1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/IVUsers.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumRemoved , "Number of aux indvars removed"); 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumInserted , "Number of canonical indvars added"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 namespace llvm { 62 cl::opt<bool> EnableIVRewrite( 63 "enable-iv-rewrite", cl::Hidden, 64 cl::desc("Enable canonical induction variable rewriting")); 65 66 // Trip count verification can be enabled by default under NDEBUG if we 67 // implement a strong expression equivalence checker in SCEV. Until then, we 68 // use the verify-indvars flag, which may assert in some cases. 69 cl::opt<bool> VerifyIndvars( 70 "verify-indvars", cl::Hidden, 71 cl::desc("Verify the ScalarEvolution result after running indvars")); 72 } 73 74 namespace { 75 class IndVarSimplify : public LoopPass { 76 IVUsers *IU; 77 LoopInfo *LI; 78 ScalarEvolution *SE; 79 DominatorTree *DT; 80 TargetData *TD; 81 82 SmallVector<WeakVH, 16> DeadInsts; 83 bool Changed; 84 public: 85 86 static char ID; // Pass identification, replacement for typeid 87 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 88 Changed(false) { 89 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 90 } 91 92 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 93 94 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 95 AU.addRequired<DominatorTree>(); 96 AU.addRequired<LoopInfo>(); 97 AU.addRequired<ScalarEvolution>(); 98 AU.addRequiredID(LoopSimplifyID); 99 AU.addRequiredID(LCSSAID); 100 if (EnableIVRewrite) 101 AU.addRequired<IVUsers>(); 102 AU.addPreserved<ScalarEvolution>(); 103 AU.addPreservedID(LoopSimplifyID); 104 AU.addPreservedID(LCSSAID); 105 if (EnableIVRewrite) 106 AU.addPreserved<IVUsers>(); 107 AU.setPreservesCFG(); 108 } 109 110 private: 111 virtual void releaseMemory() { 112 DeadInsts.clear(); 113 } 114 115 bool isValidRewrite(Value *FromVal, Value *ToVal); 116 117 void HandleFloatingPointIV(Loop *L, PHINode *PH); 118 void RewriteNonIntegerIVs(Loop *L); 119 120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 121 122 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 123 124 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 125 126 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 127 PHINode *IndVar, SCEVExpander &Rewriter); 128 129 void SinkUnusedInvariants(Loop *L); 130 }; 131 } 132 133 char IndVarSimplify::ID = 0; 134 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 135 "Induction Variable Simplification", false, false) 136 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 137 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 138 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 139 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 140 INITIALIZE_PASS_DEPENDENCY(LCSSA) 141 INITIALIZE_PASS_DEPENDENCY(IVUsers) 142 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 143 "Induction Variable Simplification", false, false) 144 145 Pass *llvm::createIndVarSimplifyPass() { 146 return new IndVarSimplify(); 147 } 148 149 /// isValidRewrite - Return true if the SCEV expansion generated by the 150 /// rewriter can replace the original value. SCEV guarantees that it 151 /// produces the same value, but the way it is produced may be illegal IR. 152 /// Ideally, this function will only be called for verification. 153 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 154 // If an SCEV expression subsumed multiple pointers, its expansion could 155 // reassociate the GEP changing the base pointer. This is illegal because the 156 // final address produced by a GEP chain must be inbounds relative to its 157 // underlying object. Otherwise basic alias analysis, among other things, 158 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 159 // producing an expression involving multiple pointers. Until then, we must 160 // bail out here. 161 // 162 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 163 // because it understands lcssa phis while SCEV does not. 164 Value *FromPtr = FromVal; 165 Value *ToPtr = ToVal; 166 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 167 FromPtr = GEP->getPointerOperand(); 168 } 169 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 170 ToPtr = GEP->getPointerOperand(); 171 } 172 if (FromPtr != FromVal || ToPtr != ToVal) { 173 // Quickly check the common case 174 if (FromPtr == ToPtr) 175 return true; 176 177 // SCEV may have rewritten an expression that produces the GEP's pointer 178 // operand. That's ok as long as the pointer operand has the same base 179 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 180 // base of a recurrence. This handles the case in which SCEV expansion 181 // converts a pointer type recurrence into a nonrecurrent pointer base 182 // indexed by an integer recurrence. 183 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 184 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 185 if (FromBase == ToBase) 186 return true; 187 188 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 189 << *FromBase << " != " << *ToBase << "\n"); 190 191 return false; 192 } 193 return true; 194 } 195 196 /// Determine the insertion point for this user. By default, insert immediately 197 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 198 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 199 /// common dominator for the incoming blocks. 200 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 201 DominatorTree *DT) { 202 PHINode *PHI = dyn_cast<PHINode>(User); 203 if (!PHI) 204 return User; 205 206 Instruction *InsertPt = 0; 207 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 208 if (PHI->getIncomingValue(i) != Def) 209 continue; 210 211 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 212 if (!InsertPt) { 213 InsertPt = InsertBB->getTerminator(); 214 continue; 215 } 216 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 217 InsertPt = InsertBB->getTerminator(); 218 } 219 assert(InsertPt && "Missing phi operand"); 220 assert((!isa<Instruction>(Def) || 221 DT->dominates(cast<Instruction>(Def), InsertPt)) && 222 "def does not dominate all uses"); 223 return InsertPt; 224 } 225 226 //===----------------------------------------------------------------------===// 227 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 228 //===----------------------------------------------------------------------===// 229 230 /// ConvertToSInt - Convert APF to an integer, if possible. 231 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 232 bool isExact = false; 233 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 234 return false; 235 // See if we can convert this to an int64_t 236 uint64_t UIntVal; 237 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 238 &isExact) != APFloat::opOK || !isExact) 239 return false; 240 IntVal = UIntVal; 241 return true; 242 } 243 244 /// HandleFloatingPointIV - If the loop has floating induction variable 245 /// then insert corresponding integer induction variable if possible. 246 /// For example, 247 /// for(double i = 0; i < 10000; ++i) 248 /// bar(i) 249 /// is converted into 250 /// for(int i = 0; i < 10000; ++i) 251 /// bar((double)i); 252 /// 253 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 254 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 255 unsigned BackEdge = IncomingEdge^1; 256 257 // Check incoming value. 258 ConstantFP *InitValueVal = 259 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 260 261 int64_t InitValue; 262 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 263 return; 264 265 // Check IV increment. Reject this PN if increment operation is not 266 // an add or increment value can not be represented by an integer. 267 BinaryOperator *Incr = 268 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 269 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 270 271 // If this is not an add of the PHI with a constantfp, or if the constant fp 272 // is not an integer, bail out. 273 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 274 int64_t IncValue; 275 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 276 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 277 return; 278 279 // Check Incr uses. One user is PN and the other user is an exit condition 280 // used by the conditional terminator. 281 Value::use_iterator IncrUse = Incr->use_begin(); 282 Instruction *U1 = cast<Instruction>(*IncrUse++); 283 if (IncrUse == Incr->use_end()) return; 284 Instruction *U2 = cast<Instruction>(*IncrUse++); 285 if (IncrUse != Incr->use_end()) return; 286 287 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 288 // only used by a branch, we can't transform it. 289 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 290 if (!Compare) 291 Compare = dyn_cast<FCmpInst>(U2); 292 if (Compare == 0 || !Compare->hasOneUse() || 293 !isa<BranchInst>(Compare->use_back())) 294 return; 295 296 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 297 298 // We need to verify that the branch actually controls the iteration count 299 // of the loop. If not, the new IV can overflow and no one will notice. 300 // The branch block must be in the loop and one of the successors must be out 301 // of the loop. 302 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 303 if (!L->contains(TheBr->getParent()) || 304 (L->contains(TheBr->getSuccessor(0)) && 305 L->contains(TheBr->getSuccessor(1)))) 306 return; 307 308 309 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 310 // transform it. 311 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 312 int64_t ExitValue; 313 if (ExitValueVal == 0 || 314 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 315 return; 316 317 // Find new predicate for integer comparison. 318 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 319 switch (Compare->getPredicate()) { 320 default: return; // Unknown comparison. 321 case CmpInst::FCMP_OEQ: 322 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 323 case CmpInst::FCMP_ONE: 324 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 325 case CmpInst::FCMP_OGT: 326 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 327 case CmpInst::FCMP_OGE: 328 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 329 case CmpInst::FCMP_OLT: 330 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 331 case CmpInst::FCMP_OLE: 332 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 333 } 334 335 // We convert the floating point induction variable to a signed i32 value if 336 // we can. This is only safe if the comparison will not overflow in a way 337 // that won't be trapped by the integer equivalent operations. Check for this 338 // now. 339 // TODO: We could use i64 if it is native and the range requires it. 340 341 // The start/stride/exit values must all fit in signed i32. 342 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 343 return; 344 345 // If not actually striding (add x, 0.0), avoid touching the code. 346 if (IncValue == 0) 347 return; 348 349 // Positive and negative strides have different safety conditions. 350 if (IncValue > 0) { 351 // If we have a positive stride, we require the init to be less than the 352 // exit value. 353 if (InitValue >= ExitValue) 354 return; 355 356 uint32_t Range = uint32_t(ExitValue-InitValue); 357 // Check for infinite loop, either: 358 // while (i <= Exit) or until (i > Exit) 359 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 360 if (++Range == 0) return; // Range overflows. 361 } 362 363 unsigned Leftover = Range % uint32_t(IncValue); 364 365 // If this is an equality comparison, we require that the strided value 366 // exactly land on the exit value, otherwise the IV condition will wrap 367 // around and do things the fp IV wouldn't. 368 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 369 Leftover != 0) 370 return; 371 372 // If the stride would wrap around the i32 before exiting, we can't 373 // transform the IV. 374 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 375 return; 376 377 } else { 378 // If we have a negative stride, we require the init to be greater than the 379 // exit value. 380 if (InitValue <= ExitValue) 381 return; 382 383 uint32_t Range = uint32_t(InitValue-ExitValue); 384 // Check for infinite loop, either: 385 // while (i >= Exit) or until (i < Exit) 386 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 387 if (++Range == 0) return; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(-IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 402 return; 403 } 404 405 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 406 407 // Insert new integer induction variable. 408 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 409 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 410 PN->getIncomingBlock(IncomingEdge)); 411 412 Value *NewAdd = 413 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 414 Incr->getName()+".int", Incr); 415 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 416 417 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 418 ConstantInt::get(Int32Ty, ExitValue), 419 Compare->getName()); 420 421 // In the following deletions, PN may become dead and may be deleted. 422 // Use a WeakVH to observe whether this happens. 423 WeakVH WeakPH = PN; 424 425 // Delete the old floating point exit comparison. The branch starts using the 426 // new comparison. 427 NewCompare->takeName(Compare); 428 Compare->replaceAllUsesWith(NewCompare); 429 RecursivelyDeleteTriviallyDeadInstructions(Compare); 430 431 // Delete the old floating point increment. 432 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 433 RecursivelyDeleteTriviallyDeadInstructions(Incr); 434 435 // If the FP induction variable still has uses, this is because something else 436 // in the loop uses its value. In order to canonicalize the induction 437 // variable, we chose to eliminate the IV and rewrite it in terms of an 438 // int->fp cast. 439 // 440 // We give preference to sitofp over uitofp because it is faster on most 441 // platforms. 442 if (WeakPH) { 443 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 444 PN->getParent()->getFirstInsertionPt()); 445 PN->replaceAllUsesWith(Conv); 446 RecursivelyDeleteTriviallyDeadInstructions(PN); 447 } 448 449 // Add a new IVUsers entry for the newly-created integer PHI. 450 if (IU) 451 IU->AddUsersIfInteresting(NewPHI); 452 453 Changed = true; 454 } 455 456 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 457 // First step. Check to see if there are any floating-point recurrences. 458 // If there are, change them into integer recurrences, permitting analysis by 459 // the SCEV routines. 460 // 461 BasicBlock *Header = L->getHeader(); 462 463 SmallVector<WeakVH, 8> PHIs; 464 for (BasicBlock::iterator I = Header->begin(); 465 PHINode *PN = dyn_cast<PHINode>(I); ++I) 466 PHIs.push_back(PN); 467 468 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 469 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 470 HandleFloatingPointIV(L, PN); 471 472 // If the loop previously had floating-point IV, ScalarEvolution 473 // may not have been able to compute a trip count. Now that we've done some 474 // re-writing, the trip count may be computable. 475 if (Changed) 476 SE->forgetLoop(L); 477 } 478 479 //===----------------------------------------------------------------------===// 480 // RewriteLoopExitValues - Optimize IV users outside the loop. 481 // As a side effect, reduces the amount of IV processing within the loop. 482 //===----------------------------------------------------------------------===// 483 484 /// RewriteLoopExitValues - Check to see if this loop has a computable 485 /// loop-invariant execution count. If so, this means that we can compute the 486 /// final value of any expressions that are recurrent in the loop, and 487 /// substitute the exit values from the loop into any instructions outside of 488 /// the loop that use the final values of the current expressions. 489 /// 490 /// This is mostly redundant with the regular IndVarSimplify activities that 491 /// happen later, except that it's more powerful in some cases, because it's 492 /// able to brute-force evaluate arbitrary instructions as long as they have 493 /// constant operands at the beginning of the loop. 494 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 495 // Verify the input to the pass in already in LCSSA form. 496 assert(L->isLCSSAForm(*DT)); 497 498 SmallVector<BasicBlock*, 8> ExitBlocks; 499 L->getUniqueExitBlocks(ExitBlocks); 500 501 // Find all values that are computed inside the loop, but used outside of it. 502 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 503 // the exit blocks of the loop to find them. 504 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 505 BasicBlock *ExitBB = ExitBlocks[i]; 506 507 // If there are no PHI nodes in this exit block, then no values defined 508 // inside the loop are used on this path, skip it. 509 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 510 if (!PN) continue; 511 512 unsigned NumPreds = PN->getNumIncomingValues(); 513 514 // Iterate over all of the PHI nodes. 515 BasicBlock::iterator BBI = ExitBB->begin(); 516 while ((PN = dyn_cast<PHINode>(BBI++))) { 517 if (PN->use_empty()) 518 continue; // dead use, don't replace it 519 520 // SCEV only supports integer expressions for now. 521 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 522 continue; 523 524 // It's necessary to tell ScalarEvolution about this explicitly so that 525 // it can walk the def-use list and forget all SCEVs, as it may not be 526 // watching the PHI itself. Once the new exit value is in place, there 527 // may not be a def-use connection between the loop and every instruction 528 // which got a SCEVAddRecExpr for that loop. 529 SE->forgetValue(PN); 530 531 // Iterate over all of the values in all the PHI nodes. 532 for (unsigned i = 0; i != NumPreds; ++i) { 533 // If the value being merged in is not integer or is not defined 534 // in the loop, skip it. 535 Value *InVal = PN->getIncomingValue(i); 536 if (!isa<Instruction>(InVal)) 537 continue; 538 539 // If this pred is for a subloop, not L itself, skip it. 540 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 541 continue; // The Block is in a subloop, skip it. 542 543 // Check that InVal is defined in the loop. 544 Instruction *Inst = cast<Instruction>(InVal); 545 if (!L->contains(Inst)) 546 continue; 547 548 // Okay, this instruction has a user outside of the current loop 549 // and varies predictably *inside* the loop. Evaluate the value it 550 // contains when the loop exits, if possible. 551 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 552 if (!SE->isLoopInvariant(ExitValue, L)) 553 continue; 554 555 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 556 557 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 558 << " LoopVal = " << *Inst << "\n"); 559 560 if (!isValidRewrite(Inst, ExitVal)) { 561 DeadInsts.push_back(ExitVal); 562 continue; 563 } 564 Changed = true; 565 ++NumReplaced; 566 567 PN->setIncomingValue(i, ExitVal); 568 569 // If this instruction is dead now, delete it. 570 RecursivelyDeleteTriviallyDeadInstructions(Inst); 571 572 if (NumPreds == 1) { 573 // Completely replace a single-pred PHI. This is safe, because the 574 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 575 // node anymore. 576 PN->replaceAllUsesWith(ExitVal); 577 RecursivelyDeleteTriviallyDeadInstructions(PN); 578 } 579 } 580 if (NumPreds != 1) { 581 // Clone the PHI and delete the original one. This lets IVUsers and 582 // any other maps purge the original user from their records. 583 PHINode *NewPN = cast<PHINode>(PN->clone()); 584 NewPN->takeName(PN); 585 NewPN->insertBefore(PN); 586 PN->replaceAllUsesWith(NewPN); 587 PN->eraseFromParent(); 588 } 589 } 590 } 591 592 // The insertion point instruction may have been deleted; clear it out 593 // so that the rewriter doesn't trip over it later. 594 Rewriter.clearInsertPoint(); 595 } 596 597 //===----------------------------------------------------------------------===// 598 // Rewrite IV users based on a canonical IV. 599 // Only for use with -enable-iv-rewrite. 600 //===----------------------------------------------------------------------===// 601 602 /// FIXME: It is an extremely bad idea to indvar substitute anything more 603 /// complex than affine induction variables. Doing so will put expensive 604 /// polynomial evaluations inside of the loop, and the str reduction pass 605 /// currently can only reduce affine polynomials. For now just disable 606 /// indvar subst on anything more complex than an affine addrec, unless 607 /// it can be expanded to a trivial value. 608 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 609 // Loop-invariant values are safe. 610 if (SE->isLoopInvariant(S, L)) return true; 611 612 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 613 // to transform them into efficient code. 614 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 615 return AR->isAffine(); 616 617 // An add is safe it all its operands are safe. 618 if (const SCEVCommutativeExpr *Commutative 619 = dyn_cast<SCEVCommutativeExpr>(S)) { 620 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 621 E = Commutative->op_end(); I != E; ++I) 622 if (!isSafe(*I, L, SE)) return false; 623 return true; 624 } 625 626 // A cast is safe if its operand is. 627 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 628 return isSafe(C->getOperand(), L, SE); 629 630 // A udiv is safe if its operands are. 631 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 632 return isSafe(UD->getLHS(), L, SE) && 633 isSafe(UD->getRHS(), L, SE); 634 635 // SCEVUnknown is always safe. 636 if (isa<SCEVUnknown>(S)) 637 return true; 638 639 // Nothing else is safe. 640 return false; 641 } 642 643 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 644 // Rewrite all induction variable expressions in terms of the canonical 645 // induction variable. 646 // 647 // If there were induction variables of other sizes or offsets, manually 648 // add the offsets to the primary induction variable and cast, avoiding 649 // the need for the code evaluation methods to insert induction variables 650 // of different sizes. 651 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 652 Value *Op = UI->getOperandValToReplace(); 653 Type *UseTy = Op->getType(); 654 Instruction *User = UI->getUser(); 655 656 // Compute the final addrec to expand into code. 657 const SCEV *AR = IU->getReplacementExpr(*UI); 658 659 // Evaluate the expression out of the loop, if possible. 660 if (!L->contains(UI->getUser())) { 661 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 662 if (SE->isLoopInvariant(ExitVal, L)) 663 AR = ExitVal; 664 } 665 666 // FIXME: It is an extremely bad idea to indvar substitute anything more 667 // complex than affine induction variables. Doing so will put expensive 668 // polynomial evaluations inside of the loop, and the str reduction pass 669 // currently can only reduce affine polynomials. For now just disable 670 // indvar subst on anything more complex than an affine addrec, unless 671 // it can be expanded to a trivial value. 672 if (!isSafe(AR, L, SE)) 673 continue; 674 675 // Determine the insertion point for this user. By default, insert 676 // immediately before the user. The SCEVExpander class will automatically 677 // hoist loop invariants out of the loop. For PHI nodes, there may be 678 // multiple uses, so compute the nearest common dominator for the 679 // incoming blocks. 680 Instruction *InsertPt = getInsertPointForUses(User, Op, DT); 681 682 // Now expand it into actual Instructions and patch it into place. 683 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 684 685 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 686 << " into = " << *NewVal << "\n"); 687 688 if (!isValidRewrite(Op, NewVal)) { 689 DeadInsts.push_back(NewVal); 690 continue; 691 } 692 // Inform ScalarEvolution that this value is changing. The change doesn't 693 // affect its value, but it does potentially affect which use lists the 694 // value will be on after the replacement, which affects ScalarEvolution's 695 // ability to walk use lists and drop dangling pointers when a value is 696 // deleted. 697 SE->forgetValue(User); 698 699 // Patch the new value into place. 700 if (Op->hasName()) 701 NewVal->takeName(Op); 702 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 703 NewValI->setDebugLoc(User->getDebugLoc()); 704 User->replaceUsesOfWith(Op, NewVal); 705 UI->setOperandValToReplace(NewVal); 706 707 ++NumRemoved; 708 Changed = true; 709 710 // The old value may be dead now. 711 DeadInsts.push_back(Op); 712 } 713 } 714 715 //===----------------------------------------------------------------------===// 716 // IV Widening - Extend the width of an IV to cover its widest uses. 717 //===----------------------------------------------------------------------===// 718 719 namespace { 720 // Collect information about induction variables that are used by sign/zero 721 // extend operations. This information is recorded by CollectExtend and 722 // provides the input to WidenIV. 723 struct WideIVInfo { 724 PHINode *NarrowIV; 725 Type *WidestNativeType; // Widest integer type created [sz]ext 726 bool IsSigned; // Was an sext user seen before a zext? 727 728 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 729 }; 730 731 class WideIVVisitor : public IVVisitor { 732 ScalarEvolution *SE; 733 const TargetData *TD; 734 735 public: 736 WideIVInfo WI; 737 738 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, 739 const TargetData *TData) : 740 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } 741 742 // Implement the interface used by simplifyUsersOfIV. 743 virtual void visitCast(CastInst *Cast); 744 }; 745 } 746 747 /// visitCast - Update information about the induction variable that is 748 /// extended by this sign or zero extend operation. This is used to determine 749 /// the final width of the IV before actually widening it. 750 void WideIVVisitor::visitCast(CastInst *Cast) { 751 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 753 return; 754 755 Type *Ty = Cast->getType(); 756 uint64_t Width = SE->getTypeSizeInBits(Ty); 757 if (TD && !TD->isLegalInteger(Width)) 758 return; 759 760 if (!WI.WidestNativeType) { 761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 762 WI.IsSigned = IsSigned; 763 return; 764 } 765 766 // We extend the IV to satisfy the sign of its first user, arbitrarily. 767 if (WI.IsSigned != IsSigned) 768 return; 769 770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 772 } 773 774 namespace { 775 776 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 777 /// WideIV that computes the same value as the Narrow IV def. This avoids 778 /// caching Use* pointers. 779 struct NarrowIVDefUse { 780 Instruction *NarrowDef; 781 Instruction *NarrowUse; 782 Instruction *WideDef; 783 784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 785 786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 788 }; 789 790 /// WidenIV - The goal of this transform is to remove sign and zero extends 791 /// without creating any new induction variables. To do this, it creates a new 792 /// phi of the wider type and redirects all users, either removing extends or 793 /// inserting truncs whenever we stop propagating the type. 794 /// 795 class WidenIV { 796 // Parameters 797 PHINode *OrigPhi; 798 Type *WideType; 799 bool IsSigned; 800 801 // Context 802 LoopInfo *LI; 803 Loop *L; 804 ScalarEvolution *SE; 805 DominatorTree *DT; 806 807 // Result 808 PHINode *WidePhi; 809 Instruction *WideInc; 810 const SCEV *WideIncExpr; 811 SmallVectorImpl<WeakVH> &DeadInsts; 812 813 SmallPtrSet<Instruction*,16> Widened; 814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 815 816 public: 817 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 818 ScalarEvolution *SEv, DominatorTree *DTree, 819 SmallVectorImpl<WeakVH> &DI) : 820 OrigPhi(WI.NarrowIV), 821 WideType(WI.WidestNativeType), 822 IsSigned(WI.IsSigned), 823 LI(LInfo), 824 L(LI->getLoopFor(OrigPhi->getParent())), 825 SE(SEv), 826 DT(DTree), 827 WidePhi(0), 828 WideInc(0), 829 WideIncExpr(0), 830 DeadInsts(DI) { 831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 832 } 833 834 PHINode *CreateWideIV(SCEVExpander &Rewriter); 835 836 protected: 837 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 838 Instruction *Use); 839 840 Instruction *CloneIVUser(NarrowIVDefUse DU); 841 842 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 843 844 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 845 846 Instruction *WidenIVUse(NarrowIVDefUse DU); 847 848 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 849 }; 850 } // anonymous namespace 851 852 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 853 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 854 /// gratuitous for this purpose. 855 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 856 Instruction *Inst = dyn_cast<Instruction>(V); 857 if (!Inst) 858 return true; 859 860 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 861 } 862 863 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 864 Instruction *Use) { 865 // Set the debug location and conservative insertion point. 866 IRBuilder<> Builder(Use); 867 // Hoist the insertion point into loop preheaders as far as possible. 868 for (const Loop *L = LI->getLoopFor(Use->getParent()); 869 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 870 L = L->getParentLoop()) 871 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 872 873 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 874 Builder.CreateZExt(NarrowOper, WideType); 875 } 876 877 /// CloneIVUser - Instantiate a wide operation to replace a narrow 878 /// operation. This only needs to handle operations that can evaluation to 879 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 880 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 881 unsigned Opcode = DU.NarrowUse->getOpcode(); 882 switch (Opcode) { 883 default: 884 return 0; 885 case Instruction::Add: 886 case Instruction::Mul: 887 case Instruction::UDiv: 888 case Instruction::Sub: 889 case Instruction::And: 890 case Instruction::Or: 891 case Instruction::Xor: 892 case Instruction::Shl: 893 case Instruction::LShr: 894 case Instruction::AShr: 895 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 896 897 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 898 // anything about the narrow operand yet so must insert a [sz]ext. It is 899 // probably loop invariant and will be folded or hoisted. If it actually 900 // comes from a widened IV, it should be removed during a future call to 901 // WidenIVUse. 902 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 903 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 904 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 905 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 906 907 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 908 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 909 LHS, RHS, 910 NarrowBO->getName()); 911 IRBuilder<> Builder(DU.NarrowUse); 912 Builder.Insert(WideBO); 913 if (const OverflowingBinaryOperator *OBO = 914 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 915 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 916 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 917 } 918 return WideBO; 919 } 920 llvm_unreachable(0); 921 } 922 923 /// No-wrap operations can transfer sign extension of their result to their 924 /// operands. Generate the SCEV value for the widened operation without 925 /// actually modifying the IR yet. If the expression after extending the 926 /// operands is an AddRec for this loop, return it. 927 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 928 // Handle the common case of add<nsw/nuw> 929 if (DU.NarrowUse->getOpcode() != Instruction::Add) 930 return 0; 931 932 // One operand (NarrowDef) has already been extended to WideDef. Now determine 933 // if extending the other will lead to a recurrence. 934 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 935 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 936 937 const SCEV *ExtendOperExpr = 0; 938 const OverflowingBinaryOperator *OBO = 939 cast<OverflowingBinaryOperator>(DU.NarrowUse); 940 if (IsSigned && OBO->hasNoSignedWrap()) 941 ExtendOperExpr = SE->getSignExtendExpr( 942 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 943 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 944 ExtendOperExpr = SE->getZeroExtendExpr( 945 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 946 else 947 return 0; 948 949 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 950 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr, 951 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW)); 952 953 if (!AddRec || AddRec->getLoop() != L) 954 return 0; 955 return AddRec; 956 } 957 958 /// GetWideRecurrence - Is this instruction potentially interesting from 959 /// IVUsers' perspective after widening it's type? In other words, can the 960 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 961 /// recurrence on the same loop. If so, return the sign or zero extended 962 /// recurrence. Otherwise return NULL. 963 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 964 if (!SE->isSCEVable(NarrowUse->getType())) 965 return 0; 966 967 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 968 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 969 >= SE->getTypeSizeInBits(WideType)) { 970 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 971 // index. So don't follow this use. 972 return 0; 973 } 974 975 const SCEV *WideExpr = IsSigned ? 976 SE->getSignExtendExpr(NarrowExpr, WideType) : 977 SE->getZeroExtendExpr(NarrowExpr, WideType); 978 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 979 if (!AddRec || AddRec->getLoop() != L) 980 return 0; 981 return AddRec; 982 } 983 984 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 985 /// widened. If so, return the wide clone of the user. 986 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { 987 988 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 989 if (isa<PHINode>(DU.NarrowUse) && 990 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 991 return 0; 992 993 // Our raison d'etre! Eliminate sign and zero extension. 994 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 995 Value *NewDef = DU.WideDef; 996 if (DU.NarrowUse->getType() != WideType) { 997 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 998 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 999 if (CastWidth < IVWidth) { 1000 // The cast isn't as wide as the IV, so insert a Trunc. 1001 IRBuilder<> Builder(DU.NarrowUse); 1002 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1003 } 1004 else { 1005 // A wider extend was hidden behind a narrower one. This may induce 1006 // another round of IV widening in which the intermediate IV becomes 1007 // dead. It should be very rare. 1008 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1009 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1010 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1011 NewDef = DU.NarrowUse; 1012 } 1013 } 1014 if (NewDef != DU.NarrowUse) { 1015 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1016 << " replaced by " << *DU.WideDef << "\n"); 1017 ++NumElimExt; 1018 DU.NarrowUse->replaceAllUsesWith(NewDef); 1019 DeadInsts.push_back(DU.NarrowUse); 1020 } 1021 // Now that the extend is gone, we want to expose it's uses for potential 1022 // further simplification. We don't need to directly inform SimplifyIVUsers 1023 // of the new users, because their parent IV will be processed later as a 1024 // new loop phi. If we preserved IVUsers analysis, we would also want to 1025 // push the uses of WideDef here. 1026 1027 // No further widening is needed. The deceased [sz]ext had done it for us. 1028 return 0; 1029 } 1030 1031 // Does this user itself evaluate to a recurrence after widening? 1032 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1033 if (!WideAddRec) { 1034 WideAddRec = GetExtendedOperandRecurrence(DU); 1035 } 1036 if (!WideAddRec) { 1037 // This user does not evaluate to a recurence after widening, so don't 1038 // follow it. Instead insert a Trunc to kill off the original use, 1039 // eventually isolating the original narrow IV so it can be removed. 1040 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1041 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1042 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1043 return 0; 1044 } 1045 // Assume block terminators cannot evaluate to a recurrence. We can't to 1046 // insert a Trunc after a terminator if there happens to be a critical edge. 1047 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1048 "SCEV is not expected to evaluate a block terminator"); 1049 1050 // Reuse the IV increment that SCEVExpander created as long as it dominates 1051 // NarrowUse. 1052 Instruction *WideUse = 0; 1053 if (WideAddRec == WideIncExpr 1054 && SCEVExpander::hoistStep(WideInc, DU.NarrowUse, DT)) 1055 WideUse = WideInc; 1056 else { 1057 WideUse = CloneIVUser(DU); 1058 if (!WideUse) 1059 return 0; 1060 } 1061 // Evaluation of WideAddRec ensured that the narrow expression could be 1062 // extended outside the loop without overflow. This suggests that the wide use 1063 // evaluates to the same expression as the extended narrow use, but doesn't 1064 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1065 // where it fails, we simply throw away the newly created wide use. 1066 if (WideAddRec != SE->getSCEV(WideUse)) { 1067 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1068 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1069 DeadInsts.push_back(WideUse); 1070 return 0; 1071 } 1072 1073 // Returning WideUse pushes it on the worklist. 1074 return WideUse; 1075 } 1076 1077 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1078 /// 1079 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1080 for (Value::use_iterator UI = NarrowDef->use_begin(), 1081 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1082 Instruction *NarrowUse = cast<Instruction>(*UI); 1083 1084 // Handle data flow merges and bizarre phi cycles. 1085 if (!Widened.insert(NarrowUse)) 1086 continue; 1087 1088 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1089 } 1090 } 1091 1092 /// CreateWideIV - Process a single induction variable. First use the 1093 /// SCEVExpander to create a wide induction variable that evaluates to the same 1094 /// recurrence as the original narrow IV. Then use a worklist to forward 1095 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1096 /// interesting IV users, the narrow IV will be isolated for removal by 1097 /// DeleteDeadPHIs. 1098 /// 1099 /// It would be simpler to delete uses as they are processed, but we must avoid 1100 /// invalidating SCEV expressions. 1101 /// 1102 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1103 // Is this phi an induction variable? 1104 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1105 if (!AddRec) 1106 return NULL; 1107 1108 // Widen the induction variable expression. 1109 const SCEV *WideIVExpr = IsSigned ? 1110 SE->getSignExtendExpr(AddRec, WideType) : 1111 SE->getZeroExtendExpr(AddRec, WideType); 1112 1113 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1114 "Expect the new IV expression to preserve its type"); 1115 1116 // Can the IV be extended outside the loop without overflow? 1117 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1118 if (!AddRec || AddRec->getLoop() != L) 1119 return NULL; 1120 1121 // An AddRec must have loop-invariant operands. Since this AddRec is 1122 // materialized by a loop header phi, the expression cannot have any post-loop 1123 // operands, so they must dominate the loop header. 1124 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1125 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1126 && "Loop header phi recurrence inputs do not dominate the loop"); 1127 1128 // The rewriter provides a value for the desired IV expression. This may 1129 // either find an existing phi or materialize a new one. Either way, we 1130 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1131 // of the phi-SCC dominates the loop entry. 1132 Instruction *InsertPt = L->getHeader()->begin(); 1133 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1134 1135 // Remembering the WideIV increment generated by SCEVExpander allows 1136 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1137 // employ a general reuse mechanism because the call above is the only call to 1138 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1139 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1140 WideInc = 1141 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1142 WideIncExpr = SE->getSCEV(WideInc); 1143 } 1144 1145 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1146 ++NumWidened; 1147 1148 // Traverse the def-use chain using a worklist starting at the original IV. 1149 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1150 1151 Widened.insert(OrigPhi); 1152 pushNarrowIVUsers(OrigPhi, WidePhi); 1153 1154 while (!NarrowIVUsers.empty()) { 1155 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1156 1157 // Process a def-use edge. This may replace the use, so don't hold a 1158 // use_iterator across it. 1159 Instruction *WideUse = WidenIVUse(DU); 1160 1161 // Follow all def-use edges from the previous narrow use. 1162 if (WideUse) 1163 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1164 1165 // WidenIVUse may have removed the def-use edge. 1166 if (DU.NarrowDef->use_empty()) 1167 DeadInsts.push_back(DU.NarrowDef); 1168 } 1169 return WidePhi; 1170 } 1171 1172 //===----------------------------------------------------------------------===// 1173 // Simplification of IV users based on SCEV evaluation. 1174 //===----------------------------------------------------------------------===// 1175 1176 1177 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1178 /// users. Each successive simplification may push more users which may 1179 /// themselves be candidates for simplification. 1180 /// 1181 /// Sign/Zero extend elimination is interleaved with IV simplification. 1182 /// 1183 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1184 SCEVExpander &Rewriter, 1185 LPPassManager &LPM) { 1186 SmallVector<WideIVInfo, 8> WideIVs; 1187 1188 SmallVector<PHINode*, 8> LoopPhis; 1189 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1190 LoopPhis.push_back(cast<PHINode>(I)); 1191 } 1192 // Each round of simplification iterates through the SimplifyIVUsers worklist 1193 // for all current phis, then determines whether any IVs can be 1194 // widened. Widening adds new phis to LoopPhis, inducing another round of 1195 // simplification on the wide IVs. 1196 while (!LoopPhis.empty()) { 1197 // Evaluate as many IV expressions as possible before widening any IVs. This 1198 // forces SCEV to set no-wrap flags before evaluating sign/zero 1199 // extension. The first time SCEV attempts to normalize sign/zero extension, 1200 // the result becomes final. So for the most predictable results, we delay 1201 // evaluation of sign/zero extend evaluation until needed, and avoid running 1202 // other SCEV based analysis prior to SimplifyAndExtend. 1203 do { 1204 PHINode *CurrIV = LoopPhis.pop_back_val(); 1205 1206 // Information about sign/zero extensions of CurrIV. 1207 WideIVVisitor WIV(CurrIV, SE, TD); 1208 1209 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1210 1211 if (WIV.WI.WidestNativeType) { 1212 WideIVs.push_back(WIV.WI); 1213 } 1214 } while(!LoopPhis.empty()); 1215 1216 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1217 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1218 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1219 Changed = true; 1220 LoopPhis.push_back(WidePhi); 1221 } 1222 } 1223 } 1224 } 1225 1226 //===----------------------------------------------------------------------===// 1227 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1228 //===----------------------------------------------------------------------===// 1229 1230 /// Check for expressions that ScalarEvolution generates to compute 1231 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1232 /// expanding them may incur additional cost (albeit in the loop preheader). 1233 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1234 ScalarEvolution *SE) { 1235 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1236 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1237 // precise expression, rather than a UDiv from the user's code. If we can't 1238 // find a UDiv in the code with some simple searching, assume the former and 1239 // forego rewriting the loop. 1240 if (isa<SCEVUDivExpr>(S)) { 1241 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1242 if (!OrigCond) return true; 1243 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1244 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1245 if (R != S) { 1246 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1247 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1248 if (L != S) 1249 return true; 1250 } 1251 } 1252 1253 if (EnableIVRewrite) 1254 return false; 1255 1256 // Recurse past add expressions, which commonly occur in the 1257 // BackedgeTakenCount. They may already exist in program code, and if not, 1258 // they are not too expensive rematerialize. 1259 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1260 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1261 I != E; ++I) { 1262 if (isHighCostExpansion(*I, BI, SE)) 1263 return true; 1264 } 1265 return false; 1266 } 1267 1268 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1269 // the exit condition. 1270 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1271 return true; 1272 1273 // If we haven't recognized an expensive SCEV patter, assume its an expression 1274 // produced by program code. 1275 return false; 1276 } 1277 1278 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1279 /// count expression can be safely and cheaply expanded into an instruction 1280 /// sequence that can be used by LinearFunctionTestReplace. 1281 /// 1282 /// TODO: This fails for pointer-type loop counters with greater than one byte 1283 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1284 /// we could skip this check in the case that the LFTR loop counter (chosen by 1285 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1286 /// the loop test to an inequality test by checking the target data's alignment 1287 /// of element types (given that the initial pointer value originates from or is 1288 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1289 /// However, we don't yet have a strong motivation for converting loop tests 1290 /// into inequality tests. 1291 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1292 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1293 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1294 BackedgeTakenCount->isZero()) 1295 return false; 1296 1297 if (!L->getExitingBlock()) 1298 return false; 1299 1300 // Can't rewrite non-branch yet. 1301 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1302 if (!BI) 1303 return false; 1304 1305 if (isHighCostExpansion(BackedgeTakenCount, BI, SE)) 1306 return false; 1307 1308 return true; 1309 } 1310 1311 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1312 /// through Truncs. 1313 /// 1314 /// TODO: Unnecessary when ForceLFTR is removed. 1315 static Type *getBackedgeIVType(Loop *L) { 1316 if (!L->getExitingBlock()) 1317 return 0; 1318 1319 // Can't rewrite non-branch yet. 1320 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1321 if (!BI) 1322 return 0; 1323 1324 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1325 if (!Cond) 1326 return 0; 1327 1328 Type *Ty = 0; 1329 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1330 OI != OE; ++OI) { 1331 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1332 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1333 if (!Trunc) 1334 continue; 1335 1336 return Trunc->getSrcTy(); 1337 } 1338 return Ty; 1339 } 1340 1341 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1342 /// invariant value to the phi. 1343 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1344 Instruction *IncI = dyn_cast<Instruction>(IncV); 1345 if (!IncI) 1346 return 0; 1347 1348 switch (IncI->getOpcode()) { 1349 case Instruction::Add: 1350 case Instruction::Sub: 1351 break; 1352 case Instruction::GetElementPtr: 1353 // An IV counter must preserve its type. 1354 if (IncI->getNumOperands() == 2) 1355 break; 1356 default: 1357 return 0; 1358 } 1359 1360 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1361 if (Phi && Phi->getParent() == L->getHeader()) { 1362 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1363 return Phi; 1364 return 0; 1365 } 1366 if (IncI->getOpcode() == Instruction::GetElementPtr) 1367 return 0; 1368 1369 // Allow add/sub to be commuted. 1370 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1371 if (Phi && Phi->getParent() == L->getHeader()) { 1372 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1373 return Phi; 1374 } 1375 return 0; 1376 } 1377 1378 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1379 /// that the current exit test is already sufficiently canonical. 1380 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1381 assert(L->getExitingBlock() && "expected loop exit"); 1382 1383 BasicBlock *LatchBlock = L->getLoopLatch(); 1384 // Don't bother with LFTR if the loop is not properly simplified. 1385 if (!LatchBlock) 1386 return false; 1387 1388 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1389 assert(BI && "expected exit branch"); 1390 1391 // Do LFTR to simplify the exit condition to an ICMP. 1392 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1393 if (!Cond) 1394 return true; 1395 1396 // Do LFTR to simplify the exit ICMP to EQ/NE 1397 ICmpInst::Predicate Pred = Cond->getPredicate(); 1398 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1399 return true; 1400 1401 // Look for a loop invariant RHS 1402 Value *LHS = Cond->getOperand(0); 1403 Value *RHS = Cond->getOperand(1); 1404 if (!isLoopInvariant(RHS, L, DT)) { 1405 if (!isLoopInvariant(LHS, L, DT)) 1406 return true; 1407 std::swap(LHS, RHS); 1408 } 1409 // Look for a simple IV counter LHS 1410 PHINode *Phi = dyn_cast<PHINode>(LHS); 1411 if (!Phi) 1412 Phi = getLoopPhiForCounter(LHS, L, DT); 1413 1414 if (!Phi) 1415 return true; 1416 1417 // Do LFTR if the exit condition's IV is *not* a simple counter. 1418 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1419 return Phi != getLoopPhiForCounter(IncV, L, DT); 1420 } 1421 1422 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1423 /// be rewritten) loop exit test. 1424 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1425 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1426 Value *IncV = Phi->getIncomingValue(LatchIdx); 1427 1428 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1429 UI != UE; ++UI) { 1430 if (*UI != Cond && *UI != IncV) return false; 1431 } 1432 1433 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1434 UI != UE; ++UI) { 1435 if (*UI != Cond && *UI != Phi) return false; 1436 } 1437 return true; 1438 } 1439 1440 /// FindLoopCounter - Find an affine IV in canonical form. 1441 /// 1442 /// BECount may be an i8* pointer type. The pointer difference is already 1443 /// valid count without scaling the address stride, so it remains a pointer 1444 /// expression as far as SCEV is concerned. 1445 /// 1446 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1447 /// 1448 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1449 /// This is difficult in general for SCEV because of potential overflow. But we 1450 /// could at least handle constant BECounts. 1451 static PHINode * 1452 FindLoopCounter(Loop *L, const SCEV *BECount, 1453 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1454 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1455 1456 Value *Cond = 1457 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1458 1459 // Loop over all of the PHI nodes, looking for a simple counter. 1460 PHINode *BestPhi = 0; 1461 const SCEV *BestInit = 0; 1462 BasicBlock *LatchBlock = L->getLoopLatch(); 1463 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1464 1465 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1466 PHINode *Phi = cast<PHINode>(I); 1467 if (!SE->isSCEVable(Phi->getType())) 1468 continue; 1469 1470 // Avoid comparing an integer IV against a pointer Limit. 1471 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1472 continue; 1473 1474 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1475 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1476 continue; 1477 1478 // AR may be a pointer type, while BECount is an integer type. 1479 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1480 // AR may not be a narrower type, or we may never exit. 1481 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1482 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1483 continue; 1484 1485 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1486 if (!Step || !Step->isOne()) 1487 continue; 1488 1489 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1490 Value *IncV = Phi->getIncomingValue(LatchIdx); 1491 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1492 continue; 1493 1494 const SCEV *Init = AR->getStart(); 1495 1496 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1497 // Don't force a live loop counter if another IV can be used. 1498 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1499 continue; 1500 1501 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1502 // also prefers integer to pointer IVs. 1503 if (BestInit->isZero() != Init->isZero()) { 1504 if (BestInit->isZero()) 1505 continue; 1506 } 1507 // If two IVs both count from zero or both count from nonzero then the 1508 // narrower is likely a dead phi that has been widened. Use the wider phi 1509 // to allow the other to be eliminated. 1510 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1511 continue; 1512 } 1513 BestPhi = Phi; 1514 BestInit = Init; 1515 } 1516 return BestPhi; 1517 } 1518 1519 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1520 /// holds the RHS of the new loop test. 1521 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1522 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1523 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1524 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1525 const SCEV *IVInit = AR->getStart(); 1526 1527 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1528 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1529 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1530 // the existing GEPs whenever possible. 1531 if (IndVar->getType()->isPointerTy() 1532 && !IVCount->getType()->isPointerTy()) { 1533 1534 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1535 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); 1536 1537 // Expand the code for the iteration count. 1538 assert(SE->isLoopInvariant(IVOffset, L) && 1539 "Computed iteration count is not loop invariant!"); 1540 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1541 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1542 1543 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1544 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1545 // We could handle pointer IVs other than i8*, but we need to compensate for 1546 // gep index scaling. See canExpandBackedgeTakenCount comments. 1547 assert(SE->getSizeOfExpr( 1548 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1549 && "unit stride pointer IV must be i8*"); 1550 1551 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1552 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1553 } 1554 else { 1555 // In any other case, convert both IVInit and IVCount to integers before 1556 // comparing. This may result in SCEV expension of pointers, but in practice 1557 // SCEV will fold the pointer arithmetic away as such: 1558 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1559 // 1560 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1561 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a 1562 // pointer may occur when enable-iv-rewrite generates a canonical IV on top 1563 // of case #2. 1564 1565 const SCEV *IVLimit = 0; 1566 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1567 // For non-zero Start, compute IVCount here. 1568 if (AR->getStart()->isZero()) 1569 IVLimit = IVCount; 1570 else { 1571 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1572 const SCEV *IVInit = AR->getStart(); 1573 1574 // For integer IVs, truncate the IV before computing IVInit + BECount. 1575 if (SE->getTypeSizeInBits(IVInit->getType()) 1576 > SE->getTypeSizeInBits(IVCount->getType())) 1577 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1578 1579 IVLimit = SE->getAddExpr(IVInit, IVCount); 1580 } 1581 // Expand the code for the iteration count. 1582 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1583 IRBuilder<> Builder(BI); 1584 assert(SE->isLoopInvariant(IVLimit, L) && 1585 "Computed iteration count is not loop invariant!"); 1586 // Ensure that we generate the same type as IndVar, or a smaller integer 1587 // type. In the presence of null pointer values, we have an integer type 1588 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1589 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1590 IndVar->getType() : IVCount->getType(); 1591 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1592 } 1593 } 1594 1595 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1596 /// loop to be a canonical != comparison against the incremented loop induction 1597 /// variable. This pass is able to rewrite the exit tests of any loop where the 1598 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1599 /// is actually a much broader range than just linear tests. 1600 Value *IndVarSimplify:: 1601 LinearFunctionTestReplace(Loop *L, 1602 const SCEV *BackedgeTakenCount, 1603 PHINode *IndVar, 1604 SCEVExpander &Rewriter) { 1605 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1606 1607 // LFTR can ignore IV overflow and truncate to the width of 1608 // BECount. This avoids materializing the add(zext(add)) expression. 1609 Type *CntTy = !EnableIVRewrite ? 1610 BackedgeTakenCount->getType() : IndVar->getType(); 1611 1612 const SCEV *IVCount = BackedgeTakenCount; 1613 1614 // If the exiting block is the same as the backedge block, we prefer to 1615 // compare against the post-incremented value, otherwise we must compare 1616 // against the preincremented value. 1617 Value *CmpIndVar; 1618 if (L->getExitingBlock() == L->getLoopLatch()) { 1619 // Add one to the "backedge-taken" count to get the trip count. 1620 // If this addition may overflow, we have to be more pessimistic and 1621 // cast the induction variable before doing the add. 1622 const SCEV *N = 1623 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); 1624 if (CntTy == IVCount->getType()) 1625 IVCount = N; 1626 else { 1627 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); 1628 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1629 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1630 // No overflow. Cast the sum. 1631 IVCount = SE->getTruncateOrZeroExtend(N, CntTy); 1632 } else { 1633 // Potential overflow. Cast before doing the add. 1634 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1635 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); 1636 } 1637 } 1638 // The BackedgeTaken expression contains the number of times that the 1639 // backedge branches to the loop header. This is one less than the 1640 // number of times the loop executes, so use the incremented indvar. 1641 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1642 } else { 1643 // We must use the preincremented value... 1644 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1645 CmpIndVar = IndVar; 1646 } 1647 1648 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1649 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1650 && "genLoopLimit missed a cast"); 1651 1652 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1653 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1654 ICmpInst::Predicate P; 1655 if (L->contains(BI->getSuccessor(0))) 1656 P = ICmpInst::ICMP_NE; 1657 else 1658 P = ICmpInst::ICMP_EQ; 1659 1660 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1661 << " LHS:" << *CmpIndVar << '\n' 1662 << " op:\t" 1663 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1664 << " RHS:\t" << *ExitCnt << "\n" 1665 << " IVCount:\t" << *IVCount << "\n"); 1666 1667 IRBuilder<> Builder(BI); 1668 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1669 > SE->getTypeSizeInBits(ExitCnt->getType())) { 1670 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1671 "lftr.wideiv"); 1672 } 1673 1674 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1675 Value *OrigCond = BI->getCondition(); 1676 // It's tempting to use replaceAllUsesWith here to fully replace the old 1677 // comparison, but that's not immediately safe, since users of the old 1678 // comparison may not be dominated by the new comparison. Instead, just 1679 // update the branch to use the new comparison; in the common case this 1680 // will make old comparison dead. 1681 BI->setCondition(Cond); 1682 DeadInsts.push_back(OrigCond); 1683 1684 ++NumLFTR; 1685 Changed = true; 1686 return Cond; 1687 } 1688 1689 //===----------------------------------------------------------------------===// 1690 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1691 //===----------------------------------------------------------------------===// 1692 1693 /// If there's a single exit block, sink any loop-invariant values that 1694 /// were defined in the preheader but not used inside the loop into the 1695 /// exit block to reduce register pressure in the loop. 1696 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1697 BasicBlock *ExitBlock = L->getExitBlock(); 1698 if (!ExitBlock) return; 1699 1700 BasicBlock *Preheader = L->getLoopPreheader(); 1701 if (!Preheader) return; 1702 1703 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1704 BasicBlock::iterator I = Preheader->getTerminator(); 1705 while (I != Preheader->begin()) { 1706 --I; 1707 // New instructions were inserted at the end of the preheader. 1708 if (isa<PHINode>(I)) 1709 break; 1710 1711 // Don't move instructions which might have side effects, since the side 1712 // effects need to complete before instructions inside the loop. Also don't 1713 // move instructions which might read memory, since the loop may modify 1714 // memory. Note that it's okay if the instruction might have undefined 1715 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1716 // block. 1717 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1718 continue; 1719 1720 // Skip debug info intrinsics. 1721 if (isa<DbgInfoIntrinsic>(I)) 1722 continue; 1723 1724 // Skip landingpad instructions. 1725 if (isa<LandingPadInst>(I)) 1726 continue; 1727 1728 // Don't sink alloca: we never want to sink static alloca's out of the 1729 // entry block, and correctly sinking dynamic alloca's requires 1730 // checks for stacksave/stackrestore intrinsics. 1731 // FIXME: Refactor this check somehow? 1732 if (isa<AllocaInst>(I)) 1733 continue; 1734 1735 // Determine if there is a use in or before the loop (direct or 1736 // otherwise). 1737 bool UsedInLoop = false; 1738 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1739 UI != UE; ++UI) { 1740 User *U = *UI; 1741 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1742 if (PHINode *P = dyn_cast<PHINode>(U)) { 1743 unsigned i = 1744 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1745 UseBB = P->getIncomingBlock(i); 1746 } 1747 if (UseBB == Preheader || L->contains(UseBB)) { 1748 UsedInLoop = true; 1749 break; 1750 } 1751 } 1752 1753 // If there is, the def must remain in the preheader. 1754 if (UsedInLoop) 1755 continue; 1756 1757 // Otherwise, sink it to the exit block. 1758 Instruction *ToMove = I; 1759 bool Done = false; 1760 1761 if (I != Preheader->begin()) { 1762 // Skip debug info intrinsics. 1763 do { 1764 --I; 1765 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1766 1767 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1768 Done = true; 1769 } else { 1770 Done = true; 1771 } 1772 1773 ToMove->moveBefore(InsertPt); 1774 if (Done) break; 1775 InsertPt = ToMove; 1776 } 1777 } 1778 1779 //===----------------------------------------------------------------------===// 1780 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1781 //===----------------------------------------------------------------------===// 1782 1783 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1784 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1785 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1786 // canonicalization can be a pessimization without LSR to "clean up" 1787 // afterwards. 1788 // - We depend on having a preheader; in particular, 1789 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1790 // and we're in trouble if we can't find the induction variable even when 1791 // we've manually inserted one. 1792 if (!L->isLoopSimplifyForm()) 1793 return false; 1794 1795 if (EnableIVRewrite) 1796 IU = &getAnalysis<IVUsers>(); 1797 LI = &getAnalysis<LoopInfo>(); 1798 SE = &getAnalysis<ScalarEvolution>(); 1799 DT = &getAnalysis<DominatorTree>(); 1800 TD = getAnalysisIfAvailable<TargetData>(); 1801 1802 DeadInsts.clear(); 1803 Changed = false; 1804 1805 // If there are any floating-point recurrences, attempt to 1806 // transform them to use integer recurrences. 1807 RewriteNonIntegerIVs(L); 1808 1809 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1810 1811 // Create a rewriter object which we'll use to transform the code with. 1812 SCEVExpander Rewriter(*SE, "indvars"); 1813 #ifndef NDEBUG 1814 Rewriter.setDebugType(DEBUG_TYPE); 1815 #endif 1816 1817 // Eliminate redundant IV users. 1818 // 1819 // Simplification works best when run before other consumers of SCEV. We 1820 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1821 // other expressions involving loop IVs have been evaluated. This helps SCEV 1822 // set no-wrap flags before normalizing sign/zero extension. 1823 if (!EnableIVRewrite) { 1824 Rewriter.disableCanonicalMode(); 1825 SimplifyAndExtend(L, Rewriter, LPM); 1826 } 1827 1828 // Check to see if this loop has a computable loop-invariant execution count. 1829 // If so, this means that we can compute the final value of any expressions 1830 // that are recurrent in the loop, and substitute the exit values from the 1831 // loop into any instructions outside of the loop that use the final values of 1832 // the current expressions. 1833 // 1834 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1835 RewriteLoopExitValues(L, Rewriter); 1836 1837 // Eliminate redundant IV users. 1838 if (EnableIVRewrite) 1839 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); 1840 1841 // Eliminate redundant IV cycles. 1842 if (!EnableIVRewrite) 1843 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1844 1845 // Compute the type of the largest recurrence expression, and decide whether 1846 // a canonical induction variable should be inserted. 1847 Type *LargestType = 0; 1848 bool NeedCannIV = false; 1849 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1850 if (EnableIVRewrite && ExpandBECount) { 1851 // If we have a known trip count and a single exit block, we'll be 1852 // rewriting the loop exit test condition below, which requires a 1853 // canonical induction variable. 1854 NeedCannIV = true; 1855 Type *Ty = BackedgeTakenCount->getType(); 1856 if (!EnableIVRewrite) { 1857 // In this mode, SimplifyIVUsers may have already widened the IV used by 1858 // the backedge test and inserted a Trunc on the compare's operand. Get 1859 // the wider type to avoid creating a redundant narrow IV only used by the 1860 // loop test. 1861 LargestType = getBackedgeIVType(L); 1862 } 1863 if (!LargestType || 1864 SE->getTypeSizeInBits(Ty) > 1865 SE->getTypeSizeInBits(LargestType)) 1866 LargestType = SE->getEffectiveSCEVType(Ty); 1867 } 1868 if (EnableIVRewrite) { 1869 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1870 NeedCannIV = true; 1871 Type *Ty = 1872 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1873 if (!LargestType || 1874 SE->getTypeSizeInBits(Ty) > 1875 SE->getTypeSizeInBits(LargestType)) 1876 LargestType = Ty; 1877 } 1878 } 1879 1880 // Now that we know the largest of the induction variable expressions 1881 // in this loop, insert a canonical induction variable of the largest size. 1882 PHINode *IndVar = 0; 1883 if (NeedCannIV) { 1884 // Check to see if the loop already has any canonical-looking induction 1885 // variables. If any are present and wider than the planned canonical 1886 // induction variable, temporarily remove them, so that the Rewriter 1887 // doesn't attempt to reuse them. 1888 SmallVector<PHINode *, 2> OldCannIVs; 1889 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1890 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1891 SE->getTypeSizeInBits(LargestType)) 1892 OldCannIV->removeFromParent(); 1893 else 1894 break; 1895 OldCannIVs.push_back(OldCannIV); 1896 } 1897 1898 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1899 1900 ++NumInserted; 1901 Changed = true; 1902 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1903 1904 // Now that the official induction variable is established, reinsert 1905 // any old canonical-looking variables after it so that the IR remains 1906 // consistent. They will be deleted as part of the dead-PHI deletion at 1907 // the end of the pass. 1908 while (!OldCannIVs.empty()) { 1909 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1910 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); 1911 } 1912 } 1913 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { 1914 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1915 } 1916 // If we have a trip count expression, rewrite the loop's exit condition 1917 // using it. We can currently only handle loops with a single exit. 1918 Value *NewICmp = 0; 1919 if (ExpandBECount && IndVar) { 1920 // Check preconditions for proper SCEVExpander operation. SCEV does not 1921 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1922 // pass that uses the SCEVExpander must do it. This does not work well for 1923 // loop passes because SCEVExpander makes assumptions about all loops, while 1924 // LoopPassManager only forces the current loop to be simplified. 1925 // 1926 // FIXME: SCEV expansion has no way to bail out, so the caller must 1927 // explicitly check any assumptions made by SCEV. Brittle. 1928 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1929 if (!AR || AR->getLoop()->getLoopPreheader()) 1930 NewICmp = 1931 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 1932 } 1933 // Rewrite IV-derived expressions. 1934 if (EnableIVRewrite) 1935 RewriteIVExpressions(L, Rewriter); 1936 1937 // Clear the rewriter cache, because values that are in the rewriter's cache 1938 // can be deleted in the loop below, causing the AssertingVH in the cache to 1939 // trigger. 1940 Rewriter.clear(); 1941 1942 // Now that we're done iterating through lists, clean up any instructions 1943 // which are now dead. 1944 while (!DeadInsts.empty()) 1945 if (Instruction *Inst = 1946 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1947 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1948 1949 // The Rewriter may not be used from this point on. 1950 1951 // Loop-invariant instructions in the preheader that aren't used in the 1952 // loop may be sunk below the loop to reduce register pressure. 1953 SinkUnusedInvariants(L); 1954 1955 // For completeness, inform IVUsers of the IV use in the newly-created 1956 // loop exit test instruction. 1957 if (IU && NewICmp) { 1958 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 1959 if (NewICmpInst) 1960 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); 1961 } 1962 // Clean up dead instructions. 1963 Changed |= DeleteDeadPHIs(L->getHeader()); 1964 // Check a post-condition. 1965 assert(L->isLCSSAForm(*DT) && 1966 "Indvars did not leave the loop in lcssa form!"); 1967 1968 // Verify that LFTR, and any other change have not interfered with SCEV's 1969 // ability to compute trip count. 1970 #ifndef NDEBUG 1971 if (!EnableIVRewrite && VerifyIndvars && 1972 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1973 SE->forgetLoop(L); 1974 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1975 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1976 SE->getTypeSizeInBits(NewBECount->getType())) 1977 NewBECount = SE->getTruncateOrNoop(NewBECount, 1978 BackedgeTakenCount->getType()); 1979 else 1980 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1981 NewBECount->getType()); 1982 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1983 } 1984 #endif 1985 1986 return Changed; 1987 } 1988