1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 bool Changed = false; 138 139 bool isValidRewrite(Value *FromVal, Value *ToVal); 140 141 void handleFloatingPointIV(Loop *L, PHINode *PH); 142 void rewriteNonIntegerIVs(Loop *L); 143 144 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 145 146 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 147 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 148 void rewriteFirstIterationLoopExitValues(Loop *L); 149 150 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 void sinkUnusedInvariants(Loop *L); 154 155 public: 156 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 157 const DataLayout &DL, TargetLibraryInfo *TLI, 158 TargetTransformInfo *TTI) 159 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 160 161 bool run(Loop *L); 162 }; 163 164 } // end anonymous namespace 165 166 /// Return true if the SCEV expansion generated by the rewriter can replace the 167 /// original value. SCEV guarantees that it produces the same value, but the way 168 /// it is produced may be illegal IR. Ideally, this function will only be 169 /// called for verification. 170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 171 // If an SCEV expression subsumed multiple pointers, its expansion could 172 // reassociate the GEP changing the base pointer. This is illegal because the 173 // final address produced by a GEP chain must be inbounds relative to its 174 // underlying object. Otherwise basic alias analysis, among other things, 175 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 176 // producing an expression involving multiple pointers. Until then, we must 177 // bail out here. 178 // 179 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 180 // because it understands lcssa phis while SCEV does not. 181 Value *FromPtr = FromVal; 182 Value *ToPtr = ToVal; 183 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 184 FromPtr = GEP->getPointerOperand(); 185 } 186 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 187 ToPtr = GEP->getPointerOperand(); 188 } 189 if (FromPtr != FromVal || ToPtr != ToVal) { 190 // Quickly check the common case 191 if (FromPtr == ToPtr) 192 return true; 193 194 // SCEV may have rewritten an expression that produces the GEP's pointer 195 // operand. That's ok as long as the pointer operand has the same base 196 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 197 // base of a recurrence. This handles the case in which SCEV expansion 198 // converts a pointer type recurrence into a nonrecurrent pointer base 199 // indexed by an integer recurrence. 200 201 // If the GEP base pointer is a vector of pointers, abort. 202 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 203 return false; 204 205 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 206 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 207 if (FromBase == ToBase) 208 return true; 209 210 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 211 << " != " << *ToBase << "\n"); 212 213 return false; 214 } 215 return true; 216 } 217 218 /// Determine the insertion point for this user. By default, insert immediately 219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 221 /// common dominator for the incoming blocks. 222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 223 DominatorTree *DT, LoopInfo *LI) { 224 PHINode *PHI = dyn_cast<PHINode>(User); 225 if (!PHI) 226 return User; 227 228 Instruction *InsertPt = nullptr; 229 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 230 if (PHI->getIncomingValue(i) != Def) 231 continue; 232 233 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 234 if (!InsertPt) { 235 InsertPt = InsertBB->getTerminator(); 236 continue; 237 } 238 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 239 InsertPt = InsertBB->getTerminator(); 240 } 241 assert(InsertPt && "Missing phi operand"); 242 243 auto *DefI = dyn_cast<Instruction>(Def); 244 if (!DefI) 245 return InsertPt; 246 247 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 248 249 auto *L = LI->getLoopFor(DefI->getParent()); 250 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 251 252 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 253 if (LI->getLoopFor(DTN->getBlock()) == L) 254 return DTN->getBlock()->getTerminator(); 255 256 llvm_unreachable("DefI dominates InsertPt!"); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 261 //===----------------------------------------------------------------------===// 262 263 /// Convert APF to an integer, if possible. 264 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 265 bool isExact = false; 266 // See if we can convert this to an int64_t 267 uint64_t UIntVal; 268 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 269 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 270 !isExact) 271 return false; 272 IntVal = UIntVal; 273 return true; 274 } 275 276 /// If the loop has floating induction variable then insert corresponding 277 /// integer induction variable if possible. 278 /// For example, 279 /// for(double i = 0; i < 10000; ++i) 280 /// bar(i) 281 /// is converted into 282 /// for(int i = 0; i < 10000; ++i) 283 /// bar((double)i); 284 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 285 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 286 unsigned BackEdge = IncomingEdge^1; 287 288 // Check incoming value. 289 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 290 291 int64_t InitValue; 292 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 293 return; 294 295 // Check IV increment. Reject this PN if increment operation is not 296 // an add or increment value can not be represented by an integer. 297 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 298 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 299 300 // If this is not an add of the PHI with a constantfp, or if the constant fp 301 // is not an integer, bail out. 302 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 303 int64_t IncValue; 304 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 305 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 306 return; 307 308 // Check Incr uses. One user is PN and the other user is an exit condition 309 // used by the conditional terminator. 310 Value::user_iterator IncrUse = Incr->user_begin(); 311 Instruction *U1 = cast<Instruction>(*IncrUse++); 312 if (IncrUse == Incr->user_end()) return; 313 Instruction *U2 = cast<Instruction>(*IncrUse++); 314 if (IncrUse != Incr->user_end()) return; 315 316 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 317 // only used by a branch, we can't transform it. 318 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 319 if (!Compare) 320 Compare = dyn_cast<FCmpInst>(U2); 321 if (!Compare || !Compare->hasOneUse() || 322 !isa<BranchInst>(Compare->user_back())) 323 return; 324 325 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 326 327 // We need to verify that the branch actually controls the iteration count 328 // of the loop. If not, the new IV can overflow and no one will notice. 329 // The branch block must be in the loop and one of the successors must be out 330 // of the loop. 331 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 332 if (!L->contains(TheBr->getParent()) || 333 (L->contains(TheBr->getSuccessor(0)) && 334 L->contains(TheBr->getSuccessor(1)))) 335 return; 336 337 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 338 // transform it. 339 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 340 int64_t ExitValue; 341 if (ExitValueVal == nullptr || 342 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 343 return; 344 345 // Find new predicate for integer comparison. 346 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 347 switch (Compare->getPredicate()) { 348 default: return; // Unknown comparison. 349 case CmpInst::FCMP_OEQ: 350 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 351 case CmpInst::FCMP_ONE: 352 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 353 case CmpInst::FCMP_OGT: 354 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 355 case CmpInst::FCMP_OGE: 356 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 357 case CmpInst::FCMP_OLT: 358 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 359 case CmpInst::FCMP_OLE: 360 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 361 } 362 363 // We convert the floating point induction variable to a signed i32 value if 364 // we can. This is only safe if the comparison will not overflow in a way 365 // that won't be trapped by the integer equivalent operations. Check for this 366 // now. 367 // TODO: We could use i64 if it is native and the range requires it. 368 369 // The start/stride/exit values must all fit in signed i32. 370 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 371 return; 372 373 // If not actually striding (add x, 0.0), avoid touching the code. 374 if (IncValue == 0) 375 return; 376 377 // Positive and negative strides have different safety conditions. 378 if (IncValue > 0) { 379 // If we have a positive stride, we require the init to be less than the 380 // exit value. 381 if (InitValue >= ExitValue) 382 return; 383 384 uint32_t Range = uint32_t(ExitValue-InitValue); 385 // Check for infinite loop, either: 386 // while (i <= Exit) or until (i > Exit) 387 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 388 if (++Range == 0) return; // Range overflows. 389 } 390 391 unsigned Leftover = Range % uint32_t(IncValue); 392 393 // If this is an equality comparison, we require that the strided value 394 // exactly land on the exit value, otherwise the IV condition will wrap 395 // around and do things the fp IV wouldn't. 396 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 397 Leftover != 0) 398 return; 399 400 // If the stride would wrap around the i32 before exiting, we can't 401 // transform the IV. 402 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 403 return; 404 } else { 405 // If we have a negative stride, we require the init to be greater than the 406 // exit value. 407 if (InitValue <= ExitValue) 408 return; 409 410 uint32_t Range = uint32_t(InitValue-ExitValue); 411 // Check for infinite loop, either: 412 // while (i >= Exit) or until (i < Exit) 413 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 414 if (++Range == 0) return; // Range overflows. 415 } 416 417 unsigned Leftover = Range % uint32_t(-IncValue); 418 419 // If this is an equality comparison, we require that the strided value 420 // exactly land on the exit value, otherwise the IV condition will wrap 421 // around and do things the fp IV wouldn't. 422 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 423 Leftover != 0) 424 return; 425 426 // If the stride would wrap around the i32 before exiting, we can't 427 // transform the IV. 428 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 429 return; 430 } 431 432 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 433 434 // Insert new integer induction variable. 435 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 436 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 437 PN->getIncomingBlock(IncomingEdge)); 438 439 Value *NewAdd = 440 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 441 Incr->getName()+".int", Incr); 442 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 443 444 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 445 ConstantInt::get(Int32Ty, ExitValue), 446 Compare->getName()); 447 448 // In the following deletions, PN may become dead and may be deleted. 449 // Use a WeakTrackingVH to observe whether this happens. 450 WeakTrackingVH WeakPH = PN; 451 452 // Delete the old floating point exit comparison. The branch starts using the 453 // new comparison. 454 NewCompare->takeName(Compare); 455 Compare->replaceAllUsesWith(NewCompare); 456 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 457 458 // Delete the old floating point increment. 459 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 460 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 461 462 // If the FP induction variable still has uses, this is because something else 463 // in the loop uses its value. In order to canonicalize the induction 464 // variable, we chose to eliminate the IV and rewrite it in terms of an 465 // int->fp cast. 466 // 467 // We give preference to sitofp over uitofp because it is faster on most 468 // platforms. 469 if (WeakPH) { 470 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 471 &*PN->getParent()->getFirstInsertionPt()); 472 PN->replaceAllUsesWith(Conv); 473 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 474 } 475 Changed = true; 476 } 477 478 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 479 // First step. Check to see if there are any floating-point recurrences. 480 // If there are, change them into integer recurrences, permitting analysis by 481 // the SCEV routines. 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakTrackingVH, 8> PHIs; 485 for (PHINode &PN : Header->phis()) 486 PHIs.push_back(&PN); 487 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 } 498 499 namespace { 500 501 // Collect information about PHI nodes which can be transformed in 502 // rewriteLoopExitValues. 503 struct RewritePhi { 504 PHINode *PN; 505 506 // Ith incoming value. 507 unsigned Ith; 508 509 // Exit value after expansion. 510 Value *Val; 511 512 // High Cost when expansion. 513 bool HighCost; 514 515 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 516 : PN(P), Ith(I), Val(V), HighCost(H) {} 517 }; 518 519 } // end anonymous namespace 520 521 //===----------------------------------------------------------------------===// 522 // rewriteLoopExitValues - Optimize IV users outside the loop. 523 // As a side effect, reduces the amount of IV processing within the loop. 524 //===----------------------------------------------------------------------===// 525 526 /// Check to see if this loop has a computable loop-invariant execution count. 527 /// If so, this means that we can compute the final value of any expressions 528 /// that are recurrent in the loop, and substitute the exit values from the loop 529 /// into any instructions outside of the loop that use the final values of the 530 /// current expressions. 531 /// 532 /// This is mostly redundant with the regular IndVarSimplify activities that 533 /// happen later, except that it's more powerful in some cases, because it's 534 /// able to brute-force evaluate arbitrary instructions as long as they have 535 /// constant operands at the beginning of the loop. 536 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 537 // Check a pre-condition. 538 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 539 "Indvars did not preserve LCSSA!"); 540 541 SmallVector<BasicBlock*, 8> ExitBlocks; 542 L->getUniqueExitBlocks(ExitBlocks); 543 544 SmallVector<RewritePhi, 8> RewritePhiSet; 545 // Find all values that are computed inside the loop, but used outside of it. 546 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 547 // the exit blocks of the loop to find them. 548 for (BasicBlock *ExitBB : ExitBlocks) { 549 // If there are no PHI nodes in this exit block, then no values defined 550 // inside the loop are used on this path, skip it. 551 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 552 if (!PN) continue; 553 554 unsigned NumPreds = PN->getNumIncomingValues(); 555 556 // Iterate over all of the PHI nodes. 557 BasicBlock::iterator BBI = ExitBB->begin(); 558 while ((PN = dyn_cast<PHINode>(BBI++))) { 559 if (PN->use_empty()) 560 continue; // dead use, don't replace it 561 562 if (!SE->isSCEVable(PN->getType())) 563 continue; 564 565 // It's necessary to tell ScalarEvolution about this explicitly so that 566 // it can walk the def-use list and forget all SCEVs, as it may not be 567 // watching the PHI itself. Once the new exit value is in place, there 568 // may not be a def-use connection between the loop and every instruction 569 // which got a SCEVAddRecExpr for that loop. 570 SE->forgetValue(PN); 571 572 // Iterate over all of the values in all the PHI nodes. 573 for (unsigned i = 0; i != NumPreds; ++i) { 574 // If the value being merged in is not integer or is not defined 575 // in the loop, skip it. 576 Value *InVal = PN->getIncomingValue(i); 577 if (!isa<Instruction>(InVal)) 578 continue; 579 580 // If this pred is for a subloop, not L itself, skip it. 581 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 582 continue; // The Block is in a subloop, skip it. 583 584 // Check that InVal is defined in the loop. 585 Instruction *Inst = cast<Instruction>(InVal); 586 if (!L->contains(Inst)) 587 continue; 588 589 // Okay, this instruction has a user outside of the current loop 590 // and varies predictably *inside* the loop. Evaluate the value it 591 // contains when the loop exits, if possible. 592 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 593 if (!SE->isLoopInvariant(ExitValue, L) || 594 !isSafeToExpand(ExitValue, *SE)) 595 continue; 596 597 // Computing the value outside of the loop brings no benefit if : 598 // - it is definitely used inside the loop in a way which can not be 599 // optimized away. 600 // - no use outside of the loop can take advantage of hoisting the 601 // computation out of the loop 602 if (ExitValue->getSCEVType()>=scMulExpr) { 603 unsigned NumHardInternalUses = 0; 604 unsigned NumSoftExternalUses = 0; 605 unsigned NumUses = 0; 606 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 607 IB != IE && NumUses <= 6; ++IB) { 608 Instruction *UseInstr = cast<Instruction>(*IB); 609 unsigned Opc = UseInstr->getOpcode(); 610 NumUses++; 611 if (L->contains(UseInstr)) { 612 if (Opc == Instruction::Call) 613 NumHardInternalUses++; 614 } else { 615 if (Opc == Instruction::PHI) { 616 // Do not count the Phi as a use. LCSSA may have inserted 617 // plenty of trivial ones. 618 NumUses--; 619 for (auto PB = UseInstr->user_begin(), 620 PE = UseInstr->user_end(); 621 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 622 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 623 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 624 NumSoftExternalUses++; 625 } 626 continue; 627 } 628 if (Opc != Instruction::Call && Opc != Instruction::Ret) 629 NumSoftExternalUses++; 630 } 631 } 632 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 633 continue; 634 } 635 636 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 637 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 638 639 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 640 << '\n' 641 << " LoopVal = " << *Inst << "\n"); 642 643 if (!isValidRewrite(Inst, ExitVal)) { 644 DeadInsts.push_back(ExitVal); 645 continue; 646 } 647 648 #ifndef NDEBUG 649 // If we reuse an instruction from a loop which is neither L nor one of 650 // its containing loops, we end up breaking LCSSA form for this loop by 651 // creating a new use of its instruction. 652 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 653 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 654 if (EVL != L) 655 assert(EVL->contains(L) && "LCSSA breach detected!"); 656 #endif 657 658 // Collect all the candidate PHINodes to be rewritten. 659 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 660 } 661 } 662 } 663 664 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 665 666 // Transformation. 667 for (const RewritePhi &Phi : RewritePhiSet) { 668 PHINode *PN = Phi.PN; 669 Value *ExitVal = Phi.Val; 670 671 // Only do the rewrite when the ExitValue can be expanded cheaply. 672 // If LoopCanBeDel is true, rewrite exit value aggressively. 673 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 674 DeadInsts.push_back(ExitVal); 675 continue; 676 } 677 678 Changed = true; 679 ++NumReplaced; 680 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 681 PN->setIncomingValue(Phi.Ith, ExitVal); 682 683 // If this instruction is dead now, delete it. Don't do it now to avoid 684 // invalidating iterators. 685 if (isInstructionTriviallyDead(Inst, TLI)) 686 DeadInsts.push_back(Inst); 687 688 // Replace PN with ExitVal if that is legal and does not break LCSSA. 689 if (PN->getNumIncomingValues() == 1 && 690 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 691 PN->replaceAllUsesWith(ExitVal); 692 PN->eraseFromParent(); 693 } 694 } 695 696 // The insertion point instruction may have been deleted; clear it out 697 // so that the rewriter doesn't trip over it later. 698 Rewriter.clearInsertPoint(); 699 } 700 701 //===---------------------------------------------------------------------===// 702 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 703 // they will exit at the first iteration. 704 //===---------------------------------------------------------------------===// 705 706 /// Check to see if this loop has loop invariant conditions which lead to loop 707 /// exits. If so, we know that if the exit path is taken, it is at the first 708 /// loop iteration. This lets us predict exit values of PHI nodes that live in 709 /// loop header. 710 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 711 // Verify the input to the pass is already in LCSSA form. 712 assert(L->isLCSSAForm(*DT)); 713 714 SmallVector<BasicBlock *, 8> ExitBlocks; 715 L->getUniqueExitBlocks(ExitBlocks); 716 auto *LoopHeader = L->getHeader(); 717 assert(LoopHeader && "Invalid loop"); 718 719 for (auto *ExitBB : ExitBlocks) { 720 // If there are no more PHI nodes in this exit block, then no more 721 // values defined inside the loop are used on this path. 722 for (PHINode &PN : ExitBB->phis()) { 723 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 724 IncomingValIdx != E; ++IncomingValIdx) { 725 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 726 727 // We currently only support loop exits from loop header. If the 728 // incoming block is not loop header, we need to recursively check 729 // all conditions starting from loop header are loop invariants. 730 // Additional support might be added in the future. 731 if (IncomingBB != LoopHeader) 732 continue; 733 734 // Get condition that leads to the exit path. 735 auto *TermInst = IncomingBB->getTerminator(); 736 737 Value *Cond = nullptr; 738 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 739 // Must be a conditional branch, otherwise the block 740 // should not be in the loop. 741 Cond = BI->getCondition(); 742 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 743 Cond = SI->getCondition(); 744 else 745 continue; 746 747 if (!L->isLoopInvariant(Cond)) 748 continue; 749 750 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 751 752 // Only deal with PHIs. 753 if (!ExitVal) 754 continue; 755 756 // If ExitVal is a PHI on the loop header, then we know its 757 // value along this exit because the exit can only be taken 758 // on the first iteration. 759 auto *LoopPreheader = L->getLoopPreheader(); 760 assert(LoopPreheader && "Invalid loop"); 761 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 762 if (PreheaderIdx != -1) { 763 assert(ExitVal->getParent() == LoopHeader && 764 "ExitVal must be in loop header"); 765 PN.setIncomingValue(IncomingValIdx, 766 ExitVal->getIncomingValue(PreheaderIdx)); 767 } 768 } 769 } 770 } 771 } 772 773 /// Check whether it is possible to delete the loop after rewriting exit 774 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 775 /// aggressively. 776 bool IndVarSimplify::canLoopBeDeleted( 777 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 778 BasicBlock *Preheader = L->getLoopPreheader(); 779 // If there is no preheader, the loop will not be deleted. 780 if (!Preheader) 781 return false; 782 783 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 784 // We obviate multiple ExitingBlocks case for simplicity. 785 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 786 // after exit value rewriting, we can enhance the logic here. 787 SmallVector<BasicBlock *, 4> ExitingBlocks; 788 L->getExitingBlocks(ExitingBlocks); 789 SmallVector<BasicBlock *, 8> ExitBlocks; 790 L->getUniqueExitBlocks(ExitBlocks); 791 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 792 return false; 793 794 BasicBlock *ExitBlock = ExitBlocks[0]; 795 BasicBlock::iterator BI = ExitBlock->begin(); 796 while (PHINode *P = dyn_cast<PHINode>(BI)) { 797 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 798 799 // If the Incoming value of P is found in RewritePhiSet, we know it 800 // could be rewritten to use a loop invariant value in transformation 801 // phase later. Skip it in the loop invariant check below. 802 bool found = false; 803 for (const RewritePhi &Phi : RewritePhiSet) { 804 unsigned i = Phi.Ith; 805 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 806 found = true; 807 break; 808 } 809 } 810 811 Instruction *I; 812 if (!found && (I = dyn_cast<Instruction>(Incoming))) 813 if (!L->hasLoopInvariantOperands(I)) 814 return false; 815 816 ++BI; 817 } 818 819 for (auto *BB : L->blocks()) 820 if (llvm::any_of(*BB, [](Instruction &I) { 821 return I.mayHaveSideEffects(); 822 })) 823 return false; 824 825 return true; 826 } 827 828 //===----------------------------------------------------------------------===// 829 // IV Widening - Extend the width of an IV to cover its widest uses. 830 //===----------------------------------------------------------------------===// 831 832 namespace { 833 834 // Collect information about induction variables that are used by sign/zero 835 // extend operations. This information is recorded by CollectExtend and provides 836 // the input to WidenIV. 837 struct WideIVInfo { 838 PHINode *NarrowIV = nullptr; 839 840 // Widest integer type created [sz]ext 841 Type *WidestNativeType = nullptr; 842 843 // Was a sext user seen before a zext? 844 bool IsSigned = false; 845 }; 846 847 } // end anonymous namespace 848 849 /// Update information about the induction variable that is extended by this 850 /// sign or zero extend operation. This is used to determine the final width of 851 /// the IV before actually widening it. 852 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 853 const TargetTransformInfo *TTI) { 854 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 855 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 856 return; 857 858 Type *Ty = Cast->getType(); 859 uint64_t Width = SE->getTypeSizeInBits(Ty); 860 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 861 return; 862 863 // Check that `Cast` actually extends the induction variable (we rely on this 864 // later). This takes care of cases where `Cast` is extending a truncation of 865 // the narrow induction variable, and thus can end up being narrower than the 866 // "narrow" induction variable. 867 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 868 if (NarrowIVWidth >= Width) 869 return; 870 871 // Cast is either an sext or zext up to this point. 872 // We should not widen an indvar if arithmetics on the wider indvar are more 873 // expensive than those on the narrower indvar. We check only the cost of ADD 874 // because at least an ADD is required to increment the induction variable. We 875 // could compute more comprehensively the cost of all instructions on the 876 // induction variable when necessary. 877 if (TTI && 878 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 879 TTI->getArithmeticInstrCost(Instruction::Add, 880 Cast->getOperand(0)->getType())) { 881 return; 882 } 883 884 if (!WI.WidestNativeType) { 885 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 886 WI.IsSigned = IsSigned; 887 return; 888 } 889 890 // We extend the IV to satisfy the sign of its first user, arbitrarily. 891 if (WI.IsSigned != IsSigned) 892 return; 893 894 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 895 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 896 } 897 898 namespace { 899 900 /// Record a link in the Narrow IV def-use chain along with the WideIV that 901 /// computes the same value as the Narrow IV def. This avoids caching Use* 902 /// pointers. 903 struct NarrowIVDefUse { 904 Instruction *NarrowDef = nullptr; 905 Instruction *NarrowUse = nullptr; 906 Instruction *WideDef = nullptr; 907 908 // True if the narrow def is never negative. Tracking this information lets 909 // us use a sign extension instead of a zero extension or vice versa, when 910 // profitable and legal. 911 bool NeverNegative = false; 912 913 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 914 bool NeverNegative) 915 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 916 NeverNegative(NeverNegative) {} 917 }; 918 919 /// The goal of this transform is to remove sign and zero extends without 920 /// creating any new induction variables. To do this, it creates a new phi of 921 /// the wider type and redirects all users, either removing extends or inserting 922 /// truncs whenever we stop propagating the type. 923 class WidenIV { 924 // Parameters 925 PHINode *OrigPhi; 926 Type *WideType; 927 928 // Context 929 LoopInfo *LI; 930 Loop *L; 931 ScalarEvolution *SE; 932 DominatorTree *DT; 933 934 // Does the module have any calls to the llvm.experimental.guard intrinsic 935 // at all? If not we can avoid scanning instructions looking for guards. 936 bool HasGuards; 937 938 // Result 939 PHINode *WidePhi = nullptr; 940 Instruction *WideInc = nullptr; 941 const SCEV *WideIncExpr = nullptr; 942 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 943 944 SmallPtrSet<Instruction *,16> Widened; 945 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 946 947 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 948 949 // A map tracking the kind of extension used to widen each narrow IV 950 // and narrow IV user. 951 // Key: pointer to a narrow IV or IV user. 952 // Value: the kind of extension used to widen this Instruction. 953 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 954 955 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 956 957 // A map with control-dependent ranges for post increment IV uses. The key is 958 // a pair of IV def and a use of this def denoting the context. The value is 959 // a ConstantRange representing possible values of the def at the given 960 // context. 961 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 962 963 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 964 Instruction *UseI) { 965 DefUserPair Key(Def, UseI); 966 auto It = PostIncRangeInfos.find(Key); 967 return It == PostIncRangeInfos.end() 968 ? Optional<ConstantRange>(None) 969 : Optional<ConstantRange>(It->second); 970 } 971 972 void calculatePostIncRanges(PHINode *OrigPhi); 973 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 974 975 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 976 DefUserPair Key(Def, UseI); 977 auto It = PostIncRangeInfos.find(Key); 978 if (It == PostIncRangeInfos.end()) 979 PostIncRangeInfos.insert({Key, R}); 980 else 981 It->second = R.intersectWith(It->second); 982 } 983 984 public: 985 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 986 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 987 bool HasGuards) 988 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 989 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 990 HasGuards(HasGuards), DeadInsts(DI) { 991 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 992 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 993 } 994 995 PHINode *createWideIV(SCEVExpander &Rewriter); 996 997 protected: 998 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 999 Instruction *Use); 1000 1001 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1002 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1003 const SCEVAddRecExpr *WideAR); 1004 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1005 1006 ExtendKind getExtendKind(Instruction *I); 1007 1008 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1009 1010 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1011 1012 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1013 1014 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1015 unsigned OpCode) const; 1016 1017 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1018 1019 bool widenLoopCompare(NarrowIVDefUse DU); 1020 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1021 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1022 1023 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1024 }; 1025 1026 } // end anonymous namespace 1027 1028 /// Perform a quick domtree based check for loop invariance assuming that V is 1029 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1030 /// purpose. 1031 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1032 Instruction *Inst = dyn_cast<Instruction>(V); 1033 if (!Inst) 1034 return true; 1035 1036 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1037 } 1038 1039 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1040 bool IsSigned, Instruction *Use) { 1041 // Set the debug location and conservative insertion point. 1042 IRBuilder<> Builder(Use); 1043 // Hoist the insertion point into loop preheaders as far as possible. 1044 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1045 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1046 L = L->getParentLoop()) 1047 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1048 1049 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1050 Builder.CreateZExt(NarrowOper, WideType); 1051 } 1052 1053 /// Instantiate a wide operation to replace a narrow operation. This only needs 1054 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1055 /// 0 for any operation we decide not to clone. 1056 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1057 const SCEVAddRecExpr *WideAR) { 1058 unsigned Opcode = DU.NarrowUse->getOpcode(); 1059 switch (Opcode) { 1060 default: 1061 return nullptr; 1062 case Instruction::Add: 1063 case Instruction::Mul: 1064 case Instruction::UDiv: 1065 case Instruction::Sub: 1066 return cloneArithmeticIVUser(DU, WideAR); 1067 1068 case Instruction::And: 1069 case Instruction::Or: 1070 case Instruction::Xor: 1071 case Instruction::Shl: 1072 case Instruction::LShr: 1073 case Instruction::AShr: 1074 return cloneBitwiseIVUser(DU); 1075 } 1076 } 1077 1078 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1079 Instruction *NarrowUse = DU.NarrowUse; 1080 Instruction *NarrowDef = DU.NarrowDef; 1081 Instruction *WideDef = DU.WideDef; 1082 1083 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1084 1085 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1086 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1087 // invariant and will be folded or hoisted. If it actually comes from a 1088 // widened IV, it should be removed during a future call to widenIVUse. 1089 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1090 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1091 ? WideDef 1092 : createExtendInst(NarrowUse->getOperand(0), WideType, 1093 IsSigned, NarrowUse); 1094 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1095 ? WideDef 1096 : createExtendInst(NarrowUse->getOperand(1), WideType, 1097 IsSigned, NarrowUse); 1098 1099 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1100 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1101 NarrowBO->getName()); 1102 IRBuilder<> Builder(NarrowUse); 1103 Builder.Insert(WideBO); 1104 WideBO->copyIRFlags(NarrowBO); 1105 return WideBO; 1106 } 1107 1108 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1109 const SCEVAddRecExpr *WideAR) { 1110 Instruction *NarrowUse = DU.NarrowUse; 1111 Instruction *NarrowDef = DU.NarrowDef; 1112 Instruction *WideDef = DU.WideDef; 1113 1114 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1115 1116 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1117 1118 // We're trying to find X such that 1119 // 1120 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1121 // 1122 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1123 // and check using SCEV if any of them are correct. 1124 1125 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1126 // correct solution to X. 1127 auto GuessNonIVOperand = [&](bool SignExt) { 1128 const SCEV *WideLHS; 1129 const SCEV *WideRHS; 1130 1131 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1132 if (SignExt) 1133 return SE->getSignExtendExpr(S, Ty); 1134 return SE->getZeroExtendExpr(S, Ty); 1135 }; 1136 1137 if (IVOpIdx == 0) { 1138 WideLHS = SE->getSCEV(WideDef); 1139 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1140 WideRHS = GetExtend(NarrowRHS, WideType); 1141 } else { 1142 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1143 WideLHS = GetExtend(NarrowLHS, WideType); 1144 WideRHS = SE->getSCEV(WideDef); 1145 } 1146 1147 // WideUse is "WideDef `op.wide` X" as described in the comment. 1148 const SCEV *WideUse = nullptr; 1149 1150 switch (NarrowUse->getOpcode()) { 1151 default: 1152 llvm_unreachable("No other possibility!"); 1153 1154 case Instruction::Add: 1155 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1156 break; 1157 1158 case Instruction::Mul: 1159 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1160 break; 1161 1162 case Instruction::UDiv: 1163 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1164 break; 1165 1166 case Instruction::Sub: 1167 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1168 break; 1169 } 1170 1171 return WideUse == WideAR; 1172 }; 1173 1174 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1175 if (!GuessNonIVOperand(SignExtend)) { 1176 SignExtend = !SignExtend; 1177 if (!GuessNonIVOperand(SignExtend)) 1178 return nullptr; 1179 } 1180 1181 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1182 ? WideDef 1183 : createExtendInst(NarrowUse->getOperand(0), WideType, 1184 SignExtend, NarrowUse); 1185 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1186 ? WideDef 1187 : createExtendInst(NarrowUse->getOperand(1), WideType, 1188 SignExtend, NarrowUse); 1189 1190 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1191 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1192 NarrowBO->getName()); 1193 1194 IRBuilder<> Builder(NarrowUse); 1195 Builder.Insert(WideBO); 1196 WideBO->copyIRFlags(NarrowBO); 1197 return WideBO; 1198 } 1199 1200 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1201 auto It = ExtendKindMap.find(I); 1202 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1203 return It->second; 1204 } 1205 1206 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1207 unsigned OpCode) const { 1208 if (OpCode == Instruction::Add) 1209 return SE->getAddExpr(LHS, RHS); 1210 if (OpCode == Instruction::Sub) 1211 return SE->getMinusSCEV(LHS, RHS); 1212 if (OpCode == Instruction::Mul) 1213 return SE->getMulExpr(LHS, RHS); 1214 1215 llvm_unreachable("Unsupported opcode."); 1216 } 1217 1218 /// No-wrap operations can transfer sign extension of their result to their 1219 /// operands. Generate the SCEV value for the widened operation without 1220 /// actually modifying the IR yet. If the expression after extending the 1221 /// operands is an AddRec for this loop, return the AddRec and the kind of 1222 /// extension used. 1223 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1224 // Handle the common case of add<nsw/nuw> 1225 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1226 // Only Add/Sub/Mul instructions supported yet. 1227 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1228 OpCode != Instruction::Mul) 1229 return {nullptr, Unknown}; 1230 1231 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1232 // if extending the other will lead to a recurrence. 1233 const unsigned ExtendOperIdx = 1234 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1235 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1236 1237 const SCEV *ExtendOperExpr = nullptr; 1238 const OverflowingBinaryOperator *OBO = 1239 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1240 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1241 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1242 ExtendOperExpr = SE->getSignExtendExpr( 1243 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1244 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1245 ExtendOperExpr = SE->getZeroExtendExpr( 1246 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1247 else 1248 return {nullptr, Unknown}; 1249 1250 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1251 // flags. This instruction may be guarded by control flow that the no-wrap 1252 // behavior depends on. Non-control-equivalent instructions can be mapped to 1253 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1254 // semantics to those operations. 1255 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1256 const SCEV *rhs = ExtendOperExpr; 1257 1258 // Let's swap operands to the initial order for the case of non-commutative 1259 // operations, like SUB. See PR21014. 1260 if (ExtendOperIdx == 0) 1261 std::swap(lhs, rhs); 1262 const SCEVAddRecExpr *AddRec = 1263 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1264 1265 if (!AddRec || AddRec->getLoop() != L) 1266 return {nullptr, Unknown}; 1267 1268 return {AddRec, ExtKind}; 1269 } 1270 1271 /// Is this instruction potentially interesting for further simplification after 1272 /// widening it's type? In other words, can the extend be safely hoisted out of 1273 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1274 /// so, return the extended recurrence and the kind of extension used. Otherwise 1275 /// return {nullptr, Unknown}. 1276 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1277 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1278 return {nullptr, Unknown}; 1279 1280 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1281 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1282 SE->getTypeSizeInBits(WideType)) { 1283 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1284 // index. So don't follow this use. 1285 return {nullptr, Unknown}; 1286 } 1287 1288 const SCEV *WideExpr; 1289 ExtendKind ExtKind; 1290 if (DU.NeverNegative) { 1291 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1292 if (isa<SCEVAddRecExpr>(WideExpr)) 1293 ExtKind = SignExtended; 1294 else { 1295 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1296 ExtKind = ZeroExtended; 1297 } 1298 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1299 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1300 ExtKind = SignExtended; 1301 } else { 1302 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1303 ExtKind = ZeroExtended; 1304 } 1305 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1306 if (!AddRec || AddRec->getLoop() != L) 1307 return {nullptr, Unknown}; 1308 return {AddRec, ExtKind}; 1309 } 1310 1311 /// This IV user cannot be widen. Replace this use of the original narrow IV 1312 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1313 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1314 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1315 << *DU.NarrowUse << "\n"); 1316 IRBuilder<> Builder( 1317 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1318 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1319 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1320 } 1321 1322 /// If the narrow use is a compare instruction, then widen the compare 1323 // (and possibly the other operand). The extend operation is hoisted into the 1324 // loop preheader as far as possible. 1325 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1326 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1327 if (!Cmp) 1328 return false; 1329 1330 // We can legally widen the comparison in the following two cases: 1331 // 1332 // - The signedness of the IV extension and comparison match 1333 // 1334 // - The narrow IV is always positive (and thus its sign extension is equal 1335 // to its zero extension). For instance, let's say we're zero extending 1336 // %narrow for the following use 1337 // 1338 // icmp slt i32 %narrow, %val ... (A) 1339 // 1340 // and %narrow is always positive. Then 1341 // 1342 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1343 // == icmp slt i32 zext(%narrow), sext(%val) 1344 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1345 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1346 return false; 1347 1348 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1349 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1350 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1351 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1352 1353 // Widen the compare instruction. 1354 IRBuilder<> Builder( 1355 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1356 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1357 1358 // Widen the other operand of the compare, if necessary. 1359 if (CastWidth < IVWidth) { 1360 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1361 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1362 } 1363 return true; 1364 } 1365 1366 /// If the narrow use is an instruction whose two operands are the defining 1367 /// instruction of DU and a load instruction, then we have the following: 1368 /// if the load is hoisted outside the loop, then we do not reach this function 1369 /// as scalar evolution analysis works fine in widenIVUse with variables 1370 /// hoisted outside the loop and efficient code is subsequently generated by 1371 /// not emitting truncate instructions. But when the load is not hoisted 1372 /// (whether due to limitation in alias analysis or due to a true legality), 1373 /// then scalar evolution can not proceed with loop variant values and 1374 /// inefficient code is generated. This function handles the non-hoisted load 1375 /// special case by making the optimization generate the same type of code for 1376 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1377 /// instruction). This special case is important especially when the induction 1378 /// variables are affecting addressing mode in code generation. 1379 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1380 Instruction *NarrowUse = DU.NarrowUse; 1381 Instruction *NarrowDef = DU.NarrowDef; 1382 Instruction *WideDef = DU.WideDef; 1383 1384 // Handle the common case of add<nsw/nuw> 1385 const unsigned OpCode = NarrowUse->getOpcode(); 1386 // Only Add/Sub/Mul instructions are supported. 1387 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1388 OpCode != Instruction::Mul) 1389 return false; 1390 1391 // The operand that is not defined by NarrowDef of DU. Let's call it the 1392 // other operand. 1393 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1394 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1395 "bad DU"); 1396 1397 const SCEV *ExtendOperExpr = nullptr; 1398 const OverflowingBinaryOperator *OBO = 1399 cast<OverflowingBinaryOperator>(NarrowUse); 1400 ExtendKind ExtKind = getExtendKind(NarrowDef); 1401 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1402 ExtendOperExpr = SE->getSignExtendExpr( 1403 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1404 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1405 ExtendOperExpr = SE->getZeroExtendExpr( 1406 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1407 else 1408 return false; 1409 1410 // We are interested in the other operand being a load instruction. 1411 // But, we should look into relaxing this restriction later on. 1412 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1413 if (I && I->getOpcode() != Instruction::Load) 1414 return false; 1415 1416 // Verifying that Defining operand is an AddRec 1417 const SCEV *Op1 = SE->getSCEV(WideDef); 1418 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1419 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1420 return false; 1421 // Verifying that other operand is an Extend. 1422 if (ExtKind == SignExtended) { 1423 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1424 return false; 1425 } else { 1426 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1427 return false; 1428 } 1429 1430 if (ExtKind == SignExtended) { 1431 for (Use &U : NarrowUse->uses()) { 1432 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1433 if (!User || User->getType() != WideType) 1434 return false; 1435 } 1436 } else { // ExtKind == ZeroExtended 1437 for (Use &U : NarrowUse->uses()) { 1438 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1439 if (!User || User->getType() != WideType) 1440 return false; 1441 } 1442 } 1443 1444 return true; 1445 } 1446 1447 /// Special Case for widening with variant Loads (see 1448 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1449 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1450 Instruction *NarrowUse = DU.NarrowUse; 1451 Instruction *NarrowDef = DU.NarrowDef; 1452 Instruction *WideDef = DU.WideDef; 1453 1454 ExtendKind ExtKind = getExtendKind(NarrowDef); 1455 1456 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1457 1458 // Generating a widening use instruction. 1459 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1460 ? WideDef 1461 : createExtendInst(NarrowUse->getOperand(0), WideType, 1462 ExtKind, NarrowUse); 1463 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1464 ? WideDef 1465 : createExtendInst(NarrowUse->getOperand(1), WideType, 1466 ExtKind, NarrowUse); 1467 1468 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1469 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1470 NarrowBO->getName()); 1471 IRBuilder<> Builder(NarrowUse); 1472 Builder.Insert(WideBO); 1473 WideBO->copyIRFlags(NarrowBO); 1474 1475 if (ExtKind == SignExtended) 1476 ExtendKindMap[NarrowUse] = SignExtended; 1477 else 1478 ExtendKindMap[NarrowUse] = ZeroExtended; 1479 1480 // Update the Use. 1481 if (ExtKind == SignExtended) { 1482 for (Use &U : NarrowUse->uses()) { 1483 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1484 if (User && User->getType() == WideType) { 1485 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1486 << *WideBO << "\n"); 1487 ++NumElimExt; 1488 User->replaceAllUsesWith(WideBO); 1489 DeadInsts.emplace_back(User); 1490 } 1491 } 1492 } else { // ExtKind == ZeroExtended 1493 for (Use &U : NarrowUse->uses()) { 1494 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1495 if (User && User->getType() == WideType) { 1496 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1497 << *WideBO << "\n"); 1498 ++NumElimExt; 1499 User->replaceAllUsesWith(WideBO); 1500 DeadInsts.emplace_back(User); 1501 } 1502 } 1503 } 1504 } 1505 1506 /// Determine whether an individual user of the narrow IV can be widened. If so, 1507 /// return the wide clone of the user. 1508 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1509 assert(ExtendKindMap.count(DU.NarrowDef) && 1510 "Should already know the kind of extension used to widen NarrowDef"); 1511 1512 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1513 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1514 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1515 // For LCSSA phis, sink the truncate outside the loop. 1516 // After SimplifyCFG most loop exit targets have a single predecessor. 1517 // Otherwise fall back to a truncate within the loop. 1518 if (UsePhi->getNumOperands() != 1) 1519 truncateIVUse(DU, DT, LI); 1520 else { 1521 // Widening the PHI requires us to insert a trunc. The logical place 1522 // for this trunc is in the same BB as the PHI. This is not possible if 1523 // the BB is terminated by a catchswitch. 1524 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1525 return nullptr; 1526 1527 PHINode *WidePhi = 1528 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1529 UsePhi); 1530 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1531 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1532 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1533 UsePhi->replaceAllUsesWith(Trunc); 1534 DeadInsts.emplace_back(UsePhi); 1535 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1536 << *WidePhi << "\n"); 1537 } 1538 return nullptr; 1539 } 1540 } 1541 1542 // This narrow use can be widened by a sext if it's non-negative or its narrow 1543 // def was widended by a sext. Same for zext. 1544 auto canWidenBySExt = [&]() { 1545 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1546 }; 1547 auto canWidenByZExt = [&]() { 1548 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1549 }; 1550 1551 // Our raison d'etre! Eliminate sign and zero extension. 1552 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1553 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1554 Value *NewDef = DU.WideDef; 1555 if (DU.NarrowUse->getType() != WideType) { 1556 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1557 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1558 if (CastWidth < IVWidth) { 1559 // The cast isn't as wide as the IV, so insert a Trunc. 1560 IRBuilder<> Builder(DU.NarrowUse); 1561 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1562 } 1563 else { 1564 // A wider extend was hidden behind a narrower one. This may induce 1565 // another round of IV widening in which the intermediate IV becomes 1566 // dead. It should be very rare. 1567 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1568 << " not wide enough to subsume " << *DU.NarrowUse 1569 << "\n"); 1570 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1571 NewDef = DU.NarrowUse; 1572 } 1573 } 1574 if (NewDef != DU.NarrowUse) { 1575 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1576 << " replaced by " << *DU.WideDef << "\n"); 1577 ++NumElimExt; 1578 DU.NarrowUse->replaceAllUsesWith(NewDef); 1579 DeadInsts.emplace_back(DU.NarrowUse); 1580 } 1581 // Now that the extend is gone, we want to expose it's uses for potential 1582 // further simplification. We don't need to directly inform SimplifyIVUsers 1583 // of the new users, because their parent IV will be processed later as a 1584 // new loop phi. If we preserved IVUsers analysis, we would also want to 1585 // push the uses of WideDef here. 1586 1587 // No further widening is needed. The deceased [sz]ext had done it for us. 1588 return nullptr; 1589 } 1590 1591 // Does this user itself evaluate to a recurrence after widening? 1592 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1593 if (!WideAddRec.first) 1594 WideAddRec = getWideRecurrence(DU); 1595 1596 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1597 if (!WideAddRec.first) { 1598 // If use is a loop condition, try to promote the condition instead of 1599 // truncating the IV first. 1600 if (widenLoopCompare(DU)) 1601 return nullptr; 1602 1603 // We are here about to generate a truncate instruction that may hurt 1604 // performance because the scalar evolution expression computed earlier 1605 // in WideAddRec.first does not indicate a polynomial induction expression. 1606 // In that case, look at the operands of the use instruction to determine 1607 // if we can still widen the use instead of truncating its operand. 1608 if (widenWithVariantLoadUse(DU)) { 1609 widenWithVariantLoadUseCodegen(DU); 1610 return nullptr; 1611 } 1612 1613 // This user does not evaluate to a recurrence after widening, so don't 1614 // follow it. Instead insert a Trunc to kill off the original use, 1615 // eventually isolating the original narrow IV so it can be removed. 1616 truncateIVUse(DU, DT, LI); 1617 return nullptr; 1618 } 1619 // Assume block terminators cannot evaluate to a recurrence. We can't to 1620 // insert a Trunc after a terminator if there happens to be a critical edge. 1621 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1622 "SCEV is not expected to evaluate a block terminator"); 1623 1624 // Reuse the IV increment that SCEVExpander created as long as it dominates 1625 // NarrowUse. 1626 Instruction *WideUse = nullptr; 1627 if (WideAddRec.first == WideIncExpr && 1628 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1629 WideUse = WideInc; 1630 else { 1631 WideUse = cloneIVUser(DU, WideAddRec.first); 1632 if (!WideUse) 1633 return nullptr; 1634 } 1635 // Evaluation of WideAddRec ensured that the narrow expression could be 1636 // extended outside the loop without overflow. This suggests that the wide use 1637 // evaluates to the same expression as the extended narrow use, but doesn't 1638 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1639 // where it fails, we simply throw away the newly created wide use. 1640 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1641 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1642 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1643 << "\n"); 1644 DeadInsts.emplace_back(WideUse); 1645 return nullptr; 1646 } 1647 1648 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1649 // Returning WideUse pushes it on the worklist. 1650 return WideUse; 1651 } 1652 1653 /// Add eligible users of NarrowDef to NarrowIVUsers. 1654 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1655 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1656 bool NonNegativeDef = 1657 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1658 SE->getConstant(NarrowSCEV->getType(), 0)); 1659 for (User *U : NarrowDef->users()) { 1660 Instruction *NarrowUser = cast<Instruction>(U); 1661 1662 // Handle data flow merges and bizarre phi cycles. 1663 if (!Widened.insert(NarrowUser).second) 1664 continue; 1665 1666 bool NonNegativeUse = false; 1667 if (!NonNegativeDef) { 1668 // We might have a control-dependent range information for this context. 1669 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1670 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1671 } 1672 1673 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1674 NonNegativeDef || NonNegativeUse); 1675 } 1676 } 1677 1678 /// Process a single induction variable. First use the SCEVExpander to create a 1679 /// wide induction variable that evaluates to the same recurrence as the 1680 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1681 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1682 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1683 /// 1684 /// It would be simpler to delete uses as they are processed, but we must avoid 1685 /// invalidating SCEV expressions. 1686 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1687 // Is this phi an induction variable? 1688 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1689 if (!AddRec) 1690 return nullptr; 1691 1692 // Widen the induction variable expression. 1693 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1694 ? SE->getSignExtendExpr(AddRec, WideType) 1695 : SE->getZeroExtendExpr(AddRec, WideType); 1696 1697 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1698 "Expect the new IV expression to preserve its type"); 1699 1700 // Can the IV be extended outside the loop without overflow? 1701 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1702 if (!AddRec || AddRec->getLoop() != L) 1703 return nullptr; 1704 1705 // An AddRec must have loop-invariant operands. Since this AddRec is 1706 // materialized by a loop header phi, the expression cannot have any post-loop 1707 // operands, so they must dominate the loop header. 1708 assert( 1709 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1710 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1711 "Loop header phi recurrence inputs do not dominate the loop"); 1712 1713 // Iterate over IV uses (including transitive ones) looking for IV increments 1714 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1715 // the increment calculate control-dependent range information basing on 1716 // dominating conditions inside of the loop (e.g. a range check inside of the 1717 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1718 // 1719 // Control-dependent range information is later used to prove that a narrow 1720 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1721 // this on demand because when pushNarrowIVUsers needs this information some 1722 // of the dominating conditions might be already widened. 1723 if (UsePostIncrementRanges) 1724 calculatePostIncRanges(OrigPhi); 1725 1726 // The rewriter provides a value for the desired IV expression. This may 1727 // either find an existing phi or materialize a new one. Either way, we 1728 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1729 // of the phi-SCC dominates the loop entry. 1730 Instruction *InsertPt = &L->getHeader()->front(); 1731 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1732 1733 // Remembering the WideIV increment generated by SCEVExpander allows 1734 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1735 // employ a general reuse mechanism because the call above is the only call to 1736 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1737 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1738 WideInc = 1739 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1740 WideIncExpr = SE->getSCEV(WideInc); 1741 // Propagate the debug location associated with the original loop increment 1742 // to the new (widened) increment. 1743 auto *OrigInc = 1744 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1745 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1746 } 1747 1748 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1749 ++NumWidened; 1750 1751 // Traverse the def-use chain using a worklist starting at the original IV. 1752 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1753 1754 Widened.insert(OrigPhi); 1755 pushNarrowIVUsers(OrigPhi, WidePhi); 1756 1757 while (!NarrowIVUsers.empty()) { 1758 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1759 1760 // Process a def-use edge. This may replace the use, so don't hold a 1761 // use_iterator across it. 1762 Instruction *WideUse = widenIVUse(DU, Rewriter); 1763 1764 // Follow all def-use edges from the previous narrow use. 1765 if (WideUse) 1766 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1767 1768 // widenIVUse may have removed the def-use edge. 1769 if (DU.NarrowDef->use_empty()) 1770 DeadInsts.emplace_back(DU.NarrowDef); 1771 } 1772 1773 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1774 // evaluate the same recurrence, we can just copy the debug info over. 1775 SmallVector<DbgValueInst *, 1> DbgValues; 1776 llvm::findDbgValues(DbgValues, OrigPhi); 1777 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1778 ValueAsMetadata::get(WidePhi)); 1779 for (auto &DbgValue : DbgValues) 1780 DbgValue->setOperand(0, MDPhi); 1781 return WidePhi; 1782 } 1783 1784 /// Calculates control-dependent range for the given def at the given context 1785 /// by looking at dominating conditions inside of the loop 1786 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1787 Instruction *NarrowUser) { 1788 using namespace llvm::PatternMatch; 1789 1790 Value *NarrowDefLHS; 1791 const APInt *NarrowDefRHS; 1792 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1793 m_APInt(NarrowDefRHS))) || 1794 !NarrowDefRHS->isNonNegative()) 1795 return; 1796 1797 auto UpdateRangeFromCondition = [&] (Value *Condition, 1798 bool TrueDest) { 1799 CmpInst::Predicate Pred; 1800 Value *CmpRHS; 1801 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1802 m_Value(CmpRHS)))) 1803 return; 1804 1805 CmpInst::Predicate P = 1806 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1807 1808 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1809 auto CmpConstrainedLHSRange = 1810 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1811 auto NarrowDefRange = 1812 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1813 1814 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1815 }; 1816 1817 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1818 if (!HasGuards) 1819 return; 1820 1821 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1822 Ctx->getParent()->rend())) { 1823 Value *C = nullptr; 1824 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1825 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1826 } 1827 }; 1828 1829 UpdateRangeFromGuards(NarrowUser); 1830 1831 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1832 // If NarrowUserBB is statically unreachable asking dominator queries may 1833 // yield surprising results. (e.g. the block may not have a dom tree node) 1834 if (!DT->isReachableFromEntry(NarrowUserBB)) 1835 return; 1836 1837 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1838 L->contains(DTB->getBlock()); 1839 DTB = DTB->getIDom()) { 1840 auto *BB = DTB->getBlock(); 1841 auto *TI = BB->getTerminator(); 1842 UpdateRangeFromGuards(TI); 1843 1844 auto *BI = dyn_cast<BranchInst>(TI); 1845 if (!BI || !BI->isConditional()) 1846 continue; 1847 1848 auto *TrueSuccessor = BI->getSuccessor(0); 1849 auto *FalseSuccessor = BI->getSuccessor(1); 1850 1851 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1852 return BBE.isSingleEdge() && 1853 DT->dominates(BBE, NarrowUser->getParent()); 1854 }; 1855 1856 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1857 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1858 1859 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1860 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1861 } 1862 } 1863 1864 /// Calculates PostIncRangeInfos map for the given IV 1865 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1866 SmallPtrSet<Instruction *, 16> Visited; 1867 SmallVector<Instruction *, 6> Worklist; 1868 Worklist.push_back(OrigPhi); 1869 Visited.insert(OrigPhi); 1870 1871 while (!Worklist.empty()) { 1872 Instruction *NarrowDef = Worklist.pop_back_val(); 1873 1874 for (Use &U : NarrowDef->uses()) { 1875 auto *NarrowUser = cast<Instruction>(U.getUser()); 1876 1877 // Don't go looking outside the current loop. 1878 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1879 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1880 continue; 1881 1882 if (!Visited.insert(NarrowUser).second) 1883 continue; 1884 1885 Worklist.push_back(NarrowUser); 1886 1887 calculatePostIncRange(NarrowDef, NarrowUser); 1888 } 1889 } 1890 } 1891 1892 //===----------------------------------------------------------------------===// 1893 // Live IV Reduction - Minimize IVs live across the loop. 1894 //===----------------------------------------------------------------------===// 1895 1896 //===----------------------------------------------------------------------===// 1897 // Simplification of IV users based on SCEV evaluation. 1898 //===----------------------------------------------------------------------===// 1899 1900 namespace { 1901 1902 class IndVarSimplifyVisitor : public IVVisitor { 1903 ScalarEvolution *SE; 1904 const TargetTransformInfo *TTI; 1905 PHINode *IVPhi; 1906 1907 public: 1908 WideIVInfo WI; 1909 1910 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1911 const TargetTransformInfo *TTI, 1912 const DominatorTree *DTree) 1913 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1914 DT = DTree; 1915 WI.NarrowIV = IVPhi; 1916 } 1917 1918 // Implement the interface used by simplifyUsersOfIV. 1919 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1920 }; 1921 1922 } // end anonymous namespace 1923 1924 /// Iteratively perform simplification on a worklist of IV users. Each 1925 /// successive simplification may push more users which may themselves be 1926 /// candidates for simplification. 1927 /// 1928 /// Sign/Zero extend elimination is interleaved with IV simplification. 1929 void IndVarSimplify::simplifyAndExtend(Loop *L, 1930 SCEVExpander &Rewriter, 1931 LoopInfo *LI) { 1932 SmallVector<WideIVInfo, 8> WideIVs; 1933 1934 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1935 Intrinsic::getName(Intrinsic::experimental_guard)); 1936 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1937 1938 SmallVector<PHINode*, 8> LoopPhis; 1939 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1940 LoopPhis.push_back(cast<PHINode>(I)); 1941 } 1942 // Each round of simplification iterates through the SimplifyIVUsers worklist 1943 // for all current phis, then determines whether any IVs can be 1944 // widened. Widening adds new phis to LoopPhis, inducing another round of 1945 // simplification on the wide IVs. 1946 while (!LoopPhis.empty()) { 1947 // Evaluate as many IV expressions as possible before widening any IVs. This 1948 // forces SCEV to set no-wrap flags before evaluating sign/zero 1949 // extension. The first time SCEV attempts to normalize sign/zero extension, 1950 // the result becomes final. So for the most predictable results, we delay 1951 // evaluation of sign/zero extend evaluation until needed, and avoid running 1952 // other SCEV based analysis prior to simplifyAndExtend. 1953 do { 1954 PHINode *CurrIV = LoopPhis.pop_back_val(); 1955 1956 // Information about sign/zero extensions of CurrIV. 1957 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1958 1959 Changed |= 1960 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1961 1962 if (Visitor.WI.WidestNativeType) { 1963 WideIVs.push_back(Visitor.WI); 1964 } 1965 } while(!LoopPhis.empty()); 1966 1967 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1968 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1969 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1970 Changed = true; 1971 LoopPhis.push_back(WidePhi); 1972 } 1973 } 1974 } 1975 } 1976 1977 //===----------------------------------------------------------------------===// 1978 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1979 //===----------------------------------------------------------------------===// 1980 1981 /// Return true if this loop's backedge taken count expression can be safely and 1982 /// cheaply expanded into an instruction sequence that can be used by 1983 /// linearFunctionTestReplace. 1984 /// 1985 /// TODO: This fails for pointer-type loop counters with greater than one byte 1986 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1987 /// we could skip this check in the case that the LFTR loop counter (chosen by 1988 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1989 /// the loop test to an inequality test by checking the target data's alignment 1990 /// of element types (given that the initial pointer value originates from or is 1991 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1992 /// However, we don't yet have a strong motivation for converting loop tests 1993 /// into inequality tests. 1994 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1995 SCEVExpander &Rewriter) { 1996 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1997 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1998 BackedgeTakenCount->isZero()) 1999 return false; 2000 2001 if (!L->getExitingBlock()) 2002 return false; 2003 2004 // Can't rewrite non-branch yet. 2005 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2006 return false; 2007 2008 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2009 return false; 2010 2011 return true; 2012 } 2013 2014 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2015 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2016 Instruction *IncI = dyn_cast<Instruction>(IncV); 2017 if (!IncI) 2018 return nullptr; 2019 2020 switch (IncI->getOpcode()) { 2021 case Instruction::Add: 2022 case Instruction::Sub: 2023 break; 2024 case Instruction::GetElementPtr: 2025 // An IV counter must preserve its type. 2026 if (IncI->getNumOperands() == 2) 2027 break; 2028 LLVM_FALLTHROUGH; 2029 default: 2030 return nullptr; 2031 } 2032 2033 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2034 if (Phi && Phi->getParent() == L->getHeader()) { 2035 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2036 return Phi; 2037 return nullptr; 2038 } 2039 if (IncI->getOpcode() == Instruction::GetElementPtr) 2040 return nullptr; 2041 2042 // Allow add/sub to be commuted. 2043 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2044 if (Phi && Phi->getParent() == L->getHeader()) { 2045 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2046 return Phi; 2047 } 2048 return nullptr; 2049 } 2050 2051 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2052 static ICmpInst *getLoopTest(Loop *L) { 2053 assert(L->getExitingBlock() && "expected loop exit"); 2054 2055 BasicBlock *LatchBlock = L->getLoopLatch(); 2056 // Don't bother with LFTR if the loop is not properly simplified. 2057 if (!LatchBlock) 2058 return nullptr; 2059 2060 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2061 assert(BI && "expected exit branch"); 2062 2063 return dyn_cast<ICmpInst>(BI->getCondition()); 2064 } 2065 2066 /// linearFunctionTestReplace policy. Return true unless we can show that the 2067 /// current exit test is already sufficiently canonical. 2068 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2069 // Do LFTR to simplify the exit condition to an ICMP. 2070 ICmpInst *Cond = getLoopTest(L); 2071 if (!Cond) 2072 return true; 2073 2074 // Do LFTR to simplify the exit ICMP to EQ/NE 2075 ICmpInst::Predicate Pred = Cond->getPredicate(); 2076 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2077 return true; 2078 2079 // Look for a loop invariant RHS 2080 Value *LHS = Cond->getOperand(0); 2081 Value *RHS = Cond->getOperand(1); 2082 if (!isLoopInvariant(RHS, L, DT)) { 2083 if (!isLoopInvariant(LHS, L, DT)) 2084 return true; 2085 std::swap(LHS, RHS); 2086 } 2087 // Look for a simple IV counter LHS 2088 PHINode *Phi = dyn_cast<PHINode>(LHS); 2089 if (!Phi) 2090 Phi = getLoopPhiForCounter(LHS, L, DT); 2091 2092 if (!Phi) 2093 return true; 2094 2095 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2096 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2097 if (Idx < 0) 2098 return true; 2099 2100 // Do LFTR if the exit condition's IV is *not* a simple counter. 2101 Value *IncV = Phi->getIncomingValue(Idx); 2102 return Phi != getLoopPhiForCounter(IncV, L, DT); 2103 } 2104 2105 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2106 /// down to checking that all operands are constant and listing instructions 2107 /// that may hide undef. 2108 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2109 unsigned Depth) { 2110 if (isa<Constant>(V)) 2111 return !isa<UndefValue>(V); 2112 2113 if (Depth >= 6) 2114 return false; 2115 2116 // Conservatively handle non-constant non-instructions. For example, Arguments 2117 // may be undef. 2118 Instruction *I = dyn_cast<Instruction>(V); 2119 if (!I) 2120 return false; 2121 2122 // Load and return values may be undef. 2123 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2124 return false; 2125 2126 // Optimistically handle other instructions. 2127 for (Value *Op : I->operands()) { 2128 if (!Visited.insert(Op).second) 2129 continue; 2130 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2131 return false; 2132 } 2133 return true; 2134 } 2135 2136 /// Return true if the given value is concrete. We must prove that undef can 2137 /// never reach it. 2138 /// 2139 /// TODO: If we decide that this is a good approach to checking for undef, we 2140 /// may factor it into a common location. 2141 static bool hasConcreteDef(Value *V) { 2142 SmallPtrSet<Value*, 8> Visited; 2143 Visited.insert(V); 2144 return hasConcreteDefImpl(V, Visited, 0); 2145 } 2146 2147 /// Return true if this IV has any uses other than the (soon to be rewritten) 2148 /// loop exit test. 2149 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2150 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2151 Value *IncV = Phi->getIncomingValue(LatchIdx); 2152 2153 for (User *U : Phi->users()) 2154 if (U != Cond && U != IncV) return false; 2155 2156 for (User *U : IncV->users()) 2157 if (U != Cond && U != Phi) return false; 2158 return true; 2159 } 2160 2161 /// Find an affine IV in canonical form. 2162 /// 2163 /// BECount may be an i8* pointer type. The pointer difference is already 2164 /// valid count without scaling the address stride, so it remains a pointer 2165 /// expression as far as SCEV is concerned. 2166 /// 2167 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2168 /// 2169 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2170 /// 2171 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2172 /// This is difficult in general for SCEV because of potential overflow. But we 2173 /// could at least handle constant BECounts. 2174 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2175 ScalarEvolution *SE, DominatorTree *DT) { 2176 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2177 2178 Value *Cond = 2179 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2180 2181 // Loop over all of the PHI nodes, looking for a simple counter. 2182 PHINode *BestPhi = nullptr; 2183 const SCEV *BestInit = nullptr; 2184 BasicBlock *LatchBlock = L->getLoopLatch(); 2185 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2186 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2187 2188 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2189 PHINode *Phi = cast<PHINode>(I); 2190 if (!SE->isSCEVable(Phi->getType())) 2191 continue; 2192 2193 // Avoid comparing an integer IV against a pointer Limit. 2194 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2195 continue; 2196 2197 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2198 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2199 continue; 2200 2201 // AR may be a pointer type, while BECount is an integer type. 2202 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2203 // AR may not be a narrower type, or we may never exit. 2204 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2205 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2206 continue; 2207 2208 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2209 if (!Step || !Step->isOne()) 2210 continue; 2211 2212 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2213 Value *IncV = Phi->getIncomingValue(LatchIdx); 2214 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2215 continue; 2216 2217 // Avoid reusing a potentially undef value to compute other values that may 2218 // have originally had a concrete definition. 2219 if (!hasConcreteDef(Phi)) { 2220 // We explicitly allow unknown phis as long as they are already used by 2221 // the loop test. In this case we assume that performing LFTR could not 2222 // increase the number of undef users. 2223 if (ICmpInst *Cond = getLoopTest(L)) { 2224 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2225 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2226 continue; 2227 } 2228 } 2229 } 2230 const SCEV *Init = AR->getStart(); 2231 2232 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2233 // Don't force a live loop counter if another IV can be used. 2234 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2235 continue; 2236 2237 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2238 // also prefers integer to pointer IVs. 2239 if (BestInit->isZero() != Init->isZero()) { 2240 if (BestInit->isZero()) 2241 continue; 2242 } 2243 // If two IVs both count from zero or both count from nonzero then the 2244 // narrower is likely a dead phi that has been widened. Use the wider phi 2245 // to allow the other to be eliminated. 2246 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2247 continue; 2248 } 2249 BestPhi = Phi; 2250 BestInit = Init; 2251 } 2252 return BestPhi; 2253 } 2254 2255 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2256 /// the new loop test. 2257 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2258 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2259 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2260 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2261 const SCEV *IVInit = AR->getStart(); 2262 2263 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2264 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2265 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2266 // the existing GEPs whenever possible. 2267 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2268 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2269 // signed value. IVCount on the other hand represents the loop trip count, 2270 // which is an unsigned value. FindLoopCounter only allows induction 2271 // variables that have a positive unit stride of one. This means we don't 2272 // have to handle the case of negative offsets (yet) and just need to zero 2273 // extend IVCount. 2274 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2275 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2276 2277 // Expand the code for the iteration count. 2278 assert(SE->isLoopInvariant(IVOffset, L) && 2279 "Computed iteration count is not loop invariant!"); 2280 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2281 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2282 2283 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2284 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2285 // We could handle pointer IVs other than i8*, but we need to compensate for 2286 // gep index scaling. See canExpandBackedgeTakenCount comments. 2287 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2288 cast<PointerType>(GEPBase->getType()) 2289 ->getElementType())->isOne() && 2290 "unit stride pointer IV must be i8*"); 2291 2292 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2293 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2294 } else { 2295 // In any other case, convert both IVInit and IVCount to integers before 2296 // comparing. This may result in SCEV expansion of pointers, but in practice 2297 // SCEV will fold the pointer arithmetic away as such: 2298 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2299 // 2300 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2301 // for simple memset-style loops. 2302 // 2303 // IVInit integer and IVCount pointer would only occur if a canonical IV 2304 // were generated on top of case #2, which is not expected. 2305 2306 const SCEV *IVLimit = nullptr; 2307 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2308 // For non-zero Start, compute IVCount here. 2309 if (AR->getStart()->isZero()) 2310 IVLimit = IVCount; 2311 else { 2312 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2313 const SCEV *IVInit = AR->getStart(); 2314 2315 // For integer IVs, truncate the IV before computing IVInit + BECount. 2316 if (SE->getTypeSizeInBits(IVInit->getType()) 2317 > SE->getTypeSizeInBits(IVCount->getType())) 2318 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2319 2320 IVLimit = SE->getAddExpr(IVInit, IVCount); 2321 } 2322 // Expand the code for the iteration count. 2323 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2324 IRBuilder<> Builder(BI); 2325 assert(SE->isLoopInvariant(IVLimit, L) && 2326 "Computed iteration count is not loop invariant!"); 2327 // Ensure that we generate the same type as IndVar, or a smaller integer 2328 // type. In the presence of null pointer values, we have an integer type 2329 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2330 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2331 IndVar->getType() : IVCount->getType(); 2332 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2333 } 2334 } 2335 2336 /// This method rewrites the exit condition of the loop to be a canonical != 2337 /// comparison against the incremented loop induction variable. This pass is 2338 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2339 /// determine a loop-invariant trip count of the loop, which is actually a much 2340 /// broader range than just linear tests. 2341 Value *IndVarSimplify:: 2342 linearFunctionTestReplace(Loop *L, 2343 const SCEV *BackedgeTakenCount, 2344 PHINode *IndVar, 2345 SCEVExpander &Rewriter) { 2346 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2347 2348 // Initialize CmpIndVar and IVCount to their preincremented values. 2349 Value *CmpIndVar = IndVar; 2350 const SCEV *IVCount = BackedgeTakenCount; 2351 2352 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2353 2354 // If the exiting block is the same as the backedge block, we prefer to 2355 // compare against the post-incremented value, otherwise we must compare 2356 // against the preincremented value. 2357 if (L->getExitingBlock() == L->getLoopLatch()) { 2358 // Add one to the "backedge-taken" count to get the trip count. 2359 // This addition may overflow, which is valid as long as the comparison is 2360 // truncated to BackedgeTakenCount->getType(). 2361 IVCount = SE->getAddExpr(BackedgeTakenCount, 2362 SE->getOne(BackedgeTakenCount->getType())); 2363 // The BackedgeTaken expression contains the number of times that the 2364 // backedge branches to the loop header. This is one less than the 2365 // number of times the loop executes, so use the incremented indvar. 2366 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2367 } 2368 2369 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2370 assert(ExitCnt->getType()->isPointerTy() == 2371 IndVar->getType()->isPointerTy() && 2372 "genLoopLimit missed a cast"); 2373 2374 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2375 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2376 ICmpInst::Predicate P; 2377 if (L->contains(BI->getSuccessor(0))) 2378 P = ICmpInst::ICMP_NE; 2379 else 2380 P = ICmpInst::ICMP_EQ; 2381 2382 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2383 << " LHS:" << *CmpIndVar << '\n' 2384 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2385 << "\n" 2386 << " RHS:\t" << *ExitCnt << "\n" 2387 << " IVCount:\t" << *IVCount << "\n"); 2388 2389 IRBuilder<> Builder(BI); 2390 2391 // The new loop exit condition should reuse the debug location of the 2392 // original loop exit condition. 2393 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2394 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2395 2396 // LFTR can ignore IV overflow and truncate to the width of 2397 // BECount. This avoids materializing the add(zext(add)) expression. 2398 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2399 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2400 if (CmpIndVarSize > ExitCntSize) { 2401 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2402 const SCEV *ARStart = AR->getStart(); 2403 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2404 // For constant IVCount, avoid truncation. 2405 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2406 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2407 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2408 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2409 // above such that IVCount is now zero. 2410 if (IVCount != BackedgeTakenCount && Count == 0) { 2411 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2412 ++Count; 2413 } 2414 else 2415 Count = Count.zext(CmpIndVarSize); 2416 APInt NewLimit; 2417 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2418 NewLimit = Start - Count; 2419 else 2420 NewLimit = Start + Count; 2421 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2422 2423 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2424 } else { 2425 // We try to extend trip count first. If that doesn't work we truncate IV. 2426 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2427 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2428 // one of the two holds, extend the trip count, otherwise we truncate IV. 2429 bool Extended = false; 2430 const SCEV *IV = SE->getSCEV(CmpIndVar); 2431 const SCEV *ZExtTrunc = 2432 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2433 ExitCnt->getType()), 2434 CmpIndVar->getType()); 2435 2436 if (ZExtTrunc == IV) { 2437 Extended = true; 2438 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2439 "wide.trip.count"); 2440 } else { 2441 const SCEV *SExtTrunc = 2442 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2443 ExitCnt->getType()), 2444 CmpIndVar->getType()); 2445 if (SExtTrunc == IV) { 2446 Extended = true; 2447 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2448 "wide.trip.count"); 2449 } 2450 } 2451 2452 if (!Extended) 2453 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2454 "lftr.wideiv"); 2455 } 2456 } 2457 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2458 Value *OrigCond = BI->getCondition(); 2459 // It's tempting to use replaceAllUsesWith here to fully replace the old 2460 // comparison, but that's not immediately safe, since users of the old 2461 // comparison may not be dominated by the new comparison. Instead, just 2462 // update the branch to use the new comparison; in the common case this 2463 // will make old comparison dead. 2464 BI->setCondition(Cond); 2465 DeadInsts.push_back(OrigCond); 2466 2467 ++NumLFTR; 2468 Changed = true; 2469 return Cond; 2470 } 2471 2472 //===----------------------------------------------------------------------===// 2473 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2474 //===----------------------------------------------------------------------===// 2475 2476 /// If there's a single exit block, sink any loop-invariant values that 2477 /// were defined in the preheader but not used inside the loop into the 2478 /// exit block to reduce register pressure in the loop. 2479 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2480 BasicBlock *ExitBlock = L->getExitBlock(); 2481 if (!ExitBlock) return; 2482 2483 BasicBlock *Preheader = L->getLoopPreheader(); 2484 if (!Preheader) return; 2485 2486 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2487 BasicBlock::iterator I(Preheader->getTerminator()); 2488 while (I != Preheader->begin()) { 2489 --I; 2490 // New instructions were inserted at the end of the preheader. 2491 if (isa<PHINode>(I)) 2492 break; 2493 2494 // Don't move instructions which might have side effects, since the side 2495 // effects need to complete before instructions inside the loop. Also don't 2496 // move instructions which might read memory, since the loop may modify 2497 // memory. Note that it's okay if the instruction might have undefined 2498 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2499 // block. 2500 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2501 continue; 2502 2503 // Skip debug info intrinsics. 2504 if (isa<DbgInfoIntrinsic>(I)) 2505 continue; 2506 2507 // Skip eh pad instructions. 2508 if (I->isEHPad()) 2509 continue; 2510 2511 // Don't sink alloca: we never want to sink static alloca's out of the 2512 // entry block, and correctly sinking dynamic alloca's requires 2513 // checks for stacksave/stackrestore intrinsics. 2514 // FIXME: Refactor this check somehow? 2515 if (isa<AllocaInst>(I)) 2516 continue; 2517 2518 // Determine if there is a use in or before the loop (direct or 2519 // otherwise). 2520 bool UsedInLoop = false; 2521 for (Use &U : I->uses()) { 2522 Instruction *User = cast<Instruction>(U.getUser()); 2523 BasicBlock *UseBB = User->getParent(); 2524 if (PHINode *P = dyn_cast<PHINode>(User)) { 2525 unsigned i = 2526 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2527 UseBB = P->getIncomingBlock(i); 2528 } 2529 if (UseBB == Preheader || L->contains(UseBB)) { 2530 UsedInLoop = true; 2531 break; 2532 } 2533 } 2534 2535 // If there is, the def must remain in the preheader. 2536 if (UsedInLoop) 2537 continue; 2538 2539 // Otherwise, sink it to the exit block. 2540 Instruction *ToMove = &*I; 2541 bool Done = false; 2542 2543 if (I != Preheader->begin()) { 2544 // Skip debug info intrinsics. 2545 do { 2546 --I; 2547 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2548 2549 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2550 Done = true; 2551 } else { 2552 Done = true; 2553 } 2554 2555 ToMove->moveBefore(*ExitBlock, InsertPt); 2556 if (Done) break; 2557 InsertPt = ToMove->getIterator(); 2558 } 2559 } 2560 2561 //===----------------------------------------------------------------------===// 2562 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2563 //===----------------------------------------------------------------------===// 2564 2565 bool IndVarSimplify::run(Loop *L) { 2566 // We need (and expect!) the incoming loop to be in LCSSA. 2567 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2568 "LCSSA required to run indvars!"); 2569 2570 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2571 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2572 // canonicalization can be a pessimization without LSR to "clean up" 2573 // afterwards. 2574 // - We depend on having a preheader; in particular, 2575 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2576 // and we're in trouble if we can't find the induction variable even when 2577 // we've manually inserted one. 2578 // - LFTR relies on having a single backedge. 2579 if (!L->isLoopSimplifyForm()) 2580 return false; 2581 2582 // If there are any floating-point recurrences, attempt to 2583 // transform them to use integer recurrences. 2584 rewriteNonIntegerIVs(L); 2585 2586 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2587 2588 // Create a rewriter object which we'll use to transform the code with. 2589 SCEVExpander Rewriter(*SE, DL, "indvars"); 2590 #ifndef NDEBUG 2591 Rewriter.setDebugType(DEBUG_TYPE); 2592 #endif 2593 2594 // Eliminate redundant IV users. 2595 // 2596 // Simplification works best when run before other consumers of SCEV. We 2597 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2598 // other expressions involving loop IVs have been evaluated. This helps SCEV 2599 // set no-wrap flags before normalizing sign/zero extension. 2600 Rewriter.disableCanonicalMode(); 2601 simplifyAndExtend(L, Rewriter, LI); 2602 2603 // Check to see if this loop has a computable loop-invariant execution count. 2604 // If so, this means that we can compute the final value of any expressions 2605 // that are recurrent in the loop, and substitute the exit values from the 2606 // loop into any instructions outside of the loop that use the final values of 2607 // the current expressions. 2608 // 2609 if (ReplaceExitValue != NeverRepl && 2610 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2611 rewriteLoopExitValues(L, Rewriter); 2612 2613 // Eliminate redundant IV cycles. 2614 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2615 2616 // If we have a trip count expression, rewrite the loop's exit condition 2617 // using it. We can currently only handle loops with a single exit. 2618 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2619 needsLFTR(L, DT)) { 2620 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2621 if (IndVar) { 2622 // Check preconditions for proper SCEVExpander operation. SCEV does not 2623 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2624 // pass that uses the SCEVExpander must do it. This does not work well for 2625 // loop passes because SCEVExpander makes assumptions about all loops, 2626 // while LoopPassManager only forces the current loop to be simplified. 2627 // 2628 // FIXME: SCEV expansion has no way to bail out, so the caller must 2629 // explicitly check any assumptions made by SCEV. Brittle. 2630 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2631 if (!AR || AR->getLoop()->getLoopPreheader()) 2632 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2633 Rewriter); 2634 } 2635 } 2636 // Clear the rewriter cache, because values that are in the rewriter's cache 2637 // can be deleted in the loop below, causing the AssertingVH in the cache to 2638 // trigger. 2639 Rewriter.clear(); 2640 2641 // Now that we're done iterating through lists, clean up any instructions 2642 // which are now dead. 2643 while (!DeadInsts.empty()) 2644 if (Instruction *Inst = 2645 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2646 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2647 2648 // The Rewriter may not be used from this point on. 2649 2650 // Loop-invariant instructions in the preheader that aren't used in the 2651 // loop may be sunk below the loop to reduce register pressure. 2652 sinkUnusedInvariants(L); 2653 2654 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2655 // trip count and therefore can further simplify exit values in addition to 2656 // rewriteLoopExitValues. 2657 rewriteFirstIterationLoopExitValues(L); 2658 2659 // Clean up dead instructions. 2660 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2661 2662 // Check a post-condition. 2663 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2664 "Indvars did not preserve LCSSA!"); 2665 2666 // Verify that LFTR, and any other change have not interfered with SCEV's 2667 // ability to compute trip count. 2668 #ifndef NDEBUG 2669 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2670 SE->forgetLoop(L); 2671 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2672 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2673 SE->getTypeSizeInBits(NewBECount->getType())) 2674 NewBECount = SE->getTruncateOrNoop(NewBECount, 2675 BackedgeTakenCount->getType()); 2676 else 2677 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2678 NewBECount->getType()); 2679 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2680 } 2681 #endif 2682 2683 return Changed; 2684 } 2685 2686 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2687 LoopStandardAnalysisResults &AR, 2688 LPMUpdater &) { 2689 Function *F = L.getHeader()->getParent(); 2690 const DataLayout &DL = F->getParent()->getDataLayout(); 2691 2692 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2693 if (!IVS.run(&L)) 2694 return PreservedAnalyses::all(); 2695 2696 auto PA = getLoopPassPreservedAnalyses(); 2697 PA.preserveSet<CFGAnalyses>(); 2698 return PA; 2699 } 2700 2701 namespace { 2702 2703 struct IndVarSimplifyLegacyPass : public LoopPass { 2704 static char ID; // Pass identification, replacement for typeid 2705 2706 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2707 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2708 } 2709 2710 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2711 if (skipLoop(L)) 2712 return false; 2713 2714 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2715 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2716 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2717 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2718 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2719 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2720 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2721 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2722 2723 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2724 return IVS.run(L); 2725 } 2726 2727 void getAnalysisUsage(AnalysisUsage &AU) const override { 2728 AU.setPreservesCFG(); 2729 getLoopAnalysisUsage(AU); 2730 } 2731 }; 2732 2733 } // end anonymous namespace 2734 2735 char IndVarSimplifyLegacyPass::ID = 0; 2736 2737 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2738 "Induction Variable Simplification", false, false) 2739 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2740 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2741 "Induction Variable Simplification", false, false) 2742 2743 Pass *llvm::createIndVarSimplifyPass() { 2744 return new IndVarSimplifyLegacyPass(); 2745 } 2746