BI && "expected exit branch");
1474 
1475   // Do LFTR to simplify the exit condition to an ICMP.
1476   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1477   if (!Cond)
1478     return true;
1479 
1480   // Do LFTR to simplify the exit ICMP to EQ/NE
1481   ICmpInst::Predicate Pred = Cond->getPredicate();
1482   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1483     return true;
1484 
1485   // Look for a loop invariant RHS
1486   Value *LHS = Cond->getOperand(0);
1487   Value *RHS = Cond->getOperand(1);
1488   if (!isLoopInvariant(RHS, L, DT)) {
1489     if (!isLoopInvariant(LHS, L, DT))
1490       return true;
1491     std::swap(LHS, RHS);
1492   }
1493   // Look for a simple IV counter LHS
1494   PHINode *Phi = dyn_cast<PHINode>(LHS);
1495   if (!Phi)
1496     Phi = getLoopPhiForCounter(LHS, L, DT);
1497 
1498   if (!Phi)
1499     return true;
1500 
1501   // Do LFTR if the exit condition's IV is *not* a simple counter.
1502   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1503   return Phi != getLoopPhiForCounter(IncV, L, DT);
1504 }
1505 
1506 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1507 /// be rewritten) loop exit test.
1508 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1509   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1510   Value *IncV = Phi->getIncomingValue(LatchIdx);
1511 
1512   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1513        UI != UE; ++UI) {
1514     if (*UI != Cond && *UI != IncV) return false;
1515   }
1516 
1517   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1518        UI != UE; ++UI) {
1519     if (*UI != Cond && *UI != Phi) return false;
1520   }
1521   return true;
1522 }
1523 
1524 /// FindLoopCounter - Find an affine IV in canonical form.
1525 ///
1526 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1527 ///
1528 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1529 /// This is difficult in general for SCEV because of potential overflow. But we
1530 /// could at least handle constant BECounts.
1531 static PHINode *
1532 FindLoopCounter(Loop *L, const SCEV *BECount,
1533                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1534   // I'm not sure how BECount could be a pointer type, but we definitely don't
1535   // want to LFTR that.
1536   if (BECount->getType()->isPointerTy())
1537     return 0;
1538 
1539   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1540 
1541   Value *Cond =
1542     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1543 
1544   // Loop over all of the PHI nodes, looking for a simple counter.
1545   PHINode *BestPhi = 0;
1546   const SCEV *BestInit = 0;
1547   BasicBlock *LatchBlock = L->getLoopLatch();
1548   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1549 
1550   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1551     PHINode *Phi = cast<PHINode>(I);
1552     if (!SE->isSCEVable(Phi->getType()))
1553       continue;
1554 
1555     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1556     if (!AR || AR->getLoop() != L || !AR->isAffine())
1557       continue;
1558 
1559     // AR may be a pointer type, while BECount is an integer type.
1560     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1561     // AR may not be a narrower type, or we may never exit.
1562     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1563     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1564       continue;
1565 
1566     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1567     if (!Step || !Step->isOne())
1568       continue;
1569 
1570     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1571     Value *IncV = Phi->getIncomingValue(LatchIdx);
1572     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1573       continue;
1574 
1575     const SCEV *Init = AR->getStart();
1576 
1577     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1578       // Don't force a live loop counter if another IV can be used.
1579       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1580         continue;
1581 
1582       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1583       // also prefers integer to pointer IVs.
1584       if (BestInit->isZero() != Init->isZero()) {
1585         if (BestInit->isZero())
1586           continue;
1587       }
1588       // If two IVs both count from zero or both count from nonzero then the
1589       // narrower is likely a dead phi that has been widened. Use the wider phi
1590       // to allow the other to be eliminated.
1591       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1592         continue;
1593     }
1594     BestPhi = Phi;
1595     BestInit = Init;
1596   }
1597   return BestPhi;
1598 }
1599 
1600 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1601 /// loop to be a canonical != comparison against the incremented loop induction
1602 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1603 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1604 /// is actually a much broader range than just linear tests.
1605 Value *IndVarSimplify::
1606 LinearFunctionTestReplace(Loop *L,
1607                           const SCEV *BackedgeTakenCount,
1608                           PHINode *IndVar,
1609                           SCEVExpander &Rewriter) {
1610   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1611   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1612 
1613   // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1614   // mode, LFTR can ignore IV overflow and truncate to the width of
1615   // BECount. This avoids materializing the add(zext(add)) expression.
1616   Type *CntTy = DisableIVRewrite ?
1617     BackedgeTakenCount->getType() : IndVar->getType();
1618 
1619   const SCEV *IVLimit = BackedgeTakenCount;
1620 
1621   // If the exiting block is not the same as the backedge block, we must compare
1622   // against the preincremented value, otherwise we prefer to compare against
1623   // the post-incremented value.
1624   Value *CmpIndVar;
1625   if (L->getExitingBlock() == L->getLoopLatch()) {
1626     // Add one to the "backedge-taken" count to get the trip count.
1627     // If this addition may overflow, we have to be more pessimistic and
1628     // cast the induction variable before doing the add.
1629     const SCEV *N =
1630       SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1631     if (CntTy == IVLimit->getType())
1632       IVLimit = N;
1633     else {
1634       const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1635       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1636           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1637         // No overflow. Cast the sum.
1638         IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1639       } else {
1640         // Potential overflow. Cast before doing the add.
1641         IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1642         IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1643       }
1644     }
1645     // The BackedgeTaken expression contains the number of times that the
1646     // backedge branches to the loop header.  This is one less than the
1647     // number of times the loop executes, so use the incremented indvar.
1648     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1649   } else {
1650     // We have to use the preincremented value...
1651     IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1652     CmpIndVar = IndVar;
1653   }
1654 
1655   // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1656   // So for, non-zero start compute the IVLimit here.
1657   bool isPtrIV = false;
1658   Type *CmpTy = CntTy;
1659   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1660   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1661   if (!AR->getStart()->isZero()) {
1662     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1663     const SCEV *IVInit = AR->getStart();
1664 
1665     // For pointer types, sign extend BECount in order to materialize a GEP.
1666     // Note that for DisableIVRewrite, we never run SCEVExpander on a
1667     // pointer type, because we must preserve the existing GEPs. Instead we
1668     // directly generate a GEP later.
1669     if (IVInit->getType()->isPointerTy()) {
1670       isPtrIV = true;
1671       CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1672       IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1673     }
1674     // For integer types, truncate the IV before computing IVInit + BECount.
1675     else {
1676       if (SE->getTypeSizeInBits(IVInit->getType())
1677           > SE->getTypeSizeInBits(CmpTy))
1678         IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1679 
1680       IVLimit = SE->getAddExpr(IVInit, IVLimit);
1681     }
1682   }
1683   // Expand the code for the iteration count.
1684   IRBuilder<> Builder(BI);
1685 
1686   assert(SE->isLoopInvariant(IVLimit, L) &&
1687          "Computed iteration count is not loop invariant!");
1688   Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1689 
1690   // Create a gep for IVInit + IVLimit from on an existing pointer base.
1691   assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1692          "IndVar type must match IVInit type");
1693   if (isPtrIV) {
1694       Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1695       assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1696       assert(SE->getSizeOfExpr(
1697                cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1698              && "unit stride pointer IV must be i8*");
1699 
1700       Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1701       ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1702       Builder.SetInsertPoint(BI);
1703   }
1704 
1705   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1706   ICmpInst::Predicate P;
1707   if (L->contains(BI->getSuccessor(0)))
1708     P = ICmpInst::ICMP_NE;
1709   else
1710     P = ICmpInst::ICMP_EQ;
1711 
1712   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1713                << "      LHS:" << *CmpIndVar << '\n'
1714                << "       op:\t"
1715                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1716                << "      RHS:\t" << *ExitCnt << "\n"
1717                << "     Expr:\t" << *IVLimit << "\n");
1718 
1719   if (SE->getTypeSizeInBits(CmpIndVar->getType())
1720       > SE->getTypeSizeInBits(CmpTy)) {
1721     CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1722   }
1723 
1724   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1725   Value *OrigCond = BI->getCondition();
1726   // It's tempting to use replaceAllUsesWith here to fully replace the old
1727   // comparison, but that's not immediately safe, since users of the old
1728   // comparison may not be dominated by the new comparison. Instead, just
1729   // update the branch to use the new comparison; in the common case this
1730   // will make old comparison dead.
1731   BI->setCondition(Cond);
1732   DeadInsts.push_back(OrigCond);
1733 
1734   ++NumLFTR;
1735   Changed = true;
1736   return Cond;
1737 }
1738 
1739 //===----------------------------------------------------------------------===//
1740 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1741 //===----------------------------------------------------------------------===//
1742 
1743 /// If there's a single exit block, sink any loop-invariant values that
1744 /// were defined in the preheader but not used inside the loop into the
1745 /// exit block to reduce register pressure in the loop.
1746 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1747   BasicBlock *ExitBlock = L->getExitBlock();
1748   if (!ExitBlock) return;
1749 
1750   BasicBlock *Preheader = L->getLoopPreheader();
1751   if (!Preheader) return;
1752 
1753   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1754   BasicBlock::iterator I = Preheader->getTerminator();
1755   while (I != Preheader->begin()) {
1756     --I;
1757     // New instructions were inserted at the end of the preheader.
1758     if (isa<PHINode>(I))
1759       break;
1760 
1761     // Don't move instructions which might have side effects, since the side
1762     // effects need to complete before instructions inside the loop.  Also don't
1763     // move instructions which might read memory, since the loop may modify
1764     // memory. Note that it's okay if the instruction might have undefined
1765     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1766     // block.
1767     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1768       continue;
1769 
1770     // Skip debug info intrinsics.
1771     if (isa<DbgInfoIntrinsic>(I))
1772       continue;
1773 
1774     // Skip landingpad instructions.
1775     if (isa<LandingPadInst>(I))
1776       continue;
1777 
1778     // Don't sink static AllocaInsts out of the entry block, which would
1779     // turn them into dynamic allocas!
1780     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1781       if (AI->isStaticAlloca())
1782         continue;
1783 
1784     // Determine if there is a use in or before the loop (direct or
1785     // otherwise).
1786     bool UsedInLoop = false;
1787     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1788          UI != UE; ++UI) {
1789       User *U = *UI;
1790       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1791       if (PHINode *P = dyn_cast<PHINode>(U)) {
1792         unsigned i =
1793           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1794         UseBB = P->getIncomingBlock(i);
1795       }
1796       if (UseBB == Preheader || L->contains(UseBB)) {
1797         UsedInLoop = true;
1798         break;
1799       }
1800     }
1801 
1802     // If there is, the def must remain in the preheader.
1803     if (UsedInLoop)
1804       continue;
1805 
1806     // Otherwise, sink it to the exit block.
1807     Instruction *ToMove = I;
1808     bool Done = false;
1809 
1810     if (I != Preheader->begin()) {
1811       // Skip debug info intrinsics.
1812       do {
1813         --I;
1814       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1815 
1816       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1817         Done = true;
1818     } else {
1819       Done = true;
1820     }
1821 
1822     ToMove->moveBefore(InsertPt);
1823     if (Done) break;
1824     InsertPt = ToMove;
1825   }
1826 }
1827 
1828 //===----------------------------------------------------------------------===//
1829 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1830 //===----------------------------------------------------------------------===//
1831 
1832 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1833   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1834   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1835   //    canonicalization can be a pessimization without LSR to "clean up"
1836   //    afterwards.
1837   //  - We depend on having a preheader; in particular,
1838   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1839   //    and we're in trouble if we can't find the induction variable even when
1840   //    we've manually inserted one.
1841   if (!L->isLoopSimplifyForm())
1842     return false;
1843 
1844   if (!DisableIVRewrite)
1845     IU = &getAnalysis<IVUsers>();
1846   LI = &getAnalysis<LoopInfo>();
1847   SE = &getAnalysis<ScalarEvolution>();
1848   DT = &getAnalysis<DominatorTree>();
1849   TD = getAnalysisIfAvailable<TargetData>();
1850 
1851   DeadInsts.clear();
1852   Changed = false;
1853 
1854   // If there are any floating-point recurrences, attempt to
1855   // transform them to use integer recurrences.
1856   RewriteNonIntegerIVs(L);
1857 
1858   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1859 
1860   // Create a rewriter object which we'll use to transform the code with.
1861   SCEVExpander Rewriter(*SE, "indvars");
1862 
1863   // Eliminate redundant IV users.
1864   //
1865   // Simplification works best when run before other consumers of SCEV. We
1866   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1867   // other expressions involving loop IVs have been evaluated. This helps SCEV
1868   // set no-wrap flags before normalizing sign/zero extension.
1869   if (DisableIVRewrite) {
1870     Rewriter.disableCanonicalMode();
1871     SimplifyAndExtend(L, Rewriter, LPM);
1872   }
1873 
1874   // Check to see if this loop has a computable loop-invariant execution count.
1875   // If so, this means that we can compute the final value of any expressions
1876   // that are recurrent in the loop, and substitute the exit values from the
1877   // loop into any instructions outside of the loop that use the final values of
1878   // the current expressions.
1879   //
1880   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1881     RewriteLoopExitValues(L, Rewriter);
1882 
1883   // Eliminate redundant IV users.
1884   if (!DisableIVRewrite)
1885     Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
1886 
1887   // Eliminate redundant IV cycles.
1888   if (DisableIVRewrite)
1889     SimplifyCongruentIVs(L);
1890 
1891   // Compute the type of the largest recurrence expression, and decide whether
1892   // a canonical induction variable should be inserted.
1893   Type *LargestType = 0;
1894   bool NeedCannIV = false;
1895   bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
1896   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1897   if (ExpandBECount && !ReuseIVForExit) {
1898     // If we have a known trip count and a single exit block, we'll be
1899     // rewriting the loop exit test condition below, which requires a
1900     // canonical induction variable.
1901     NeedCannIV = true;
1902     Type *Ty = BackedgeTakenCount->getType();
1903     if (DisableIVRewrite) {
1904       // In this mode, SimplifyIVUsers may have already widened the IV used by
1905       // the backedge test and inserted a Trunc on the compare's operand. Get
1906       // the wider type to avoid creating a redundant narrow IV only used by the
1907       // loop test.
1908       LargestType = getBackedgeIVType(L);
1909     }
1910     if (!LargestType ||
1911         SE->getTypeSizeInBits(Ty) >
1912         SE->getTypeSizeInBits(LargestType))
1913       LargestType = SE->getEffectiveSCEVType(Ty);
1914   }
1915   if (!DisableIVRewrite) {
1916     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1917       NeedCannIV = true;
1918       Type *Ty =
1919         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1920       if (!LargestType ||
1921           SE->getTypeSizeInBits(Ty) >
1922           SE->getTypeSizeInBits(LargestType))
1923         LargestType = Ty;
1924     }
1925   }
1926 
1927   // Now that we know the largest of the induction variable expressions
1928   // in this loop, insert a canonical induction variable of the largest size.
1929   PHINode *IndVar = 0;
1930   if (NeedCannIV) {
1931     // Check to see if the loop already has any canonical-looking induction
1932     // variables. If any are present and wider than the planned canonical
1933     // induction variable, temporarily remove them, so that the Rewriter
1934     // doesn't attempt to reuse them.
1935     SmallVector<PHINode *, 2> OldCannIVs;
1936     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1937       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1938           SE->getTypeSizeInBits(LargestType))
1939         OldCannIV->removeFromParent();
1940       else
1941         break;
1942       OldCannIVs.push_back(OldCannIV);
1943     }
1944 
1945     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1946 
1947     ++NumInserted;
1948     Changed = true;
1949     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1950 
1951     // Now that the official induction variable is established, reinsert
1952     // any old canonical-looking variables after it so that the IR remains
1953     // consistent. They will be deleted as part of the dead-PHI deletion at
1954     // the end of the pass.
1955     while (!OldCannIVs.empty()) {
1956       PHINode *OldCannIV = OldCannIVs.pop_back_val();
1957       OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1958     }
1959   }
1960   else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
1961     IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1962   }
1963   // If we have a trip count expression, rewrite the loop's exit condition
1964   // using it.  We can currently only handle loops with a single exit.
1965   Value *NewICmp = 0;
1966   if (ExpandBECount && IndVar) {
1967     // Check preconditions for proper SCEVExpander operation. SCEV does not
1968     // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1969     // pass that uses the SCEVExpander must do it. This does not work well for
1970     // loop passes because SCEVExpander makes assumptions about all loops, while
1971     // LoopPassManager only forces the current loop to be simplified.
1972     //
1973     // FIXME: SCEV expansion has no way to bail out, so the caller must
1974     // explicitly check any assumptions made by SCEV. Brittle.
1975     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1976     if (!AR || AR->getLoop()->getLoopPreheader())
1977       NewICmp =
1978         LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1979   }
1980   // Rewrite IV-derived expressions.
1981   if (!DisableIVRewrite)
1982     RewriteIVExpressions(L, Rewriter);
1983 
1984   // Clear the rewriter cache, because values that are in the rewriter's cache
1985   // can be deleted in the loop below, causing the AssertingVH in the cache to
1986   // trigger.
1987   Rewriter.clear();
1988 
1989   // Now that we're done iterating through lists, clean up any instructions
1990   // which are now dead.
1991   while (!DeadInsts.empty())
1992     if (Instruction *Inst =
1993           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1994       RecursivelyDeleteTriviallyDeadInstructions(Inst);
1995 
1996   // The Rewriter may not be used from this point on.
1997 
1998   // Loop-invariant instructions in the preheader that aren't used in the
1999   // loop may be sunk below the loop to reduce register pressure.
2000   SinkUnusedInvariants(L);
2001 
2002   // For completeness, inform IVUsers of the IV use in the newly-created
2003   // loop exit test instruction.
2004   if (IU && NewICmp) {
2005     ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2006     if (NewICmpInst)
2007       IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2008   }
2009   // Clean up dead instructions.
2010   Changed |= DeleteDeadPHIs(L->getHeader());
2011   // Check a post-condition.
2012   assert(L->isLCSSAForm(*DT) &&
2013          "Indvars did not leave the loop in lcssa form!");
2014 
2015   // Verify that LFTR, and any other change have not interfered with SCEV's
2016   // ability to compute trip count.
2017 #ifndef NDEBUG
2018   if (DisableIVRewrite && VerifyIndvars &&
2019       !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2020     SE->forgetLoop(L);
2021     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2022     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2023         SE->getTypeSizeInBits(NewBECount->getType()))
2024       NewBECount = SE->getTruncateOrNoop(NewBECount,
2025                                          BackedgeTakenCount->getType());
2026     else
2027       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2028                                                  NewBECount->getType());
2029     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2030   }
2031 #endif
2032 
2033   return Changed;
2034 }
2035