xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision bd8d3091117b334343c4d9775f53253f0ce02861)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100   "verify-indvars", cl::Hidden,
101   cl::desc("Verify the ScalarEvolution result after running indvars"));
102 
103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
109                clEnumValN(OnlyCheapRepl, "cheap",
110                           "only replace exit value when the cost is cheap"),
111                clEnumValN(AlwaysRepl, "always",
112                           "always replace exit value whenever possible")));
113 
114 static cl::opt<bool> UsePostIncrementRanges(
115   "indvars-post-increment-ranges", cl::Hidden,
116   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
117   cl::init(true));
118 
119 static cl::opt<bool>
120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
121             cl::desc("Disable Linear Function Test Replace optimization"));
122 
123 namespace {
124 
125 struct RewritePhi;
126 
127 class IndVarSimplify {
128   LoopInfo *LI;
129   ScalarEvolution *SE;
130   DominatorTree *DT;
131   const DataLayout &DL;
132   TargetLibraryInfo *TLI;
133   const TargetTransformInfo *TTI;
134 
135   SmallVector<WeakTrackingVH, 16> DeadInsts;
136 
137   bool isValidRewrite(Value *FromVal, Value *ToVal);
138 
139   bool handleFloatingPointIV(Loop *L, PHINode *PH);
140   bool rewriteNonIntegerIVs(Loop *L);
141 
142   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
143 
144   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
145   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
146   bool rewriteFirstIterationLoopExitValues(Loop *L);
147   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks. A nullptr can be returned if no
221 /// viable location is found: it may happen if User is a PHI and Def only comes
222 /// to this PHI from unreachable blocks.
223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224                                           DominatorTree *DT, LoopInfo *LI) {
225   PHINode *PHI = dyn_cast<PHINode>(User);
226   if (!PHI)
227     return User;
228 
229   Instruction *InsertPt = nullptr;
230   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231     if (PHI->getIncomingValue(i) != Def)
232       continue;
233 
234     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235 
236     if (!DT->isReachableFromEntry(InsertBB))
237       continue;
238 
239     if (!InsertPt) {
240       InsertPt = InsertBB->getTerminator();
241       continue;
242     }
243     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
244     InsertPt = InsertBB->getTerminator();
245   }
246 
247   // If we have skipped all inputs, it means that Def only comes to Phi from
248   // unreachable blocks.
249   if (!InsertPt)
250     return nullptr;
251 
252   auto *DefI = dyn_cast<Instruction>(Def);
253   if (!DefI)
254     return InsertPt;
255 
256   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
257 
258   auto *L = LI->getLoopFor(DefI->getParent());
259   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
260 
261   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
262     if (LI->getLoopFor(DTN->getBlock()) == L)
263       return DTN->getBlock()->getTerminator();
264 
265   llvm_unreachable("DefI dominates InsertPt!");
266 }
267 
268 //===----------------------------------------------------------------------===//
269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
270 //===----------------------------------------------------------------------===//
271 
272 /// Convert APF to an integer, if possible.
273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
274   bool isExact = false;
275   // See if we can convert this to an int64_t
276   uint64_t UIntVal;
277   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
278                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
279       !isExact)
280     return false;
281   IntVal = UIntVal;
282   return true;
283 }
284 
285 /// If the loop has floating induction variable then insert corresponding
286 /// integer induction variable if possible.
287 /// For example,
288 /// for(double i = 0; i < 10000; ++i)
289 ///   bar(i)
290 /// is converted into
291 /// for(int i = 0; i < 10000; ++i)
292 ///   bar((double)i);
293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
294   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
295   unsigned BackEdge     = IncomingEdge^1;
296 
297   // Check incoming value.
298   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
299 
300   int64_t InitValue;
301   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
302     return false;
303 
304   // Check IV increment. Reject this PN if increment operation is not
305   // an add or increment value can not be represented by an integer.
306   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
307   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
308 
309   // If this is not an add of the PHI with a constantfp, or if the constant fp
310   // is not an integer, bail out.
311   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
312   int64_t IncValue;
313   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
314       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
315     return false;
316 
317   // Check Incr uses. One user is PN and the other user is an exit condition
318   // used by the conditional terminator.
319   Value::user_iterator IncrUse = Incr->user_begin();
320   Instruction *U1 = cast<Instruction>(*IncrUse++);
321   if (IncrUse == Incr->user_end()) return false;
322   Instruction *U2 = cast<Instruction>(*IncrUse++);
323   if (IncrUse != Incr->user_end()) return false;
324 
325   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
326   // only used by a branch, we can't transform it.
327   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
328   if (!Compare)
329     Compare = dyn_cast<FCmpInst>(U2);
330   if (!Compare || !Compare->hasOneUse() ||
331       !isa<BranchInst>(Compare->user_back()))
332     return false;
333 
334   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
335 
336   // We need to verify that the branch actually controls the iteration count
337   // of the loop.  If not, the new IV can overflow and no one will notice.
338   // The branch block must be in the loop and one of the successors must be out
339   // of the loop.
340   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
341   if (!L->contains(TheBr->getParent()) ||
342       (L->contains(TheBr->getSuccessor(0)) &&
343        L->contains(TheBr->getSuccessor(1))))
344     return false;
345 
346   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
347   // transform it.
348   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
349   int64_t ExitValue;
350   if (ExitValueVal == nullptr ||
351       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
352     return false;
353 
354   // Find new predicate for integer comparison.
355   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
356   switch (Compare->getPredicate()) {
357   default: return false;  // Unknown comparison.
358   case CmpInst::FCMP_OEQ:
359   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
360   case CmpInst::FCMP_ONE:
361   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
362   case CmpInst::FCMP_OGT:
363   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
364   case CmpInst::FCMP_OGE:
365   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
366   case CmpInst::FCMP_OLT:
367   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
368   case CmpInst::FCMP_OLE:
369   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
370   }
371 
372   // We convert the floating point induction variable to a signed i32 value if
373   // we can.  This is only safe if the comparison will not overflow in a way
374   // that won't be trapped by the integer equivalent operations.  Check for this
375   // now.
376   // TODO: We could use i64 if it is native and the range requires it.
377 
378   // The start/stride/exit values must all fit in signed i32.
379   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
380     return false;
381 
382   // If not actually striding (add x, 0.0), avoid touching the code.
383   if (IncValue == 0)
384     return false;
385 
386   // Positive and negative strides have different safety conditions.
387   if (IncValue > 0) {
388     // If we have a positive stride, we require the init to be less than the
389     // exit value.
390     if (InitValue >= ExitValue)
391       return false;
392 
393     uint32_t Range = uint32_t(ExitValue-InitValue);
394     // Check for infinite loop, either:
395     // while (i <= Exit) or until (i > Exit)
396     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
397       if (++Range == 0) return false;  // Range overflows.
398     }
399 
400     unsigned Leftover = Range % uint32_t(IncValue);
401 
402     // If this is an equality comparison, we require that the strided value
403     // exactly land on the exit value, otherwise the IV condition will wrap
404     // around and do things the fp IV wouldn't.
405     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
406         Leftover != 0)
407       return false;
408 
409     // If the stride would wrap around the i32 before exiting, we can't
410     // transform the IV.
411     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
412       return false;
413   } else {
414     // If we have a negative stride, we require the init to be greater than the
415     // exit value.
416     if (InitValue <= ExitValue)
417       return false;
418 
419     uint32_t Range = uint32_t(InitValue-ExitValue);
420     // Check for infinite loop, either:
421     // while (i >= Exit) or until (i < Exit)
422     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
423       if (++Range == 0) return false;  // Range overflows.
424     }
425 
426     unsigned Leftover = Range % uint32_t(-IncValue);
427 
428     // If this is an equality comparison, we require that the strided value
429     // exactly land on the exit value, otherwise the IV condition will wrap
430     // around and do things the fp IV wouldn't.
431     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
432         Leftover != 0)
433       return false;
434 
435     // If the stride would wrap around the i32 before exiting, we can't
436     // transform the IV.
437     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
438       return false;
439   }
440 
441   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
442 
443   // Insert new integer induction variable.
444   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
445   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
446                       PN->getIncomingBlock(IncomingEdge));
447 
448   Value *NewAdd =
449     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
450                               Incr->getName()+".int", Incr);
451   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
452 
453   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
454                                       ConstantInt::get(Int32Ty, ExitValue),
455                                       Compare->getName());
456 
457   // In the following deletions, PN may become dead and may be deleted.
458   // Use a WeakTrackingVH to observe whether this happens.
459   WeakTrackingVH WeakPH = PN;
460 
461   // Delete the old floating point exit comparison.  The branch starts using the
462   // new comparison.
463   NewCompare->takeName(Compare);
464   Compare->replaceAllUsesWith(NewCompare);
465   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
466 
467   // Delete the old floating point increment.
468   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
469   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
470 
471   // If the FP induction variable still has uses, this is because something else
472   // in the loop uses its value.  In order to canonicalize the induction
473   // variable, we chose to eliminate the IV and rewrite it in terms of an
474   // int->fp cast.
475   //
476   // We give preference to sitofp over uitofp because it is faster on most
477   // platforms.
478   if (WeakPH) {
479     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
480                                  &*PN->getParent()->getFirstInsertionPt());
481     PN->replaceAllUsesWith(Conv);
482     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
483   }
484   return true;
485 }
486 
487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
488   // First step.  Check to see if there are any floating-point recurrences.
489   // If there are, change them into integer recurrences, permitting analysis by
490   // the SCEV routines.
491   BasicBlock *Header = L->getHeader();
492 
493   SmallVector<WeakTrackingVH, 8> PHIs;
494   for (PHINode &PN : Header->phis())
495     PHIs.push_back(&PN);
496 
497   bool Changed = false;
498   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
499     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
500       Changed |= handleFloatingPointIV(L, PN);
501 
502   // If the loop previously had floating-point IV, ScalarEvolution
503   // may not have been able to compute a trip count. Now that we've done some
504   // re-writing, the trip count may be computable.
505   if (Changed)
506     SE->forgetLoop(L);
507   return Changed;
508 }
509 
510 namespace {
511 
512 // Collect information about PHI nodes which can be transformed in
513 // rewriteLoopExitValues.
514 struct RewritePhi {
515   PHINode *PN;
516 
517   // Ith incoming value.
518   unsigned Ith;
519 
520   // Exit value after expansion.
521   Value *Val;
522 
523   // High Cost when expansion.
524   bool HighCost;
525 
526   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
527       : PN(P), Ith(I), Val(V), HighCost(H) {}
528 };
529 
530 } // end anonymous namespace
531 
532 //===----------------------------------------------------------------------===//
533 // rewriteLoopExitValues - Optimize IV users outside the loop.
534 // As a side effect, reduces the amount of IV processing within the loop.
535 //===----------------------------------------------------------------------===//
536 
537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
538   SmallPtrSet<const Instruction *, 8> Visited;
539   SmallVector<const Instruction *, 8> WorkList;
540   Visited.insert(I);
541   WorkList.push_back(I);
542   while (!WorkList.empty()) {
543     const Instruction *Curr = WorkList.pop_back_val();
544     // This use is outside the loop, nothing to do.
545     if (!L->contains(Curr))
546       continue;
547     // Do we assume it is a "hard" use which will not be eliminated easily?
548     if (Curr->mayHaveSideEffects())
549       return true;
550     // Otherwise, add all its users to worklist.
551     for (auto U : Curr->users()) {
552       auto *UI = cast<Instruction>(U);
553       if (Visited.insert(UI).second)
554         WorkList.push_back(UI);
555     }
556   }
557   return false;
558 }
559 
560 /// Check to see if this loop has a computable loop-invariant execution count.
561 /// If so, this means that we can compute the final value of any expressions
562 /// that are recurrent in the loop, and substitute the exit values from the loop
563 /// into any instructions outside of the loop that use the final values of the
564 /// current expressions.
565 ///
566 /// This is mostly redundant with the regular IndVarSimplify activities that
567 /// happen later, except that it's more powerful in some cases, because it's
568 /// able to brute-force evaluate arbitrary instructions as long as they have
569 /// constant operands at the beginning of the loop.
570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
571   // Check a pre-condition.
572   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
573          "Indvars did not preserve LCSSA!");
574 
575   SmallVector<BasicBlock*, 8> ExitBlocks;
576   L->getUniqueExitBlocks(ExitBlocks);
577 
578   SmallVector<RewritePhi, 8> RewritePhiSet;
579   // Find all values that are computed inside the loop, but used outside of it.
580   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
581   // the exit blocks of the loop to find them.
582   for (BasicBlock *ExitBB : ExitBlocks) {
583     // If there are no PHI nodes in this exit block, then no values defined
584     // inside the loop are used on this path, skip it.
585     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
586     if (!PN) continue;
587 
588     unsigned NumPreds = PN->getNumIncomingValues();
589 
590     // Iterate over all of the PHI nodes.
591     BasicBlock::iterator BBI = ExitBB->begin();
592     while ((PN = dyn_cast<PHINode>(BBI++))) {
593       if (PN->use_empty())
594         continue; // dead use, don't replace it
595 
596       if (!SE->isSCEVable(PN->getType()))
597         continue;
598 
599       // It's necessary to tell ScalarEvolution about this explicitly so that
600       // it can walk the def-use list and forget all SCEVs, as it may not be
601       // watching the PHI itself. Once the new exit value is in place, there
602       // may not be a def-use connection between the loop and every instruction
603       // which got a SCEVAddRecExpr for that loop.
604       SE->forgetValue(PN);
605 
606       // Iterate over all of the values in all the PHI nodes.
607       for (unsigned i = 0; i != NumPreds; ++i) {
608         // If the value being merged in is not integer or is not defined
609         // in the loop, skip it.
610         Value *InVal = PN->getIncomingValue(i);
611         if (!isa<Instruction>(InVal))
612           continue;
613 
614         // If this pred is for a subloop, not L itself, skip it.
615         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
616           continue; // The Block is in a subloop, skip it.
617 
618         // Check that InVal is defined in the loop.
619         Instruction *Inst = cast<Instruction>(InVal);
620         if (!L->contains(Inst))
621           continue;
622 
623         // Okay, this instruction has a user outside of the current loop
624         // and varies predictably *inside* the loop.  Evaluate the value it
625         // contains when the loop exits, if possible.
626         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
627         if (!SE->isLoopInvariant(ExitValue, L) ||
628             !isSafeToExpand(ExitValue, *SE))
629           continue;
630 
631         // Computing the value outside of the loop brings no benefit if it is
632         // definitely used inside the loop in a way which can not be optimized
633         // away.
634         if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
635           continue;
636 
637         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
638         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
639 
640         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
641                           << '\n'
642                           << "  LoopVal = " << *Inst << "\n");
643 
644         if (!isValidRewrite(Inst, ExitVal)) {
645           DeadInsts.push_back(ExitVal);
646           continue;
647         }
648 
649 #ifndef NDEBUG
650         // If we reuse an instruction from a loop which is neither L nor one of
651         // its containing loops, we end up breaking LCSSA form for this loop by
652         // creating a new use of its instruction.
653         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
654           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
655             if (EVL != L)
656               assert(EVL->contains(L) && "LCSSA breach detected!");
657 #endif
658 
659         // Collect all the candidate PHINodes to be rewritten.
660         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
661       }
662     }
663   }
664 
665   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
666 
667   bool Changed = false;
668   // Transformation.
669   for (const RewritePhi &Phi : RewritePhiSet) {
670     PHINode *PN = Phi.PN;
671     Value *ExitVal = Phi.Val;
672 
673     // Only do the rewrite when the ExitValue can be expanded cheaply.
674     // If LoopCanBeDel is true, rewrite exit value aggressively.
675     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
676       DeadInsts.push_back(ExitVal);
677       continue;
678     }
679 
680     Changed = true;
681     ++NumReplaced;
682     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
683     PN->setIncomingValue(Phi.Ith, ExitVal);
684 
685     // If this instruction is dead now, delete it. Don't do it now to avoid
686     // invalidating iterators.
687     if (isInstructionTriviallyDead(Inst, TLI))
688       DeadInsts.push_back(Inst);
689 
690     // Replace PN with ExitVal if that is legal and does not break LCSSA.
691     if (PN->getNumIncomingValues() == 1 &&
692         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
693       PN->replaceAllUsesWith(ExitVal);
694       PN->eraseFromParent();
695     }
696   }
697 
698   // The insertion point instruction may have been deleted; clear it out
699   // so that the rewriter doesn't trip over it later.
700   Rewriter.clearInsertPoint();
701   return Changed;
702 }
703 
704 //===---------------------------------------------------------------------===//
705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
706 // they will exit at the first iteration.
707 //===---------------------------------------------------------------------===//
708 
709 /// Check to see if this loop has loop invariant conditions which lead to loop
710 /// exits. If so, we know that if the exit path is taken, it is at the first
711 /// loop iteration. This lets us predict exit values of PHI nodes that live in
712 /// loop header.
713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
714   // Verify the input to the pass is already in LCSSA form.
715   assert(L->isLCSSAForm(*DT));
716 
717   SmallVector<BasicBlock *, 8> ExitBlocks;
718   L->getUniqueExitBlocks(ExitBlocks);
719   auto *LoopHeader = L->getHeader();
720   assert(LoopHeader && "Invalid loop");
721 
722   bool MadeAnyChanges = false;
723   for (auto *ExitBB : ExitBlocks) {
724     // If there are no more PHI nodes in this exit block, then no more
725     // values defined inside the loop are used on this path.
726     for (PHINode &PN : ExitBB->phis()) {
727       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
728            IncomingValIdx != E; ++IncomingValIdx) {
729         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
730 
731         // Can we prove that the exit must run on the first iteration if it
732         // runs at all?  (i.e. early exits are fine for our purposes, but
733         // traces which lead to this exit being taken on the 2nd iteration
734         // aren't.)  Note that this is about whether the exit branch is
735         // executed, not about whether it is taken.
736         if (!L->getLoopLatch() ||
737             !DT->dominates(IncomingBB, L->getLoopLatch()))
738           continue;
739 
740         // Get condition that leads to the exit path.
741         auto *TermInst = IncomingBB->getTerminator();
742 
743         Value *Cond = nullptr;
744         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
745           // Must be a conditional branch, otherwise the block
746           // should not be in the loop.
747           Cond = BI->getCondition();
748         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
749           Cond = SI->getCondition();
750         else
751           continue;
752 
753         if (!L->isLoopInvariant(Cond))
754           continue;
755 
756         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
757 
758         // Only deal with PHIs in the loop header.
759         if (!ExitVal || ExitVal->getParent() != L->getHeader())
760           continue;
761 
762         // If ExitVal is a PHI on the loop header, then we know its
763         // value along this exit because the exit can only be taken
764         // on the first iteration.
765         auto *LoopPreheader = L->getLoopPreheader();
766         assert(LoopPreheader && "Invalid loop");
767         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
768         if (PreheaderIdx != -1) {
769           assert(ExitVal->getParent() == LoopHeader &&
770                  "ExitVal must be in loop header");
771           MadeAnyChanges = true;
772           PN.setIncomingValue(IncomingValIdx,
773                               ExitVal->getIncomingValue(PreheaderIdx));
774         }
775       }
776     }
777   }
778   return MadeAnyChanges;
779 }
780 
781 /// Check whether it is possible to delete the loop after rewriting exit
782 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
783 /// aggressively.
784 bool IndVarSimplify::canLoopBeDeleted(
785     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
786   BasicBlock *Preheader = L->getLoopPreheader();
787   // If there is no preheader, the loop will not be deleted.
788   if (!Preheader)
789     return false;
790 
791   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
792   // We obviate multiple ExitingBlocks case for simplicity.
793   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
794   // after exit value rewriting, we can enhance the logic here.
795   SmallVector<BasicBlock *, 4> ExitingBlocks;
796   L->getExitingBlocks(ExitingBlocks);
797   SmallVector<BasicBlock *, 8> ExitBlocks;
798   L->getUniqueExitBlocks(ExitBlocks);
799   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
800     return false;
801 
802   BasicBlock *ExitBlock = ExitBlocks[0];
803   BasicBlock::iterator BI = ExitBlock->begin();
804   while (PHINode *P = dyn_cast<PHINode>(BI)) {
805     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
806 
807     // If the Incoming value of P is found in RewritePhiSet, we know it
808     // could be rewritten to use a loop invariant value in transformation
809     // phase later. Skip it in the loop invariant check below.
810     bool found = false;
811     for (const RewritePhi &Phi : RewritePhiSet) {
812       unsigned i = Phi.Ith;
813       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
814         found = true;
815         break;
816       }
817     }
818 
819     Instruction *I;
820     if (!found && (I = dyn_cast<Instruction>(Incoming)))
821       if (!L->hasLoopInvariantOperands(I))
822         return false;
823 
824     ++BI;
825   }
826 
827   for (auto *BB : L->blocks())
828     if (llvm::any_of(*BB, [](Instruction &I) {
829           return I.mayHaveSideEffects();
830         }))
831       return false;
832 
833   return true;
834 }
835 
836 //===----------------------------------------------------------------------===//
837 //  IV Widening - Extend the width of an IV to cover its widest uses.
838 //===----------------------------------------------------------------------===//
839 
840 namespace {
841 
842 // Collect information about induction variables that are used by sign/zero
843 // extend operations. This information is recorded by CollectExtend and provides
844 // the input to WidenIV.
845 struct WideIVInfo {
846   PHINode *NarrowIV = nullptr;
847 
848   // Widest integer type created [sz]ext
849   Type *WidestNativeType = nullptr;
850 
851   // Was a sext user seen before a zext?
852   bool IsSigned = false;
853 };
854 
855 } // end anonymous namespace
856 
857 /// Update information about the induction variable that is extended by this
858 /// sign or zero extend operation. This is used to determine the final width of
859 /// the IV before actually widening it.
860 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
861                         const TargetTransformInfo *TTI) {
862   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
863   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
864     return;
865 
866   Type *Ty = Cast->getType();
867   uint64_t Width = SE->getTypeSizeInBits(Ty);
868   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
869     return;
870 
871   // Check that `Cast` actually extends the induction variable (we rely on this
872   // later).  This takes care of cases where `Cast` is extending a truncation of
873   // the narrow induction variable, and thus can end up being narrower than the
874   // "narrow" induction variable.
875   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
876   if (NarrowIVWidth >= Width)
877     return;
878 
879   // Cast is either an sext or zext up to this point.
880   // We should not widen an indvar if arithmetics on the wider indvar are more
881   // expensive than those on the narrower indvar. We check only the cost of ADD
882   // because at least an ADD is required to increment the induction variable. We
883   // could compute more comprehensively the cost of all instructions on the
884   // induction variable when necessary.
885   if (TTI &&
886       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
887           TTI->getArithmeticInstrCost(Instruction::Add,
888                                       Cast->getOperand(0)->getType())) {
889     return;
890   }
891 
892   if (!WI.WidestNativeType) {
893     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
894     WI.IsSigned = IsSigned;
895     return;
896   }
897 
898   // We extend the IV to satisfy the sign of its first user, arbitrarily.
899   if (WI.IsSigned != IsSigned)
900     return;
901 
902   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
903     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
904 }
905 
906 namespace {
907 
908 /// Record a link in the Narrow IV def-use chain along with the WideIV that
909 /// computes the same value as the Narrow IV def.  This avoids caching Use*
910 /// pointers.
911 struct NarrowIVDefUse {
912   Instruction *NarrowDef = nullptr;
913   Instruction *NarrowUse = nullptr;
914   Instruction *WideDef = nullptr;
915 
916   // True if the narrow def is never negative.  Tracking this information lets
917   // us use a sign extension instead of a zero extension or vice versa, when
918   // profitable and legal.
919   bool NeverNegative = false;
920 
921   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
922                  bool NeverNegative)
923       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
924         NeverNegative(NeverNegative) {}
925 };
926 
927 /// The goal of this transform is to remove sign and zero extends without
928 /// creating any new induction variables. To do this, it creates a new phi of
929 /// the wider type and redirects all users, either removing extends or inserting
930 /// truncs whenever we stop propagating the type.
931 class WidenIV {
932   // Parameters
933   PHINode *OrigPhi;
934   Type *WideType;
935 
936   // Context
937   LoopInfo        *LI;
938   Loop            *L;
939   ScalarEvolution *SE;
940   DominatorTree   *DT;
941 
942   // Does the module have any calls to the llvm.experimental.guard intrinsic
943   // at all? If not we can avoid scanning instructions looking for guards.
944   bool HasGuards;
945 
946   // Result
947   PHINode *WidePhi = nullptr;
948   Instruction *WideInc = nullptr;
949   const SCEV *WideIncExpr = nullptr;
950   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
951 
952   SmallPtrSet<Instruction *,16> Widened;
953   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
954 
955   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
956 
957   // A map tracking the kind of extension used to widen each narrow IV
958   // and narrow IV user.
959   // Key: pointer to a narrow IV or IV user.
960   // Value: the kind of extension used to widen this Instruction.
961   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
962 
963   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
964 
965   // A map with control-dependent ranges for post increment IV uses. The key is
966   // a pair of IV def and a use of this def denoting the context. The value is
967   // a ConstantRange representing possible values of the def at the given
968   // context.
969   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
970 
971   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
972                                               Instruction *UseI) {
973     DefUserPair Key(Def, UseI);
974     auto It = PostIncRangeInfos.find(Key);
975     return It == PostIncRangeInfos.end()
976                ? Optional<ConstantRange>(None)
977                : Optional<ConstantRange>(It->second);
978   }
979 
980   void calculatePostIncRanges(PHINode *OrigPhi);
981   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
982 
983   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
984     DefUserPair Key(Def, UseI);
985     auto It = PostIncRangeInfos.find(Key);
986     if (It == PostIncRangeInfos.end())
987       PostIncRangeInfos.insert({Key, R});
988     else
989       It->second = R.intersectWith(It->second);
990   }
991 
992 public:
993   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
994           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
995           bool HasGuards)
996       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
997         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
998         HasGuards(HasGuards), DeadInsts(DI) {
999     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1000     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1001   }
1002 
1003   PHINode *createWideIV(SCEVExpander &Rewriter);
1004 
1005 protected:
1006   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1007                           Instruction *Use);
1008 
1009   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1010   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1011                                      const SCEVAddRecExpr *WideAR);
1012   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1013 
1014   ExtendKind getExtendKind(Instruction *I);
1015 
1016   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1017 
1018   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1019 
1020   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1021 
1022   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1023                               unsigned OpCode) const;
1024 
1025   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1026 
1027   bool widenLoopCompare(NarrowIVDefUse DU);
1028   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1029   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1030 
1031   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1032 };
1033 
1034 } // end anonymous namespace
1035 
1036 /// Perform a quick domtree based check for loop invariance assuming that V is
1037 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1038 /// purpose.
1039 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1040   Instruction *Inst = dyn_cast<Instruction>(V);
1041   if (!Inst)
1042     return true;
1043 
1044   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1045 }
1046 
1047 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1048                                  bool IsSigned, Instruction *Use) {
1049   // Set the debug location and conservative insertion point.
1050   IRBuilder<> Builder(Use);
1051   // Hoist the insertion point into loop preheaders as far as possible.
1052   for (const Loop *L = LI->getLoopFor(Use->getParent());
1053        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1054        L = L->getParentLoop())
1055     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1056 
1057   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1058                     Builder.CreateZExt(NarrowOper, WideType);
1059 }
1060 
1061 /// Instantiate a wide operation to replace a narrow operation. This only needs
1062 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1063 /// 0 for any operation we decide not to clone.
1064 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1065                                   const SCEVAddRecExpr *WideAR) {
1066   unsigned Opcode = DU.NarrowUse->getOpcode();
1067   switch (Opcode) {
1068   default:
1069     return nullptr;
1070   case Instruction::Add:
1071   case Instruction::Mul:
1072   case Instruction::UDiv:
1073   case Instruction::Sub:
1074     return cloneArithmeticIVUser(DU, WideAR);
1075 
1076   case Instruction::And:
1077   case Instruction::Or:
1078   case Instruction::Xor:
1079   case Instruction::Shl:
1080   case Instruction::LShr:
1081   case Instruction::AShr:
1082     return cloneBitwiseIVUser(DU);
1083   }
1084 }
1085 
1086 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1087   Instruction *NarrowUse = DU.NarrowUse;
1088   Instruction *NarrowDef = DU.NarrowDef;
1089   Instruction *WideDef = DU.WideDef;
1090 
1091   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1092 
1093   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1094   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1095   // invariant and will be folded or hoisted. If it actually comes from a
1096   // widened IV, it should be removed during a future call to widenIVUse.
1097   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1098   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1099                    ? WideDef
1100                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1101                                       IsSigned, NarrowUse);
1102   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1103                    ? WideDef
1104                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1105                                       IsSigned, NarrowUse);
1106 
1107   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1108   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1109                                         NarrowBO->getName());
1110   IRBuilder<> Builder(NarrowUse);
1111   Builder.Insert(WideBO);
1112   WideBO->copyIRFlags(NarrowBO);
1113   return WideBO;
1114 }
1115 
1116 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1117                                             const SCEVAddRecExpr *WideAR) {
1118   Instruction *NarrowUse = DU.NarrowUse;
1119   Instruction *NarrowDef = DU.NarrowDef;
1120   Instruction *WideDef = DU.WideDef;
1121 
1122   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1123 
1124   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1125 
1126   // We're trying to find X such that
1127   //
1128   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1129   //
1130   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1131   // and check using SCEV if any of them are correct.
1132 
1133   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1134   // correct solution to X.
1135   auto GuessNonIVOperand = [&](bool SignExt) {
1136     const SCEV *WideLHS;
1137     const SCEV *WideRHS;
1138 
1139     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1140       if (SignExt)
1141         return SE->getSignExtendExpr(S, Ty);
1142       return SE->getZeroExtendExpr(S, Ty);
1143     };
1144 
1145     if (IVOpIdx == 0) {
1146       WideLHS = SE->getSCEV(WideDef);
1147       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1148       WideRHS = GetExtend(NarrowRHS, WideType);
1149     } else {
1150       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1151       WideLHS = GetExtend(NarrowLHS, WideType);
1152       WideRHS = SE->getSCEV(WideDef);
1153     }
1154 
1155     // WideUse is "WideDef `op.wide` X" as described in the comment.
1156     const SCEV *WideUse = nullptr;
1157 
1158     switch (NarrowUse->getOpcode()) {
1159     default:
1160       llvm_unreachable("No other possibility!");
1161 
1162     case Instruction::Add:
1163       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1164       break;
1165 
1166     case Instruction::Mul:
1167       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1168       break;
1169 
1170     case Instruction::UDiv:
1171       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1172       break;
1173 
1174     case Instruction::Sub:
1175       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1176       break;
1177     }
1178 
1179     return WideUse == WideAR;
1180   };
1181 
1182   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1183   if (!GuessNonIVOperand(SignExtend)) {
1184     SignExtend = !SignExtend;
1185     if (!GuessNonIVOperand(SignExtend))
1186       return nullptr;
1187   }
1188 
1189   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1190                    ? WideDef
1191                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1192                                       SignExtend, NarrowUse);
1193   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1194                    ? WideDef
1195                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1196                                       SignExtend, NarrowUse);
1197 
1198   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1199   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1200                                         NarrowBO->getName());
1201 
1202   IRBuilder<> Builder(NarrowUse);
1203   Builder.Insert(WideBO);
1204   WideBO->copyIRFlags(NarrowBO);
1205   return WideBO;
1206 }
1207 
1208 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1209   auto It = ExtendKindMap.find(I);
1210   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1211   return It->second;
1212 }
1213 
1214 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1215                                      unsigned OpCode) const {
1216   if (OpCode == Instruction::Add)
1217     return SE->getAddExpr(LHS, RHS);
1218   if (OpCode == Instruction::Sub)
1219     return SE->getMinusSCEV(LHS, RHS);
1220   if (OpCode == Instruction::Mul)
1221     return SE->getMulExpr(LHS, RHS);
1222 
1223   llvm_unreachable("Unsupported opcode.");
1224 }
1225 
1226 /// No-wrap operations can transfer sign extension of their result to their
1227 /// operands. Generate the SCEV value for the widened operation without
1228 /// actually modifying the IR yet. If the expression after extending the
1229 /// operands is an AddRec for this loop, return the AddRec and the kind of
1230 /// extension used.
1231 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1232   // Handle the common case of add<nsw/nuw>
1233   const unsigned OpCode = DU.NarrowUse->getOpcode();
1234   // Only Add/Sub/Mul instructions supported yet.
1235   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1236       OpCode != Instruction::Mul)
1237     return {nullptr, Unknown};
1238 
1239   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1240   // if extending the other will lead to a recurrence.
1241   const unsigned ExtendOperIdx =
1242       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1243   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1244 
1245   const SCEV *ExtendOperExpr = nullptr;
1246   const OverflowingBinaryOperator *OBO =
1247     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1248   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1249   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1250     ExtendOperExpr = SE->getSignExtendExpr(
1251       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1252   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1253     ExtendOperExpr = SE->getZeroExtendExpr(
1254       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1255   else
1256     return {nullptr, Unknown};
1257 
1258   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1259   // flags. This instruction may be guarded by control flow that the no-wrap
1260   // behavior depends on. Non-control-equivalent instructions can be mapped to
1261   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1262   // semantics to those operations.
1263   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1264   const SCEV *rhs = ExtendOperExpr;
1265 
1266   // Let's swap operands to the initial order for the case of non-commutative
1267   // operations, like SUB. See PR21014.
1268   if (ExtendOperIdx == 0)
1269     std::swap(lhs, rhs);
1270   const SCEVAddRecExpr *AddRec =
1271       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1272 
1273   if (!AddRec || AddRec->getLoop() != L)
1274     return {nullptr, Unknown};
1275 
1276   return {AddRec, ExtKind};
1277 }
1278 
1279 /// Is this instruction potentially interesting for further simplification after
1280 /// widening it's type? In other words, can the extend be safely hoisted out of
1281 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1282 /// so, return the extended recurrence and the kind of extension used. Otherwise
1283 /// return {nullptr, Unknown}.
1284 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1285   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1286     return {nullptr, Unknown};
1287 
1288   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1289   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1290       SE->getTypeSizeInBits(WideType)) {
1291     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1292     // index. So don't follow this use.
1293     return {nullptr, Unknown};
1294   }
1295 
1296   const SCEV *WideExpr;
1297   ExtendKind ExtKind;
1298   if (DU.NeverNegative) {
1299     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1300     if (isa<SCEVAddRecExpr>(WideExpr))
1301       ExtKind = SignExtended;
1302     else {
1303       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1304       ExtKind = ZeroExtended;
1305     }
1306   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1307     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1308     ExtKind = SignExtended;
1309   } else {
1310     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1311     ExtKind = ZeroExtended;
1312   }
1313   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1314   if (!AddRec || AddRec->getLoop() != L)
1315     return {nullptr, Unknown};
1316   return {AddRec, ExtKind};
1317 }
1318 
1319 /// This IV user cannot be widen. Replace this use of the original narrow IV
1320 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1321 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1322   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1323   if (!InsertPt)
1324     return;
1325   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1326                     << *DU.NarrowUse << "\n");
1327   IRBuilder<> Builder(InsertPt);
1328   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1329   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1330 }
1331 
1332 /// If the narrow use is a compare instruction, then widen the compare
1333 //  (and possibly the other operand).  The extend operation is hoisted into the
1334 // loop preheader as far as possible.
1335 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1336   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1337   if (!Cmp)
1338     return false;
1339 
1340   // We can legally widen the comparison in the following two cases:
1341   //
1342   //  - The signedness of the IV extension and comparison match
1343   //
1344   //  - The narrow IV is always positive (and thus its sign extension is equal
1345   //    to its zero extension).  For instance, let's say we're zero extending
1346   //    %narrow for the following use
1347   //
1348   //      icmp slt i32 %narrow, %val   ... (A)
1349   //
1350   //    and %narrow is always positive.  Then
1351   //
1352   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1353   //          == icmp slt i32 zext(%narrow), sext(%val)
1354   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1355   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1356     return false;
1357 
1358   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1359   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1360   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1361   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1362 
1363   // Widen the compare instruction.
1364   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1365   if (!InsertPt)
1366     return false;
1367   IRBuilder<> Builder(InsertPt);
1368   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1369 
1370   // Widen the other operand of the compare, if necessary.
1371   if (CastWidth < IVWidth) {
1372     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1373     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1374   }
1375   return true;
1376 }
1377 
1378 /// If the narrow use is an instruction whose two operands are the defining
1379 /// instruction of DU and a load instruction, then we have the following:
1380 /// if the load is hoisted outside the loop, then we do not reach this function
1381 /// as scalar evolution analysis works fine in widenIVUse with variables
1382 /// hoisted outside the loop and efficient code is subsequently generated by
1383 /// not emitting truncate instructions. But when the load is not hoisted
1384 /// (whether due to limitation in alias analysis or due to a true legality),
1385 /// then scalar evolution can not proceed with loop variant values and
1386 /// inefficient code is generated. This function handles the non-hoisted load
1387 /// special case by making the optimization generate the same type of code for
1388 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1389 /// instruction). This special case is important especially when the induction
1390 /// variables are affecting addressing mode in code generation.
1391 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1392   Instruction *NarrowUse = DU.NarrowUse;
1393   Instruction *NarrowDef = DU.NarrowDef;
1394   Instruction *WideDef = DU.WideDef;
1395 
1396   // Handle the common case of add<nsw/nuw>
1397   const unsigned OpCode = NarrowUse->getOpcode();
1398   // Only Add/Sub/Mul instructions are supported.
1399   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1400       OpCode != Instruction::Mul)
1401     return false;
1402 
1403   // The operand that is not defined by NarrowDef of DU. Let's call it the
1404   // other operand.
1405   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1406   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1407          "bad DU");
1408 
1409   const SCEV *ExtendOperExpr = nullptr;
1410   const OverflowingBinaryOperator *OBO =
1411     cast<OverflowingBinaryOperator>(NarrowUse);
1412   ExtendKind ExtKind = getExtendKind(NarrowDef);
1413   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1414     ExtendOperExpr = SE->getSignExtendExpr(
1415       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1416   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1417     ExtendOperExpr = SE->getZeroExtendExpr(
1418       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1419   else
1420     return false;
1421 
1422   // We are interested in the other operand being a load instruction.
1423   // But, we should look into relaxing this restriction later on.
1424   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1425   if (I && I->getOpcode() != Instruction::Load)
1426     return false;
1427 
1428   // Verifying that Defining operand is an AddRec
1429   const SCEV *Op1 = SE->getSCEV(WideDef);
1430   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1431   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1432     return false;
1433   // Verifying that other operand is an Extend.
1434   if (ExtKind == SignExtended) {
1435     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1436       return false;
1437   } else {
1438     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1439       return false;
1440   }
1441 
1442   if (ExtKind == SignExtended) {
1443     for (Use &U : NarrowUse->uses()) {
1444       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1445       if (!User || User->getType() != WideType)
1446         return false;
1447     }
1448   } else { // ExtKind == ZeroExtended
1449     for (Use &U : NarrowUse->uses()) {
1450       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1451       if (!User || User->getType() != WideType)
1452         return false;
1453     }
1454   }
1455 
1456   return true;
1457 }
1458 
1459 /// Special Case for widening with variant Loads (see
1460 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1461 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1462   Instruction *NarrowUse = DU.NarrowUse;
1463   Instruction *NarrowDef = DU.NarrowDef;
1464   Instruction *WideDef = DU.WideDef;
1465 
1466   ExtendKind ExtKind = getExtendKind(NarrowDef);
1467 
1468   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1469 
1470   // Generating a widening use instruction.
1471   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1472                    ? WideDef
1473                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1474                                       ExtKind, NarrowUse);
1475   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1476                    ? WideDef
1477                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1478                                       ExtKind, NarrowUse);
1479 
1480   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1481   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1482                                         NarrowBO->getName());
1483   IRBuilder<> Builder(NarrowUse);
1484   Builder.Insert(WideBO);
1485   WideBO->copyIRFlags(NarrowBO);
1486 
1487   if (ExtKind == SignExtended)
1488     ExtendKindMap[NarrowUse] = SignExtended;
1489   else
1490     ExtendKindMap[NarrowUse] = ZeroExtended;
1491 
1492   // Update the Use.
1493   if (ExtKind == SignExtended) {
1494     for (Use &U : NarrowUse->uses()) {
1495       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1496       if (User && User->getType() == WideType) {
1497         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1498                           << *WideBO << "\n");
1499         ++NumElimExt;
1500         User->replaceAllUsesWith(WideBO);
1501         DeadInsts.emplace_back(User);
1502       }
1503     }
1504   } else { // ExtKind == ZeroExtended
1505     for (Use &U : NarrowUse->uses()) {
1506       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1507       if (User && User->getType() == WideType) {
1508         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1509                           << *WideBO << "\n");
1510         ++NumElimExt;
1511         User->replaceAllUsesWith(WideBO);
1512         DeadInsts.emplace_back(User);
1513       }
1514     }
1515   }
1516 }
1517 
1518 /// Determine whether an individual user of the narrow IV can be widened. If so,
1519 /// return the wide clone of the user.
1520 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1521   assert(ExtendKindMap.count(DU.NarrowDef) &&
1522          "Should already know the kind of extension used to widen NarrowDef");
1523 
1524   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1525   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1526     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1527       // For LCSSA phis, sink the truncate outside the loop.
1528       // After SimplifyCFG most loop exit targets have a single predecessor.
1529       // Otherwise fall back to a truncate within the loop.
1530       if (UsePhi->getNumOperands() != 1)
1531         truncateIVUse(DU, DT, LI);
1532       else {
1533         // Widening the PHI requires us to insert a trunc.  The logical place
1534         // for this trunc is in the same BB as the PHI.  This is not possible if
1535         // the BB is terminated by a catchswitch.
1536         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1537           return nullptr;
1538 
1539         PHINode *WidePhi =
1540           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1541                           UsePhi);
1542         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1543         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1544         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1545         UsePhi->replaceAllUsesWith(Trunc);
1546         DeadInsts.emplace_back(UsePhi);
1547         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1548                           << *WidePhi << "\n");
1549       }
1550       return nullptr;
1551     }
1552   }
1553 
1554   // This narrow use can be widened by a sext if it's non-negative or its narrow
1555   // def was widended by a sext. Same for zext.
1556   auto canWidenBySExt = [&]() {
1557     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1558   };
1559   auto canWidenByZExt = [&]() {
1560     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1561   };
1562 
1563   // Our raison d'etre! Eliminate sign and zero extension.
1564   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1565       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1566     Value *NewDef = DU.WideDef;
1567     if (DU.NarrowUse->getType() != WideType) {
1568       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1569       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1570       if (CastWidth < IVWidth) {
1571         // The cast isn't as wide as the IV, so insert a Trunc.
1572         IRBuilder<> Builder(DU.NarrowUse);
1573         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1574       }
1575       else {
1576         // A wider extend was hidden behind a narrower one. This may induce
1577         // another round of IV widening in which the intermediate IV becomes
1578         // dead. It should be very rare.
1579         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1580                           << " not wide enough to subsume " << *DU.NarrowUse
1581                           << "\n");
1582         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1583         NewDef = DU.NarrowUse;
1584       }
1585     }
1586     if (NewDef != DU.NarrowUse) {
1587       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1588                         << " replaced by " << *DU.WideDef << "\n");
1589       ++NumElimExt;
1590       DU.NarrowUse->replaceAllUsesWith(NewDef);
1591       DeadInsts.emplace_back(DU.NarrowUse);
1592     }
1593     // Now that the extend is gone, we want to expose it's uses for potential
1594     // further simplification. We don't need to directly inform SimplifyIVUsers
1595     // of the new users, because their parent IV will be processed later as a
1596     // new loop phi. If we preserved IVUsers analysis, we would also want to
1597     // push the uses of WideDef here.
1598 
1599     // No further widening is needed. The deceased [sz]ext had done it for us.
1600     return nullptr;
1601   }
1602 
1603   // Does this user itself evaluate to a recurrence after widening?
1604   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1605   if (!WideAddRec.first)
1606     WideAddRec = getWideRecurrence(DU);
1607 
1608   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1609   if (!WideAddRec.first) {
1610     // If use is a loop condition, try to promote the condition instead of
1611     // truncating the IV first.
1612     if (widenLoopCompare(DU))
1613       return nullptr;
1614 
1615     // We are here about to generate a truncate instruction that may hurt
1616     // performance because the scalar evolution expression computed earlier
1617     // in WideAddRec.first does not indicate a polynomial induction expression.
1618     // In that case, look at the operands of the use instruction to determine
1619     // if we can still widen the use instead of truncating its operand.
1620     if (widenWithVariantLoadUse(DU)) {
1621       widenWithVariantLoadUseCodegen(DU);
1622       return nullptr;
1623     }
1624 
1625     // This user does not evaluate to a recurrence after widening, so don't
1626     // follow it. Instead insert a Trunc to kill off the original use,
1627     // eventually isolating the original narrow IV so it can be removed.
1628     truncateIVUse(DU, DT, LI);
1629     return nullptr;
1630   }
1631   // Assume block terminators cannot evaluate to a recurrence. We can't to
1632   // insert a Trunc after a terminator if there happens to be a critical edge.
1633   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1634          "SCEV is not expected to evaluate a block terminator");
1635 
1636   // Reuse the IV increment that SCEVExpander created as long as it dominates
1637   // NarrowUse.
1638   Instruction *WideUse = nullptr;
1639   if (WideAddRec.first == WideIncExpr &&
1640       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1641     WideUse = WideInc;
1642   else {
1643     WideUse = cloneIVUser(DU, WideAddRec.first);
1644     if (!WideUse)
1645       return nullptr;
1646   }
1647   // Evaluation of WideAddRec ensured that the narrow expression could be
1648   // extended outside the loop without overflow. This suggests that the wide use
1649   // evaluates to the same expression as the extended narrow use, but doesn't
1650   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1651   // where it fails, we simply throw away the newly created wide use.
1652   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1653     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1654                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1655                       << "\n");
1656     DeadInsts.emplace_back(WideUse);
1657     return nullptr;
1658   }
1659 
1660   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1661   // Returning WideUse pushes it on the worklist.
1662   return WideUse;
1663 }
1664 
1665 /// Add eligible users of NarrowDef to NarrowIVUsers.
1666 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1667   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1668   bool NonNegativeDef =
1669       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1670                            SE->getConstant(NarrowSCEV->getType(), 0));
1671   for (User *U : NarrowDef->users()) {
1672     Instruction *NarrowUser = cast<Instruction>(U);
1673 
1674     // Handle data flow merges and bizarre phi cycles.
1675     if (!Widened.insert(NarrowUser).second)
1676       continue;
1677 
1678     bool NonNegativeUse = false;
1679     if (!NonNegativeDef) {
1680       // We might have a control-dependent range information for this context.
1681       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1682         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1683     }
1684 
1685     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1686                                NonNegativeDef || NonNegativeUse);
1687   }
1688 }
1689 
1690 /// Process a single induction variable. First use the SCEVExpander to create a
1691 /// wide induction variable that evaluates to the same recurrence as the
1692 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1693 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1694 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1695 ///
1696 /// It would be simpler to delete uses as they are processed, but we must avoid
1697 /// invalidating SCEV expressions.
1698 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1699   // Is this phi an induction variable?
1700   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1701   if (!AddRec)
1702     return nullptr;
1703 
1704   // Widen the induction variable expression.
1705   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1706                                ? SE->getSignExtendExpr(AddRec, WideType)
1707                                : SE->getZeroExtendExpr(AddRec, WideType);
1708 
1709   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1710          "Expect the new IV expression to preserve its type");
1711 
1712   // Can the IV be extended outside the loop without overflow?
1713   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1714   if (!AddRec || AddRec->getLoop() != L)
1715     return nullptr;
1716 
1717   // An AddRec must have loop-invariant operands. Since this AddRec is
1718   // materialized by a loop header phi, the expression cannot have any post-loop
1719   // operands, so they must dominate the loop header.
1720   assert(
1721       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1722       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1723       "Loop header phi recurrence inputs do not dominate the loop");
1724 
1725   // Iterate over IV uses (including transitive ones) looking for IV increments
1726   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1727   // the increment calculate control-dependent range information basing on
1728   // dominating conditions inside of the loop (e.g. a range check inside of the
1729   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1730   //
1731   // Control-dependent range information is later used to prove that a narrow
1732   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1733   // this on demand because when pushNarrowIVUsers needs this information some
1734   // of the dominating conditions might be already widened.
1735   if (UsePostIncrementRanges)
1736     calculatePostIncRanges(OrigPhi);
1737 
1738   // The rewriter provides a value for the desired IV expression. This may
1739   // either find an existing phi or materialize a new one. Either way, we
1740   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1741   // of the phi-SCC dominates the loop entry.
1742   Instruction *InsertPt = &L->getHeader()->front();
1743   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1744 
1745   // Remembering the WideIV increment generated by SCEVExpander allows
1746   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1747   // employ a general reuse mechanism because the call above is the only call to
1748   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1749   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1750     WideInc =
1751       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1752     WideIncExpr = SE->getSCEV(WideInc);
1753     // Propagate the debug location associated with the original loop increment
1754     // to the new (widened) increment.
1755     auto *OrigInc =
1756       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1757     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1758   }
1759 
1760   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1761   ++NumWidened;
1762 
1763   // Traverse the def-use chain using a worklist starting at the original IV.
1764   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1765 
1766   Widened.insert(OrigPhi);
1767   pushNarrowIVUsers(OrigPhi, WidePhi);
1768 
1769   while (!NarrowIVUsers.empty()) {
1770     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1771 
1772     // Process a def-use edge. This may replace the use, so don't hold a
1773     // use_iterator across it.
1774     Instruction *WideUse = widenIVUse(DU, Rewriter);
1775 
1776     // Follow all def-use edges from the previous narrow use.
1777     if (WideUse)
1778       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1779 
1780     // widenIVUse may have removed the def-use edge.
1781     if (DU.NarrowDef->use_empty())
1782       DeadInsts.emplace_back(DU.NarrowDef);
1783   }
1784 
1785   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1786   // evaluate the same recurrence, we can just copy the debug info over.
1787   SmallVector<DbgValueInst *, 1> DbgValues;
1788   llvm::findDbgValues(DbgValues, OrigPhi);
1789   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1790                                      ValueAsMetadata::get(WidePhi));
1791   for (auto &DbgValue : DbgValues)
1792     DbgValue->setOperand(0, MDPhi);
1793   return WidePhi;
1794 }
1795 
1796 /// Calculates control-dependent range for the given def at the given context
1797 /// by looking at dominating conditions inside of the loop
1798 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1799                                     Instruction *NarrowUser) {
1800   using namespace llvm::PatternMatch;
1801 
1802   Value *NarrowDefLHS;
1803   const APInt *NarrowDefRHS;
1804   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1805                                  m_APInt(NarrowDefRHS))) ||
1806       !NarrowDefRHS->isNonNegative())
1807     return;
1808 
1809   auto UpdateRangeFromCondition = [&] (Value *Condition,
1810                                        bool TrueDest) {
1811     CmpInst::Predicate Pred;
1812     Value *CmpRHS;
1813     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1814                                  m_Value(CmpRHS))))
1815       return;
1816 
1817     CmpInst::Predicate P =
1818             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1819 
1820     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1821     auto CmpConstrainedLHSRange =
1822             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1823     auto NarrowDefRange =
1824             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1825 
1826     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1827   };
1828 
1829   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1830     if (!HasGuards)
1831       return;
1832 
1833     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1834                                      Ctx->getParent()->rend())) {
1835       Value *C = nullptr;
1836       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1837         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1838     }
1839   };
1840 
1841   UpdateRangeFromGuards(NarrowUser);
1842 
1843   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1844   // If NarrowUserBB is statically unreachable asking dominator queries may
1845   // yield surprising results. (e.g. the block may not have a dom tree node)
1846   if (!DT->isReachableFromEntry(NarrowUserBB))
1847     return;
1848 
1849   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1850        L->contains(DTB->getBlock());
1851        DTB = DTB->getIDom()) {
1852     auto *BB = DTB->getBlock();
1853     auto *TI = BB->getTerminator();
1854     UpdateRangeFromGuards(TI);
1855 
1856     auto *BI = dyn_cast<BranchInst>(TI);
1857     if (!BI || !BI->isConditional())
1858       continue;
1859 
1860     auto *TrueSuccessor = BI->getSuccessor(0);
1861     auto *FalseSuccessor = BI->getSuccessor(1);
1862 
1863     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1864       return BBE.isSingleEdge() &&
1865              DT->dominates(BBE, NarrowUser->getParent());
1866     };
1867 
1868     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1869       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1870 
1871     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1872       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1873   }
1874 }
1875 
1876 /// Calculates PostIncRangeInfos map for the given IV
1877 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1878   SmallPtrSet<Instruction *, 16> Visited;
1879   SmallVector<Instruction *, 6> Worklist;
1880   Worklist.push_back(OrigPhi);
1881   Visited.insert(OrigPhi);
1882 
1883   while (!Worklist.empty()) {
1884     Instruction *NarrowDef = Worklist.pop_back_val();
1885 
1886     for (Use &U : NarrowDef->uses()) {
1887       auto *NarrowUser = cast<Instruction>(U.getUser());
1888 
1889       // Don't go looking outside the current loop.
1890       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1891       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1892         continue;
1893 
1894       if (!Visited.insert(NarrowUser).second)
1895         continue;
1896 
1897       Worklist.push_back(NarrowUser);
1898 
1899       calculatePostIncRange(NarrowDef, NarrowUser);
1900     }
1901   }
1902 }
1903 
1904 //===----------------------------------------------------------------------===//
1905 //  Live IV Reduction - Minimize IVs live across the loop.
1906 //===----------------------------------------------------------------------===//
1907 
1908 //===----------------------------------------------------------------------===//
1909 //  Simplification of IV users based on SCEV evaluation.
1910 //===----------------------------------------------------------------------===//
1911 
1912 namespace {
1913 
1914 class IndVarSimplifyVisitor : public IVVisitor {
1915   ScalarEvolution *SE;
1916   const TargetTransformInfo *TTI;
1917   PHINode *IVPhi;
1918 
1919 public:
1920   WideIVInfo WI;
1921 
1922   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1923                         const TargetTransformInfo *TTI,
1924                         const DominatorTree *DTree)
1925     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1926     DT = DTree;
1927     WI.NarrowIV = IVPhi;
1928   }
1929 
1930   // Implement the interface used by simplifyUsersOfIV.
1931   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1932 };
1933 
1934 } // end anonymous namespace
1935 
1936 /// Iteratively perform simplification on a worklist of IV users. Each
1937 /// successive simplification may push more users which may themselves be
1938 /// candidates for simplification.
1939 ///
1940 /// Sign/Zero extend elimination is interleaved with IV simplification.
1941 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1942                                        SCEVExpander &Rewriter,
1943                                        LoopInfo *LI) {
1944   SmallVector<WideIVInfo, 8> WideIVs;
1945 
1946   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1947           Intrinsic::getName(Intrinsic::experimental_guard));
1948   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1949 
1950   SmallVector<PHINode*, 8> LoopPhis;
1951   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1952     LoopPhis.push_back(cast<PHINode>(I));
1953   }
1954   // Each round of simplification iterates through the SimplifyIVUsers worklist
1955   // for all current phis, then determines whether any IVs can be
1956   // widened. Widening adds new phis to LoopPhis, inducing another round of
1957   // simplification on the wide IVs.
1958   bool Changed = false;
1959   while (!LoopPhis.empty()) {
1960     // Evaluate as many IV expressions as possible before widening any IVs. This
1961     // forces SCEV to set no-wrap flags before evaluating sign/zero
1962     // extension. The first time SCEV attempts to normalize sign/zero extension,
1963     // the result becomes final. So for the most predictable results, we delay
1964     // evaluation of sign/zero extend evaluation until needed, and avoid running
1965     // other SCEV based analysis prior to simplifyAndExtend.
1966     do {
1967       PHINode *CurrIV = LoopPhis.pop_back_val();
1968 
1969       // Information about sign/zero extensions of CurrIV.
1970       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1971 
1972       Changed |=
1973           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1974 
1975       if (Visitor.WI.WidestNativeType) {
1976         WideIVs.push_back(Visitor.WI);
1977       }
1978     } while(!LoopPhis.empty());
1979 
1980     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1981       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1982       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1983         Changed = true;
1984         LoopPhis.push_back(WidePhi);
1985       }
1986     }
1987   }
1988   return Changed;
1989 }
1990 
1991 //===----------------------------------------------------------------------===//
1992 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1993 //===----------------------------------------------------------------------===//
1994 
1995 /// Return true if this loop's backedge taken count expression can be safely and
1996 /// cheaply expanded into an instruction sequence that can be used by
1997 /// linearFunctionTestReplace.
1998 ///
1999 /// TODO: This fails for pointer-type loop counters with greater than one byte
2000 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
2001 /// we could skip this check in the case that the LFTR loop counter (chosen by
2002 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
2003 /// the loop test to an inequality test by checking the target data's alignment
2004 /// of element types (given that the initial pointer value originates from or is
2005 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2006 /// However, we don't yet have a strong motivation for converting loop tests
2007 /// into inequality tests.
2008 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2009                                         SCEVExpander &Rewriter) {
2010   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2011   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2012       BackedgeTakenCount->isZero())
2013     return false;
2014 
2015   if (!L->getExitingBlock())
2016     return false;
2017 
2018   // Can't rewrite non-branch yet.
2019   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2020     return false;
2021 
2022   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2023     return false;
2024 
2025   return true;
2026 }
2027 
2028 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2029 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2030   Instruction *IncI = dyn_cast<Instruction>(IncV);
2031   if (!IncI)
2032     return nullptr;
2033 
2034   switch (IncI->getOpcode()) {
2035   case Instruction::Add:
2036   case Instruction::Sub:
2037     break;
2038   case Instruction::GetElementPtr:
2039     // An IV counter must preserve its type.
2040     if (IncI->getNumOperands() == 2)
2041       break;
2042     LLVM_FALLTHROUGH;
2043   default:
2044     return nullptr;
2045   }
2046 
2047   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2048   if (Phi && Phi->getParent() == L->getHeader()) {
2049     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2050       return Phi;
2051     return nullptr;
2052   }
2053   if (IncI->getOpcode() == Instruction::GetElementPtr)
2054     return nullptr;
2055 
2056   // Allow add/sub to be commuted.
2057   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2058   if (Phi && Phi->getParent() == L->getHeader()) {
2059     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2060       return Phi;
2061   }
2062   return nullptr;
2063 }
2064 
2065 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2066 static ICmpInst *getLoopTest(Loop *L) {
2067   assert(L->getExitingBlock() && "expected loop exit");
2068 
2069   BasicBlock *LatchBlock = L->getLoopLatch();
2070   // Don't bother with LFTR if the loop is not properly simplified.
2071   if (!LatchBlock)
2072     return nullptr;
2073 
2074   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2075   assert(BI && "expected exit branch");
2076 
2077   return dyn_cast<ICmpInst>(BI->getCondition());
2078 }
2079 
2080 /// linearFunctionTestReplace policy. Return true unless we can show that the
2081 /// current exit test is already sufficiently canonical.
2082 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2083   // Do LFTR to simplify the exit condition to an ICMP.
2084   ICmpInst *Cond = getLoopTest(L);
2085   if (!Cond)
2086     return true;
2087 
2088   // Do LFTR to simplify the exit ICMP to EQ/NE
2089   ICmpInst::Predicate Pred = Cond->getPredicate();
2090   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2091     return true;
2092 
2093   // Look for a loop invariant RHS
2094   Value *LHS = Cond->getOperand(0);
2095   Value *RHS = Cond->getOperand(1);
2096   if (!isLoopInvariant(RHS, L, DT)) {
2097     if (!isLoopInvariant(LHS, L, DT))
2098       return true;
2099     std::swap(LHS, RHS);
2100   }
2101   // Look for a simple IV counter LHS
2102   PHINode *Phi = dyn_cast<PHINode>(LHS);
2103   if (!Phi)
2104     Phi = getLoopPhiForCounter(LHS, L, DT);
2105 
2106   if (!Phi)
2107     return true;
2108 
2109   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2110   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2111   if (Idx < 0)
2112     return true;
2113 
2114   // Do LFTR if the exit condition's IV is *not* a simple counter.
2115   Value *IncV = Phi->getIncomingValue(Idx);
2116   return Phi != getLoopPhiForCounter(IncV, L, DT);
2117 }
2118 
2119 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2120 /// down to checking that all operands are constant and listing instructions
2121 /// that may hide undef.
2122 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2123                                unsigned Depth) {
2124   if (isa<Constant>(V))
2125     return !isa<UndefValue>(V);
2126 
2127   if (Depth >= 6)
2128     return false;
2129 
2130   // Conservatively handle non-constant non-instructions. For example, Arguments
2131   // may be undef.
2132   Instruction *I = dyn_cast<Instruction>(V);
2133   if (!I)
2134     return false;
2135 
2136   // Load and return values may be undef.
2137   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2138     return false;
2139 
2140   // Optimistically handle other instructions.
2141   for (Value *Op : I->operands()) {
2142     if (!Visited.insert(Op).second)
2143       continue;
2144     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2145       return false;
2146   }
2147   return true;
2148 }
2149 
2150 /// Return true if the given value is concrete. We must prove that undef can
2151 /// never reach it.
2152 ///
2153 /// TODO: If we decide that this is a good approach to checking for undef, we
2154 /// may factor it into a common location.
2155 static bool hasConcreteDef(Value *V) {
2156   SmallPtrSet<Value*, 8> Visited;
2157   Visited.insert(V);
2158   return hasConcreteDefImpl(V, Visited, 0);
2159 }
2160 
2161 /// Return true if this IV has any uses other than the (soon to be rewritten)
2162 /// loop exit test.
2163 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2164   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2165   Value *IncV = Phi->getIncomingValue(LatchIdx);
2166 
2167   for (User *U : Phi->users())
2168     if (U != Cond && U != IncV) return false;
2169 
2170   for (User *U : IncV->users())
2171     if (U != Cond && U != Phi) return false;
2172   return true;
2173 }
2174 
2175 /// Find an affine IV in canonical form.
2176 ///
2177 /// BECount may be an i8* pointer type. The pointer difference is already
2178 /// valid count without scaling the address stride, so it remains a pointer
2179 /// expression as far as SCEV is concerned.
2180 ///
2181 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2182 ///
2183 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2184 ///
2185 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2186 /// This is difficult in general for SCEV because of potential overflow. But we
2187 /// could at least handle constant BECounts.
2188 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2189                                 ScalarEvolution *SE, DominatorTree *DT) {
2190   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2191 
2192   Value *Cond =
2193     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2194 
2195   // Loop over all of the PHI nodes, looking for a simple counter.
2196   PHINode *BestPhi = nullptr;
2197   const SCEV *BestInit = nullptr;
2198   BasicBlock *LatchBlock = L->getLoopLatch();
2199   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2200   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2201 
2202   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2203     PHINode *Phi = cast<PHINode>(I);
2204     if (!SE->isSCEVable(Phi->getType()))
2205       continue;
2206 
2207     // Avoid comparing an integer IV against a pointer Limit.
2208     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2209       continue;
2210 
2211     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2212     if (!AR || AR->getLoop() != L || !AR->isAffine())
2213       continue;
2214 
2215     // AR may be a pointer type, while BECount is an integer type.
2216     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2217     // AR may not be a narrower type, or we may never exit.
2218     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2219     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2220       continue;
2221 
2222     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2223     if (!Step || !Step->isOne())
2224       continue;
2225 
2226     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2227     Value *IncV = Phi->getIncomingValue(LatchIdx);
2228     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2229       continue;
2230 
2231     // Avoid reusing a potentially undef value to compute other values that may
2232     // have originally had a concrete definition.
2233     if (!hasConcreteDef(Phi)) {
2234       // We explicitly allow unknown phis as long as they are already used by
2235       // the loop test. In this case we assume that performing LFTR could not
2236       // increase the number of undef users.
2237       if (ICmpInst *Cond = getLoopTest(L)) {
2238         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2239             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2240           continue;
2241         }
2242       }
2243     }
2244     const SCEV *Init = AR->getStart();
2245 
2246     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2247       // Don't force a live loop counter if another IV can be used.
2248       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2249         continue;
2250 
2251       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2252       // also prefers integer to pointer IVs.
2253       if (BestInit->isZero() != Init->isZero()) {
2254         if (BestInit->isZero())
2255           continue;
2256       }
2257       // If two IVs both count from zero or both count from nonzero then the
2258       // narrower is likely a dead phi that has been widened. Use the wider phi
2259       // to allow the other to be eliminated.
2260       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2261         continue;
2262     }
2263     BestPhi = Phi;
2264     BestInit = Init;
2265   }
2266   return BestPhi;
2267 }
2268 
2269 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2270 /// the new loop test.
2271 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2272                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2273   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2274   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2275   const SCEV *IVInit = AR->getStart();
2276 
2277   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2278   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2279   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2280   // the existing GEPs whenever possible.
2281   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2282     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2283     // signed value. IVCount on the other hand represents the loop trip count,
2284     // which is an unsigned value. FindLoopCounter only allows induction
2285     // variables that have a positive unit stride of one. This means we don't
2286     // have to handle the case of negative offsets (yet) and just need to zero
2287     // extend IVCount.
2288     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2289     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2290 
2291     // Expand the code for the iteration count.
2292     assert(SE->isLoopInvariant(IVOffset, L) &&
2293            "Computed iteration count is not loop invariant!");
2294     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2295     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2296 
2297     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2298     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2299     // We could handle pointer IVs other than i8*, but we need to compensate for
2300     // gep index scaling. See canExpandBackedgeTakenCount comments.
2301     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2302                              cast<PointerType>(GEPBase->getType())
2303                                  ->getElementType())->isOne() &&
2304            "unit stride pointer IV must be i8*");
2305 
2306     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2307     return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2308                              GEPBase, GEPOffset, "lftr.limit");
2309   } else {
2310     // In any other case, convert both IVInit and IVCount to integers before
2311     // comparing. This may result in SCEV expansion of pointers, but in practice
2312     // SCEV will fold the pointer arithmetic away as such:
2313     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2314     //
2315     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2316     // for simple memset-style loops.
2317     //
2318     // IVInit integer and IVCount pointer would only occur if a canonical IV
2319     // were generated on top of case #2, which is not expected.
2320 
2321     const SCEV *IVLimit = nullptr;
2322     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2323     // For non-zero Start, compute IVCount here.
2324     if (AR->getStart()->isZero())
2325       IVLimit = IVCount;
2326     else {
2327       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2328       const SCEV *IVInit = AR->getStart();
2329 
2330       // For integer IVs, truncate the IV before computing IVInit + BECount.
2331       if (SE->getTypeSizeInBits(IVInit->getType())
2332           > SE->getTypeSizeInBits(IVCount->getType()))
2333         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2334 
2335       IVLimit = SE->getAddExpr(IVInit, IVCount);
2336     }
2337     // Expand the code for the iteration count.
2338     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2339     IRBuilder<> Builder(BI);
2340     assert(SE->isLoopInvariant(IVLimit, L) &&
2341            "Computed iteration count is not loop invariant!");
2342     // Ensure that we generate the same type as IndVar, or a smaller integer
2343     // type. In the presence of null pointer values, we have an integer type
2344     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2345     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2346       IndVar->getType() : IVCount->getType();
2347     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2348   }
2349 }
2350 
2351 /// This method rewrites the exit condition of the loop to be a canonical !=
2352 /// comparison against the incremented loop induction variable.  This pass is
2353 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2354 /// determine a loop-invariant trip count of the loop, which is actually a much
2355 /// broader range than just linear tests.
2356 bool IndVarSimplify::
2357 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2358                           PHINode *IndVar, SCEVExpander &Rewriter) {
2359   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2360 
2361   // Initialize CmpIndVar and IVCount to their preincremented values.
2362   Value *CmpIndVar = IndVar;
2363   const SCEV *IVCount = BackedgeTakenCount;
2364 
2365   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2366 
2367   // If the exiting block is the same as the backedge block, we prefer to
2368   // compare against the post-incremented value, otherwise we must compare
2369   // against the preincremented value.
2370   if (L->getExitingBlock() == L->getLoopLatch()) {
2371     // Add one to the "backedge-taken" count to get the trip count.
2372     // This addition may overflow, which is valid as long as the comparison is
2373     // truncated to BackedgeTakenCount->getType().
2374     IVCount = SE->getAddExpr(BackedgeTakenCount,
2375                              SE->getOne(BackedgeTakenCount->getType()));
2376     // The BackedgeTaken expression contains the number of times that the
2377     // backedge branches to the loop header.  This is one less than the
2378     // number of times the loop executes, so use the incremented indvar.
2379     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2380   }
2381 
2382   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2383   assert(ExitCnt->getType()->isPointerTy() ==
2384              IndVar->getType()->isPointerTy() &&
2385          "genLoopLimit missed a cast");
2386 
2387   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2388   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2389   ICmpInst::Predicate P;
2390   if (L->contains(BI->getSuccessor(0)))
2391     P = ICmpInst::ICMP_NE;
2392   else
2393     P = ICmpInst::ICMP_EQ;
2394 
2395   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2396                     << "      LHS:" << *CmpIndVar << '\n'
2397                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2398                     << "\n"
2399                     << "      RHS:\t" << *ExitCnt << "\n"
2400                     << "  IVCount:\t" << *IVCount << "\n");
2401 
2402   IRBuilder<> Builder(BI);
2403 
2404   // The new loop exit condition should reuse the debug location of the
2405   // original loop exit condition.
2406   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2407     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2408 
2409   // LFTR can ignore IV overflow and truncate to the width of
2410   // BECount. This avoids materializing the add(zext(add)) expression.
2411   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2412   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2413   if (CmpIndVarSize > ExitCntSize) {
2414     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2415     const SCEV *ARStart = AR->getStart();
2416     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2417     // For constant IVCount, avoid truncation.
2418     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2419       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2420       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2421       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2422       // above such that IVCount is now zero.
2423       if (IVCount != BackedgeTakenCount && Count == 0) {
2424         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2425         ++Count;
2426       }
2427       else
2428         Count = Count.zext(CmpIndVarSize);
2429       APInt NewLimit;
2430       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2431         NewLimit = Start - Count;
2432       else
2433         NewLimit = Start + Count;
2434       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2435 
2436       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2437     } else {
2438       // We try to extend trip count first. If that doesn't work we truncate IV.
2439       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2440       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2441       // one of the two holds, extend the trip count, otherwise we truncate IV.
2442       bool Extended = false;
2443       const SCEV *IV = SE->getSCEV(CmpIndVar);
2444       const SCEV *ZExtTrunc =
2445            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2446                                                      ExitCnt->getType()),
2447                                  CmpIndVar->getType());
2448 
2449       if (ZExtTrunc == IV) {
2450         Extended = true;
2451         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2452                                      "wide.trip.count");
2453       } else {
2454         const SCEV *SExtTrunc =
2455           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2456                                                     ExitCnt->getType()),
2457                                 CmpIndVar->getType());
2458         if (SExtTrunc == IV) {
2459           Extended = true;
2460           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2461                                        "wide.trip.count");
2462         }
2463       }
2464 
2465       if (!Extended)
2466         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2467                                         "lftr.wideiv");
2468     }
2469   }
2470   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2471   Value *OrigCond = BI->getCondition();
2472   // It's tempting to use replaceAllUsesWith here to fully replace the old
2473   // comparison, but that's not immediately safe, since users of the old
2474   // comparison may not be dominated by the new comparison. Instead, just
2475   // update the branch to use the new comparison; in the common case this
2476   // will make old comparison dead.
2477   BI->setCondition(Cond);
2478   DeadInsts.push_back(OrigCond);
2479 
2480   ++NumLFTR;
2481   return true;
2482 }
2483 
2484 //===----------------------------------------------------------------------===//
2485 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2486 //===----------------------------------------------------------------------===//
2487 
2488 /// If there's a single exit block, sink any loop-invariant values that
2489 /// were defined in the preheader but not used inside the loop into the
2490 /// exit block to reduce register pressure in the loop.
2491 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2492   BasicBlock *ExitBlock = L->getExitBlock();
2493   if (!ExitBlock) return false;
2494 
2495   BasicBlock *Preheader = L->getLoopPreheader();
2496   if (!Preheader) return false;
2497 
2498   bool MadeAnyChanges = false;
2499   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2500   BasicBlock::iterator I(Preheader->getTerminator());
2501   while (I != Preheader->begin()) {
2502     --I;
2503     // New instructions were inserted at the end of the preheader.
2504     if (isa<PHINode>(I))
2505       break;
2506 
2507     // Don't move instructions which might have side effects, since the side
2508     // effects need to complete before instructions inside the loop.  Also don't
2509     // move instructions which might read memory, since the loop may modify
2510     // memory. Note that it's okay if the instruction might have undefined
2511     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2512     // block.
2513     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2514       continue;
2515 
2516     // Skip debug info intrinsics.
2517     if (isa<DbgInfoIntrinsic>(I))
2518       continue;
2519 
2520     // Skip eh pad instructions.
2521     if (I->isEHPad())
2522       continue;
2523 
2524     // Don't sink alloca: we never want to sink static alloca's out of the
2525     // entry block, and correctly sinking dynamic alloca's requires
2526     // checks for stacksave/stackrestore intrinsics.
2527     // FIXME: Refactor this check somehow?
2528     if (isa<AllocaInst>(I))
2529       continue;
2530 
2531     // Determine if there is a use in or before the loop (direct or
2532     // otherwise).
2533     bool UsedInLoop = false;
2534     for (Use &U : I->uses()) {
2535       Instruction *User = cast<Instruction>(U.getUser());
2536       BasicBlock *UseBB = User->getParent();
2537       if (PHINode *P = dyn_cast<PHINode>(User)) {
2538         unsigned i =
2539           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2540         UseBB = P->getIncomingBlock(i);
2541       }
2542       if (UseBB == Preheader || L->contains(UseBB)) {
2543         UsedInLoop = true;
2544         break;
2545       }
2546     }
2547 
2548     // If there is, the def must remain in the preheader.
2549     if (UsedInLoop)
2550       continue;
2551 
2552     // Otherwise, sink it to the exit block.
2553     Instruction *ToMove = &*I;
2554     bool Done = false;
2555 
2556     if (I != Preheader->begin()) {
2557       // Skip debug info intrinsics.
2558       do {
2559         --I;
2560       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2561 
2562       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2563         Done = true;
2564     } else {
2565       Done = true;
2566     }
2567 
2568     MadeAnyChanges = true;
2569     ToMove->moveBefore(*ExitBlock, InsertPt);
2570     if (Done) break;
2571     InsertPt = ToMove->getIterator();
2572   }
2573 
2574   return MadeAnyChanges;
2575 }
2576 
2577 //===----------------------------------------------------------------------===//
2578 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2579 //===----------------------------------------------------------------------===//
2580 
2581 bool IndVarSimplify::run(Loop *L) {
2582   // We need (and expect!) the incoming loop to be in LCSSA.
2583   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2584          "LCSSA required to run indvars!");
2585   bool Changed = false;
2586 
2587   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2588   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2589   //    canonicalization can be a pessimization without LSR to "clean up"
2590   //    afterwards.
2591   //  - We depend on having a preheader; in particular,
2592   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2593   //    and we're in trouble if we can't find the induction variable even when
2594   //    we've manually inserted one.
2595   //  - LFTR relies on having a single backedge.
2596   if (!L->isLoopSimplifyForm())
2597     return false;
2598 
2599   // If there are any floating-point recurrences, attempt to
2600   // transform them to use integer recurrences.
2601   Changed |= rewriteNonIntegerIVs(L);
2602 
2603   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2604 
2605   // Create a rewriter object which we'll use to transform the code with.
2606   SCEVExpander Rewriter(*SE, DL, "indvars");
2607 #ifndef NDEBUG
2608   Rewriter.setDebugType(DEBUG_TYPE);
2609 #endif
2610 
2611   // Eliminate redundant IV users.
2612   //
2613   // Simplification works best when run before other consumers of SCEV. We
2614   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2615   // other expressions involving loop IVs have been evaluated. This helps SCEV
2616   // set no-wrap flags before normalizing sign/zero extension.
2617   Rewriter.disableCanonicalMode();
2618   Changed |= simplifyAndExtend(L, Rewriter, LI);
2619 
2620   // Check to see if this loop has a computable loop-invariant execution count.
2621   // If so, this means that we can compute the final value of any expressions
2622   // that are recurrent in the loop, and substitute the exit values from the
2623   // loop into any instructions outside of the loop that use the final values of
2624   // the current expressions.
2625   //
2626   if (ReplaceExitValue != NeverRepl &&
2627       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2628     Changed |= rewriteLoopExitValues(L, Rewriter);
2629 
2630   // Eliminate redundant IV cycles.
2631   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2632 
2633   // If we have a trip count expression, rewrite the loop's exit condition
2634   // using it.  We can currently only handle loops with a single exit.
2635   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2636       needsLFTR(L, DT)) {
2637     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2638     if (IndVar) {
2639       // Check preconditions for proper SCEVExpander operation. SCEV does not
2640       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2641       // pass that uses the SCEVExpander must do it. This does not work well for
2642       // loop passes because SCEVExpander makes assumptions about all loops,
2643       // while LoopPassManager only forces the current loop to be simplified.
2644       //
2645       // FIXME: SCEV expansion has no way to bail out, so the caller must
2646       // explicitly check any assumptions made by SCEV. Brittle.
2647       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2648       if (!AR || AR->getLoop()->getLoopPreheader())
2649         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2650                                              Rewriter);
2651     }
2652   }
2653   // Clear the rewriter cache, because values that are in the rewriter's cache
2654   // can be deleted in the loop below, causing the AssertingVH in the cache to
2655   // trigger.
2656   Rewriter.clear();
2657 
2658   // Now that we're done iterating through lists, clean up any instructions
2659   // which are now dead.
2660   while (!DeadInsts.empty())
2661     if (Instruction *Inst =
2662             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2663       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2664 
2665   // The Rewriter may not be used from this point on.
2666 
2667   // Loop-invariant instructions in the preheader that aren't used in the
2668   // loop may be sunk below the loop to reduce register pressure.
2669   Changed |= sinkUnusedInvariants(L);
2670 
2671   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2672   // trip count and therefore can further simplify exit values in addition to
2673   // rewriteLoopExitValues.
2674   Changed |= rewriteFirstIterationLoopExitValues(L);
2675 
2676   // Clean up dead instructions.
2677   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2678 
2679   // Check a post-condition.
2680   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2681          "Indvars did not preserve LCSSA!");
2682 
2683   // Verify that LFTR, and any other change have not interfered with SCEV's
2684   // ability to compute trip count.
2685 #ifndef NDEBUG
2686   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2687     SE->forgetLoop(L);
2688     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2689     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2690         SE->getTypeSizeInBits(NewBECount->getType()))
2691       NewBECount = SE->getTruncateOrNoop(NewBECount,
2692                                          BackedgeTakenCount->getType());
2693     else
2694       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2695                                                  NewBECount->getType());
2696     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2697   }
2698 #endif
2699 
2700   return Changed;
2701 }
2702 
2703 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2704                                           LoopStandardAnalysisResults &AR,
2705                                           LPMUpdater &) {
2706   Function *F = L.getHeader()->getParent();
2707   const DataLayout &DL = F->getParent()->getDataLayout();
2708 
2709   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2710   if (!IVS.run(&L))
2711     return PreservedAnalyses::all();
2712 
2713   auto PA = getLoopPassPreservedAnalyses();
2714   PA.preserveSet<CFGAnalyses>();
2715   return PA;
2716 }
2717 
2718 namespace {
2719 
2720 struct IndVarSimplifyLegacyPass : public LoopPass {
2721   static char ID; // Pass identification, replacement for typeid
2722 
2723   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2724     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2725   }
2726 
2727   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2728     if (skipLoop(L))
2729       return false;
2730 
2731     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2732     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2733     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2734     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2735     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2736     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2737     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2738     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2739 
2740     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2741     return IVS.run(L);
2742   }
2743 
2744   void getAnalysisUsage(AnalysisUsage &AU) const override {
2745     AU.setPreservesCFG();
2746     getLoopAnalysisUsage(AU);
2747   }
2748 };
2749 
2750 } // end anonymous namespace
2751 
2752 char IndVarSimplifyLegacyPass::ID = 0;
2753 
2754 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2755                       "Induction Variable Simplification", false, false)
2756 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2757 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2758                     "Induction Variable Simplification", false, false)
2759 
2760 Pass *llvm::createIndVarSimplifyPass() {
2761   return new IndVarSimplifyLegacyPass();
2762 }
2763