1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // This transformation makes the following changes to each loop with an 15 // identifiable induction variable: 16 // 1. All loops are transformed to have a SINGLE canonical induction variable 17 // which starts at zero and steps by one. 18 // 2. The canonical induction variable is guaranteed to be the first PHI node 19 // in the loop header block. 20 // 3. The canonical induction variable is guaranteed to be in a wide enough 21 // type so that IV expressions need not be (directly) zero-extended or 22 // sign-extended. 23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts. 24 // 25 // If the trip count of a loop is computable, this pass also makes the following 26 // changes: 27 // 1. The exit condition for the loop is canonicalized to compare the 28 // induction value against the exit value. This turns loops like: 29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 30 // 2. Any use outside of the loop of an expression derived from the indvar 31 // is changed to compute the derived value outside of the loop, eliminating 32 // the dependence on the exit value of the induction variable. If the only 33 // purpose of the loop is to compute the exit value of some derived 34 // expression, this transformation will make the loop dead. 35 // 36 // This transformation should be followed by strength reduction after all of the 37 // desired loop transformations have been performed. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #define DEBUG_TYPE "indvars" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/BasicBlock.h" 44 #include "llvm/Constants.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/LLVMContext.h" 48 #include "llvm/Type.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/IVUsers.h" 51 #include "llvm/Analysis/ScalarEvolutionExpander.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/ADT/Statistic.h" 62 #include "llvm/ADT/STLExtras.h" 63 using namespace llvm; 64 65 STATISTIC(NumRemoved , "Number of aux indvars removed"); 66 STATISTIC(NumInserted, "Number of canonical indvars added"); 67 STATISTIC(NumReplaced, "Number of exit values replaced"); 68 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 69 70 namespace { 71 class IndVarSimplify : public LoopPass { 72 IVUsers *IU; 73 LoopInfo *LI; 74 ScalarEvolution *SE; 75 DominatorTree *DT; 76 bool Changed; 77 public: 78 79 static char ID; // Pass identification, replacement for typeid 80 IndVarSimplify() : LoopPass(ID) { 81 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 82 } 83 84 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<DominatorTree>(); 88 AU.addRequired<LoopInfo>(); 89 AU.addRequired<ScalarEvolution>(); 90 AU.addRequiredID(LoopSimplifyID); 91 AU.addRequiredID(LCSSAID); 92 AU.addRequired<IVUsers>(); 93 AU.addPreserved<ScalarEvolution>(); 94 AU.addPreservedID(LoopSimplifyID); 95 AU.addPreservedID(LCSSAID); 96 AU.addPreserved<IVUsers>(); 97 AU.setPreservesCFG(); 98 } 99 100 private: 101 102 void EliminateIVComparisons(); 103 void EliminateIVRemainders(); 104 void RewriteNonIntegerIVs(Loop *L); 105 106 ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 107 PHINode *IndVar, 108 BasicBlock *ExitingBlock, 109 BranchInst *BI, 110 SCEVExpander &Rewriter); 111 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 112 113 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 114 115 void SinkUnusedInvariants(Loop *L); 116 117 void HandleFloatingPointIV(Loop *L, PHINode *PH); 118 }; 119 } 120 121 char IndVarSimplify::ID = 0; 122 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 123 "Canonicalize Induction Variables", false, false) 124 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 125 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 126 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 127 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 128 INITIALIZE_PASS_DEPENDENCY(LCSSA) 129 INITIALIZE_PASS_DEPENDENCY(IVUsers) 130 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 131 "Canonicalize Induction Variables", false, false) 132 133 Pass *llvm::createIndVarSimplifyPass() { 134 return new IndVarSimplify(); 135 } 136 137 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 138 /// loop to be a canonical != comparison against the incremented loop induction 139 /// variable. This pass is able to rewrite the exit tests of any loop where the 140 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 141 /// is actually a much broader range than just linear tests. 142 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L, 143 const SCEV *BackedgeTakenCount, 144 PHINode *IndVar, 145 BasicBlock *ExitingBlock, 146 BranchInst *BI, 147 SCEVExpander &Rewriter) { 148 // Special case: If the backedge-taken count is a UDiv, it's very likely a 149 // UDiv that ScalarEvolution produced in order to compute a precise 150 // expression, rather than a UDiv from the user's code. If we can't find a 151 // UDiv in the code with some simple searching, assume the former and forego 152 // rewriting the loop. 153 if (isa<SCEVUDivExpr>(BackedgeTakenCount)) { 154 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 155 if (!OrigCond) return 0; 156 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 157 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 158 if (R != BackedgeTakenCount) { 159 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 160 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 161 if (L != BackedgeTakenCount) 162 return 0; 163 } 164 } 165 166 // If the exiting block is not the same as the backedge block, we must compare 167 // against the preincremented value, otherwise we prefer to compare against 168 // the post-incremented value. 169 Value *CmpIndVar; 170 const SCEV *RHS = BackedgeTakenCount; 171 if (ExitingBlock == L->getLoopLatch()) { 172 // Add one to the "backedge-taken" count to get the trip count. 173 // If this addition may overflow, we have to be more pessimistic and 174 // cast the induction variable before doing the add. 175 const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0); 176 const SCEV *N = 177 SE->getAddExpr(BackedgeTakenCount, 178 SE->getConstant(BackedgeTakenCount->getType(), 1)); 179 if ((isa<SCEVConstant>(N) && !N->isZero()) || 180 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 181 // No overflow. Cast the sum. 182 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); 183 } else { 184 // Potential overflow. Cast before doing the add. 185 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 186 IndVar->getType()); 187 RHS = SE->getAddExpr(RHS, 188 SE->getConstant(IndVar->getType(), 1)); 189 } 190 191 // The BackedgeTaken expression contains the number of times that the 192 // backedge branches to the loop header. This is one less than the 193 // number of times the loop executes, so use the incremented indvar. 194 CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock); 195 } else { 196 // We have to use the preincremented value... 197 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 198 IndVar->getType()); 199 CmpIndVar = IndVar; 200 } 201 202 // Expand the code for the iteration count. 203 assert(SE->isLoopInvariant(RHS, L) && 204 "Computed iteration count is not loop invariant!"); 205 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI); 206 207 // Insert a new icmp_ne or icmp_eq instruction before the branch. 208 ICmpInst::Predicate Opcode; 209 if (L->contains(BI->getSuccessor(0))) 210 Opcode = ICmpInst::ICMP_NE; 211 else 212 Opcode = ICmpInst::ICMP_EQ; 213 214 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 215 << " LHS:" << *CmpIndVar << '\n' 216 << " op:\t" 217 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 218 << " RHS:\t" << *RHS << "\n"); 219 220 ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond"); 221 222 Value *OrigCond = BI->getCondition(); 223 // It's tempting to use replaceAllUsesWith here to fully replace the old 224 // comparison, but that's not immediately safe, since users of the old 225 // comparison may not be dominated by the new comparison. Instead, just 226 // update the branch to use the new comparison; in the common case this 227 // will make old comparison dead. 228 BI->setCondition(Cond); 229 RecursivelyDeleteTriviallyDeadInstructions(OrigCond); 230 231 ++NumLFTR; 232 Changed = true; 233 return Cond; 234 } 235 236 /// RewriteLoopExitValues - Check to see if this loop has a computable 237 /// loop-invariant execution count. If so, this means that we can compute the 238 /// final value of any expressions that are recurrent in the loop, and 239 /// substitute the exit values from the loop into any instructions outside of 240 /// the loop that use the final values of the current expressions. 241 /// 242 /// This is mostly redundant with the regular IndVarSimplify activities that 243 /// happen later, except that it's more powerful in some cases, because it's 244 /// able to brute-force evaluate arbitrary instructions as long as they have 245 /// constant operands at the beginning of the loop. 246 void IndVarSimplify::RewriteLoopExitValues(Loop *L, 247 SCEVExpander &Rewriter) { 248 // Verify the input to the pass in already in LCSSA form. 249 assert(L->isLCSSAForm(*DT)); 250 251 SmallVector<BasicBlock*, 8> ExitBlocks; 252 L->getUniqueExitBlocks(ExitBlocks); 253 254 // Find all values that are computed inside the loop, but used outside of it. 255 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 256 // the exit blocks of the loop to find them. 257 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 258 BasicBlock *ExitBB = ExitBlocks[i]; 259 260 // If there are no PHI nodes in this exit block, then no values defined 261 // inside the loop are used on this path, skip it. 262 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 263 if (!PN) continue; 264 265 unsigned NumPreds = PN->getNumIncomingValues(); 266 267 // Iterate over all of the PHI nodes. 268 BasicBlock::iterator BBI = ExitBB->begin(); 269 while ((PN = dyn_cast<PHINode>(BBI++))) { 270 if (PN->use_empty()) 271 continue; // dead use, don't replace it 272 273 // SCEV only supports integer expressions for now. 274 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 275 continue; 276 277 // It's necessary to tell ScalarEvolution about this explicitly so that 278 // it can walk the def-use list and forget all SCEVs, as it may not be 279 // watching the PHI itself. Once the new exit value is in place, there 280 // may not be a def-use connection between the loop and every instruction 281 // which got a SCEVAddRecExpr for that loop. 282 SE->forgetValue(PN); 283 284 // Iterate over all of the values in all the PHI nodes. 285 for (unsigned i = 0; i != NumPreds; ++i) { 286 // If the value being merged in is not integer or is not defined 287 // in the loop, skip it. 288 Value *InVal = PN->getIncomingValue(i); 289 if (!isa<Instruction>(InVal)) 290 continue; 291 292 // If this pred is for a subloop, not L itself, skip it. 293 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 294 continue; // The Block is in a subloop, skip it. 295 296 // Check that InVal is defined in the loop. 297 Instruction *Inst = cast<Instruction>(InVal); 298 if (!L->contains(Inst)) 299 continue; 300 301 // Okay, this instruction has a user outside of the current loop 302 // and varies predictably *inside* the loop. Evaluate the value it 303 // contains when the loop exits, if possible. 304 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 305 if (!SE->isLoopInvariant(ExitValue, L)) 306 continue; 307 308 Changed = true; 309 ++NumReplaced; 310 311 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 312 313 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 314 << " LoopVal = " << *Inst << "\n"); 315 316 PN->setIncomingValue(i, ExitVal); 317 318 // If this instruction is dead now, delete it. 319 RecursivelyDeleteTriviallyDeadInstructions(Inst); 320 321 if (NumPreds == 1) { 322 // Completely replace a single-pred PHI. This is safe, because the 323 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 324 // node anymore. 325 PN->replaceAllUsesWith(ExitVal); 326 RecursivelyDeleteTriviallyDeadInstructions(PN); 327 } 328 } 329 if (NumPreds != 1) { 330 // Clone the PHI and delete the original one. This lets IVUsers and 331 // any other maps purge the original user from their records. 332 PHINode *NewPN = cast<PHINode>(PN->clone()); 333 NewPN->takeName(PN); 334 NewPN->insertBefore(PN); 335 PN->replaceAllUsesWith(NewPN); 336 PN->eraseFromParent(); 337 } 338 } 339 } 340 341 // The insertion point instruction may have been deleted; clear it out 342 // so that the rewriter doesn't trip over it later. 343 Rewriter.clearInsertPoint(); 344 } 345 346 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 347 // First step. Check to see if there are any floating-point recurrences. 348 // If there are, change them into integer recurrences, permitting analysis by 349 // the SCEV routines. 350 // 351 BasicBlock *Header = L->getHeader(); 352 353 SmallVector<WeakVH, 8> PHIs; 354 for (BasicBlock::iterator I = Header->begin(); 355 PHINode *PN = dyn_cast<PHINode>(I); ++I) 356 PHIs.push_back(PN); 357 358 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 359 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 360 HandleFloatingPointIV(L, PN); 361 362 // If the loop previously had floating-point IV, ScalarEvolution 363 // may not have been able to compute a trip count. Now that we've done some 364 // re-writing, the trip count may be computable. 365 if (Changed) 366 SE->forgetLoop(L); 367 } 368 369 void IndVarSimplify::EliminateIVComparisons() { 370 SmallVector<WeakVH, 16> DeadInsts; 371 372 // Look for ICmp users. 373 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 374 IVStrideUse &UI = *I; 375 ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser()); 376 if (!ICmp) continue; 377 378 bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1); 379 ICmpInst::Predicate Pred = ICmp->getPredicate(); 380 if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred); 381 382 // Get the SCEVs for the ICmp operands. 383 const SCEV *S = IU->getReplacementExpr(UI); 384 const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped)); 385 386 // Simplify unnecessary loops away. 387 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 388 S = SE->getSCEVAtScope(S, ICmpLoop); 389 X = SE->getSCEVAtScope(X, ICmpLoop); 390 391 // If the condition is always true or always false, replace it with 392 // a constant value. 393 if (SE->isKnownPredicate(Pred, S, X)) 394 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 395 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 396 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 397 else 398 continue; 399 400 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 401 DeadInsts.push_back(ICmp); 402 } 403 404 // Now that we're done iterating through lists, clean up any instructions 405 // which are now dead. 406 while (!DeadInsts.empty()) 407 if (Instruction *Inst = 408 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 409 RecursivelyDeleteTriviallyDeadInstructions(Inst); 410 } 411 412 void IndVarSimplify::EliminateIVRemainders() { 413 SmallVector<WeakVH, 16> DeadInsts; 414 415 // Look for SRem and URem users. 416 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 417 IVStrideUse &UI = *I; 418 BinaryOperator *Rem = dyn_cast<BinaryOperator>(UI.getUser()); 419 if (!Rem) continue; 420 421 bool isSigned = Rem->getOpcode() == Instruction::SRem; 422 if (!isSigned && Rem->getOpcode() != Instruction::URem) 423 continue; 424 425 // We're only interested in the case where we know something about 426 // the numerator. 427 if (UI.getOperandValToReplace() != Rem->getOperand(0)) 428 continue; 429 430 // Get the SCEVs for the ICmp operands. 431 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 432 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 433 434 // Simplify unnecessary loops away. 435 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 436 S = SE->getSCEVAtScope(S, ICmpLoop); 437 X = SE->getSCEVAtScope(X, ICmpLoop); 438 439 // i % n --> i if i is in [0,n). 440 if ((!isSigned || SE->isKnownNonNegative(S)) && 441 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 442 S, X)) 443 Rem->replaceAllUsesWith(Rem->getOperand(0)); 444 else { 445 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 446 const SCEV *LessOne = 447 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 448 if ((!isSigned || SE->isKnownNonNegative(LessOne)) && 449 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 450 LessOne, X)) { 451 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 452 Rem->getOperand(0), Rem->getOperand(1), 453 "tmp"); 454 SelectInst *Sel = 455 SelectInst::Create(ICmp, 456 ConstantInt::get(Rem->getType(), 0), 457 Rem->getOperand(0), "tmp", Rem); 458 Rem->replaceAllUsesWith(Sel); 459 } else 460 continue; 461 } 462 463 // Inform IVUsers about the new users. 464 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) 465 IU->AddUsersIfInteresting(I); 466 467 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 468 DeadInsts.push_back(Rem); 469 } 470 471 // Now that we're done iterating through lists, clean up any instructions 472 // which are now dead. 473 while (!DeadInsts.empty()) 474 if (Instruction *Inst = 475 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 476 RecursivelyDeleteTriviallyDeadInstructions(Inst); 477 } 478 479 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 480 // If LoopSimplify form is not available, stay out of trouble. Some notes: 481 // - LSR currently only supports LoopSimplify-form loops. Indvars' 482 // canonicalization can be a pessimization without LSR to "clean up" 483 // afterwards. 484 // - We depend on having a preheader; in particular, 485 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 486 // and we're in trouble if we can't find the induction variable even when 487 // we've manually inserted one. 488 if (!L->isLoopSimplifyForm()) 489 return false; 490 491 IU = &getAnalysis<IVUsers>(); 492 LI = &getAnalysis<LoopInfo>(); 493 SE = &getAnalysis<ScalarEvolution>(); 494 DT = &getAnalysis<DominatorTree>(); 495 Changed = false; 496 497 // If there are any floating-point recurrences, attempt to 498 // transform them to use integer recurrences. 499 RewriteNonIntegerIVs(L); 500 501 BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null 502 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 503 504 // Create a rewriter object which we'll use to transform the code with. 505 SCEVExpander Rewriter(*SE); 506 507 // Check to see if this loop has a computable loop-invariant execution count. 508 // If so, this means that we can compute the final value of any expressions 509 // that are recurrent in the loop, and substitute the exit values from the 510 // loop into any instructions outside of the loop that use the final values of 511 // the current expressions. 512 // 513 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 514 RewriteLoopExitValues(L, Rewriter); 515 516 // Simplify ICmp IV users. 517 EliminateIVComparisons(); 518 519 // Simplify SRem and URem IV users. 520 EliminateIVRemainders(); 521 522 // Compute the type of the largest recurrence expression, and decide whether 523 // a canonical induction variable should be inserted. 524 const Type *LargestType = 0; 525 bool NeedCannIV = false; 526 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 527 LargestType = BackedgeTakenCount->getType(); 528 LargestType = SE->getEffectiveSCEVType(LargestType); 529 // If we have a known trip count and a single exit block, we'll be 530 // rewriting the loop exit test condition below, which requires a 531 // canonical induction variable. 532 if (ExitingBlock) 533 NeedCannIV = true; 534 } 535 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 536 const Type *Ty = 537 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 538 if (!LargestType || 539 SE->getTypeSizeInBits(Ty) > 540 SE->getTypeSizeInBits(LargestType)) 541 LargestType = Ty; 542 NeedCannIV = true; 543 } 544 545 // Now that we know the largest of the induction variable expressions 546 // in this loop, insert a canonical induction variable of the largest size. 547 PHINode *IndVar = 0; 548 if (NeedCannIV) { 549 // Check to see if the loop already has any canonical-looking induction 550 // variables. If any are present and wider than the planned canonical 551 // induction variable, temporarily remove them, so that the Rewriter 552 // doesn't attempt to reuse them. 553 SmallVector<PHINode *, 2> OldCannIVs; 554 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 555 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 556 SE->getTypeSizeInBits(LargestType)) 557 OldCannIV->removeFromParent(); 558 else 559 break; 560 OldCannIVs.push_back(OldCannIV); 561 } 562 563 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 564 565 ++NumInserted; 566 Changed = true; 567 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 568 569 // Now that the official induction variable is established, reinsert 570 // any old canonical-looking variables after it so that the IR remains 571 // consistent. They will be deleted as part of the dead-PHI deletion at 572 // the end of the pass. 573 while (!OldCannIVs.empty()) { 574 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 575 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI()); 576 } 577 } 578 579 // If we have a trip count expression, rewrite the loop's exit condition 580 // using it. We can currently only handle loops with a single exit. 581 ICmpInst *NewICmp = 0; 582 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 583 !BackedgeTakenCount->isZero() && 584 ExitingBlock) { 585 assert(NeedCannIV && 586 "LinearFunctionTestReplace requires a canonical induction variable"); 587 // Can't rewrite non-branch yet. 588 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 589 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 590 ExitingBlock, BI, Rewriter); 591 } 592 593 // Rewrite IV-derived expressions. Clears the rewriter cache. 594 RewriteIVExpressions(L, Rewriter); 595 596 // The Rewriter may not be used from this point on. 597 598 // Loop-invariant instructions in the preheader that aren't used in the 599 // loop may be sunk below the loop to reduce register pressure. 600 SinkUnusedInvariants(L); 601 602 // For completeness, inform IVUsers of the IV use in the newly-created 603 // loop exit test instruction. 604 if (NewICmp) 605 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0))); 606 607 // Clean up dead instructions. 608 Changed |= DeleteDeadPHIs(L->getHeader()); 609 // Check a post-condition. 610 assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!"); 611 return Changed; 612 } 613 614 // FIXME: It is an extremely bad idea to indvar substitute anything more 615 // complex than affine induction variables. Doing so will put expensive 616 // polynomial evaluations inside of the loop, and the str reduction pass 617 // currently can only reduce affine polynomials. For now just disable 618 // indvar subst on anything more complex than an affine addrec, unless 619 // it can be expanded to a trivial value. 620 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 621 // Loop-invariant values are safe. 622 if (SE->isLoopInvariant(S, L)) return true; 623 624 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 625 // to transform them into efficient code. 626 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 627 return AR->isAffine(); 628 629 // An add is safe it all its operands are safe. 630 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) { 631 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 632 E = Commutative->op_end(); I != E; ++I) 633 if (!isSafe(*I, L, SE)) return false; 634 return true; 635 } 636 637 // A cast is safe if its operand is. 638 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 639 return isSafe(C->getOperand(), L, SE); 640 641 // A udiv is safe if its operands are. 642 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 643 return isSafe(UD->getLHS(), L, SE) && 644 isSafe(UD->getRHS(), L, SE); 645 646 // SCEVUnknown is always safe. 647 if (isa<SCEVUnknown>(S)) 648 return true; 649 650 // Nothing else is safe. 651 return false; 652 } 653 654 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 655 SmallVector<WeakVH, 16> DeadInsts; 656 657 // Rewrite all induction variable expressions in terms of the canonical 658 // induction variable. 659 // 660 // If there were induction variables of other sizes or offsets, manually 661 // add the offsets to the primary induction variable and cast, avoiding 662 // the need for the code evaluation methods to insert induction variables 663 // of different sizes. 664 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 665 Value *Op = UI->getOperandValToReplace(); 666 const Type *UseTy = Op->getType(); 667 Instruction *User = UI->getUser(); 668 669 // Compute the final addrec to expand into code. 670 const SCEV *AR = IU->getReplacementExpr(*UI); 671 672 // Evaluate the expression out of the loop, if possible. 673 if (!L->contains(UI->getUser())) { 674 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 675 if (SE->isLoopInvariant(ExitVal, L)) 676 AR = ExitVal; 677 } 678 679 // FIXME: It is an extremely bad idea to indvar substitute anything more 680 // complex than affine induction variables. Doing so will put expensive 681 // polynomial evaluations inside of the loop, and the str reduction pass 682 // currently can only reduce affine polynomials. For now just disable 683 // indvar subst on anything more complex than an affine addrec, unless 684 // it can be expanded to a trivial value. 685 if (!isSafe(AR, L, SE)) 686 continue; 687 688 // Determine the insertion point for this user. By default, insert 689 // immediately before the user. The SCEVExpander class will automatically 690 // hoist loop invariants out of the loop. For PHI nodes, there may be 691 // multiple uses, so compute the nearest common dominator for the 692 // incoming blocks. 693 Instruction *InsertPt = User; 694 if (PHINode *PHI = dyn_cast<PHINode>(InsertPt)) 695 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 696 if (PHI->getIncomingValue(i) == Op) { 697 if (InsertPt == User) 698 InsertPt = PHI->getIncomingBlock(i)->getTerminator(); 699 else 700 InsertPt = 701 DT->findNearestCommonDominator(InsertPt->getParent(), 702 PHI->getIncomingBlock(i)) 703 ->getTerminator(); 704 } 705 706 // Now expand it into actual Instructions and patch it into place. 707 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 708 709 // Inform ScalarEvolution that this value is changing. The change doesn't 710 // affect its value, but it does potentially affect which use lists the 711 // value will be on after the replacement, which affects ScalarEvolution's 712 // ability to walk use lists and drop dangling pointers when a value is 713 // deleted. 714 SE->forgetValue(User); 715 716 // Patch the new value into place. 717 if (Op->hasName()) 718 NewVal->takeName(Op); 719 User->replaceUsesOfWith(Op, NewVal); 720 UI->setOperandValToReplace(NewVal); 721 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 722 << " into = " << *NewVal << "\n"); 723 ++NumRemoved; 724 Changed = true; 725 726 // The old value may be dead now. 727 DeadInsts.push_back(Op); 728 } 729 730 // Clear the rewriter cache, because values that are in the rewriter's cache 731 // can be deleted in the loop below, causing the AssertingVH in the cache to 732 // trigger. 733 Rewriter.clear(); 734 // Now that we're done iterating through lists, clean up any instructions 735 // which are now dead. 736 while (!DeadInsts.empty()) 737 if (Instruction *Inst = 738 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 739 RecursivelyDeleteTriviallyDeadInstructions(Inst); 740 } 741 742 /// If there's a single exit block, sink any loop-invariant values that 743 /// were defined in the preheader but not used inside the loop into the 744 /// exit block to reduce register pressure in the loop. 745 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 746 BasicBlock *ExitBlock = L->getExitBlock(); 747 if (!ExitBlock) return; 748 749 BasicBlock *Preheader = L->getLoopPreheader(); 750 if (!Preheader) return; 751 752 Instruction *InsertPt = ExitBlock->getFirstNonPHI(); 753 BasicBlock::iterator I = Preheader->getTerminator(); 754 while (I != Preheader->begin()) { 755 --I; 756 // New instructions were inserted at the end of the preheader. 757 if (isa<PHINode>(I)) 758 break; 759 760 // Don't move instructions which might have side effects, since the side 761 // effects need to complete before instructions inside the loop. Also don't 762 // move instructions which might read memory, since the loop may modify 763 // memory. Note that it's okay if the instruction might have undefined 764 // behavior: LoopSimplify guarantees that the preheader dominates the exit 765 // block. 766 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 767 continue; 768 769 // Skip debug info intrinsics. 770 if (isa<DbgInfoIntrinsic>(I)) 771 continue; 772 773 // Don't sink static AllocaInsts out of the entry block, which would 774 // turn them into dynamic allocas! 775 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 776 if (AI->isStaticAlloca()) 777 continue; 778 779 // Determine if there is a use in or before the loop (direct or 780 // otherwise). 781 bool UsedInLoop = false; 782 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 783 UI != UE; ++UI) { 784 User *U = *UI; 785 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 786 if (PHINode *P = dyn_cast<PHINode>(U)) { 787 unsigned i = 788 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 789 UseBB = P->getIncomingBlock(i); 790 } 791 if (UseBB == Preheader || L->contains(UseBB)) { 792 UsedInLoop = true; 793 break; 794 } 795 } 796 797 // If there is, the def must remain in the preheader. 798 if (UsedInLoop) 799 continue; 800 801 // Otherwise, sink it to the exit block. 802 Instruction *ToMove = I; 803 bool Done = false; 804 805 if (I != Preheader->begin()) { 806 // Skip debug info intrinsics. 807 do { 808 --I; 809 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 810 811 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 812 Done = true; 813 } else { 814 Done = true; 815 } 816 817 ToMove->moveBefore(InsertPt); 818 if (Done) break; 819 InsertPt = ToMove; 820 } 821 } 822 823 /// ConvertToSInt - Convert APF to an integer, if possible. 824 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 825 bool isExact = false; 826 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 827 return false; 828 // See if we can convert this to an int64_t 829 uint64_t UIntVal; 830 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 831 &isExact) != APFloat::opOK || !isExact) 832 return false; 833 IntVal = UIntVal; 834 return true; 835 } 836 837 /// HandleFloatingPointIV - If the loop has floating induction variable 838 /// then insert corresponding integer induction variable if possible. 839 /// For example, 840 /// for(double i = 0; i < 10000; ++i) 841 /// bar(i) 842 /// is converted into 843 /// for(int i = 0; i < 10000; ++i) 844 /// bar((double)i); 845 /// 846 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 847 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 848 unsigned BackEdge = IncomingEdge^1; 849 850 // Check incoming value. 851 ConstantFP *InitValueVal = 852 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 853 854 int64_t InitValue; 855 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 856 return; 857 858 // Check IV increment. Reject this PN if increment operation is not 859 // an add or increment value can not be represented by an integer. 860 BinaryOperator *Incr = 861 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 862 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 863 864 // If this is not an add of the PHI with a constantfp, or if the constant fp 865 // is not an integer, bail out. 866 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 867 int64_t IncValue; 868 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 869 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 870 return; 871 872 // Check Incr uses. One user is PN and the other user is an exit condition 873 // used by the conditional terminator. 874 Value::use_iterator IncrUse = Incr->use_begin(); 875 Instruction *U1 = cast<Instruction>(*IncrUse++); 876 if (IncrUse == Incr->use_end()) return; 877 Instruction *U2 = cast<Instruction>(*IncrUse++); 878 if (IncrUse != Incr->use_end()) return; 879 880 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 881 // only used by a branch, we can't transform it. 882 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 883 if (!Compare) 884 Compare = dyn_cast<FCmpInst>(U2); 885 if (Compare == 0 || !Compare->hasOneUse() || 886 !isa<BranchInst>(Compare->use_back())) 887 return; 888 889 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 890 891 // We need to verify that the branch actually controls the iteration count 892 // of the loop. If not, the new IV can overflow and no one will notice. 893 // The branch block must be in the loop and one of the successors must be out 894 // of the loop. 895 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 896 if (!L->contains(TheBr->getParent()) || 897 (L->contains(TheBr->getSuccessor(0)) && 898 L->contains(TheBr->getSuccessor(1)))) 899 return; 900 901 902 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 903 // transform it. 904 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 905 int64_t ExitValue; 906 if (ExitValueVal == 0 || 907 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 908 return; 909 910 // Find new predicate for integer comparison. 911 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 912 switch (Compare->getPredicate()) { 913 default: return; // Unknown comparison. 914 case CmpInst::FCMP_OEQ: 915 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 916 case CmpInst::FCMP_ONE: 917 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 918 case CmpInst::FCMP_OGT: 919 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 920 case CmpInst::FCMP_OGE: 921 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 922 case CmpInst::FCMP_OLT: 923 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 924 case CmpInst::FCMP_OLE: 925 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 926 } 927 928 // We convert the floating point induction variable to a signed i32 value if 929 // we can. This is only safe if the comparison will not overflow in a way 930 // that won't be trapped by the integer equivalent operations. Check for this 931 // now. 932 // TODO: We could use i64 if it is native and the range requires it. 933 934 // The start/stride/exit values must all fit in signed i32. 935 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 936 return; 937 938 // If not actually striding (add x, 0.0), avoid touching the code. 939 if (IncValue == 0) 940 return; 941 942 // Positive and negative strides have different safety conditions. 943 if (IncValue > 0) { 944 // If we have a positive stride, we require the init to be less than the 945 // exit value and an equality or less than comparison. 946 if (InitValue >= ExitValue || 947 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) 948 return; 949 950 uint32_t Range = uint32_t(ExitValue-InitValue); 951 if (NewPred == CmpInst::ICMP_SLE) { 952 // Normalize SLE -> SLT, check for infinite loop. 953 if (++Range == 0) return; // Range overflows. 954 } 955 956 unsigned Leftover = Range % uint32_t(IncValue); 957 958 // If this is an equality comparison, we require that the strided value 959 // exactly land on the exit value, otherwise the IV condition will wrap 960 // around and do things the fp IV wouldn't. 961 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 962 Leftover != 0) 963 return; 964 965 // If the stride would wrap around the i32 before exiting, we can't 966 // transform the IV. 967 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 968 return; 969 970 } else { 971 // If we have a negative stride, we require the init to be greater than the 972 // exit value and an equality or greater than comparison. 973 if (InitValue >= ExitValue || 974 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) 975 return; 976 977 uint32_t Range = uint32_t(InitValue-ExitValue); 978 if (NewPred == CmpInst::ICMP_SGE) { 979 // Normalize SGE -> SGT, check for infinite loop. 980 if (++Range == 0) return; // Range overflows. 981 } 982 983 unsigned Leftover = Range % uint32_t(-IncValue); 984 985 // If this is an equality comparison, we require that the strided value 986 // exactly land on the exit value, otherwise the IV condition will wrap 987 // around and do things the fp IV wouldn't. 988 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 989 Leftover != 0) 990 return; 991 992 // If the stride would wrap around the i32 before exiting, we can't 993 // transform the IV. 994 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 995 return; 996 } 997 998 const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 999 1000 // Insert new integer induction variable. 1001 PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN); 1002 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 1003 PN->getIncomingBlock(IncomingEdge)); 1004 1005 Value *NewAdd = 1006 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 1007 Incr->getName()+".int", Incr); 1008 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 1009 1010 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 1011 ConstantInt::get(Int32Ty, ExitValue), 1012 Compare->getName()); 1013 1014 // In the following deletions, PN may become dead and may be deleted. 1015 // Use a WeakVH to observe whether this happens. 1016 WeakVH WeakPH = PN; 1017 1018 // Delete the old floating point exit comparison. The branch starts using the 1019 // new comparison. 1020 NewCompare->takeName(Compare); 1021 Compare->replaceAllUsesWith(NewCompare); 1022 RecursivelyDeleteTriviallyDeadInstructions(Compare); 1023 1024 // Delete the old floating point increment. 1025 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 1026 RecursivelyDeleteTriviallyDeadInstructions(Incr); 1027 1028 // If the FP induction variable still has uses, this is because something else 1029 // in the loop uses its value. In order to canonicalize the induction 1030 // variable, we chose to eliminate the IV and rewrite it in terms of an 1031 // int->fp cast. 1032 // 1033 // We give preference to sitofp over uitofp because it is faster on most 1034 // platforms. 1035 if (WeakPH) { 1036 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 1037 PN->getParent()->getFirstNonPHI()); 1038 PN->replaceAllUsesWith(Conv); 1039 RecursivelyDeleteTriviallyDeadInstructions(PN); 1040 } 1041 1042 // Add a new IVUsers entry for the newly-created integer PHI. 1043 IU->AddUsersIfInteresting(NewPHI); 1044 } 1045