1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/iterator_range.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpander.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/LoopUtils.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars")); 102 103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 109 clEnumValN(OnlyCheapRepl, "cheap", 110 "only replace exit value when the cost is cheap"), 111 clEnumValN(AlwaysRepl, "always", 112 "always replace exit value whenever possible"))); 113 114 static cl::opt<bool> UsePostIncrementRanges( 115 "indvars-post-increment-ranges", cl::Hidden, 116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 121 cl::desc("Disable Linear Function Test Replace optimization")); 122 123 namespace { 124 125 struct RewritePhi; 126 127 class IndVarSimplify { 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 const DataLayout &DL; 132 TargetLibraryInfo *TLI; 133 const TargetTransformInfo *TTI; 134 135 SmallVector<WeakTrackingVH, 16> DeadInsts; 136 137 bool isValidRewrite(Value *FromVal, Value *ToVal); 138 139 bool handleFloatingPointIV(Loop *L, PHINode *PH); 140 bool rewriteNonIntegerIVs(Loop *L); 141 142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 143 144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 146 bool rewriteFirstIterationLoopExitValues(Loop *L); 147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. A nullptr can be returned if no 221 /// viable location is found: it may happen if User is a PHI and Def only comes 222 /// to this PHI from unreachable blocks. 223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 224 DominatorTree *DT, LoopInfo *LI) { 225 PHINode *PHI = dyn_cast<PHINode>(User); 226 if (!PHI) 227 return User; 228 229 Instruction *InsertPt = nullptr; 230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 231 if (PHI->getIncomingValue(i) != Def) 232 continue; 233 234 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 235 236 if (!DT->isReachableFromEntry(InsertBB)) 237 continue; 238 239 if (!InsertPt) { 240 InsertPt = InsertBB->getTerminator(); 241 continue; 242 } 243 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 244 InsertPt = InsertBB->getTerminator(); 245 } 246 247 // If we have skipped all inputs, it means that Def only comes to Phi from 248 // unreachable blocks. 249 if (!InsertPt) 250 return nullptr; 251 252 auto *DefI = dyn_cast<Instruction>(Def); 253 if (!DefI) 254 return InsertPt; 255 256 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 257 258 auto *L = LI->getLoopFor(DefI->getParent()); 259 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 260 261 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 262 if (LI->getLoopFor(DTN->getBlock()) == L) 263 return DTN->getBlock()->getTerminator(); 264 265 llvm_unreachable("DefI dominates InsertPt!"); 266 } 267 268 //===----------------------------------------------------------------------===// 269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 270 //===----------------------------------------------------------------------===// 271 272 /// Convert APF to an integer, if possible. 273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 274 bool isExact = false; 275 // See if we can convert this to an int64_t 276 uint64_t UIntVal; 277 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 278 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 279 !isExact) 280 return false; 281 IntVal = UIntVal; 282 return true; 283 } 284 285 /// If the loop has floating induction variable then insert corresponding 286 /// integer induction variable if possible. 287 /// For example, 288 /// for(double i = 0; i < 10000; ++i) 289 /// bar(i) 290 /// is converted into 291 /// for(int i = 0; i < 10000; ++i) 292 /// bar((double)i); 293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 294 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 295 unsigned BackEdge = IncomingEdge^1; 296 297 // Check incoming value. 298 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 299 300 int64_t InitValue; 301 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 302 return false; 303 304 // Check IV increment. Reject this PN if increment operation is not 305 // an add or increment value can not be represented by an integer. 306 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 307 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 308 309 // If this is not an add of the PHI with a constantfp, or if the constant fp 310 // is not an integer, bail out. 311 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 312 int64_t IncValue; 313 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 314 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 315 return false; 316 317 // Check Incr uses. One user is PN and the other user is an exit condition 318 // used by the conditional terminator. 319 Value::user_iterator IncrUse = Incr->user_begin(); 320 Instruction *U1 = cast<Instruction>(*IncrUse++); 321 if (IncrUse == Incr->user_end()) return false; 322 Instruction *U2 = cast<Instruction>(*IncrUse++); 323 if (IncrUse != Incr->user_end()) return false; 324 325 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 326 // only used by a branch, we can't transform it. 327 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 328 if (!Compare) 329 Compare = dyn_cast<FCmpInst>(U2); 330 if (!Compare || !Compare->hasOneUse() || 331 !isa<BranchInst>(Compare->user_back())) 332 return false; 333 334 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 335 336 // We need to verify that the branch actually controls the iteration count 337 // of the loop. If not, the new IV can overflow and no one will notice. 338 // The branch block must be in the loop and one of the successors must be out 339 // of the loop. 340 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 341 if (!L->contains(TheBr->getParent()) || 342 (L->contains(TheBr->getSuccessor(0)) && 343 L->contains(TheBr->getSuccessor(1)))) 344 return false; 345 346 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 347 // transform it. 348 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 349 int64_t ExitValue; 350 if (ExitValueVal == nullptr || 351 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 352 return false; 353 354 // Find new predicate for integer comparison. 355 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 356 switch (Compare->getPredicate()) { 357 default: return false; // Unknown comparison. 358 case CmpInst::FCMP_OEQ: 359 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 360 case CmpInst::FCMP_ONE: 361 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 362 case CmpInst::FCMP_OGT: 363 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 364 case CmpInst::FCMP_OGE: 365 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 366 case CmpInst::FCMP_OLT: 367 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 368 case CmpInst::FCMP_OLE: 369 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 370 } 371 372 // We convert the floating point induction variable to a signed i32 value if 373 // we can. This is only safe if the comparison will not overflow in a way 374 // that won't be trapped by the integer equivalent operations. Check for this 375 // now. 376 // TODO: We could use i64 if it is native and the range requires it. 377 378 // The start/stride/exit values must all fit in signed i32. 379 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 380 return false; 381 382 // If not actually striding (add x, 0.0), avoid touching the code. 383 if (IncValue == 0) 384 return false; 385 386 // Positive and negative strides have different safety conditions. 387 if (IncValue > 0) { 388 // If we have a positive stride, we require the init to be less than the 389 // exit value. 390 if (InitValue >= ExitValue) 391 return false; 392 393 uint32_t Range = uint32_t(ExitValue-InitValue); 394 // Check for infinite loop, either: 395 // while (i <= Exit) or until (i > Exit) 396 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 397 if (++Range == 0) return false; // Range overflows. 398 } 399 400 unsigned Leftover = Range % uint32_t(IncValue); 401 402 // If this is an equality comparison, we require that the strided value 403 // exactly land on the exit value, otherwise the IV condition will wrap 404 // around and do things the fp IV wouldn't. 405 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 406 Leftover != 0) 407 return false; 408 409 // If the stride would wrap around the i32 before exiting, we can't 410 // transform the IV. 411 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 412 return false; 413 } else { 414 // If we have a negative stride, we require the init to be greater than the 415 // exit value. 416 if (InitValue <= ExitValue) 417 return false; 418 419 uint32_t Range = uint32_t(InitValue-ExitValue); 420 // Check for infinite loop, either: 421 // while (i >= Exit) or until (i < Exit) 422 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 423 if (++Range == 0) return false; // Range overflows. 424 } 425 426 unsigned Leftover = Range % uint32_t(-IncValue); 427 428 // If this is an equality comparison, we require that the strided value 429 // exactly land on the exit value, otherwise the IV condition will wrap 430 // around and do things the fp IV wouldn't. 431 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 432 Leftover != 0) 433 return false; 434 435 // If the stride would wrap around the i32 before exiting, we can't 436 // transform the IV. 437 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 438 return false; 439 } 440 441 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 442 443 // Insert new integer induction variable. 444 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 445 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 446 PN->getIncomingBlock(IncomingEdge)); 447 448 Value *NewAdd = 449 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 450 Incr->getName()+".int", Incr); 451 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 452 453 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 454 ConstantInt::get(Int32Ty, ExitValue), 455 Compare->getName()); 456 457 // In the following deletions, PN may become dead and may be deleted. 458 // Use a WeakTrackingVH to observe whether this happens. 459 WeakTrackingVH WeakPH = PN; 460 461 // Delete the old floating point exit comparison. The branch starts using the 462 // new comparison. 463 NewCompare->takeName(Compare); 464 Compare->replaceAllUsesWith(NewCompare); 465 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 466 467 // Delete the old floating point increment. 468 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 469 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 470 471 // If the FP induction variable still has uses, this is because something else 472 // in the loop uses its value. In order to canonicalize the induction 473 // variable, we chose to eliminate the IV and rewrite it in terms of an 474 // int->fp cast. 475 // 476 // We give preference to sitofp over uitofp because it is faster on most 477 // platforms. 478 if (WeakPH) { 479 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 480 &*PN->getParent()->getFirstInsertionPt()); 481 PN->replaceAllUsesWith(Conv); 482 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 483 } 484 return true; 485 } 486 487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 488 // First step. Check to see if there are any floating-point recurrences. 489 // If there are, change them into integer recurrences, permitting analysis by 490 // the SCEV routines. 491 BasicBlock *Header = L->getHeader(); 492 493 SmallVector<WeakTrackingVH, 8> PHIs; 494 for (PHINode &PN : Header->phis()) 495 PHIs.push_back(&PN); 496 497 bool Changed = false; 498 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 499 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 500 Changed |= handleFloatingPointIV(L, PN); 501 502 // If the loop previously had floating-point IV, ScalarEvolution 503 // may not have been able to compute a trip count. Now that we've done some 504 // re-writing, the trip count may be computable. 505 if (Changed) 506 SE->forgetLoop(L); 507 return Changed; 508 } 509 510 namespace { 511 512 // Collect information about PHI nodes which can be transformed in 513 // rewriteLoopExitValues. 514 struct RewritePhi { 515 PHINode *PN; 516 517 // Ith incoming value. 518 unsigned Ith; 519 520 // Exit value after expansion. 521 Value *Val; 522 523 // High Cost when expansion. 524 bool HighCost; 525 526 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 527 : PN(P), Ith(I), Val(V), HighCost(H) {} 528 }; 529 530 } // end anonymous namespace 531 532 //===----------------------------------------------------------------------===// 533 // rewriteLoopExitValues - Optimize IV users outside the loop. 534 // As a side effect, reduces the amount of IV processing within the loop. 535 //===----------------------------------------------------------------------===// 536 537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 538 SmallPtrSet<const Instruction *, 8> Visited; 539 SmallVector<const Instruction *, 8> WorkList; 540 Visited.insert(I); 541 WorkList.push_back(I); 542 while (!WorkList.empty()) { 543 const Instruction *Curr = WorkList.pop_back_val(); 544 // This use is outside the loop, nothing to do. 545 if (!L->contains(Curr)) 546 continue; 547 // Do we assume it is a "hard" use which will not be eliminated easily? 548 if (Curr->mayHaveSideEffects()) 549 return true; 550 // Otherwise, add all its users to worklist. 551 for (auto U : Curr->users()) { 552 auto *UI = cast<Instruction>(U); 553 if (Visited.insert(UI).second) 554 WorkList.push_back(UI); 555 } 556 } 557 return false; 558 } 559 560 /// Check to see if this loop has a computable loop-invariant execution count. 561 /// If so, this means that we can compute the final value of any expressions 562 /// that are recurrent in the loop, and substitute the exit values from the loop 563 /// into any instructions outside of the loop that use the final values of the 564 /// current expressions. 565 /// 566 /// This is mostly redundant with the regular IndVarSimplify activities that 567 /// happen later, except that it's more powerful in some cases, because it's 568 /// able to brute-force evaluate arbitrary instructions as long as they have 569 /// constant operands at the beginning of the loop. 570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 571 // Check a pre-condition. 572 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 573 "Indvars did not preserve LCSSA!"); 574 575 SmallVector<BasicBlock*, 8> ExitBlocks; 576 L->getUniqueExitBlocks(ExitBlocks); 577 578 SmallVector<RewritePhi, 8> RewritePhiSet; 579 // Find all values that are computed inside the loop, but used outside of it. 580 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 581 // the exit blocks of the loop to find them. 582 for (BasicBlock *ExitBB : ExitBlocks) { 583 // If there are no PHI nodes in this exit block, then no values defined 584 // inside the loop are used on this path, skip it. 585 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 586 if (!PN) continue; 587 588 unsigned NumPreds = PN->getNumIncomingValues(); 589 590 // Iterate over all of the PHI nodes. 591 BasicBlock::iterator BBI = ExitBB->begin(); 592 while ((PN = dyn_cast<PHINode>(BBI++))) { 593 if (PN->use_empty()) 594 continue; // dead use, don't replace it 595 596 if (!SE->isSCEVable(PN->getType())) 597 continue; 598 599 // It's necessary to tell ScalarEvolution about this explicitly so that 600 // it can walk the def-use list and forget all SCEVs, as it may not be 601 // watching the PHI itself. Once the new exit value is in place, there 602 // may not be a def-use connection between the loop and every instruction 603 // which got a SCEVAddRecExpr for that loop. 604 SE->forgetValue(PN); 605 606 // Iterate over all of the values in all the PHI nodes. 607 for (unsigned i = 0; i != NumPreds; ++i) { 608 // If the value being merged in is not integer or is not defined 609 // in the loop, skip it. 610 Value *InVal = PN->getIncomingValue(i); 611 if (!isa<Instruction>(InVal)) 612 continue; 613 614 // If this pred is for a subloop, not L itself, skip it. 615 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 616 continue; // The Block is in a subloop, skip it. 617 618 // Check that InVal is defined in the loop. 619 Instruction *Inst = cast<Instruction>(InVal); 620 if (!L->contains(Inst)) 621 continue; 622 623 // Okay, this instruction has a user outside of the current loop 624 // and varies predictably *inside* the loop. Evaluate the value it 625 // contains when the loop exits, if possible. 626 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 627 if (!SE->isLoopInvariant(ExitValue, L) || 628 !isSafeToExpand(ExitValue, *SE)) 629 continue; 630 631 // Computing the value outside of the loop brings no benefit if it is 632 // definitely used inside the loop in a way which can not be optimized 633 // away. 634 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 635 continue; 636 637 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 638 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 639 640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 641 << '\n' 642 << " LoopVal = " << *Inst << "\n"); 643 644 if (!isValidRewrite(Inst, ExitVal)) { 645 DeadInsts.push_back(ExitVal); 646 continue; 647 } 648 649 #ifndef NDEBUG 650 // If we reuse an instruction from a loop which is neither L nor one of 651 // its containing loops, we end up breaking LCSSA form for this loop by 652 // creating a new use of its instruction. 653 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 654 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 655 if (EVL != L) 656 assert(EVL->contains(L) && "LCSSA breach detected!"); 657 #endif 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 661 } 662 } 663 } 664 665 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 666 667 bool Changed = false; 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // Replace PN with ExitVal if that is legal and does not break LCSSA. 691 if (PN->getNumIncomingValues() == 1 && 692 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 return Changed; 702 } 703 704 //===---------------------------------------------------------------------===// 705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 706 // they will exit at the first iteration. 707 //===---------------------------------------------------------------------===// 708 709 /// Check to see if this loop has loop invariant conditions which lead to loop 710 /// exits. If so, we know that if the exit path is taken, it is at the first 711 /// loop iteration. This lets us predict exit values of PHI nodes that live in 712 /// loop header. 713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 714 // Verify the input to the pass is already in LCSSA form. 715 assert(L->isLCSSAForm(*DT)); 716 717 SmallVector<BasicBlock *, 8> ExitBlocks; 718 L->getUniqueExitBlocks(ExitBlocks); 719 auto *LoopHeader = L->getHeader(); 720 assert(LoopHeader && "Invalid loop"); 721 722 bool MadeAnyChanges = false; 723 for (auto *ExitBB : ExitBlocks) { 724 // If there are no more PHI nodes in this exit block, then no more 725 // values defined inside the loop are used on this path. 726 for (PHINode &PN : ExitBB->phis()) { 727 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 728 IncomingValIdx != E; ++IncomingValIdx) { 729 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 730 731 // Can we prove that the exit must run on the first iteration if it 732 // runs at all? (i.e. early exits are fine for our purposes, but 733 // traces which lead to this exit being taken on the 2nd iteration 734 // aren't.) Note that this is about whether the exit branch is 735 // executed, not about whether it is taken. 736 if (!L->getLoopLatch() || 737 !DT->dominates(IncomingBB, L->getLoopLatch())) 738 continue; 739 740 // Get condition that leads to the exit path. 741 auto *TermInst = IncomingBB->getTerminator(); 742 743 Value *Cond = nullptr; 744 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 745 // Must be a conditional branch, otherwise the block 746 // should not be in the loop. 747 Cond = BI->getCondition(); 748 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 749 Cond = SI->getCondition(); 750 else 751 continue; 752 753 if (!L->isLoopInvariant(Cond)) 754 continue; 755 756 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 757 758 // Only deal with PHIs in the loop header. 759 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 760 continue; 761 762 // If ExitVal is a PHI on the loop header, then we know its 763 // value along this exit because the exit can only be taken 764 // on the first iteration. 765 auto *LoopPreheader = L->getLoopPreheader(); 766 assert(LoopPreheader && "Invalid loop"); 767 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 768 if (PreheaderIdx != -1) { 769 assert(ExitVal->getParent() == LoopHeader && 770 "ExitVal must be in loop header"); 771 MadeAnyChanges = true; 772 PN.setIncomingValue(IncomingValIdx, 773 ExitVal->getIncomingValue(PreheaderIdx)); 774 } 775 } 776 } 777 } 778 return MadeAnyChanges; 779 } 780 781 /// Check whether it is possible to delete the loop after rewriting exit 782 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 783 /// aggressively. 784 bool IndVarSimplify::canLoopBeDeleted( 785 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 786 BasicBlock *Preheader = L->getLoopPreheader(); 787 // If there is no preheader, the loop will not be deleted. 788 if (!Preheader) 789 return false; 790 791 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 792 // We obviate multiple ExitingBlocks case for simplicity. 793 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 794 // after exit value rewriting, we can enhance the logic here. 795 SmallVector<BasicBlock *, 4> ExitingBlocks; 796 L->getExitingBlocks(ExitingBlocks); 797 SmallVector<BasicBlock *, 8> ExitBlocks; 798 L->getUniqueExitBlocks(ExitBlocks); 799 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 800 return false; 801 802 BasicBlock *ExitBlock = ExitBlocks[0]; 803 BasicBlock::iterator BI = ExitBlock->begin(); 804 while (PHINode *P = dyn_cast<PHINode>(BI)) { 805 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 806 807 // If the Incoming value of P is found in RewritePhiSet, we know it 808 // could be rewritten to use a loop invariant value in transformation 809 // phase later. Skip it in the loop invariant check below. 810 bool found = false; 811 for (const RewritePhi &Phi : RewritePhiSet) { 812 unsigned i = Phi.Ith; 813 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 814 found = true; 815 break; 816 } 817 } 818 819 Instruction *I; 820 if (!found && (I = dyn_cast<Instruction>(Incoming))) 821 if (!L->hasLoopInvariantOperands(I)) 822 return false; 823 824 ++BI; 825 } 826 827 for (auto *BB : L->blocks()) 828 if (llvm::any_of(*BB, [](Instruction &I) { 829 return I.mayHaveSideEffects(); 830 })) 831 return false; 832 833 return true; 834 } 835 836 //===----------------------------------------------------------------------===// 837 // IV Widening - Extend the width of an IV to cover its widest uses. 838 //===----------------------------------------------------------------------===// 839 840 namespace { 841 842 // Collect information about induction variables that are used by sign/zero 843 // extend operations. This information is recorded by CollectExtend and provides 844 // the input to WidenIV. 845 struct WideIVInfo { 846 PHINode *NarrowIV = nullptr; 847 848 // Widest integer type created [sz]ext 849 Type *WidestNativeType = nullptr; 850 851 // Was a sext user seen before a zext? 852 bool IsSigned = false; 853 }; 854 855 } // end anonymous namespace 856 857 /// Update information about the induction variable that is extended by this 858 /// sign or zero extend operation. This is used to determine the final width of 859 /// the IV before actually widening it. 860 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 861 const TargetTransformInfo *TTI) { 862 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 863 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 864 return; 865 866 Type *Ty = Cast->getType(); 867 uint64_t Width = SE->getTypeSizeInBits(Ty); 868 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 869 return; 870 871 // Check that `Cast` actually extends the induction variable (we rely on this 872 // later). This takes care of cases where `Cast` is extending a truncation of 873 // the narrow induction variable, and thus can end up being narrower than the 874 // "narrow" induction variable. 875 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 876 if (NarrowIVWidth >= Width) 877 return; 878 879 // Cast is either an sext or zext up to this point. 880 // We should not widen an indvar if arithmetics on the wider indvar are more 881 // expensive than those on the narrower indvar. We check only the cost of ADD 882 // because at least an ADD is required to increment the induction variable. We 883 // could compute more comprehensively the cost of all instructions on the 884 // induction variable when necessary. 885 if (TTI && 886 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 887 TTI->getArithmeticInstrCost(Instruction::Add, 888 Cast->getOperand(0)->getType())) { 889 return; 890 } 891 892 if (!WI.WidestNativeType) { 893 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 894 WI.IsSigned = IsSigned; 895 return; 896 } 897 898 // We extend the IV to satisfy the sign of its first user, arbitrarily. 899 if (WI.IsSigned != IsSigned) 900 return; 901 902 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 903 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 904 } 905 906 namespace { 907 908 /// Record a link in the Narrow IV def-use chain along with the WideIV that 909 /// computes the same value as the Narrow IV def. This avoids caching Use* 910 /// pointers. 911 struct NarrowIVDefUse { 912 Instruction *NarrowDef = nullptr; 913 Instruction *NarrowUse = nullptr; 914 Instruction *WideDef = nullptr; 915 916 // True if the narrow def is never negative. Tracking this information lets 917 // us use a sign extension instead of a zero extension or vice versa, when 918 // profitable and legal. 919 bool NeverNegative = false; 920 921 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 922 bool NeverNegative) 923 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 924 NeverNegative(NeverNegative) {} 925 }; 926 927 /// The goal of this transform is to remove sign and zero extends without 928 /// creating any new induction variables. To do this, it creates a new phi of 929 /// the wider type and redirects all users, either removing extends or inserting 930 /// truncs whenever we stop propagating the type. 931 class WidenIV { 932 // Parameters 933 PHINode *OrigPhi; 934 Type *WideType; 935 936 // Context 937 LoopInfo *LI; 938 Loop *L; 939 ScalarEvolution *SE; 940 DominatorTree *DT; 941 942 // Does the module have any calls to the llvm.experimental.guard intrinsic 943 // at all? If not we can avoid scanning instructions looking for guards. 944 bool HasGuards; 945 946 // Result 947 PHINode *WidePhi = nullptr; 948 Instruction *WideInc = nullptr; 949 const SCEV *WideIncExpr = nullptr; 950 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 951 952 SmallPtrSet<Instruction *,16> Widened; 953 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 954 955 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 956 957 // A map tracking the kind of extension used to widen each narrow IV 958 // and narrow IV user. 959 // Key: pointer to a narrow IV or IV user. 960 // Value: the kind of extension used to widen this Instruction. 961 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 962 963 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 964 965 // A map with control-dependent ranges for post increment IV uses. The key is 966 // a pair of IV def and a use of this def denoting the context. The value is 967 // a ConstantRange representing possible values of the def at the given 968 // context. 969 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 970 971 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 972 Instruction *UseI) { 973 DefUserPair Key(Def, UseI); 974 auto It = PostIncRangeInfos.find(Key); 975 return It == PostIncRangeInfos.end() 976 ? Optional<ConstantRange>(None) 977 : Optional<ConstantRange>(It->second); 978 } 979 980 void calculatePostIncRanges(PHINode *OrigPhi); 981 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 982 983 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 984 DefUserPair Key(Def, UseI); 985 auto It = PostIncRangeInfos.find(Key); 986 if (It == PostIncRangeInfos.end()) 987 PostIncRangeInfos.insert({Key, R}); 988 else 989 It->second = R.intersectWith(It->second); 990 } 991 992 public: 993 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 994 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 995 bool HasGuards) 996 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 997 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 998 HasGuards(HasGuards), DeadInsts(DI) { 999 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1000 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1001 } 1002 1003 PHINode *createWideIV(SCEVExpander &Rewriter); 1004 1005 protected: 1006 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1007 Instruction *Use); 1008 1009 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1010 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1011 const SCEVAddRecExpr *WideAR); 1012 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1013 1014 ExtendKind getExtendKind(Instruction *I); 1015 1016 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1017 1018 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1019 1020 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1021 1022 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1023 unsigned OpCode) const; 1024 1025 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1026 1027 bool widenLoopCompare(NarrowIVDefUse DU); 1028 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1029 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1030 1031 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1032 }; 1033 1034 } // end anonymous namespace 1035 1036 /// Perform a quick domtree based check for loop invariance assuming that V is 1037 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1038 /// purpose. 1039 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1040 Instruction *Inst = dyn_cast<Instruction>(V); 1041 if (!Inst) 1042 return true; 1043 1044 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1045 } 1046 1047 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1048 bool IsSigned, Instruction *Use) { 1049 // Set the debug location and conservative insertion point. 1050 IRBuilder<> Builder(Use); 1051 // Hoist the insertion point into loop preheaders as far as possible. 1052 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1053 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1054 L = L->getParentLoop()) 1055 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1056 1057 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1058 Builder.CreateZExt(NarrowOper, WideType); 1059 } 1060 1061 /// Instantiate a wide operation to replace a narrow operation. This only needs 1062 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1063 /// 0 for any operation we decide not to clone. 1064 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1065 const SCEVAddRecExpr *WideAR) { 1066 unsigned Opcode = DU.NarrowUse->getOpcode(); 1067 switch (Opcode) { 1068 default: 1069 return nullptr; 1070 case Instruction::Add: 1071 case Instruction::Mul: 1072 case Instruction::UDiv: 1073 case Instruction::Sub: 1074 return cloneArithmeticIVUser(DU, WideAR); 1075 1076 case Instruction::And: 1077 case Instruction::Or: 1078 case Instruction::Xor: 1079 case Instruction::Shl: 1080 case Instruction::LShr: 1081 case Instruction::AShr: 1082 return cloneBitwiseIVUser(DU); 1083 } 1084 } 1085 1086 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1087 Instruction *NarrowUse = DU.NarrowUse; 1088 Instruction *NarrowDef = DU.NarrowDef; 1089 Instruction *WideDef = DU.WideDef; 1090 1091 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1092 1093 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1094 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1095 // invariant and will be folded or hoisted. If it actually comes from a 1096 // widened IV, it should be removed during a future call to widenIVUse. 1097 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1098 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1099 ? WideDef 1100 : createExtendInst(NarrowUse->getOperand(0), WideType, 1101 IsSigned, NarrowUse); 1102 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1103 ? WideDef 1104 : createExtendInst(NarrowUse->getOperand(1), WideType, 1105 IsSigned, NarrowUse); 1106 1107 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1108 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1109 NarrowBO->getName()); 1110 IRBuilder<> Builder(NarrowUse); 1111 Builder.Insert(WideBO); 1112 WideBO->copyIRFlags(NarrowBO); 1113 return WideBO; 1114 } 1115 1116 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1117 const SCEVAddRecExpr *WideAR) { 1118 Instruction *NarrowUse = DU.NarrowUse; 1119 Instruction *NarrowDef = DU.NarrowDef; 1120 Instruction *WideDef = DU.WideDef; 1121 1122 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1123 1124 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1125 1126 // We're trying to find X such that 1127 // 1128 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1129 // 1130 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1131 // and check using SCEV if any of them are correct. 1132 1133 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1134 // correct solution to X. 1135 auto GuessNonIVOperand = [&](bool SignExt) { 1136 const SCEV *WideLHS; 1137 const SCEV *WideRHS; 1138 1139 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1140 if (SignExt) 1141 return SE->getSignExtendExpr(S, Ty); 1142 return SE->getZeroExtendExpr(S, Ty); 1143 }; 1144 1145 if (IVOpIdx == 0) { 1146 WideLHS = SE->getSCEV(WideDef); 1147 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1148 WideRHS = GetExtend(NarrowRHS, WideType); 1149 } else { 1150 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1151 WideLHS = GetExtend(NarrowLHS, WideType); 1152 WideRHS = SE->getSCEV(WideDef); 1153 } 1154 1155 // WideUse is "WideDef `op.wide` X" as described in the comment. 1156 const SCEV *WideUse = nullptr; 1157 1158 switch (NarrowUse->getOpcode()) { 1159 default: 1160 llvm_unreachable("No other possibility!"); 1161 1162 case Instruction::Add: 1163 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1164 break; 1165 1166 case Instruction::Mul: 1167 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1168 break; 1169 1170 case Instruction::UDiv: 1171 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1172 break; 1173 1174 case Instruction::Sub: 1175 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1176 break; 1177 } 1178 1179 return WideUse == WideAR; 1180 }; 1181 1182 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1183 if (!GuessNonIVOperand(SignExtend)) { 1184 SignExtend = !SignExtend; 1185 if (!GuessNonIVOperand(SignExtend)) 1186 return nullptr; 1187 } 1188 1189 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1190 ? WideDef 1191 : createExtendInst(NarrowUse->getOperand(0), WideType, 1192 SignExtend, NarrowUse); 1193 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1194 ? WideDef 1195 : createExtendInst(NarrowUse->getOperand(1), WideType, 1196 SignExtend, NarrowUse); 1197 1198 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1199 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1200 NarrowBO->getName()); 1201 1202 IRBuilder<> Builder(NarrowUse); 1203 Builder.Insert(WideBO); 1204 WideBO->copyIRFlags(NarrowBO); 1205 return WideBO; 1206 } 1207 1208 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1209 auto It = ExtendKindMap.find(I); 1210 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1211 return It->second; 1212 } 1213 1214 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1215 unsigned OpCode) const { 1216 if (OpCode == Instruction::Add) 1217 return SE->getAddExpr(LHS, RHS); 1218 if (OpCode == Instruction::Sub) 1219 return SE->getMinusSCEV(LHS, RHS); 1220 if (OpCode == Instruction::Mul) 1221 return SE->getMulExpr(LHS, RHS); 1222 1223 llvm_unreachable("Unsupported opcode."); 1224 } 1225 1226 /// No-wrap operations can transfer sign extension of their result to their 1227 /// operands. Generate the SCEV value for the widened operation without 1228 /// actually modifying the IR yet. If the expression after extending the 1229 /// operands is an AddRec for this loop, return the AddRec and the kind of 1230 /// extension used. 1231 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1232 // Handle the common case of add<nsw/nuw> 1233 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1234 // Only Add/Sub/Mul instructions supported yet. 1235 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1236 OpCode != Instruction::Mul) 1237 return {nullptr, Unknown}; 1238 1239 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1240 // if extending the other will lead to a recurrence. 1241 const unsigned ExtendOperIdx = 1242 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1243 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1244 1245 const SCEV *ExtendOperExpr = nullptr; 1246 const OverflowingBinaryOperator *OBO = 1247 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1248 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1249 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1250 ExtendOperExpr = SE->getSignExtendExpr( 1251 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1252 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1253 ExtendOperExpr = SE->getZeroExtendExpr( 1254 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1255 else 1256 return {nullptr, Unknown}; 1257 1258 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1259 // flags. This instruction may be guarded by control flow that the no-wrap 1260 // behavior depends on. Non-control-equivalent instructions can be mapped to 1261 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1262 // semantics to those operations. 1263 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1264 const SCEV *rhs = ExtendOperExpr; 1265 1266 // Let's swap operands to the initial order for the case of non-commutative 1267 // operations, like SUB. See PR21014. 1268 if (ExtendOperIdx == 0) 1269 std::swap(lhs, rhs); 1270 const SCEVAddRecExpr *AddRec = 1271 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1272 1273 if (!AddRec || AddRec->getLoop() != L) 1274 return {nullptr, Unknown}; 1275 1276 return {AddRec, ExtKind}; 1277 } 1278 1279 /// Is this instruction potentially interesting for further simplification after 1280 /// widening it's type? In other words, can the extend be safely hoisted out of 1281 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1282 /// so, return the extended recurrence and the kind of extension used. Otherwise 1283 /// return {nullptr, Unknown}. 1284 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1285 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1286 return {nullptr, Unknown}; 1287 1288 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1289 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1290 SE->getTypeSizeInBits(WideType)) { 1291 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1292 // index. So don't follow this use. 1293 return {nullptr, Unknown}; 1294 } 1295 1296 const SCEV *WideExpr; 1297 ExtendKind ExtKind; 1298 if (DU.NeverNegative) { 1299 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1300 if (isa<SCEVAddRecExpr>(WideExpr)) 1301 ExtKind = SignExtended; 1302 else { 1303 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1304 ExtKind = ZeroExtended; 1305 } 1306 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1307 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1308 ExtKind = SignExtended; 1309 } else { 1310 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1311 ExtKind = ZeroExtended; 1312 } 1313 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1314 if (!AddRec || AddRec->getLoop() != L) 1315 return {nullptr, Unknown}; 1316 return {AddRec, ExtKind}; 1317 } 1318 1319 /// This IV user cannot be widen. Replace this use of the original narrow IV 1320 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1321 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1322 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1323 if (!InsertPt) 1324 return; 1325 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1326 << *DU.NarrowUse << "\n"); 1327 IRBuilder<> Builder(InsertPt); 1328 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1329 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1330 } 1331 1332 /// If the narrow use is a compare instruction, then widen the compare 1333 // (and possibly the other operand). The extend operation is hoisted into the 1334 // loop preheader as far as possible. 1335 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1336 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1337 if (!Cmp) 1338 return false; 1339 1340 // We can legally widen the comparison in the following two cases: 1341 // 1342 // - The signedness of the IV extension and comparison match 1343 // 1344 // - The narrow IV is always positive (and thus its sign extension is equal 1345 // to its zero extension). For instance, let's say we're zero extending 1346 // %narrow for the following use 1347 // 1348 // icmp slt i32 %narrow, %val ... (A) 1349 // 1350 // and %narrow is always positive. Then 1351 // 1352 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1353 // == icmp slt i32 zext(%narrow), sext(%val) 1354 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1355 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1356 return false; 1357 1358 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1359 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1360 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1361 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1362 1363 // Widen the compare instruction. 1364 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1365 if (!InsertPt) 1366 return false; 1367 IRBuilder<> Builder(InsertPt); 1368 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1369 1370 // Widen the other operand of the compare, if necessary. 1371 if (CastWidth < IVWidth) { 1372 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1373 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1374 } 1375 return true; 1376 } 1377 1378 /// If the narrow use is an instruction whose two operands are the defining 1379 /// instruction of DU and a load instruction, then we have the following: 1380 /// if the load is hoisted outside the loop, then we do not reach this function 1381 /// as scalar evolution analysis works fine in widenIVUse with variables 1382 /// hoisted outside the loop and efficient code is subsequently generated by 1383 /// not emitting truncate instructions. But when the load is not hoisted 1384 /// (whether due to limitation in alias analysis or due to a true legality), 1385 /// then scalar evolution can not proceed with loop variant values and 1386 /// inefficient code is generated. This function handles the non-hoisted load 1387 /// special case by making the optimization generate the same type of code for 1388 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1389 /// instruction). This special case is important especially when the induction 1390 /// variables are affecting addressing mode in code generation. 1391 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1392 Instruction *NarrowUse = DU.NarrowUse; 1393 Instruction *NarrowDef = DU.NarrowDef; 1394 Instruction *WideDef = DU.WideDef; 1395 1396 // Handle the common case of add<nsw/nuw> 1397 const unsigned OpCode = NarrowUse->getOpcode(); 1398 // Only Add/Sub/Mul instructions are supported. 1399 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1400 OpCode != Instruction::Mul) 1401 return false; 1402 1403 // The operand that is not defined by NarrowDef of DU. Let's call it the 1404 // other operand. 1405 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1406 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1407 "bad DU"); 1408 1409 const SCEV *ExtendOperExpr = nullptr; 1410 const OverflowingBinaryOperator *OBO = 1411 cast<OverflowingBinaryOperator>(NarrowUse); 1412 ExtendKind ExtKind = getExtendKind(NarrowDef); 1413 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1414 ExtendOperExpr = SE->getSignExtendExpr( 1415 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1416 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1417 ExtendOperExpr = SE->getZeroExtendExpr( 1418 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1419 else 1420 return false; 1421 1422 // We are interested in the other operand being a load instruction. 1423 // But, we should look into relaxing this restriction later on. 1424 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1425 if (I && I->getOpcode() != Instruction::Load) 1426 return false; 1427 1428 // Verifying that Defining operand is an AddRec 1429 const SCEV *Op1 = SE->getSCEV(WideDef); 1430 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1431 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1432 return false; 1433 // Verifying that other operand is an Extend. 1434 if (ExtKind == SignExtended) { 1435 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1436 return false; 1437 } else { 1438 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1439 return false; 1440 } 1441 1442 if (ExtKind == SignExtended) { 1443 for (Use &U : NarrowUse->uses()) { 1444 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1445 if (!User || User->getType() != WideType) 1446 return false; 1447 } 1448 } else { // ExtKind == ZeroExtended 1449 for (Use &U : NarrowUse->uses()) { 1450 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1451 if (!User || User->getType() != WideType) 1452 return false; 1453 } 1454 } 1455 1456 return true; 1457 } 1458 1459 /// Special Case for widening with variant Loads (see 1460 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1461 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1462 Instruction *NarrowUse = DU.NarrowUse; 1463 Instruction *NarrowDef = DU.NarrowDef; 1464 Instruction *WideDef = DU.WideDef; 1465 1466 ExtendKind ExtKind = getExtendKind(NarrowDef); 1467 1468 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1469 1470 // Generating a widening use instruction. 1471 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1472 ? WideDef 1473 : createExtendInst(NarrowUse->getOperand(0), WideType, 1474 ExtKind, NarrowUse); 1475 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1476 ? WideDef 1477 : createExtendInst(NarrowUse->getOperand(1), WideType, 1478 ExtKind, NarrowUse); 1479 1480 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1481 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1482 NarrowBO->getName()); 1483 IRBuilder<> Builder(NarrowUse); 1484 Builder.Insert(WideBO); 1485 WideBO->copyIRFlags(NarrowBO); 1486 1487 if (ExtKind == SignExtended) 1488 ExtendKindMap[NarrowUse] = SignExtended; 1489 else 1490 ExtendKindMap[NarrowUse] = ZeroExtended; 1491 1492 // Update the Use. 1493 if (ExtKind == SignExtended) { 1494 for (Use &U : NarrowUse->uses()) { 1495 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1496 if (User && User->getType() == WideType) { 1497 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1498 << *WideBO << "\n"); 1499 ++NumElimExt; 1500 User->replaceAllUsesWith(WideBO); 1501 DeadInsts.emplace_back(User); 1502 } 1503 } 1504 } else { // ExtKind == ZeroExtended 1505 for (Use &U : NarrowUse->uses()) { 1506 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1507 if (User && User->getType() == WideType) { 1508 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1509 << *WideBO << "\n"); 1510 ++NumElimExt; 1511 User->replaceAllUsesWith(WideBO); 1512 DeadInsts.emplace_back(User); 1513 } 1514 } 1515 } 1516 } 1517 1518 /// Determine whether an individual user of the narrow IV can be widened. If so, 1519 /// return the wide clone of the user. 1520 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1521 assert(ExtendKindMap.count(DU.NarrowDef) && 1522 "Should already know the kind of extension used to widen NarrowDef"); 1523 1524 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1525 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1526 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1527 // For LCSSA phis, sink the truncate outside the loop. 1528 // After SimplifyCFG most loop exit targets have a single predecessor. 1529 // Otherwise fall back to a truncate within the loop. 1530 if (UsePhi->getNumOperands() != 1) 1531 truncateIVUse(DU, DT, LI); 1532 else { 1533 // Widening the PHI requires us to insert a trunc. The logical place 1534 // for this trunc is in the same BB as the PHI. This is not possible if 1535 // the BB is terminated by a catchswitch. 1536 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1537 return nullptr; 1538 1539 PHINode *WidePhi = 1540 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1541 UsePhi); 1542 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1543 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1544 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1545 UsePhi->replaceAllUsesWith(Trunc); 1546 DeadInsts.emplace_back(UsePhi); 1547 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1548 << *WidePhi << "\n"); 1549 } 1550 return nullptr; 1551 } 1552 } 1553 1554 // This narrow use can be widened by a sext if it's non-negative or its narrow 1555 // def was widended by a sext. Same for zext. 1556 auto canWidenBySExt = [&]() { 1557 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1558 }; 1559 auto canWidenByZExt = [&]() { 1560 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1561 }; 1562 1563 // Our raison d'etre! Eliminate sign and zero extension. 1564 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1565 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1566 Value *NewDef = DU.WideDef; 1567 if (DU.NarrowUse->getType() != WideType) { 1568 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1569 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1570 if (CastWidth < IVWidth) { 1571 // The cast isn't as wide as the IV, so insert a Trunc. 1572 IRBuilder<> Builder(DU.NarrowUse); 1573 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1574 } 1575 else { 1576 // A wider extend was hidden behind a narrower one. This may induce 1577 // another round of IV widening in which the intermediate IV becomes 1578 // dead. It should be very rare. 1579 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1580 << " not wide enough to subsume " << *DU.NarrowUse 1581 << "\n"); 1582 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1583 NewDef = DU.NarrowUse; 1584 } 1585 } 1586 if (NewDef != DU.NarrowUse) { 1587 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1588 << " replaced by " << *DU.WideDef << "\n"); 1589 ++NumElimExt; 1590 DU.NarrowUse->replaceAllUsesWith(NewDef); 1591 DeadInsts.emplace_back(DU.NarrowUse); 1592 } 1593 // Now that the extend is gone, we want to expose it's uses for potential 1594 // further simplification. We don't need to directly inform SimplifyIVUsers 1595 // of the new users, because their parent IV will be processed later as a 1596 // new loop phi. If we preserved IVUsers analysis, we would also want to 1597 // push the uses of WideDef here. 1598 1599 // No further widening is needed. The deceased [sz]ext had done it for us. 1600 return nullptr; 1601 } 1602 1603 // Does this user itself evaluate to a recurrence after widening? 1604 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1605 if (!WideAddRec.first) 1606 WideAddRec = getWideRecurrence(DU); 1607 1608 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1609 if (!WideAddRec.first) { 1610 // If use is a loop condition, try to promote the condition instead of 1611 // truncating the IV first. 1612 if (widenLoopCompare(DU)) 1613 return nullptr; 1614 1615 // We are here about to generate a truncate instruction that may hurt 1616 // performance because the scalar evolution expression computed earlier 1617 // in WideAddRec.first does not indicate a polynomial induction expression. 1618 // In that case, look at the operands of the use instruction to determine 1619 // if we can still widen the use instead of truncating its operand. 1620 if (widenWithVariantLoadUse(DU)) { 1621 widenWithVariantLoadUseCodegen(DU); 1622 return nullptr; 1623 } 1624 1625 // This user does not evaluate to a recurrence after widening, so don't 1626 // follow it. Instead insert a Trunc to kill off the original use, 1627 // eventually isolating the original narrow IV so it can be removed. 1628 truncateIVUse(DU, DT, LI); 1629 return nullptr; 1630 } 1631 // Assume block terminators cannot evaluate to a recurrence. We can't to 1632 // insert a Trunc after a terminator if there happens to be a critical edge. 1633 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1634 "SCEV is not expected to evaluate a block terminator"); 1635 1636 // Reuse the IV increment that SCEVExpander created as long as it dominates 1637 // NarrowUse. 1638 Instruction *WideUse = nullptr; 1639 if (WideAddRec.first == WideIncExpr && 1640 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1641 WideUse = WideInc; 1642 else { 1643 WideUse = cloneIVUser(DU, WideAddRec.first); 1644 if (!WideUse) 1645 return nullptr; 1646 } 1647 // Evaluation of WideAddRec ensured that the narrow expression could be 1648 // extended outside the loop without overflow. This suggests that the wide use 1649 // evaluates to the same expression as the extended narrow use, but doesn't 1650 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1651 // where it fails, we simply throw away the newly created wide use. 1652 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1653 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1654 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1655 << "\n"); 1656 DeadInsts.emplace_back(WideUse); 1657 return nullptr; 1658 } 1659 1660 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1661 // Returning WideUse pushes it on the worklist. 1662 return WideUse; 1663 } 1664 1665 /// Add eligible users of NarrowDef to NarrowIVUsers. 1666 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1667 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1668 bool NonNegativeDef = 1669 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1670 SE->getConstant(NarrowSCEV->getType(), 0)); 1671 for (User *U : NarrowDef->users()) { 1672 Instruction *NarrowUser = cast<Instruction>(U); 1673 1674 // Handle data flow merges and bizarre phi cycles. 1675 if (!Widened.insert(NarrowUser).second) 1676 continue; 1677 1678 bool NonNegativeUse = false; 1679 if (!NonNegativeDef) { 1680 // We might have a control-dependent range information for this context. 1681 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1682 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1683 } 1684 1685 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1686 NonNegativeDef || NonNegativeUse); 1687 } 1688 } 1689 1690 /// Process a single induction variable. First use the SCEVExpander to create a 1691 /// wide induction variable that evaluates to the same recurrence as the 1692 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1693 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1694 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1695 /// 1696 /// It would be simpler to delete uses as they are processed, but we must avoid 1697 /// invalidating SCEV expressions. 1698 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1699 // Is this phi an induction variable? 1700 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1701 if (!AddRec) 1702 return nullptr; 1703 1704 // Widen the induction variable expression. 1705 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1706 ? SE->getSignExtendExpr(AddRec, WideType) 1707 : SE->getZeroExtendExpr(AddRec, WideType); 1708 1709 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1710 "Expect the new IV expression to preserve its type"); 1711 1712 // Can the IV be extended outside the loop without overflow? 1713 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1714 if (!AddRec || AddRec->getLoop() != L) 1715 return nullptr; 1716 1717 // An AddRec must have loop-invariant operands. Since this AddRec is 1718 // materialized by a loop header phi, the expression cannot have any post-loop 1719 // operands, so they must dominate the loop header. 1720 assert( 1721 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1722 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1723 "Loop header phi recurrence inputs do not dominate the loop"); 1724 1725 // Iterate over IV uses (including transitive ones) looking for IV increments 1726 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1727 // the increment calculate control-dependent range information basing on 1728 // dominating conditions inside of the loop (e.g. a range check inside of the 1729 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1730 // 1731 // Control-dependent range information is later used to prove that a narrow 1732 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1733 // this on demand because when pushNarrowIVUsers needs this information some 1734 // of the dominating conditions might be already widened. 1735 if (UsePostIncrementRanges) 1736 calculatePostIncRanges(OrigPhi); 1737 1738 // The rewriter provides a value for the desired IV expression. This may 1739 // either find an existing phi or materialize a new one. Either way, we 1740 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1741 // of the phi-SCC dominates the loop entry. 1742 Instruction *InsertPt = &L->getHeader()->front(); 1743 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1744 1745 // Remembering the WideIV increment generated by SCEVExpander allows 1746 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1747 // employ a general reuse mechanism because the call above is the only call to 1748 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1749 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1750 WideInc = 1751 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1752 WideIncExpr = SE->getSCEV(WideInc); 1753 // Propagate the debug location associated with the original loop increment 1754 // to the new (widened) increment. 1755 auto *OrigInc = 1756 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1757 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1758 } 1759 1760 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1761 ++NumWidened; 1762 1763 // Traverse the def-use chain using a worklist starting at the original IV. 1764 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1765 1766 Widened.insert(OrigPhi); 1767 pushNarrowIVUsers(OrigPhi, WidePhi); 1768 1769 while (!NarrowIVUsers.empty()) { 1770 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1771 1772 // Process a def-use edge. This may replace the use, so don't hold a 1773 // use_iterator across it. 1774 Instruction *WideUse = widenIVUse(DU, Rewriter); 1775 1776 // Follow all def-use edges from the previous narrow use. 1777 if (WideUse) 1778 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1779 1780 // widenIVUse may have removed the def-use edge. 1781 if (DU.NarrowDef->use_empty()) 1782 DeadInsts.emplace_back(DU.NarrowDef); 1783 } 1784 1785 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1786 // evaluate the same recurrence, we can just copy the debug info over. 1787 SmallVector<DbgValueInst *, 1> DbgValues; 1788 llvm::findDbgValues(DbgValues, OrigPhi); 1789 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1790 ValueAsMetadata::get(WidePhi)); 1791 for (auto &DbgValue : DbgValues) 1792 DbgValue->setOperand(0, MDPhi); 1793 return WidePhi; 1794 } 1795 1796 /// Calculates control-dependent range for the given def at the given context 1797 /// by looking at dominating conditions inside of the loop 1798 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1799 Instruction *NarrowUser) { 1800 using namespace llvm::PatternMatch; 1801 1802 Value *NarrowDefLHS; 1803 const APInt *NarrowDefRHS; 1804 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1805 m_APInt(NarrowDefRHS))) || 1806 !NarrowDefRHS->isNonNegative()) 1807 return; 1808 1809 auto UpdateRangeFromCondition = [&] (Value *Condition, 1810 bool TrueDest) { 1811 CmpInst::Predicate Pred; 1812 Value *CmpRHS; 1813 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1814 m_Value(CmpRHS)))) 1815 return; 1816 1817 CmpInst::Predicate P = 1818 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1819 1820 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1821 auto CmpConstrainedLHSRange = 1822 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1823 auto NarrowDefRange = 1824 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1825 1826 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1827 }; 1828 1829 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1830 if (!HasGuards) 1831 return; 1832 1833 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1834 Ctx->getParent()->rend())) { 1835 Value *C = nullptr; 1836 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1837 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1838 } 1839 }; 1840 1841 UpdateRangeFromGuards(NarrowUser); 1842 1843 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1844 // If NarrowUserBB is statically unreachable asking dominator queries may 1845 // yield surprising results. (e.g. the block may not have a dom tree node) 1846 if (!DT->isReachableFromEntry(NarrowUserBB)) 1847 return; 1848 1849 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1850 L->contains(DTB->getBlock()); 1851 DTB = DTB->getIDom()) { 1852 auto *BB = DTB->getBlock(); 1853 auto *TI = BB->getTerminator(); 1854 UpdateRangeFromGuards(TI); 1855 1856 auto *BI = dyn_cast<BranchInst>(TI); 1857 if (!BI || !BI->isConditional()) 1858 continue; 1859 1860 auto *TrueSuccessor = BI->getSuccessor(0); 1861 auto *FalseSuccessor = BI->getSuccessor(1); 1862 1863 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1864 return BBE.isSingleEdge() && 1865 DT->dominates(BBE, NarrowUser->getParent()); 1866 }; 1867 1868 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1869 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1870 1871 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1872 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1873 } 1874 } 1875 1876 /// Calculates PostIncRangeInfos map for the given IV 1877 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1878 SmallPtrSet<Instruction *, 16> Visited; 1879 SmallVector<Instruction *, 6> Worklist; 1880 Worklist.push_back(OrigPhi); 1881 Visited.insert(OrigPhi); 1882 1883 while (!Worklist.empty()) { 1884 Instruction *NarrowDef = Worklist.pop_back_val(); 1885 1886 for (Use &U : NarrowDef->uses()) { 1887 auto *NarrowUser = cast<Instruction>(U.getUser()); 1888 1889 // Don't go looking outside the current loop. 1890 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1891 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1892 continue; 1893 1894 if (!Visited.insert(NarrowUser).second) 1895 continue; 1896 1897 Worklist.push_back(NarrowUser); 1898 1899 calculatePostIncRange(NarrowDef, NarrowUser); 1900 } 1901 } 1902 } 1903 1904 //===----------------------------------------------------------------------===// 1905 // Live IV Reduction - Minimize IVs live across the loop. 1906 //===----------------------------------------------------------------------===// 1907 1908 //===----------------------------------------------------------------------===// 1909 // Simplification of IV users based on SCEV evaluation. 1910 //===----------------------------------------------------------------------===// 1911 1912 namespace { 1913 1914 class IndVarSimplifyVisitor : public IVVisitor { 1915 ScalarEvolution *SE; 1916 const TargetTransformInfo *TTI; 1917 PHINode *IVPhi; 1918 1919 public: 1920 WideIVInfo WI; 1921 1922 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1923 const TargetTransformInfo *TTI, 1924 const DominatorTree *DTree) 1925 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1926 DT = DTree; 1927 WI.NarrowIV = IVPhi; 1928 } 1929 1930 // Implement the interface used by simplifyUsersOfIV. 1931 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1932 }; 1933 1934 } // end anonymous namespace 1935 1936 /// Iteratively perform simplification on a worklist of IV users. Each 1937 /// successive simplification may push more users which may themselves be 1938 /// candidates for simplification. 1939 /// 1940 /// Sign/Zero extend elimination is interleaved with IV simplification. 1941 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1942 SCEVExpander &Rewriter, 1943 LoopInfo *LI) { 1944 SmallVector<WideIVInfo, 8> WideIVs; 1945 1946 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1947 Intrinsic::getName(Intrinsic::experimental_guard)); 1948 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1949 1950 SmallVector<PHINode*, 8> LoopPhis; 1951 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1952 LoopPhis.push_back(cast<PHINode>(I)); 1953 } 1954 // Each round of simplification iterates through the SimplifyIVUsers worklist 1955 // for all current phis, then determines whether any IVs can be 1956 // widened. Widening adds new phis to LoopPhis, inducing another round of 1957 // simplification on the wide IVs. 1958 bool Changed = false; 1959 while (!LoopPhis.empty()) { 1960 // Evaluate as many IV expressions as possible before widening any IVs. This 1961 // forces SCEV to set no-wrap flags before evaluating sign/zero 1962 // extension. The first time SCEV attempts to normalize sign/zero extension, 1963 // the result becomes final. So for the most predictable results, we delay 1964 // evaluation of sign/zero extend evaluation until needed, and avoid running 1965 // other SCEV based analysis prior to simplifyAndExtend. 1966 do { 1967 PHINode *CurrIV = LoopPhis.pop_back_val(); 1968 1969 // Information about sign/zero extensions of CurrIV. 1970 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1971 1972 Changed |= 1973 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1974 1975 if (Visitor.WI.WidestNativeType) { 1976 WideIVs.push_back(Visitor.WI); 1977 } 1978 } while(!LoopPhis.empty()); 1979 1980 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1981 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1982 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1983 Changed = true; 1984 LoopPhis.push_back(WidePhi); 1985 } 1986 } 1987 } 1988 return Changed; 1989 } 1990 1991 //===----------------------------------------------------------------------===// 1992 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1993 //===----------------------------------------------------------------------===// 1994 1995 /// Return true if this loop's backedge taken count expression can be safely and 1996 /// cheaply expanded into an instruction sequence that can be used by 1997 /// linearFunctionTestReplace. 1998 /// 1999 /// TODO: This fails for pointer-type loop counters with greater than one byte 2000 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 2001 /// we could skip this check in the case that the LFTR loop counter (chosen by 2002 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 2003 /// the loop test to an inequality test by checking the target data's alignment 2004 /// of element types (given that the initial pointer value originates from or is 2005 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 2006 /// However, we don't yet have a strong motivation for converting loop tests 2007 /// into inequality tests. 2008 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 2009 SCEVExpander &Rewriter) { 2010 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2011 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 2012 BackedgeTakenCount->isZero()) 2013 return false; 2014 2015 if (!L->getExitingBlock()) 2016 return false; 2017 2018 // Can't rewrite non-branch yet. 2019 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2020 return false; 2021 2022 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2023 return false; 2024 2025 return true; 2026 } 2027 2028 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2029 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2030 Instruction *IncI = dyn_cast<Instruction>(IncV); 2031 if (!IncI) 2032 return nullptr; 2033 2034 switch (IncI->getOpcode()) { 2035 case Instruction::Add: 2036 case Instruction::Sub: 2037 break; 2038 case Instruction::GetElementPtr: 2039 // An IV counter must preserve its type. 2040 if (IncI->getNumOperands() == 2) 2041 break; 2042 LLVM_FALLTHROUGH; 2043 default: 2044 return nullptr; 2045 } 2046 2047 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2048 if (Phi && Phi->getParent() == L->getHeader()) { 2049 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2050 return Phi; 2051 return nullptr; 2052 } 2053 if (IncI->getOpcode() == Instruction::GetElementPtr) 2054 return nullptr; 2055 2056 // Allow add/sub to be commuted. 2057 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2058 if (Phi && Phi->getParent() == L->getHeader()) { 2059 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2060 return Phi; 2061 } 2062 return nullptr; 2063 } 2064 2065 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2066 static ICmpInst *getLoopTest(Loop *L) { 2067 assert(L->getExitingBlock() && "expected loop exit"); 2068 2069 BasicBlock *LatchBlock = L->getLoopLatch(); 2070 // Don't bother with LFTR if the loop is not properly simplified. 2071 if (!LatchBlock) 2072 return nullptr; 2073 2074 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2075 assert(BI && "expected exit branch"); 2076 2077 return dyn_cast<ICmpInst>(BI->getCondition()); 2078 } 2079 2080 /// linearFunctionTestReplace policy. Return true unless we can show that the 2081 /// current exit test is already sufficiently canonical. 2082 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2083 // Do LFTR to simplify the exit condition to an ICMP. 2084 ICmpInst *Cond = getLoopTest(L); 2085 if (!Cond) 2086 return true; 2087 2088 // Do LFTR to simplify the exit ICMP to EQ/NE 2089 ICmpInst::Predicate Pred = Cond->getPredicate(); 2090 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2091 return true; 2092 2093 // Look for a loop invariant RHS 2094 Value *LHS = Cond->getOperand(0); 2095 Value *RHS = Cond->getOperand(1); 2096 if (!isLoopInvariant(RHS, L, DT)) { 2097 if (!isLoopInvariant(LHS, L, DT)) 2098 return true; 2099 std::swap(LHS, RHS); 2100 } 2101 // Look for a simple IV counter LHS 2102 PHINode *Phi = dyn_cast<PHINode>(LHS); 2103 if (!Phi) 2104 Phi = getLoopPhiForCounter(LHS, L, DT); 2105 2106 if (!Phi) 2107 return true; 2108 2109 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2110 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2111 if (Idx < 0) 2112 return true; 2113 2114 // Do LFTR if the exit condition's IV is *not* a simple counter. 2115 Value *IncV = Phi->getIncomingValue(Idx); 2116 return Phi != getLoopPhiForCounter(IncV, L, DT); 2117 } 2118 2119 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2120 /// down to checking that all operands are constant and listing instructions 2121 /// that may hide undef. 2122 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2123 unsigned Depth) { 2124 if (isa<Constant>(V)) 2125 return !isa<UndefValue>(V); 2126 2127 if (Depth >= 6) 2128 return false; 2129 2130 // Conservatively handle non-constant non-instructions. For example, Arguments 2131 // may be undef. 2132 Instruction *I = dyn_cast<Instruction>(V); 2133 if (!I) 2134 return false; 2135 2136 // Load and return values may be undef. 2137 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2138 return false; 2139 2140 // Optimistically handle other instructions. 2141 for (Value *Op : I->operands()) { 2142 if (!Visited.insert(Op).second) 2143 continue; 2144 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2145 return false; 2146 } 2147 return true; 2148 } 2149 2150 /// Return true if the given value is concrete. We must prove that undef can 2151 /// never reach it. 2152 /// 2153 /// TODO: If we decide that this is a good approach to checking for undef, we 2154 /// may factor it into a common location. 2155 static bool hasConcreteDef(Value *V) { 2156 SmallPtrSet<Value*, 8> Visited; 2157 Visited.insert(V); 2158 return hasConcreteDefImpl(V, Visited, 0); 2159 } 2160 2161 /// Return true if this IV has any uses other than the (soon to be rewritten) 2162 /// loop exit test. 2163 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2164 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2165 Value *IncV = Phi->getIncomingValue(LatchIdx); 2166 2167 for (User *U : Phi->users()) 2168 if (U != Cond && U != IncV) return false; 2169 2170 for (User *U : IncV->users()) 2171 if (U != Cond && U != Phi) return false; 2172 return true; 2173 } 2174 2175 /// Find an affine IV in canonical form. 2176 /// 2177 /// BECount may be an i8* pointer type. The pointer difference is already 2178 /// valid count without scaling the address stride, so it remains a pointer 2179 /// expression as far as SCEV is concerned. 2180 /// 2181 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2182 /// 2183 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2184 /// 2185 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2186 /// This is difficult in general for SCEV because of potential overflow. But we 2187 /// could at least handle constant BECounts. 2188 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2189 ScalarEvolution *SE, DominatorTree *DT) { 2190 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2191 2192 Value *Cond = 2193 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2194 2195 // Loop over all of the PHI nodes, looking for a simple counter. 2196 PHINode *BestPhi = nullptr; 2197 const SCEV *BestInit = nullptr; 2198 BasicBlock *LatchBlock = L->getLoopLatch(); 2199 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2200 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2201 2202 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2203 PHINode *Phi = cast<PHINode>(I); 2204 if (!SE->isSCEVable(Phi->getType())) 2205 continue; 2206 2207 // Avoid comparing an integer IV against a pointer Limit. 2208 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2209 continue; 2210 2211 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2212 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2213 continue; 2214 2215 // AR may be a pointer type, while BECount is an integer type. 2216 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2217 // AR may not be a narrower type, or we may never exit. 2218 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2219 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2220 continue; 2221 2222 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2223 if (!Step || !Step->isOne()) 2224 continue; 2225 2226 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2227 Value *IncV = Phi->getIncomingValue(LatchIdx); 2228 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2229 continue; 2230 2231 // Avoid reusing a potentially undef value to compute other values that may 2232 // have originally had a concrete definition. 2233 if (!hasConcreteDef(Phi)) { 2234 // We explicitly allow unknown phis as long as they are already used by 2235 // the loop test. In this case we assume that performing LFTR could not 2236 // increase the number of undef users. 2237 if (ICmpInst *Cond = getLoopTest(L)) { 2238 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2239 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2240 continue; 2241 } 2242 } 2243 } 2244 const SCEV *Init = AR->getStart(); 2245 2246 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2247 // Don't force a live loop counter if another IV can be used. 2248 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2249 continue; 2250 2251 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2252 // also prefers integer to pointer IVs. 2253 if (BestInit->isZero() != Init->isZero()) { 2254 if (BestInit->isZero()) 2255 continue; 2256 } 2257 // If two IVs both count from zero or both count from nonzero then the 2258 // narrower is likely a dead phi that has been widened. Use the wider phi 2259 // to allow the other to be eliminated. 2260 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2261 continue; 2262 } 2263 BestPhi = Phi; 2264 BestInit = Init; 2265 } 2266 return BestPhi; 2267 } 2268 2269 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2270 /// the new loop test. 2271 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2272 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2273 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2274 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2275 const SCEV *IVInit = AR->getStart(); 2276 2277 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2278 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2279 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2280 // the existing GEPs whenever possible. 2281 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2282 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2283 // signed value. IVCount on the other hand represents the loop trip count, 2284 // which is an unsigned value. FindLoopCounter only allows induction 2285 // variables that have a positive unit stride of one. This means we don't 2286 // have to handle the case of negative offsets (yet) and just need to zero 2287 // extend IVCount. 2288 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2289 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2290 2291 // Expand the code for the iteration count. 2292 assert(SE->isLoopInvariant(IVOffset, L) && 2293 "Computed iteration count is not loop invariant!"); 2294 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2295 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2296 2297 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2298 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2299 // We could handle pointer IVs other than i8*, but we need to compensate for 2300 // gep index scaling. See canExpandBackedgeTakenCount comments. 2301 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2302 cast<PointerType>(GEPBase->getType()) 2303 ->getElementType())->isOne() && 2304 "unit stride pointer IV must be i8*"); 2305 2306 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2307 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(), 2308 GEPBase, GEPOffset, "lftr.limit"); 2309 } else { 2310 // In any other case, convert both IVInit and IVCount to integers before 2311 // comparing. This may result in SCEV expansion of pointers, but in practice 2312 // SCEV will fold the pointer arithmetic away as such: 2313 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2314 // 2315 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2316 // for simple memset-style loops. 2317 // 2318 // IVInit integer and IVCount pointer would only occur if a canonical IV 2319 // were generated on top of case #2, which is not expected. 2320 2321 const SCEV *IVLimit = nullptr; 2322 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2323 // For non-zero Start, compute IVCount here. 2324 if (AR->getStart()->isZero()) 2325 IVLimit = IVCount; 2326 else { 2327 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2328 const SCEV *IVInit = AR->getStart(); 2329 2330 // For integer IVs, truncate the IV before computing IVInit + BECount. 2331 if (SE->getTypeSizeInBits(IVInit->getType()) 2332 > SE->getTypeSizeInBits(IVCount->getType())) 2333 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2334 2335 IVLimit = SE->getAddExpr(IVInit, IVCount); 2336 } 2337 // Expand the code for the iteration count. 2338 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2339 IRBuilder<> Builder(BI); 2340 assert(SE->isLoopInvariant(IVLimit, L) && 2341 "Computed iteration count is not loop invariant!"); 2342 // Ensure that we generate the same type as IndVar, or a smaller integer 2343 // type. In the presence of null pointer values, we have an integer type 2344 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2345 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2346 IndVar->getType() : IVCount->getType(); 2347 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2348 } 2349 } 2350 2351 /// This method rewrites the exit condition of the loop to be a canonical != 2352 /// comparison against the incremented loop induction variable. This pass is 2353 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2354 /// determine a loop-invariant trip count of the loop, which is actually a much 2355 /// broader range than just linear tests. 2356 bool IndVarSimplify:: 2357 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2358 PHINode *IndVar, SCEVExpander &Rewriter) { 2359 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2360 2361 // Initialize CmpIndVar and IVCount to their preincremented values. 2362 Value *CmpIndVar = IndVar; 2363 const SCEV *IVCount = BackedgeTakenCount; 2364 2365 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2366 2367 // If the exiting block is the same as the backedge block, we prefer to 2368 // compare against the post-incremented value, otherwise we must compare 2369 // against the preincremented value. 2370 if (L->getExitingBlock() == L->getLoopLatch()) { 2371 // Add one to the "backedge-taken" count to get the trip count. 2372 // This addition may overflow, which is valid as long as the comparison is 2373 // truncated to BackedgeTakenCount->getType(). 2374 IVCount = SE->getAddExpr(BackedgeTakenCount, 2375 SE->getOne(BackedgeTakenCount->getType())); 2376 // The BackedgeTaken expression contains the number of times that the 2377 // backedge branches to the loop header. This is one less than the 2378 // number of times the loop executes, so use the incremented indvar. 2379 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2380 } 2381 2382 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2383 assert(ExitCnt->getType()->isPointerTy() == 2384 IndVar->getType()->isPointerTy() && 2385 "genLoopLimit missed a cast"); 2386 2387 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2388 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2389 ICmpInst::Predicate P; 2390 if (L->contains(BI->getSuccessor(0))) 2391 P = ICmpInst::ICMP_NE; 2392 else 2393 P = ICmpInst::ICMP_EQ; 2394 2395 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2396 << " LHS:" << *CmpIndVar << '\n' 2397 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2398 << "\n" 2399 << " RHS:\t" << *ExitCnt << "\n" 2400 << " IVCount:\t" << *IVCount << "\n"); 2401 2402 IRBuilder<> Builder(BI); 2403 2404 // The new loop exit condition should reuse the debug location of the 2405 // original loop exit condition. 2406 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2407 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2408 2409 // LFTR can ignore IV overflow and truncate to the width of 2410 // BECount. This avoids materializing the add(zext(add)) expression. 2411 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2412 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2413 if (CmpIndVarSize > ExitCntSize) { 2414 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2415 const SCEV *ARStart = AR->getStart(); 2416 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2417 // For constant IVCount, avoid truncation. 2418 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2419 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2420 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2421 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2422 // above such that IVCount is now zero. 2423 if (IVCount != BackedgeTakenCount && Count == 0) { 2424 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2425 ++Count; 2426 } 2427 else 2428 Count = Count.zext(CmpIndVarSize); 2429 APInt NewLimit; 2430 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2431 NewLimit = Start - Count; 2432 else 2433 NewLimit = Start + Count; 2434 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2435 2436 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2437 } else { 2438 // We try to extend trip count first. If that doesn't work we truncate IV. 2439 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2440 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2441 // one of the two holds, extend the trip count, otherwise we truncate IV. 2442 bool Extended = false; 2443 const SCEV *IV = SE->getSCEV(CmpIndVar); 2444 const SCEV *ZExtTrunc = 2445 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2446 ExitCnt->getType()), 2447 CmpIndVar->getType()); 2448 2449 if (ZExtTrunc == IV) { 2450 Extended = true; 2451 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2452 "wide.trip.count"); 2453 } else { 2454 const SCEV *SExtTrunc = 2455 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2456 ExitCnt->getType()), 2457 CmpIndVar->getType()); 2458 if (SExtTrunc == IV) { 2459 Extended = true; 2460 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2461 "wide.trip.count"); 2462 } 2463 } 2464 2465 if (!Extended) 2466 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2467 "lftr.wideiv"); 2468 } 2469 } 2470 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2471 Value *OrigCond = BI->getCondition(); 2472 // It's tempting to use replaceAllUsesWith here to fully replace the old 2473 // comparison, but that's not immediately safe, since users of the old 2474 // comparison may not be dominated by the new comparison. Instead, just 2475 // update the branch to use the new comparison; in the common case this 2476 // will make old comparison dead. 2477 BI->setCondition(Cond); 2478 DeadInsts.push_back(OrigCond); 2479 2480 ++NumLFTR; 2481 return true; 2482 } 2483 2484 //===----------------------------------------------------------------------===// 2485 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2486 //===----------------------------------------------------------------------===// 2487 2488 /// If there's a single exit block, sink any loop-invariant values that 2489 /// were defined in the preheader but not used inside the loop into the 2490 /// exit block to reduce register pressure in the loop. 2491 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2492 BasicBlock *ExitBlock = L->getExitBlock(); 2493 if (!ExitBlock) return false; 2494 2495 BasicBlock *Preheader = L->getLoopPreheader(); 2496 if (!Preheader) return false; 2497 2498 bool MadeAnyChanges = false; 2499 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2500 BasicBlock::iterator I(Preheader->getTerminator()); 2501 while (I != Preheader->begin()) { 2502 --I; 2503 // New instructions were inserted at the end of the preheader. 2504 if (isa<PHINode>(I)) 2505 break; 2506 2507 // Don't move instructions which might have side effects, since the side 2508 // effects need to complete before instructions inside the loop. Also don't 2509 // move instructions which might read memory, since the loop may modify 2510 // memory. Note that it's okay if the instruction might have undefined 2511 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2512 // block. 2513 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2514 continue; 2515 2516 // Skip debug info intrinsics. 2517 if (isa<DbgInfoIntrinsic>(I)) 2518 continue; 2519 2520 // Skip eh pad instructions. 2521 if (I->isEHPad()) 2522 continue; 2523 2524 // Don't sink alloca: we never want to sink static alloca's out of the 2525 // entry block, and correctly sinking dynamic alloca's requires 2526 // checks for stacksave/stackrestore intrinsics. 2527 // FIXME: Refactor this check somehow? 2528 if (isa<AllocaInst>(I)) 2529 continue; 2530 2531 // Determine if there is a use in or before the loop (direct or 2532 // otherwise). 2533 bool UsedInLoop = false; 2534 for (Use &U : I->uses()) { 2535 Instruction *User = cast<Instruction>(U.getUser()); 2536 BasicBlock *UseBB = User->getParent(); 2537 if (PHINode *P = dyn_cast<PHINode>(User)) { 2538 unsigned i = 2539 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2540 UseBB = P->getIncomingBlock(i); 2541 } 2542 if (UseBB == Preheader || L->contains(UseBB)) { 2543 UsedInLoop = true; 2544 break; 2545 } 2546 } 2547 2548 // If there is, the def must remain in the preheader. 2549 if (UsedInLoop) 2550 continue; 2551 2552 // Otherwise, sink it to the exit block. 2553 Instruction *ToMove = &*I; 2554 bool Done = false; 2555 2556 if (I != Preheader->begin()) { 2557 // Skip debug info intrinsics. 2558 do { 2559 --I; 2560 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2561 2562 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2563 Done = true; 2564 } else { 2565 Done = true; 2566 } 2567 2568 MadeAnyChanges = true; 2569 ToMove->moveBefore(*ExitBlock, InsertPt); 2570 if (Done) break; 2571 InsertPt = ToMove->getIterator(); 2572 } 2573 2574 return MadeAnyChanges; 2575 } 2576 2577 //===----------------------------------------------------------------------===// 2578 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2579 //===----------------------------------------------------------------------===// 2580 2581 bool IndVarSimplify::run(Loop *L) { 2582 // We need (and expect!) the incoming loop to be in LCSSA. 2583 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2584 "LCSSA required to run indvars!"); 2585 bool Changed = false; 2586 2587 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2588 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2589 // canonicalization can be a pessimization without LSR to "clean up" 2590 // afterwards. 2591 // - We depend on having a preheader; in particular, 2592 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2593 // and we're in trouble if we can't find the induction variable even when 2594 // we've manually inserted one. 2595 // - LFTR relies on having a single backedge. 2596 if (!L->isLoopSimplifyForm()) 2597 return false; 2598 2599 // If there are any floating-point recurrences, attempt to 2600 // transform them to use integer recurrences. 2601 Changed |= rewriteNonIntegerIVs(L); 2602 2603 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2604 2605 // Create a rewriter object which we'll use to transform the code with. 2606 SCEVExpander Rewriter(*SE, DL, "indvars"); 2607 #ifndef NDEBUG 2608 Rewriter.setDebugType(DEBUG_TYPE); 2609 #endif 2610 2611 // Eliminate redundant IV users. 2612 // 2613 // Simplification works best when run before other consumers of SCEV. We 2614 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2615 // other expressions involving loop IVs have been evaluated. This helps SCEV 2616 // set no-wrap flags before normalizing sign/zero extension. 2617 Rewriter.disableCanonicalMode(); 2618 Changed |= simplifyAndExtend(L, Rewriter, LI); 2619 2620 // Check to see if this loop has a computable loop-invariant execution count. 2621 // If so, this means that we can compute the final value of any expressions 2622 // that are recurrent in the loop, and substitute the exit values from the 2623 // loop into any instructions outside of the loop that use the final values of 2624 // the current expressions. 2625 // 2626 if (ReplaceExitValue != NeverRepl && 2627 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2628 Changed |= rewriteLoopExitValues(L, Rewriter); 2629 2630 // Eliminate redundant IV cycles. 2631 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2632 2633 // If we have a trip count expression, rewrite the loop's exit condition 2634 // using it. We can currently only handle loops with a single exit. 2635 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2636 needsLFTR(L, DT)) { 2637 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2638 if (IndVar) { 2639 // Check preconditions for proper SCEVExpander operation. SCEV does not 2640 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2641 // pass that uses the SCEVExpander must do it. This does not work well for 2642 // loop passes because SCEVExpander makes assumptions about all loops, 2643 // while LoopPassManager only forces the current loop to be simplified. 2644 // 2645 // FIXME: SCEV expansion has no way to bail out, so the caller must 2646 // explicitly check any assumptions made by SCEV. Brittle. 2647 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2648 if (!AR || AR->getLoop()->getLoopPreheader()) 2649 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2650 Rewriter); 2651 } 2652 } 2653 // Clear the rewriter cache, because values that are in the rewriter's cache 2654 // can be deleted in the loop below, causing the AssertingVH in the cache to 2655 // trigger. 2656 Rewriter.clear(); 2657 2658 // Now that we're done iterating through lists, clean up any instructions 2659 // which are now dead. 2660 while (!DeadInsts.empty()) 2661 if (Instruction *Inst = 2662 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2663 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2664 2665 // The Rewriter may not be used from this point on. 2666 2667 // Loop-invariant instructions in the preheader that aren't used in the 2668 // loop may be sunk below the loop to reduce register pressure. 2669 Changed |= sinkUnusedInvariants(L); 2670 2671 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2672 // trip count and therefore can further simplify exit values in addition to 2673 // rewriteLoopExitValues. 2674 Changed |= rewriteFirstIterationLoopExitValues(L); 2675 2676 // Clean up dead instructions. 2677 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2678 2679 // Check a post-condition. 2680 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2681 "Indvars did not preserve LCSSA!"); 2682 2683 // Verify that LFTR, and any other change have not interfered with SCEV's 2684 // ability to compute trip count. 2685 #ifndef NDEBUG 2686 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2687 SE->forgetLoop(L); 2688 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2689 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2690 SE->getTypeSizeInBits(NewBECount->getType())) 2691 NewBECount = SE->getTruncateOrNoop(NewBECount, 2692 BackedgeTakenCount->getType()); 2693 else 2694 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2695 NewBECount->getType()); 2696 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2697 } 2698 #endif 2699 2700 return Changed; 2701 } 2702 2703 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2704 LoopStandardAnalysisResults &AR, 2705 LPMUpdater &) { 2706 Function *F = L.getHeader()->getParent(); 2707 const DataLayout &DL = F->getParent()->getDataLayout(); 2708 2709 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2710 if (!IVS.run(&L)) 2711 return PreservedAnalyses::all(); 2712 2713 auto PA = getLoopPassPreservedAnalyses(); 2714 PA.preserveSet<CFGAnalyses>(); 2715 return PA; 2716 } 2717 2718 namespace { 2719 2720 struct IndVarSimplifyLegacyPass : public LoopPass { 2721 static char ID; // Pass identification, replacement for typeid 2722 2723 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2724 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2725 } 2726 2727 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2728 if (skipLoop(L)) 2729 return false; 2730 2731 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2732 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2733 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2734 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2735 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2736 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2737 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2738 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2739 2740 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2741 return IVS.run(L); 2742 } 2743 2744 void getAnalysisUsage(AnalysisUsage &AU) const override { 2745 AU.setPreservesCFG(); 2746 getLoopAnalysisUsage(AU); 2747 } 2748 }; 2749 2750 } // end anonymous namespace 2751 2752 char IndVarSimplifyLegacyPass::ID = 0; 2753 2754 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2755 "Induction Variable Simplification", false, false) 2756 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2757 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2758 "Induction Variable Simplification", false, false) 2759 2760 Pass *llvm::createIndVarSimplifyPass() { 2761 return new IndVarSimplifyLegacyPass(); 2762 } 2763