1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constants.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/IntrinsicInst.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include "llvm/Target/TargetLibraryInfo.h" 47 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 48 #include "llvm/Transforms/Utils/Local.h" 49 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 50 using namespace llvm; 51 52 #define DEBUG_TYPE "indvars" 53 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumReplaced , "Number of exit values replaced"); 56 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 57 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 58 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 59 60 // Trip count verification can be enabled by default under NDEBUG if we 61 // implement a strong expression equivalence checker in SCEV. Until then, we 62 // use the verify-indvars flag, which may assert in some cases. 63 static cl::opt<bool> VerifyIndvars( 64 "verify-indvars", cl::Hidden, 65 cl::desc("Verify the ScalarEvolution result after running indvars")); 66 67 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 68 cl::desc("Reduce live induction variables.")); 69 70 namespace { 71 class IndVarSimplify : public LoopPass { 72 LoopInfo *LI; 73 ScalarEvolution *SE; 74 DominatorTree *DT; 75 const DataLayout *DL; 76 TargetLibraryInfo *TLI; 77 78 SmallVector<WeakVH, 16> DeadInsts; 79 bool Changed; 80 public: 81 82 static char ID; // Pass identification, replacement for typeid 83 IndVarSimplify() : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), 84 DL(nullptr), Changed(false) { 85 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 86 } 87 88 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 89 90 void getAnalysisUsage(AnalysisUsage &AU) const override { 91 AU.addRequired<DominatorTreeWrapperPass>(); 92 AU.addRequired<LoopInfo>(); 93 AU.addRequired<ScalarEvolution>(); 94 AU.addRequiredID(LoopSimplifyID); 95 AU.addRequiredID(LCSSAID); 96 AU.addPreserved<ScalarEvolution>(); 97 AU.addPreservedID(LoopSimplifyID); 98 AU.addPreservedID(LCSSAID); 99 AU.setPreservesCFG(); 100 } 101 102 private: 103 void releaseMemory() override { 104 DeadInsts.clear(); 105 } 106 107 bool isValidRewrite(Value *FromVal, Value *ToVal); 108 109 void HandleFloatingPointIV(Loop *L, PHINode *PH); 110 void RewriteNonIntegerIVs(Loop *L); 111 112 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 113 114 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 115 116 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 117 PHINode *IndVar, SCEVExpander &Rewriter); 118 119 void SinkUnusedInvariants(Loop *L); 120 }; 121 } 122 123 char IndVarSimplify::ID = 0; 124 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 125 "Induction Variable Simplification", false, false) 126 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 127 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 128 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 129 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 130 INITIALIZE_PASS_DEPENDENCY(LCSSA) 131 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 132 "Induction Variable Simplification", false, false) 133 134 Pass *llvm::createIndVarSimplifyPass() { 135 return new IndVarSimplify(); 136 } 137 138 /// isValidRewrite - Return true if the SCEV expansion generated by the 139 /// rewriter can replace the original value. SCEV guarantees that it 140 /// produces the same value, but the way it is produced may be illegal IR. 141 /// Ideally, this function will only be called for verification. 142 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 143 // If an SCEV expression subsumed multiple pointers, its expansion could 144 // reassociate the GEP changing the base pointer. This is illegal because the 145 // final address produced by a GEP chain must be inbounds relative to its 146 // underlying object. Otherwise basic alias analysis, among other things, 147 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 148 // producing an expression involving multiple pointers. Until then, we must 149 // bail out here. 150 // 151 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 152 // because it understands lcssa phis while SCEV does not. 153 Value *FromPtr = FromVal; 154 Value *ToPtr = ToVal; 155 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 156 FromPtr = GEP->getPointerOperand(); 157 } 158 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 159 ToPtr = GEP->getPointerOperand(); 160 } 161 if (FromPtr != FromVal || ToPtr != ToVal) { 162 // Quickly check the common case 163 if (FromPtr == ToPtr) 164 return true; 165 166 // SCEV may have rewritten an expression that produces the GEP's pointer 167 // operand. That's ok as long as the pointer operand has the same base 168 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 169 // base of a recurrence. This handles the case in which SCEV expansion 170 // converts a pointer type recurrence into a nonrecurrent pointer base 171 // indexed by an integer recurrence. 172 173 // If the GEP base pointer is a vector of pointers, abort. 174 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 175 return false; 176 177 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 178 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 179 if (FromBase == ToBase) 180 return true; 181 182 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 183 << *FromBase << " != " << *ToBase << "\n"); 184 185 return false; 186 } 187 return true; 188 } 189 190 /// Determine the insertion point for this user. By default, insert immediately 191 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 192 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 193 /// common dominator for the incoming blocks. 194 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 195 DominatorTree *DT) { 196 PHINode *PHI = dyn_cast<PHINode>(User); 197 if (!PHI) 198 return User; 199 200 Instruction *InsertPt = nullptr; 201 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 202 if (PHI->getIncomingValue(i) != Def) 203 continue; 204 205 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 206 if (!InsertPt) { 207 InsertPt = InsertBB->getTerminator(); 208 continue; 209 } 210 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 211 InsertPt = InsertBB->getTerminator(); 212 } 213 assert(InsertPt && "Missing phi operand"); 214 assert((!isa<Instruction>(Def) || 215 DT->dominates(cast<Instruction>(Def), InsertPt)) && 216 "def does not dominate all uses"); 217 return InsertPt; 218 } 219 220 //===----------------------------------------------------------------------===// 221 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 222 //===----------------------------------------------------------------------===// 223 224 /// ConvertToSInt - Convert APF to an integer, if possible. 225 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 226 bool isExact = false; 227 // See if we can convert this to an int64_t 228 uint64_t UIntVal; 229 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 230 &isExact) != APFloat::opOK || !isExact) 231 return false; 232 IntVal = UIntVal; 233 return true; 234 } 235 236 /// HandleFloatingPointIV - If the loop has floating induction variable 237 /// then insert corresponding integer induction variable if possible. 238 /// For example, 239 /// for(double i = 0; i < 10000; ++i) 240 /// bar(i) 241 /// is converted into 242 /// for(int i = 0; i < 10000; ++i) 243 /// bar((double)i); 244 /// 245 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 246 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 247 unsigned BackEdge = IncomingEdge^1; 248 249 // Check incoming value. 250 ConstantFP *InitValueVal = 251 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 252 253 int64_t InitValue; 254 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 255 return; 256 257 // Check IV increment. Reject this PN if increment operation is not 258 // an add or increment value can not be represented by an integer. 259 BinaryOperator *Incr = 260 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 261 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 262 263 // If this is not an add of the PHI with a constantfp, or if the constant fp 264 // is not an integer, bail out. 265 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 266 int64_t IncValue; 267 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 268 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 269 return; 270 271 // Check Incr uses. One user is PN and the other user is an exit condition 272 // used by the conditional terminator. 273 Value::user_iterator IncrUse = Incr->user_begin(); 274 Instruction *U1 = cast<Instruction>(*IncrUse++); 275 if (IncrUse == Incr->user_end()) return; 276 Instruction *U2 = cast<Instruction>(*IncrUse++); 277 if (IncrUse != Incr->user_end()) return; 278 279 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 280 // only used by a branch, we can't transform it. 281 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 282 if (!Compare) 283 Compare = dyn_cast<FCmpInst>(U2); 284 if (!Compare || !Compare->hasOneUse() || 285 !isa<BranchInst>(Compare->user_back())) 286 return; 287 288 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 289 290 // We need to verify that the branch actually controls the iteration count 291 // of the loop. If not, the new IV can overflow and no one will notice. 292 // The branch block must be in the loop and one of the successors must be out 293 // of the loop. 294 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 295 if (!L->contains(TheBr->getParent()) || 296 (L->contains(TheBr->getSuccessor(0)) && 297 L->contains(TheBr->getSuccessor(1)))) 298 return; 299 300 301 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 302 // transform it. 303 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 304 int64_t ExitValue; 305 if (ExitValueVal == nullptr || 306 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 307 return; 308 309 // Find new predicate for integer comparison. 310 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 311 switch (Compare->getPredicate()) { 312 default: return; // Unknown comparison. 313 case CmpInst::FCMP_OEQ: 314 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 315 case CmpInst::FCMP_ONE: 316 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 317 case CmpInst::FCMP_OGT: 318 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 319 case CmpInst::FCMP_OGE: 320 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 321 case CmpInst::FCMP_OLT: 322 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 323 case CmpInst::FCMP_OLE: 324 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 325 } 326 327 // We convert the floating point induction variable to a signed i32 value if 328 // we can. This is only safe if the comparison will not overflow in a way 329 // that won't be trapped by the integer equivalent operations. Check for this 330 // now. 331 // TODO: We could use i64 if it is native and the range requires it. 332 333 // The start/stride/exit values must all fit in signed i32. 334 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 335 return; 336 337 // If not actually striding (add x, 0.0), avoid touching the code. 338 if (IncValue == 0) 339 return; 340 341 // Positive and negative strides have different safety conditions. 342 if (IncValue > 0) { 343 // If we have a positive stride, we require the init to be less than the 344 // exit value. 345 if (InitValue >= ExitValue) 346 return; 347 348 uint32_t Range = uint32_t(ExitValue-InitValue); 349 // Check for infinite loop, either: 350 // while (i <= Exit) or until (i > Exit) 351 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 352 if (++Range == 0) return; // Range overflows. 353 } 354 355 unsigned Leftover = Range % uint32_t(IncValue); 356 357 // If this is an equality comparison, we require that the strided value 358 // exactly land on the exit value, otherwise the IV condition will wrap 359 // around and do things the fp IV wouldn't. 360 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 361 Leftover != 0) 362 return; 363 364 // If the stride would wrap around the i32 before exiting, we can't 365 // transform the IV. 366 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 367 return; 368 369 } else { 370 // If we have a negative stride, we require the init to be greater than the 371 // exit value. 372 if (InitValue <= ExitValue) 373 return; 374 375 uint32_t Range = uint32_t(InitValue-ExitValue); 376 // Check for infinite loop, either: 377 // while (i >= Exit) or until (i < Exit) 378 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 379 if (++Range == 0) return; // Range overflows. 380 } 381 382 unsigned Leftover = Range % uint32_t(-IncValue); 383 384 // If this is an equality comparison, we require that the strided value 385 // exactly land on the exit value, otherwise the IV condition will wrap 386 // around and do things the fp IV wouldn't. 387 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 388 Leftover != 0) 389 return; 390 391 // If the stride would wrap around the i32 before exiting, we can't 392 // transform the IV. 393 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 394 return; 395 } 396 397 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 398 399 // Insert new integer induction variable. 400 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 401 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 402 PN->getIncomingBlock(IncomingEdge)); 403 404 Value *NewAdd = 405 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 406 Incr->getName()+".int", Incr); 407 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 408 409 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 410 ConstantInt::get(Int32Ty, ExitValue), 411 Compare->getName()); 412 413 // In the following deletions, PN may become dead and may be deleted. 414 // Use a WeakVH to observe whether this happens. 415 WeakVH WeakPH = PN; 416 417 // Delete the old floating point exit comparison. The branch starts using the 418 // new comparison. 419 NewCompare->takeName(Compare); 420 Compare->replaceAllUsesWith(NewCompare); 421 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 422 423 // Delete the old floating point increment. 424 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 425 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 426 427 // If the FP induction variable still has uses, this is because something else 428 // in the loop uses its value. In order to canonicalize the induction 429 // variable, we chose to eliminate the IV and rewrite it in terms of an 430 // int->fp cast. 431 // 432 // We give preference to sitofp over uitofp because it is faster on most 433 // platforms. 434 if (WeakPH) { 435 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 436 PN->getParent()->getFirstInsertionPt()); 437 PN->replaceAllUsesWith(Conv); 438 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 439 } 440 Changed = true; 441 } 442 443 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 444 // First step. Check to see if there are any floating-point recurrences. 445 // If there are, change them into integer recurrences, permitting analysis by 446 // the SCEV routines. 447 // 448 BasicBlock *Header = L->getHeader(); 449 450 SmallVector<WeakVH, 8> PHIs; 451 for (BasicBlock::iterator I = Header->begin(); 452 PHINode *PN = dyn_cast<PHINode>(I); ++I) 453 PHIs.push_back(PN); 454 455 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 456 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 457 HandleFloatingPointIV(L, PN); 458 459 // If the loop previously had floating-point IV, ScalarEvolution 460 // may not have been able to compute a trip count. Now that we've done some 461 // re-writing, the trip count may be computable. 462 if (Changed) 463 SE->forgetLoop(L); 464 } 465 466 //===----------------------------------------------------------------------===// 467 // RewriteLoopExitValues - Optimize IV users outside the loop. 468 // As a side effect, reduces the amount of IV processing within the loop. 469 //===----------------------------------------------------------------------===// 470 471 /// RewriteLoopExitValues - Check to see if this loop has a computable 472 /// loop-invariant execution count. If so, this means that we can compute the 473 /// final value of any expressions that are recurrent in the loop, and 474 /// substitute the exit values from the loop into any instructions outside of 475 /// the loop that use the final values of the current expressions. 476 /// 477 /// This is mostly redundant with the regular IndVarSimplify activities that 478 /// happen later, except that it's more powerful in some cases, because it's 479 /// able to brute-force evaluate arbitrary instructions as long as they have 480 /// constant operands at the beginning of the loop. 481 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 482 // Verify the input to the pass in already in LCSSA form. 483 assert(L->isLCSSAForm(*DT)); 484 485 SmallVector<BasicBlock*, 8> ExitBlocks; 486 L->getUniqueExitBlocks(ExitBlocks); 487 488 // Find all values that are computed inside the loop, but used outside of it. 489 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 490 // the exit blocks of the loop to find them. 491 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 492 BasicBlock *ExitBB = ExitBlocks[i]; 493 494 // If there are no PHI nodes in this exit block, then no values defined 495 // inside the loop are used on this path, skip it. 496 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 497 if (!PN) continue; 498 499 unsigned NumPreds = PN->getNumIncomingValues(); 500 501 // We would like to be able to RAUW single-incoming value PHI nodes. We 502 // have to be certain this is safe even when this is an LCSSA PHI node. 503 // While the computed exit value is no longer varying in *this* loop, the 504 // exit block may be an exit block for an outer containing loop as well, 505 // the exit value may be varying in the outer loop, and thus it may still 506 // require an LCSSA PHI node. The safe case is when this is 507 // single-predecessor PHI node (LCSSA) and the exit block containing it is 508 // part of the enclosing loop, or this is the outer most loop of the nest. 509 // In either case the exit value could (at most) be varying in the same 510 // loop body as the phi node itself. Thus if it is in turn used outside of 511 // an enclosing loop it will only be via a separate LCSSA node. 512 bool LCSSASafePhiForRAUW = 513 NumPreds == 1 && 514 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 515 516 // Iterate over all of the PHI nodes. 517 BasicBlock::iterator BBI = ExitBB->begin(); 518 while ((PN = dyn_cast<PHINode>(BBI++))) { 519 if (PN->use_empty()) 520 continue; // dead use, don't replace it 521 522 // SCEV only supports integer expressions for now. 523 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 524 continue; 525 526 // It's necessary to tell ScalarEvolution about this explicitly so that 527 // it can walk the def-use list and forget all SCEVs, as it may not be 528 // watching the PHI itself. Once the new exit value is in place, there 529 // may not be a def-use connection between the loop and every instruction 530 // which got a SCEVAddRecExpr for that loop. 531 SE->forgetValue(PN); 532 533 // Iterate over all of the values in all the PHI nodes. 534 for (unsigned i = 0; i != NumPreds; ++i) { 535 // If the value being merged in is not integer or is not defined 536 // in the loop, skip it. 537 Value *InVal = PN->getIncomingValue(i); 538 if (!isa<Instruction>(InVal)) 539 continue; 540 541 // If this pred is for a subloop, not L itself, skip it. 542 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 543 continue; // The Block is in a subloop, skip it. 544 545 // Check that InVal is defined in the loop. 546 Instruction *Inst = cast<Instruction>(InVal); 547 if (!L->contains(Inst)) 548 continue; 549 550 // Okay, this instruction has a user outside of the current loop 551 // and varies predictably *inside* the loop. Evaluate the value it 552 // contains when the loop exits, if possible. 553 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 554 if (!SE->isLoopInvariant(ExitValue, L) || 555 !isSafeToExpand(ExitValue, *SE)) 556 continue; 557 558 // Computing the value outside of the loop brings no benefit if : 559 // - it is definitely used inside the loop in a way which can not be 560 // optimized away. 561 // - no use outside of the loop can take advantage of hoisting the 562 // computation out of the loop 563 if (ExitValue->getSCEVType()>=scMulExpr) { 564 unsigned NumHardInternalUses = 0; 565 unsigned NumSoftExternalUses = 0; 566 unsigned NumUses = 0; 567 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 568 IB != IE && NumUses <= 6; ++IB) { 569 Instruction *UseInstr = cast<Instruction>(*IB); 570 unsigned Opc = UseInstr->getOpcode(); 571 NumUses++; 572 if (L->contains(UseInstr)) { 573 if (Opc == Instruction::Call || Opc == Instruction::Ret) 574 NumHardInternalUses++; 575 } else { 576 if (Opc == Instruction::PHI) { 577 // Do not count the Phi as a use. LCSSA may have inserted 578 // plenty of trivial ones. 579 NumUses--; 580 for (auto PB = UseInstr->user_begin(), 581 PE = UseInstr->user_end(); 582 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 583 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 584 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 585 NumSoftExternalUses++; 586 } 587 continue; 588 } 589 if (Opc != Instruction::Call && Opc != Instruction::Ret) 590 NumSoftExternalUses++; 591 } 592 } 593 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 594 continue; 595 } 596 597 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 598 599 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 600 << " LoopVal = " << *Inst << "\n"); 601 602 if (!isValidRewrite(Inst, ExitVal)) { 603 DeadInsts.push_back(ExitVal); 604 continue; 605 } 606 Changed = true; 607 ++NumReplaced; 608 609 PN->setIncomingValue(i, ExitVal); 610 611 // If this instruction is dead now, delete it. Don't do it now to avoid 612 // invalidating iterators. 613 if (isInstructionTriviallyDead(Inst, TLI)) 614 DeadInsts.push_back(Inst); 615 616 // If we determined that this PHI is safe to replace even if an LCSSA 617 // PHI, do so. 618 if (LCSSASafePhiForRAUW) { 619 PN->replaceAllUsesWith(ExitVal); 620 PN->eraseFromParent(); 621 } 622 } 623 624 // If we were unable to completely replace the PHI node, clone the PHI 625 // and delete the original one. This lets IVUsers and any other maps 626 // purge the original user from their records. 627 if (!LCSSASafePhiForRAUW) { 628 PHINode *NewPN = cast<PHINode>(PN->clone()); 629 NewPN->takeName(PN); 630 NewPN->insertBefore(PN); 631 PN->replaceAllUsesWith(NewPN); 632 PN->eraseFromParent(); 633 } 634 } 635 } 636 637 // The insertion point instruction may have been deleted; clear it out 638 // so that the rewriter doesn't trip over it later. 639 Rewriter.clearInsertPoint(); 640 } 641 642 //===----------------------------------------------------------------------===// 643 // IV Widening - Extend the width of an IV to cover its widest uses. 644 //===----------------------------------------------------------------------===// 645 646 namespace { 647 // Collect information about induction variables that are used by sign/zero 648 // extend operations. This information is recorded by CollectExtend and 649 // provides the input to WidenIV. 650 struct WideIVInfo { 651 PHINode *NarrowIV; 652 Type *WidestNativeType; // Widest integer type created [sz]ext 653 bool IsSigned; // Was an sext user seen before a zext? 654 655 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 656 IsSigned(false) {} 657 }; 658 } 659 660 /// visitCast - Update information about the induction variable that is 661 /// extended by this sign or zero extend operation. This is used to determine 662 /// the final width of the IV before actually widening it. 663 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 664 const DataLayout *DL) { 665 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 666 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 667 return; 668 669 Type *Ty = Cast->getType(); 670 uint64_t Width = SE->getTypeSizeInBits(Ty); 671 if (DL && !DL->isLegalInteger(Width)) 672 return; 673 674 if (!WI.WidestNativeType) { 675 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 676 WI.IsSigned = IsSigned; 677 return; 678 } 679 680 // We extend the IV to satisfy the sign of its first user, arbitrarily. 681 if (WI.IsSigned != IsSigned) 682 return; 683 684 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 685 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 686 } 687 688 namespace { 689 690 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 691 /// WideIV that computes the same value as the Narrow IV def. This avoids 692 /// caching Use* pointers. 693 struct NarrowIVDefUse { 694 Instruction *NarrowDef; 695 Instruction *NarrowUse; 696 Instruction *WideDef; 697 698 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 699 700 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 701 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 702 }; 703 704 /// WidenIV - The goal of this transform is to remove sign and zero extends 705 /// without creating any new induction variables. To do this, it creates a new 706 /// phi of the wider type and redirects all users, either removing extends or 707 /// inserting truncs whenever we stop propagating the type. 708 /// 709 class WidenIV { 710 // Parameters 711 PHINode *OrigPhi; 712 Type *WideType; 713 bool IsSigned; 714 715 // Context 716 LoopInfo *LI; 717 Loop *L; 718 ScalarEvolution *SE; 719 DominatorTree *DT; 720 721 // Result 722 PHINode *WidePhi; 723 Instruction *WideInc; 724 const SCEV *WideIncExpr; 725 SmallVectorImpl<WeakVH> &DeadInsts; 726 727 SmallPtrSet<Instruction*,16> Widened; 728 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 729 730 public: 731 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 732 ScalarEvolution *SEv, DominatorTree *DTree, 733 SmallVectorImpl<WeakVH> &DI) : 734 OrigPhi(WI.NarrowIV), 735 WideType(WI.WidestNativeType), 736 IsSigned(WI.IsSigned), 737 LI(LInfo), 738 L(LI->getLoopFor(OrigPhi->getParent())), 739 SE(SEv), 740 DT(DTree), 741 WidePhi(nullptr), 742 WideInc(nullptr), 743 WideIncExpr(nullptr), 744 DeadInsts(DI) { 745 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 746 } 747 748 PHINode *CreateWideIV(SCEVExpander &Rewriter); 749 750 protected: 751 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 752 Instruction *Use); 753 754 Instruction *CloneIVUser(NarrowIVDefUse DU); 755 756 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 757 758 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 759 760 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 761 unsigned OpCode) const; 762 763 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 764 765 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 766 }; 767 } // anonymous namespace 768 769 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 770 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 771 /// gratuitous for this purpose. 772 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 773 Instruction *Inst = dyn_cast<Instruction>(V); 774 if (!Inst) 775 return true; 776 777 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 778 } 779 780 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 781 Instruction *Use) { 782 // Set the debug location and conservative insertion point. 783 IRBuilder<> Builder(Use); 784 // Hoist the insertion point into loop preheaders as far as possible. 785 for (const Loop *L = LI->getLoopFor(Use->getParent()); 786 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 787 L = L->getParentLoop()) 788 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 789 790 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 791 Builder.CreateZExt(NarrowOper, WideType); 792 } 793 794 /// CloneIVUser - Instantiate a wide operation to replace a narrow 795 /// operation. This only needs to handle operations that can evaluation to 796 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 797 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 798 unsigned Opcode = DU.NarrowUse->getOpcode(); 799 switch (Opcode) { 800 default: 801 return nullptr; 802 case Instruction::Add: 803 case Instruction::Mul: 804 case Instruction::UDiv: 805 case Instruction::Sub: 806 case Instruction::And: 807 case Instruction::Or: 808 case Instruction::Xor: 809 case Instruction::Shl: 810 case Instruction::LShr: 811 case Instruction::AShr: 812 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 813 814 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 815 // anything about the narrow operand yet so must insert a [sz]ext. It is 816 // probably loop invariant and will be folded or hoisted. If it actually 817 // comes from a widened IV, it should be removed during a future call to 818 // WidenIVUse. 819 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 820 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 821 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 822 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 823 824 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 825 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 826 LHS, RHS, 827 NarrowBO->getName()); 828 IRBuilder<> Builder(DU.NarrowUse); 829 Builder.Insert(WideBO); 830 if (const OverflowingBinaryOperator *OBO = 831 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 832 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 833 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 834 } 835 return WideBO; 836 } 837 } 838 839 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 840 unsigned OpCode) const { 841 if (OpCode == Instruction::Add) 842 return SE->getAddExpr(LHS, RHS); 843 if (OpCode == Instruction::Sub) 844 return SE->getMinusSCEV(LHS, RHS); 845 if (OpCode == Instruction::Mul) 846 return SE->getMulExpr(LHS, RHS); 847 848 llvm_unreachable("Unsupported opcode."); 849 } 850 851 /// No-wrap operations can transfer sign extension of their result to their 852 /// operands. Generate the SCEV value for the widened operation without 853 /// actually modifying the IR yet. If the expression after extending the 854 /// operands is an AddRec for this loop, return it. 855 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 856 857 // Handle the common case of add<nsw/nuw> 858 const unsigned OpCode = DU.NarrowUse->getOpcode(); 859 // Only Add/Sub/Mul instructions supported yet. 860 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 861 OpCode != Instruction::Mul) 862 return nullptr; 863 864 // One operand (NarrowDef) has already been extended to WideDef. Now determine 865 // if extending the other will lead to a recurrence. 866 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 867 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 868 869 const SCEV *ExtendOperExpr = nullptr; 870 const OverflowingBinaryOperator *OBO = 871 cast<OverflowingBinaryOperator>(DU.NarrowUse); 872 if (IsSigned && OBO->hasNoSignedWrap()) 873 ExtendOperExpr = SE->getSignExtendExpr( 874 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 875 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 876 ExtendOperExpr = SE->getZeroExtendExpr( 877 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 878 else 879 return nullptr; 880 881 // When creating this SCEV expr, don't apply the current operations NSW or NUW 882 // flags. This instruction may be guarded by control flow that the no-wrap 883 // behavior depends on. Non-control-equivalent instructions can be mapped to 884 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 885 // semantics to those operations. 886 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 887 GetSCEVByOpCode(SE->getSCEV(DU.WideDef), ExtendOperExpr, OpCode)); 888 if (!AddRec || AddRec->getLoop() != L) 889 return nullptr; 890 return AddRec; 891 } 892 893 /// GetWideRecurrence - Is this instruction potentially interesting from 894 /// IVUsers' perspective after widening it's type? In other words, can the 895 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 896 /// recurrence on the same loop. If so, return the sign or zero extended 897 /// recurrence. Otherwise return NULL. 898 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 899 if (!SE->isSCEVable(NarrowUse->getType())) 900 return nullptr; 901 902 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 903 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 904 >= SE->getTypeSizeInBits(WideType)) { 905 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 906 // index. So don't follow this use. 907 return nullptr; 908 } 909 910 const SCEV *WideExpr = IsSigned ? 911 SE->getSignExtendExpr(NarrowExpr, WideType) : 912 SE->getZeroExtendExpr(NarrowExpr, WideType); 913 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 914 if (!AddRec || AddRec->getLoop() != L) 915 return nullptr; 916 return AddRec; 917 } 918 919 /// This IV user cannot be widen. Replace this use of the original narrow IV 920 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 921 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 922 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 923 << " for user " << *DU.NarrowUse << "\n"); 924 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 925 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 926 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 927 } 928 929 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 930 /// widened. If so, return the wide clone of the user. 931 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 932 933 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 934 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 935 if (LI->getLoopFor(UsePhi->getParent()) != L) { 936 // For LCSSA phis, sink the truncate outside the loop. 937 // After SimplifyCFG most loop exit targets have a single predecessor. 938 // Otherwise fall back to a truncate within the loop. 939 if (UsePhi->getNumOperands() != 1) 940 truncateIVUse(DU, DT); 941 else { 942 PHINode *WidePhi = 943 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 944 UsePhi); 945 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 946 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 947 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 948 UsePhi->replaceAllUsesWith(Trunc); 949 DeadInsts.push_back(UsePhi); 950 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 951 << " to " << *WidePhi << "\n"); 952 } 953 return nullptr; 954 } 955 } 956 // Our raison d'etre! Eliminate sign and zero extension. 957 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 958 Value *NewDef = DU.WideDef; 959 if (DU.NarrowUse->getType() != WideType) { 960 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 961 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 962 if (CastWidth < IVWidth) { 963 // The cast isn't as wide as the IV, so insert a Trunc. 964 IRBuilder<> Builder(DU.NarrowUse); 965 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 966 } 967 else { 968 // A wider extend was hidden behind a narrower one. This may induce 969 // another round of IV widening in which the intermediate IV becomes 970 // dead. It should be very rare. 971 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 972 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 973 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 974 NewDef = DU.NarrowUse; 975 } 976 } 977 if (NewDef != DU.NarrowUse) { 978 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 979 << " replaced by " << *DU.WideDef << "\n"); 980 ++NumElimExt; 981 DU.NarrowUse->replaceAllUsesWith(NewDef); 982 DeadInsts.push_back(DU.NarrowUse); 983 } 984 // Now that the extend is gone, we want to expose it's uses for potential 985 // further simplification. We don't need to directly inform SimplifyIVUsers 986 // of the new users, because their parent IV will be processed later as a 987 // new loop phi. If we preserved IVUsers analysis, we would also want to 988 // push the uses of WideDef here. 989 990 // No further widening is needed. The deceased [sz]ext had done it for us. 991 return nullptr; 992 } 993 994 // Does this user itself evaluate to a recurrence after widening? 995 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 996 if (!WideAddRec) { 997 WideAddRec = GetExtendedOperandRecurrence(DU); 998 } 999 if (!WideAddRec) { 1000 // This user does not evaluate to a recurence after widening, so don't 1001 // follow it. Instead insert a Trunc to kill off the original use, 1002 // eventually isolating the original narrow IV so it can be removed. 1003 truncateIVUse(DU, DT); 1004 return nullptr; 1005 } 1006 // Assume block terminators cannot evaluate to a recurrence. We can't to 1007 // insert a Trunc after a terminator if there happens to be a critical edge. 1008 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1009 "SCEV is not expected to evaluate a block terminator"); 1010 1011 // Reuse the IV increment that SCEVExpander created as long as it dominates 1012 // NarrowUse. 1013 Instruction *WideUse = nullptr; 1014 if (WideAddRec == WideIncExpr 1015 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1016 WideUse = WideInc; 1017 else { 1018 WideUse = CloneIVUser(DU); 1019 if (!WideUse) 1020 return nullptr; 1021 } 1022 // Evaluation of WideAddRec ensured that the narrow expression could be 1023 // extended outside the loop without overflow. This suggests that the wide use 1024 // evaluates to the same expression as the extended narrow use, but doesn't 1025 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1026 // where it fails, we simply throw away the newly created wide use. 1027 if (WideAddRec != SE->getSCEV(WideUse)) { 1028 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1029 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1030 DeadInsts.push_back(WideUse); 1031 return nullptr; 1032 } 1033 1034 // Returning WideUse pushes it on the worklist. 1035 return WideUse; 1036 } 1037 1038 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1039 /// 1040 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1041 for (User *U : NarrowDef->users()) { 1042 Instruction *NarrowUser = cast<Instruction>(U); 1043 1044 // Handle data flow merges and bizarre phi cycles. 1045 if (!Widened.insert(NarrowUser)) 1046 continue; 1047 1048 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1049 } 1050 } 1051 1052 /// CreateWideIV - Process a single induction variable. First use the 1053 /// SCEVExpander to create a wide induction variable that evaluates to the same 1054 /// recurrence as the original narrow IV. Then use a worklist to forward 1055 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1056 /// interesting IV users, the narrow IV will be isolated for removal by 1057 /// DeleteDeadPHIs. 1058 /// 1059 /// It would be simpler to delete uses as they are processed, but we must avoid 1060 /// invalidating SCEV expressions. 1061 /// 1062 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1063 // Is this phi an induction variable? 1064 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1065 if (!AddRec) 1066 return nullptr; 1067 1068 // Widen the induction variable expression. 1069 const SCEV *WideIVExpr = IsSigned ? 1070 SE->getSignExtendExpr(AddRec, WideType) : 1071 SE->getZeroExtendExpr(AddRec, WideType); 1072 1073 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1074 "Expect the new IV expression to preserve its type"); 1075 1076 // Can the IV be extended outside the loop without overflow? 1077 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1078 if (!AddRec || AddRec->getLoop() != L) 1079 return nullptr; 1080 1081 // An AddRec must have loop-invariant operands. Since this AddRec is 1082 // materialized by a loop header phi, the expression cannot have any post-loop 1083 // operands, so they must dominate the loop header. 1084 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1085 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1086 && "Loop header phi recurrence inputs do not dominate the loop"); 1087 1088 // The rewriter provides a value for the desired IV expression. This may 1089 // either find an existing phi or materialize a new one. Either way, we 1090 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1091 // of the phi-SCC dominates the loop entry. 1092 Instruction *InsertPt = L->getHeader()->begin(); 1093 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1094 1095 // Remembering the WideIV increment generated by SCEVExpander allows 1096 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1097 // employ a general reuse mechanism because the call above is the only call to 1098 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1099 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1100 WideInc = 1101 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1102 WideIncExpr = SE->getSCEV(WideInc); 1103 } 1104 1105 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1106 ++NumWidened; 1107 1108 // Traverse the def-use chain using a worklist starting at the original IV. 1109 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1110 1111 Widened.insert(OrigPhi); 1112 pushNarrowIVUsers(OrigPhi, WidePhi); 1113 1114 while (!NarrowIVUsers.empty()) { 1115 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1116 1117 // Process a def-use edge. This may replace the use, so don't hold a 1118 // use_iterator across it. 1119 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1120 1121 // Follow all def-use edges from the previous narrow use. 1122 if (WideUse) 1123 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1124 1125 // WidenIVUse may have removed the def-use edge. 1126 if (DU.NarrowDef->use_empty()) 1127 DeadInsts.push_back(DU.NarrowDef); 1128 } 1129 return WidePhi; 1130 } 1131 1132 //===----------------------------------------------------------------------===// 1133 // Live IV Reduction - Minimize IVs live across the loop. 1134 //===----------------------------------------------------------------------===// 1135 1136 1137 //===----------------------------------------------------------------------===// 1138 // Simplification of IV users based on SCEV evaluation. 1139 //===----------------------------------------------------------------------===// 1140 1141 namespace { 1142 class IndVarSimplifyVisitor : public IVVisitor { 1143 ScalarEvolution *SE; 1144 const DataLayout *DL; 1145 PHINode *IVPhi; 1146 1147 public: 1148 WideIVInfo WI; 1149 1150 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1151 const DataLayout *DL, const DominatorTree *DTree): 1152 SE(SCEV), DL(DL), IVPhi(IV) { 1153 DT = DTree; 1154 WI.NarrowIV = IVPhi; 1155 if (ReduceLiveIVs) 1156 setSplitOverflowIntrinsics(); 1157 } 1158 1159 // Implement the interface used by simplifyUsersOfIV. 1160 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, DL); } 1161 }; 1162 } 1163 1164 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1165 /// users. Each successive simplification may push more users which may 1166 /// themselves be candidates for simplification. 1167 /// 1168 /// Sign/Zero extend elimination is interleaved with IV simplification. 1169 /// 1170 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1171 SCEVExpander &Rewriter, 1172 LPPassManager &LPM) { 1173 SmallVector<WideIVInfo, 8> WideIVs; 1174 1175 SmallVector<PHINode*, 8> LoopPhis; 1176 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1177 LoopPhis.push_back(cast<PHINode>(I)); 1178 } 1179 // Each round of simplification iterates through the SimplifyIVUsers worklist 1180 // for all current phis, then determines whether any IVs can be 1181 // widened. Widening adds new phis to LoopPhis, inducing another round of 1182 // simplification on the wide IVs. 1183 while (!LoopPhis.empty()) { 1184 // Evaluate as many IV expressions as possible before widening any IVs. This 1185 // forces SCEV to set no-wrap flags before evaluating sign/zero 1186 // extension. The first time SCEV attempts to normalize sign/zero extension, 1187 // the result becomes final. So for the most predictable results, we delay 1188 // evaluation of sign/zero extend evaluation until needed, and avoid running 1189 // other SCEV based analysis prior to SimplifyAndExtend. 1190 do { 1191 PHINode *CurrIV = LoopPhis.pop_back_val(); 1192 1193 // Information about sign/zero extensions of CurrIV. 1194 IndVarSimplifyVisitor Visitor(CurrIV, SE, DL, DT); 1195 1196 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1197 1198 if (Visitor.WI.WidestNativeType) { 1199 WideIVs.push_back(Visitor.WI); 1200 } 1201 } while(!LoopPhis.empty()); 1202 1203 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1204 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1205 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1206 Changed = true; 1207 LoopPhis.push_back(WidePhi); 1208 } 1209 } 1210 } 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1215 //===----------------------------------------------------------------------===// 1216 1217 /// Check for expressions that ScalarEvolution generates to compute 1218 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1219 /// expanding them may incur additional cost (albeit in the loop preheader). 1220 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1221 SmallPtrSetImpl<const SCEV*> &Processed, 1222 ScalarEvolution *SE) { 1223 if (!Processed.insert(S)) 1224 return false; 1225 1226 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1227 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1228 // precise expression, rather than a UDiv from the user's code. If we can't 1229 // find a UDiv in the code with some simple searching, assume the former and 1230 // forego rewriting the loop. 1231 if (isa<SCEVUDivExpr>(S)) { 1232 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1233 if (!OrigCond) return true; 1234 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1235 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1236 if (R != S) { 1237 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1238 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1239 if (L != S) 1240 return true; 1241 } 1242 } 1243 1244 // Recurse past add expressions, which commonly occur in the 1245 // BackedgeTakenCount. They may already exist in program code, and if not, 1246 // they are not too expensive rematerialize. 1247 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1248 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1249 I != E; ++I) { 1250 if (isHighCostExpansion(*I, BI, Processed, SE)) 1251 return true; 1252 } 1253 return false; 1254 } 1255 1256 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1257 // the exit condition. 1258 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1259 return true; 1260 1261 // If we haven't recognized an expensive SCEV pattern, assume it's an 1262 // expression produced by program code. 1263 return false; 1264 } 1265 1266 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1267 /// count expression can be safely and cheaply expanded into an instruction 1268 /// sequence that can be used by LinearFunctionTestReplace. 1269 /// 1270 /// TODO: This fails for pointer-type loop counters with greater than one byte 1271 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1272 /// we could skip this check in the case that the LFTR loop counter (chosen by 1273 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1274 /// the loop test to an inequality test by checking the target data's alignment 1275 /// of element types (given that the initial pointer value originates from or is 1276 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1277 /// However, we don't yet have a strong motivation for converting loop tests 1278 /// into inequality tests. 1279 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1280 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1281 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1282 BackedgeTakenCount->isZero()) 1283 return false; 1284 1285 if (!L->getExitingBlock()) 1286 return false; 1287 1288 // Can't rewrite non-branch yet. 1289 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1290 if (!BI) 1291 return false; 1292 1293 SmallPtrSet<const SCEV*, 8> Processed; 1294 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1295 return false; 1296 1297 return true; 1298 } 1299 1300 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1301 /// invariant value to the phi. 1302 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1303 Instruction *IncI = dyn_cast<Instruction>(IncV); 1304 if (!IncI) 1305 return nullptr; 1306 1307 switch (IncI->getOpcode()) { 1308 case Instruction::Add: 1309 case Instruction::Sub: 1310 break; 1311 case Instruction::GetElementPtr: 1312 // An IV counter must preserve its type. 1313 if (IncI->getNumOperands() == 2) 1314 break; 1315 default: 1316 return nullptr; 1317 } 1318 1319 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1320 if (Phi && Phi->getParent() == L->getHeader()) { 1321 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1322 return Phi; 1323 return nullptr; 1324 } 1325 if (IncI->getOpcode() == Instruction::GetElementPtr) 1326 return nullptr; 1327 1328 // Allow add/sub to be commuted. 1329 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1330 if (Phi && Phi->getParent() == L->getHeader()) { 1331 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1332 return Phi; 1333 } 1334 return nullptr; 1335 } 1336 1337 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1338 static ICmpInst *getLoopTest(Loop *L) { 1339 assert(L->getExitingBlock() && "expected loop exit"); 1340 1341 BasicBlock *LatchBlock = L->getLoopLatch(); 1342 // Don't bother with LFTR if the loop is not properly simplified. 1343 if (!LatchBlock) 1344 return nullptr; 1345 1346 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1347 assert(BI && "expected exit branch"); 1348 1349 return dyn_cast<ICmpInst>(BI->getCondition()); 1350 } 1351 1352 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1353 /// that the current exit test is already sufficiently canonical. 1354 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1355 // Do LFTR to simplify the exit condition to an ICMP. 1356 ICmpInst *Cond = getLoopTest(L); 1357 if (!Cond) 1358 return true; 1359 1360 // Do LFTR to simplify the exit ICMP to EQ/NE 1361 ICmpInst::Predicate Pred = Cond->getPredicate(); 1362 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1363 return true; 1364 1365 // Look for a loop invariant RHS 1366 Value *LHS = Cond->getOperand(0); 1367 Value *RHS = Cond->getOperand(1); 1368 if (!isLoopInvariant(RHS, L, DT)) { 1369 if (!isLoopInvariant(LHS, L, DT)) 1370 return true; 1371 std::swap(LHS, RHS); 1372 } 1373 // Look for a simple IV counter LHS 1374 PHINode *Phi = dyn_cast<PHINode>(LHS); 1375 if (!Phi) 1376 Phi = getLoopPhiForCounter(LHS, L, DT); 1377 1378 if (!Phi) 1379 return true; 1380 1381 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1382 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1383 if (Idx < 0) 1384 return true; 1385 1386 // Do LFTR if the exit condition's IV is *not* a simple counter. 1387 Value *IncV = Phi->getIncomingValue(Idx); 1388 return Phi != getLoopPhiForCounter(IncV, L, DT); 1389 } 1390 1391 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1392 /// down to checking that all operands are constant and listing instructions 1393 /// that may hide undef. 1394 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1395 unsigned Depth) { 1396 if (isa<Constant>(V)) 1397 return !isa<UndefValue>(V); 1398 1399 if (Depth >= 6) 1400 return false; 1401 1402 // Conservatively handle non-constant non-instructions. For example, Arguments 1403 // may be undef. 1404 Instruction *I = dyn_cast<Instruction>(V); 1405 if (!I) 1406 return false; 1407 1408 // Load and return values may be undef. 1409 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1410 return false; 1411 1412 // Optimistically handle other instructions. 1413 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1414 if (!Visited.insert(*OI)) 1415 continue; 1416 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1417 return false; 1418 } 1419 return true; 1420 } 1421 1422 /// Return true if the given value is concrete. We must prove that undef can 1423 /// never reach it. 1424 /// 1425 /// TODO: If we decide that this is a good approach to checking for undef, we 1426 /// may factor it into a common location. 1427 static bool hasConcreteDef(Value *V) { 1428 SmallPtrSet<Value*, 8> Visited; 1429 Visited.insert(V); 1430 return hasConcreteDefImpl(V, Visited, 0); 1431 } 1432 1433 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1434 /// be rewritten) loop exit test. 1435 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1436 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1437 Value *IncV = Phi->getIncomingValue(LatchIdx); 1438 1439 for (User *U : Phi->users()) 1440 if (U != Cond && U != IncV) return false; 1441 1442 for (User *U : IncV->users()) 1443 if (U != Cond && U != Phi) return false; 1444 return true; 1445 } 1446 1447 /// FindLoopCounter - Find an affine IV in canonical form. 1448 /// 1449 /// BECount may be an i8* pointer type. The pointer difference is already 1450 /// valid count without scaling the address stride, so it remains a pointer 1451 /// expression as far as SCEV is concerned. 1452 /// 1453 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1454 /// 1455 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1456 /// 1457 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1458 /// This is difficult in general for SCEV because of potential overflow. But we 1459 /// could at least handle constant BECounts. 1460 static PHINode * 1461 FindLoopCounter(Loop *L, const SCEV *BECount, 1462 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *DL) { 1463 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1464 1465 Value *Cond = 1466 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1467 1468 // Loop over all of the PHI nodes, looking for a simple counter. 1469 PHINode *BestPhi = nullptr; 1470 const SCEV *BestInit = nullptr; 1471 BasicBlock *LatchBlock = L->getLoopLatch(); 1472 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1473 1474 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1475 PHINode *Phi = cast<PHINode>(I); 1476 if (!SE->isSCEVable(Phi->getType())) 1477 continue; 1478 1479 // Avoid comparing an integer IV against a pointer Limit. 1480 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1481 continue; 1482 1483 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1484 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1485 continue; 1486 1487 // AR may be a pointer type, while BECount is an integer type. 1488 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1489 // AR may not be a narrower type, or we may never exit. 1490 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1491 if (PhiWidth < BCWidth || (DL && !DL->isLegalInteger(PhiWidth))) 1492 continue; 1493 1494 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1495 if (!Step || !Step->isOne()) 1496 continue; 1497 1498 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1499 Value *IncV = Phi->getIncomingValue(LatchIdx); 1500 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1501 continue; 1502 1503 // Avoid reusing a potentially undef value to compute other values that may 1504 // have originally had a concrete definition. 1505 if (!hasConcreteDef(Phi)) { 1506 // We explicitly allow unknown phis as long as they are already used by 1507 // the loop test. In this case we assume that performing LFTR could not 1508 // increase the number of undef users. 1509 if (ICmpInst *Cond = getLoopTest(L)) { 1510 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1511 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1512 continue; 1513 } 1514 } 1515 } 1516 const SCEV *Init = AR->getStart(); 1517 1518 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1519 // Don't force a live loop counter if another IV can be used. 1520 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1521 continue; 1522 1523 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1524 // also prefers integer to pointer IVs. 1525 if (BestInit->isZero() != Init->isZero()) { 1526 if (BestInit->isZero()) 1527 continue; 1528 } 1529 // If two IVs both count from zero or both count from nonzero then the 1530 // narrower is likely a dead phi that has been widened. Use the wider phi 1531 // to allow the other to be eliminated. 1532 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1533 continue; 1534 } 1535 BestPhi = Phi; 1536 BestInit = Init; 1537 } 1538 return BestPhi; 1539 } 1540 1541 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1542 /// holds the RHS of the new loop test. 1543 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1544 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1545 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1546 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1547 const SCEV *IVInit = AR->getStart(); 1548 1549 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1550 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1551 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1552 // the existing GEPs whenever possible. 1553 if (IndVar->getType()->isPointerTy() 1554 && !IVCount->getType()->isPointerTy()) { 1555 1556 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1557 // signed value. IVCount on the other hand represents the loop trip count, 1558 // which is an unsigned value. FindLoopCounter only allows induction 1559 // variables that have a positive unit stride of one. This means we don't 1560 // have to handle the case of negative offsets (yet) and just need to zero 1561 // extend IVCount. 1562 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1563 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1564 1565 // Expand the code for the iteration count. 1566 assert(SE->isLoopInvariant(IVOffset, L) && 1567 "Computed iteration count is not loop invariant!"); 1568 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1569 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1570 1571 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1572 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1573 // We could handle pointer IVs other than i8*, but we need to compensate for 1574 // gep index scaling. See canExpandBackedgeTakenCount comments. 1575 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1576 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1577 && "unit stride pointer IV must be i8*"); 1578 1579 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1580 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1581 } 1582 else { 1583 // In any other case, convert both IVInit and IVCount to integers before 1584 // comparing. This may result in SCEV expension of pointers, but in practice 1585 // SCEV will fold the pointer arithmetic away as such: 1586 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1587 // 1588 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1589 // for simple memset-style loops. 1590 // 1591 // IVInit integer and IVCount pointer would only occur if a canonical IV 1592 // were generated on top of case #2, which is not expected. 1593 1594 const SCEV *IVLimit = nullptr; 1595 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1596 // For non-zero Start, compute IVCount here. 1597 if (AR->getStart()->isZero()) 1598 IVLimit = IVCount; 1599 else { 1600 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1601 const SCEV *IVInit = AR->getStart(); 1602 1603 // For integer IVs, truncate the IV before computing IVInit + BECount. 1604 if (SE->getTypeSizeInBits(IVInit->getType()) 1605 > SE->getTypeSizeInBits(IVCount->getType())) 1606 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1607 1608 IVLimit = SE->getAddExpr(IVInit, IVCount); 1609 } 1610 // Expand the code for the iteration count. 1611 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1612 IRBuilder<> Builder(BI); 1613 assert(SE->isLoopInvariant(IVLimit, L) && 1614 "Computed iteration count is not loop invariant!"); 1615 // Ensure that we generate the same type as IndVar, or a smaller integer 1616 // type. In the presence of null pointer values, we have an integer type 1617 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1618 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1619 IndVar->getType() : IVCount->getType(); 1620 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1621 } 1622 } 1623 1624 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1625 /// loop to be a canonical != comparison against the incremented loop induction 1626 /// variable. This pass is able to rewrite the exit tests of any loop where the 1627 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1628 /// is actually a much broader range than just linear tests. 1629 Value *IndVarSimplify:: 1630 LinearFunctionTestReplace(Loop *L, 1631 const SCEV *BackedgeTakenCount, 1632 PHINode *IndVar, 1633 SCEVExpander &Rewriter) { 1634 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1635 1636 // Initialize CmpIndVar and IVCount to their preincremented values. 1637 Value *CmpIndVar = IndVar; 1638 const SCEV *IVCount = BackedgeTakenCount; 1639 1640 // If the exiting block is the same as the backedge block, we prefer to 1641 // compare against the post-incremented value, otherwise we must compare 1642 // against the preincremented value. 1643 if (L->getExitingBlock() == L->getLoopLatch()) { 1644 // The BackedgeTaken expression contains the number of times that the 1645 // backedge branches to the loop header. This is one less than the 1646 // number of times the loop executes, so use the incremented indvar. 1647 llvm::Value *IncrementedIndvar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1648 const auto *IncrementedIndvarSCEV = 1649 cast<SCEVAddRecExpr>(SE->getSCEV(IncrementedIndvar)); 1650 // It is unsafe to use the incremented indvar if it has a wrapping flag, we 1651 // don't want to compare against a poison value. Check the SCEV that 1652 // corresponds to the incremented indvar, the SCEVExpander will only insert 1653 // flags in the IR if the SCEV originally had wrapping flags. 1654 if (ScalarEvolution::maskFlags(IncrementedIndvarSCEV->getNoWrapFlags(), 1655 SCEV::FlagNUW | SCEV::FlagNSW) == 1656 SCEV::FlagAnyWrap) { 1657 // Add one to the "backedge-taken" count to get the trip count. 1658 // This addition may overflow, which is valid as long as the comparison is 1659 // truncated to BackedgeTakenCount->getType(). 1660 IVCount = 1661 SE->getAddExpr(BackedgeTakenCount, 1662 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1663 CmpIndVar = IncrementedIndvar; 1664 } 1665 } 1666 1667 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1668 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1669 && "genLoopLimit missed a cast"); 1670 1671 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1672 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1673 ICmpInst::Predicate P; 1674 if (L->contains(BI->getSuccessor(0))) 1675 P = ICmpInst::ICMP_NE; 1676 else 1677 P = ICmpInst::ICMP_EQ; 1678 1679 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1680 << " LHS:" << *CmpIndVar << '\n' 1681 << " op:\t" 1682 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1683 << " RHS:\t" << *ExitCnt << "\n" 1684 << " IVCount:\t" << *IVCount << "\n"); 1685 1686 IRBuilder<> Builder(BI); 1687 1688 // LFTR can ignore IV overflow and truncate to the width of 1689 // BECount. This avoids materializing the add(zext(add)) expression. 1690 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1691 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1692 if (CmpIndVarSize > ExitCntSize) { 1693 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1694 const SCEV *ARStart = AR->getStart(); 1695 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1696 // For constant IVCount, avoid truncation. 1697 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1698 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1699 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1700 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1701 // above such that IVCount is now zero. 1702 if (IVCount != BackedgeTakenCount && Count == 0) { 1703 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1704 ++Count; 1705 } 1706 else 1707 Count = Count.zext(CmpIndVarSize); 1708 APInt NewLimit; 1709 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1710 NewLimit = Start - Count; 1711 else 1712 NewLimit = Start + Count; 1713 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1714 1715 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1716 } else { 1717 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1718 "lftr.wideiv"); 1719 } 1720 } 1721 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1722 Value *OrigCond = BI->getCondition(); 1723 // It's tempting to use replaceAllUsesWith here to fully replace the old 1724 // comparison, but that's not immediately safe, since users of the old 1725 // comparison may not be dominated by the new comparison. Instead, just 1726 // update the branch to use the new comparison; in the common case this 1727 // will make old comparison dead. 1728 BI->setCondition(Cond); 1729 DeadInsts.push_back(OrigCond); 1730 1731 ++NumLFTR; 1732 Changed = true; 1733 return Cond; 1734 } 1735 1736 //===----------------------------------------------------------------------===// 1737 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1738 //===----------------------------------------------------------------------===// 1739 1740 /// If there's a single exit block, sink any loop-invariant values that 1741 /// were defined in the preheader but not used inside the loop into the 1742 /// exit block to reduce register pressure in the loop. 1743 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1744 BasicBlock *ExitBlock = L->getExitBlock(); 1745 if (!ExitBlock) return; 1746 1747 BasicBlock *Preheader = L->getLoopPreheader(); 1748 if (!Preheader) return; 1749 1750 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1751 BasicBlock::iterator I = Preheader->getTerminator(); 1752 while (I != Preheader->begin()) { 1753 --I; 1754 // New instructions were inserted at the end of the preheader. 1755 if (isa<PHINode>(I)) 1756 break; 1757 1758 // Don't move instructions which might have side effects, since the side 1759 // effects need to complete before instructions inside the loop. Also don't 1760 // move instructions which might read memory, since the loop may modify 1761 // memory. Note that it's okay if the instruction might have undefined 1762 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1763 // block. 1764 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1765 continue; 1766 1767 // Skip debug info intrinsics. 1768 if (isa<DbgInfoIntrinsic>(I)) 1769 continue; 1770 1771 // Skip landingpad instructions. 1772 if (isa<LandingPadInst>(I)) 1773 continue; 1774 1775 // Don't sink alloca: we never want to sink static alloca's out of the 1776 // entry block, and correctly sinking dynamic alloca's requires 1777 // checks for stacksave/stackrestore intrinsics. 1778 // FIXME: Refactor this check somehow? 1779 if (isa<AllocaInst>(I)) 1780 continue; 1781 1782 // Determine if there is a use in or before the loop (direct or 1783 // otherwise). 1784 bool UsedInLoop = false; 1785 for (Use &U : I->uses()) { 1786 Instruction *User = cast<Instruction>(U.getUser()); 1787 BasicBlock *UseBB = User->getParent(); 1788 if (PHINode *P = dyn_cast<PHINode>(User)) { 1789 unsigned i = 1790 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1791 UseBB = P->getIncomingBlock(i); 1792 } 1793 if (UseBB == Preheader || L->contains(UseBB)) { 1794 UsedInLoop = true; 1795 break; 1796 } 1797 } 1798 1799 // If there is, the def must remain in the preheader. 1800 if (UsedInLoop) 1801 continue; 1802 1803 // Otherwise, sink it to the exit block. 1804 Instruction *ToMove = I; 1805 bool Done = false; 1806 1807 if (I != Preheader->begin()) { 1808 // Skip debug info intrinsics. 1809 do { 1810 --I; 1811 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1812 1813 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1814 Done = true; 1815 } else { 1816 Done = true; 1817 } 1818 1819 ToMove->moveBefore(InsertPt); 1820 if (Done) break; 1821 InsertPt = ToMove; 1822 } 1823 } 1824 1825 //===----------------------------------------------------------------------===// 1826 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1827 //===----------------------------------------------------------------------===// 1828 1829 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1830 if (skipOptnoneFunction(L)) 1831 return false; 1832 1833 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1834 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1835 // canonicalization can be a pessimization without LSR to "clean up" 1836 // afterwards. 1837 // - We depend on having a preheader; in particular, 1838 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1839 // and we're in trouble if we can't find the induction variable even when 1840 // we've manually inserted one. 1841 if (!L->isLoopSimplifyForm()) 1842 return false; 1843 1844 LI = &getAnalysis<LoopInfo>(); 1845 SE = &getAnalysis<ScalarEvolution>(); 1846 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1847 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 1848 DL = DLP ? &DLP->getDataLayout() : nullptr; 1849 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1850 1851 DeadInsts.clear(); 1852 Changed = false; 1853 1854 // If there are any floating-point recurrences, attempt to 1855 // transform them to use integer recurrences. 1856 RewriteNonIntegerIVs(L); 1857 1858 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1859 1860 // Create a rewriter object which we'll use to transform the code with. 1861 SCEVExpander Rewriter(*SE, "indvars"); 1862 #ifndef NDEBUG 1863 Rewriter.setDebugType(DEBUG_TYPE); 1864 #endif 1865 1866 // Eliminate redundant IV users. 1867 // 1868 // Simplification works best when run before other consumers of SCEV. We 1869 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1870 // other expressions involving loop IVs have been evaluated. This helps SCEV 1871 // set no-wrap flags before normalizing sign/zero extension. 1872 Rewriter.disableCanonicalMode(); 1873 SimplifyAndExtend(L, Rewriter, LPM); 1874 1875 // Check to see if this loop has a computable loop-invariant execution count. 1876 // If so, this means that we can compute the final value of any expressions 1877 // that are recurrent in the loop, and substitute the exit values from the 1878 // loop into any instructions outside of the loop that use the final values of 1879 // the current expressions. 1880 // 1881 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1882 RewriteLoopExitValues(L, Rewriter); 1883 1884 // Eliminate redundant IV cycles. 1885 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1886 1887 // If we have a trip count expression, rewrite the loop's exit condition 1888 // using it. We can currently only handle loops with a single exit. 1889 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1890 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, DL); 1891 if (IndVar) { 1892 // Check preconditions for proper SCEVExpander operation. SCEV does not 1893 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1894 // pass that uses the SCEVExpander must do it. This does not work well for 1895 // loop passes because SCEVExpander makes assumptions about all loops, 1896 // while LoopPassManager only forces the current loop to be simplified. 1897 // 1898 // FIXME: SCEV expansion has no way to bail out, so the caller must 1899 // explicitly check any assumptions made by SCEV. Brittle. 1900 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1901 if (!AR || AR->getLoop()->getLoopPreheader()) 1902 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1903 Rewriter); 1904 } 1905 } 1906 // Clear the rewriter cache, because values that are in the rewriter's cache 1907 // can be deleted in the loop below, causing the AssertingVH in the cache to 1908 // trigger. 1909 Rewriter.clear(); 1910 1911 // Now that we're done iterating through lists, clean up any instructions 1912 // which are now dead. 1913 while (!DeadInsts.empty()) 1914 if (Instruction *Inst = 1915 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1916 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1917 1918 // The Rewriter may not be used from this point on. 1919 1920 // Loop-invariant instructions in the preheader that aren't used in the 1921 // loop may be sunk below the loop to reduce register pressure. 1922 SinkUnusedInvariants(L); 1923 1924 // Clean up dead instructions. 1925 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1926 // Check a post-condition. 1927 assert(L->isLCSSAForm(*DT) && 1928 "Indvars did not leave the loop in lcssa form!"); 1929 1930 // Verify that LFTR, and any other change have not interfered with SCEV's 1931 // ability to compute trip count. 1932 #ifndef NDEBUG 1933 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1934 SE->forgetLoop(L); 1935 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1936 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1937 SE->getTypeSizeInBits(NewBECount->getType())) 1938 NewBECount = SE->getTruncateOrNoop(NewBECount, 1939 BackedgeTakenCount->getType()); 1940 else 1941 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1942 NewBECount->getType()); 1943 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1944 } 1945 #endif 1946 1947 return Changed; 1948 } 1949