1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/MemorySSAUpdater.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 42 #include "llvm/Analysis/TargetLibraryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantRange.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/IR/ValueHandle.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Scalar.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/LoopUtils.h" 80 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace PatternMatch; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 103 "effect in release builds. (Note: this adds additional SCEV " 104 "queries potentially changing the analysis result)")); 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values( 110 clEnumValN(NeverRepl, "never", "never replace exit value"), 111 clEnumValN(OnlyCheapRepl, "cheap", 112 "only replace exit value when the cost is cheap"), 113 clEnumValN( 114 UnusedIndVarInLoop, "unusedindvarinloop", 115 "only replace exit value when it is an unused " 116 "induction variable in the loop and has cheap replacement cost"), 117 clEnumValN(NoHardUse, "noharduse", 118 "only replace exit values when loop def likely dead"), 119 clEnumValN(AlwaysRepl, "always", 120 "always replace exit value whenever possible"))); 121 122 static cl::opt<bool> UsePostIncrementRanges( 123 "indvars-post-increment-ranges", cl::Hidden, 124 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 125 cl::init(true)); 126 127 static cl::opt<bool> 128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 129 cl::desc("Disable Linear Function Test Replace optimization")); 130 131 static cl::opt<bool> 132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 133 cl::desc("Predicate conditions in read only loops")); 134 135 static cl::opt<bool> 136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 137 cl::desc("Allow widening of indvars to eliminate s/zext")); 138 139 namespace { 140 141 class IndVarSimplify { 142 LoopInfo *LI; 143 ScalarEvolution *SE; 144 DominatorTree *DT; 145 const DataLayout &DL; 146 TargetLibraryInfo *TLI; 147 const TargetTransformInfo *TTI; 148 std::unique_ptr<MemorySSAUpdater> MSSAU; 149 150 SmallVector<WeakTrackingVH, 16> DeadInsts; 151 bool WidenIndVars; 152 153 bool handleFloatingPointIV(Loop *L, PHINode *PH); 154 bool rewriteNonIntegerIVs(Loop *L); 155 156 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 157 /// Try to improve our exit conditions by converting condition from signed 158 /// to unsigned or rotating computation out of the loop. 159 /// (See inline comment about why this is duplicated from simplifyAndExtend) 160 bool canonicalizeExitCondition(Loop *L); 161 /// Try to eliminate loop exits based on analyzeable exit counts 162 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 163 /// Try to form loop invariant tests for loop exits by changing how many 164 /// iterations of the loop run when that is unobservable. 165 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 166 167 bool rewriteFirstIterationLoopExitValues(Loop *L); 168 169 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 170 const SCEV *ExitCount, 171 PHINode *IndVar, SCEVExpander &Rewriter); 172 173 bool sinkUnusedInvariants(Loop *L); 174 175 public: 176 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 177 const DataLayout &DL, TargetLibraryInfo *TLI, 178 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 179 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 180 WidenIndVars(WidenIndVars) { 181 if (MSSA) 182 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 183 } 184 185 bool run(Loop *L); 186 }; 187 188 } // end anonymous namespace 189 190 //===----------------------------------------------------------------------===// 191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 192 //===----------------------------------------------------------------------===// 193 194 /// Convert APF to an integer, if possible. 195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 196 bool isExact = false; 197 // See if we can convert this to an int64_t 198 uint64_t UIntVal; 199 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 200 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 201 !isExact) 202 return false; 203 IntVal = UIntVal; 204 return true; 205 } 206 207 /// If the loop has floating induction variable then insert corresponding 208 /// integer induction variable if possible. 209 /// For example, 210 /// for(double i = 0; i < 10000; ++i) 211 /// bar(i) 212 /// is converted into 213 /// for(int i = 0; i < 10000; ++i) 214 /// bar((double)i); 215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 216 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 217 unsigned BackEdge = IncomingEdge^1; 218 219 // Check incoming value. 220 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 221 222 int64_t InitValue; 223 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 224 return false; 225 226 // Check IV increment. Reject this PN if increment operation is not 227 // an add or increment value can not be represented by an integer. 228 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 229 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 230 231 // If this is not an add of the PHI with a constantfp, or if the constant fp 232 // is not an integer, bail out. 233 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 234 int64_t IncValue; 235 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 236 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 237 return false; 238 239 // Check Incr uses. One user is PN and the other user is an exit condition 240 // used by the conditional terminator. 241 Value::user_iterator IncrUse = Incr->user_begin(); 242 Instruction *U1 = cast<Instruction>(*IncrUse++); 243 if (IncrUse == Incr->user_end()) return false; 244 Instruction *U2 = cast<Instruction>(*IncrUse++); 245 if (IncrUse != Incr->user_end()) return false; 246 247 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 248 // only used by a branch, we can't transform it. 249 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 250 if (!Compare) 251 Compare = dyn_cast<FCmpInst>(U2); 252 if (!Compare || !Compare->hasOneUse() || 253 !isa<BranchInst>(Compare->user_back())) 254 return false; 255 256 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 257 258 // We need to verify that the branch actually controls the iteration count 259 // of the loop. If not, the new IV can overflow and no one will notice. 260 // The branch block must be in the loop and one of the successors must be out 261 // of the loop. 262 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 263 if (!L->contains(TheBr->getParent()) || 264 (L->contains(TheBr->getSuccessor(0)) && 265 L->contains(TheBr->getSuccessor(1)))) 266 return false; 267 268 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 269 // transform it. 270 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 271 int64_t ExitValue; 272 if (ExitValueVal == nullptr || 273 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 274 return false; 275 276 // Find new predicate for integer comparison. 277 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 278 switch (Compare->getPredicate()) { 279 default: return false; // Unknown comparison. 280 case CmpInst::FCMP_OEQ: 281 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 282 case CmpInst::FCMP_ONE: 283 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 284 case CmpInst::FCMP_OGT: 285 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 286 case CmpInst::FCMP_OGE: 287 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 288 case CmpInst::FCMP_OLT: 289 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 290 case CmpInst::FCMP_OLE: 291 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 292 } 293 294 // We convert the floating point induction variable to a signed i32 value if 295 // we can. This is only safe if the comparison will not overflow in a way 296 // that won't be trapped by the integer equivalent operations. Check for this 297 // now. 298 // TODO: We could use i64 if it is native and the range requires it. 299 300 // The start/stride/exit values must all fit in signed i32. 301 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 302 return false; 303 304 // If not actually striding (add x, 0.0), avoid touching the code. 305 if (IncValue == 0) 306 return false; 307 308 // Positive and negative strides have different safety conditions. 309 if (IncValue > 0) { 310 // If we have a positive stride, we require the init to be less than the 311 // exit value. 312 if (InitValue >= ExitValue) 313 return false; 314 315 uint32_t Range = uint32_t(ExitValue-InitValue); 316 // Check for infinite loop, either: 317 // while (i <= Exit) or until (i > Exit) 318 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 319 if (++Range == 0) return false; // Range overflows. 320 } 321 322 unsigned Leftover = Range % uint32_t(IncValue); 323 324 // If this is an equality comparison, we require that the strided value 325 // exactly land on the exit value, otherwise the IV condition will wrap 326 // around and do things the fp IV wouldn't. 327 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 328 Leftover != 0) 329 return false; 330 331 // If the stride would wrap around the i32 before exiting, we can't 332 // transform the IV. 333 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 334 return false; 335 } else { 336 // If we have a negative stride, we require the init to be greater than the 337 // exit value. 338 if (InitValue <= ExitValue) 339 return false; 340 341 uint32_t Range = uint32_t(InitValue-ExitValue); 342 // Check for infinite loop, either: 343 // while (i >= Exit) or until (i < Exit) 344 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 345 if (++Range == 0) return false; // Range overflows. 346 } 347 348 unsigned Leftover = Range % uint32_t(-IncValue); 349 350 // If this is an equality comparison, we require that the strided value 351 // exactly land on the exit value, otherwise the IV condition will wrap 352 // around and do things the fp IV wouldn't. 353 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 354 Leftover != 0) 355 return false; 356 357 // If the stride would wrap around the i32 before exiting, we can't 358 // transform the IV. 359 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 360 return false; 361 } 362 363 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 364 365 // Insert new integer induction variable. 366 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 367 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 368 PN->getIncomingBlock(IncomingEdge)); 369 370 Value *NewAdd = 371 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 372 Incr->getName()+".int", Incr); 373 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 374 375 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 376 ConstantInt::get(Int32Ty, ExitValue), 377 Compare->getName()); 378 379 // In the following deletions, PN may become dead and may be deleted. 380 // Use a WeakTrackingVH to observe whether this happens. 381 WeakTrackingVH WeakPH = PN; 382 383 // Delete the old floating point exit comparison. The branch starts using the 384 // new comparison. 385 NewCompare->takeName(Compare); 386 Compare->replaceAllUsesWith(NewCompare); 387 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 388 389 // Delete the old floating point increment. 390 Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); 391 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 392 393 // If the FP induction variable still has uses, this is because something else 394 // in the loop uses its value. In order to canonicalize the induction 395 // variable, we chose to eliminate the IV and rewrite it in terms of an 396 // int->fp cast. 397 // 398 // We give preference to sitofp over uitofp because it is faster on most 399 // platforms. 400 if (WeakPH) { 401 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 402 &*PN->getParent()->getFirstInsertionPt()); 403 PN->replaceAllUsesWith(Conv); 404 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 405 } 406 return true; 407 } 408 409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 410 // First step. Check to see if there are any floating-point recurrences. 411 // If there are, change them into integer recurrences, permitting analysis by 412 // the SCEV routines. 413 BasicBlock *Header = L->getHeader(); 414 415 SmallVector<WeakTrackingVH, 8> PHIs; 416 for (PHINode &PN : Header->phis()) 417 PHIs.push_back(&PN); 418 419 bool Changed = false; 420 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 421 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 422 Changed |= handleFloatingPointIV(L, PN); 423 424 // If the loop previously had floating-point IV, ScalarEvolution 425 // may not have been able to compute a trip count. Now that we've done some 426 // re-writing, the trip count may be computable. 427 if (Changed) 428 SE->forgetLoop(L); 429 return Changed; 430 } 431 432 //===---------------------------------------------------------------------===// 433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 434 // they will exit at the first iteration. 435 //===---------------------------------------------------------------------===// 436 437 /// Check to see if this loop has loop invariant conditions which lead to loop 438 /// exits. If so, we know that if the exit path is taken, it is at the first 439 /// loop iteration. This lets us predict exit values of PHI nodes that live in 440 /// loop header. 441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 442 // Verify the input to the pass is already in LCSSA form. 443 assert(L->isLCSSAForm(*DT)); 444 445 SmallVector<BasicBlock *, 8> ExitBlocks; 446 L->getUniqueExitBlocks(ExitBlocks); 447 448 bool MadeAnyChanges = false; 449 for (auto *ExitBB : ExitBlocks) { 450 // If there are no more PHI nodes in this exit block, then no more 451 // values defined inside the loop are used on this path. 452 for (PHINode &PN : ExitBB->phis()) { 453 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 454 IncomingValIdx != E; ++IncomingValIdx) { 455 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 456 457 // Can we prove that the exit must run on the first iteration if it 458 // runs at all? (i.e. early exits are fine for our purposes, but 459 // traces which lead to this exit being taken on the 2nd iteration 460 // aren't.) Note that this is about whether the exit branch is 461 // executed, not about whether it is taken. 462 if (!L->getLoopLatch() || 463 !DT->dominates(IncomingBB, L->getLoopLatch())) 464 continue; 465 466 // Get condition that leads to the exit path. 467 auto *TermInst = IncomingBB->getTerminator(); 468 469 Value *Cond = nullptr; 470 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 471 // Must be a conditional branch, otherwise the block 472 // should not be in the loop. 473 Cond = BI->getCondition(); 474 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 475 Cond = SI->getCondition(); 476 else 477 continue; 478 479 if (!L->isLoopInvariant(Cond)) 480 continue; 481 482 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 483 484 // Only deal with PHIs in the loop header. 485 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 486 continue; 487 488 // If ExitVal is a PHI on the loop header, then we know its 489 // value along this exit because the exit can only be taken 490 // on the first iteration. 491 auto *LoopPreheader = L->getLoopPreheader(); 492 assert(LoopPreheader && "Invalid loop"); 493 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 494 if (PreheaderIdx != -1) { 495 assert(ExitVal->getParent() == L->getHeader() && 496 "ExitVal must be in loop header"); 497 MadeAnyChanges = true; 498 PN.setIncomingValue(IncomingValIdx, 499 ExitVal->getIncomingValue(PreheaderIdx)); 500 SE->forgetValue(&PN); 501 } 502 } 503 } 504 } 505 return MadeAnyChanges; 506 } 507 508 //===----------------------------------------------------------------------===// 509 // IV Widening - Extend the width of an IV to cover its widest uses. 510 //===----------------------------------------------------------------------===// 511 512 /// Update information about the induction variable that is extended by this 513 /// sign or zero extend operation. This is used to determine the final width of 514 /// the IV before actually widening it. 515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 516 ScalarEvolution *SE, 517 const TargetTransformInfo *TTI) { 518 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 519 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 520 return; 521 522 Type *Ty = Cast->getType(); 523 uint64_t Width = SE->getTypeSizeInBits(Ty); 524 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 525 return; 526 527 // Check that `Cast` actually extends the induction variable (we rely on this 528 // later). This takes care of cases where `Cast` is extending a truncation of 529 // the narrow induction variable, and thus can end up being narrower than the 530 // "narrow" induction variable. 531 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 532 if (NarrowIVWidth >= Width) 533 return; 534 535 // Cast is either an sext or zext up to this point. 536 // We should not widen an indvar if arithmetics on the wider indvar are more 537 // expensive than those on the narrower indvar. We check only the cost of ADD 538 // because at least an ADD is required to increment the induction variable. We 539 // could compute more comprehensively the cost of all instructions on the 540 // induction variable when necessary. 541 if (TTI && 542 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 543 TTI->getArithmeticInstrCost(Instruction::Add, 544 Cast->getOperand(0)->getType())) { 545 return; 546 } 547 548 if (!WI.WidestNativeType || 549 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { 550 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 551 WI.IsSigned = IsSigned; 552 return; 553 } 554 555 // We extend the IV to satisfy the sign of its user(s), or 'signed' 556 // if there are multiple users with both sign- and zero extensions, 557 // in order not to introduce nondeterministic behaviour based on the 558 // unspecified order of a PHI nodes' users-iterator. 559 WI.IsSigned |= IsSigned; 560 } 561 562 //===----------------------------------------------------------------------===// 563 // Live IV Reduction - Minimize IVs live across the loop. 564 //===----------------------------------------------------------------------===// 565 566 //===----------------------------------------------------------------------===// 567 // Simplification of IV users based on SCEV evaluation. 568 //===----------------------------------------------------------------------===// 569 570 namespace { 571 572 class IndVarSimplifyVisitor : public IVVisitor { 573 ScalarEvolution *SE; 574 const TargetTransformInfo *TTI; 575 PHINode *IVPhi; 576 577 public: 578 WideIVInfo WI; 579 580 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 581 const TargetTransformInfo *TTI, 582 const DominatorTree *DTree) 583 : SE(SCEV), TTI(TTI), IVPhi(IV) { 584 DT = DTree; 585 WI.NarrowIV = IVPhi; 586 } 587 588 // Implement the interface used by simplifyUsersOfIV. 589 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 590 }; 591 592 } // end anonymous namespace 593 594 /// Iteratively perform simplification on a worklist of IV users. Each 595 /// successive simplification may push more users which may themselves be 596 /// candidates for simplification. 597 /// 598 /// Sign/Zero extend elimination is interleaved with IV simplification. 599 bool IndVarSimplify::simplifyAndExtend(Loop *L, 600 SCEVExpander &Rewriter, 601 LoopInfo *LI) { 602 SmallVector<WideIVInfo, 8> WideIVs; 603 604 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 605 Intrinsic::getName(Intrinsic::experimental_guard)); 606 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 607 608 SmallVector<PHINode *, 8> LoopPhis; 609 for (PHINode &PN : L->getHeader()->phis()) 610 LoopPhis.push_back(&PN); 611 612 // Each round of simplification iterates through the SimplifyIVUsers worklist 613 // for all current phis, then determines whether any IVs can be 614 // widened. Widening adds new phis to LoopPhis, inducing another round of 615 // simplification on the wide IVs. 616 bool Changed = false; 617 while (!LoopPhis.empty()) { 618 // Evaluate as many IV expressions as possible before widening any IVs. This 619 // forces SCEV to set no-wrap flags before evaluating sign/zero 620 // extension. The first time SCEV attempts to normalize sign/zero extension, 621 // the result becomes final. So for the most predictable results, we delay 622 // evaluation of sign/zero extend evaluation until needed, and avoid running 623 // other SCEV based analysis prior to simplifyAndExtend. 624 do { 625 PHINode *CurrIV = LoopPhis.pop_back_val(); 626 627 // Information about sign/zero extensions of CurrIV. 628 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 629 630 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 631 &Visitor); 632 633 if (Visitor.WI.WidestNativeType) { 634 WideIVs.push_back(Visitor.WI); 635 } 636 } while(!LoopPhis.empty()); 637 638 // Continue if we disallowed widening. 639 if (!WidenIndVars) 640 continue; 641 642 for (; !WideIVs.empty(); WideIVs.pop_back()) { 643 unsigned ElimExt; 644 unsigned Widened; 645 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 646 DT, DeadInsts, ElimExt, Widened, 647 HasGuards, UsePostIncrementRanges)) { 648 NumElimExt += ElimExt; 649 NumWidened += Widened; 650 Changed = true; 651 LoopPhis.push_back(WidePhi); 652 } 653 } 654 } 655 return Changed; 656 } 657 658 //===----------------------------------------------------------------------===// 659 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 660 //===----------------------------------------------------------------------===// 661 662 /// Given an Value which is hoped to be part of an add recurance in the given 663 /// loop, return the associated Phi node if so. Otherwise, return null. Note 664 /// that this is less general than SCEVs AddRec checking. 665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 666 Instruction *IncI = dyn_cast<Instruction>(IncV); 667 if (!IncI) 668 return nullptr; 669 670 switch (IncI->getOpcode()) { 671 case Instruction::Add: 672 case Instruction::Sub: 673 break; 674 case Instruction::GetElementPtr: 675 // An IV counter must preserve its type. 676 if (IncI->getNumOperands() == 2) 677 break; 678 LLVM_FALLTHROUGH; 679 default: 680 return nullptr; 681 } 682 683 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 684 if (Phi && Phi->getParent() == L->getHeader()) { 685 if (L->isLoopInvariant(IncI->getOperand(1))) 686 return Phi; 687 return nullptr; 688 } 689 if (IncI->getOpcode() == Instruction::GetElementPtr) 690 return nullptr; 691 692 // Allow add/sub to be commuted. 693 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 694 if (Phi && Phi->getParent() == L->getHeader()) { 695 if (L->isLoopInvariant(IncI->getOperand(0))) 696 return Phi; 697 } 698 return nullptr; 699 } 700 701 /// Whether the current loop exit test is based on this value. Currently this 702 /// is limited to a direct use in the loop condition. 703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 704 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 705 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 706 // TODO: Allow non-icmp loop test. 707 if (!ICmp) 708 return false; 709 710 // TODO: Allow indirect use. 711 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 712 } 713 714 /// linearFunctionTestReplace policy. Return true unless we can show that the 715 /// current exit test is already sufficiently canonical. 716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 717 assert(L->getLoopLatch() && "Must be in simplified form"); 718 719 // Avoid converting a constant or loop invariant test back to a runtime 720 // test. This is critical for when SCEV's cached ExitCount is less precise 721 // than the current IR (such as after we've proven a particular exit is 722 // actually dead and thus the BE count never reaches our ExitCount.) 723 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 724 if (L->isLoopInvariant(BI->getCondition())) 725 return false; 726 727 // Do LFTR to simplify the exit condition to an ICMP. 728 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 729 if (!Cond) 730 return true; 731 732 // Do LFTR to simplify the exit ICMP to EQ/NE 733 ICmpInst::Predicate Pred = Cond->getPredicate(); 734 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 735 return true; 736 737 // Look for a loop invariant RHS 738 Value *LHS = Cond->getOperand(0); 739 Value *RHS = Cond->getOperand(1); 740 if (!L->isLoopInvariant(RHS)) { 741 if (!L->isLoopInvariant(LHS)) 742 return true; 743 std::swap(LHS, RHS); 744 } 745 // Look for a simple IV counter LHS 746 PHINode *Phi = dyn_cast<PHINode>(LHS); 747 if (!Phi) 748 Phi = getLoopPhiForCounter(LHS, L); 749 750 if (!Phi) 751 return true; 752 753 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 754 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 755 if (Idx < 0) 756 return true; 757 758 // Do LFTR if the exit condition's IV is *not* a simple counter. 759 Value *IncV = Phi->getIncomingValue(Idx); 760 return Phi != getLoopPhiForCounter(IncV, L); 761 } 762 763 /// Return true if undefined behavior would provable be executed on the path to 764 /// OnPathTo if Root produced a posion result. Note that this doesn't say 765 /// anything about whether OnPathTo is actually executed or whether Root is 766 /// actually poison. This can be used to assess whether a new use of Root can 767 /// be added at a location which is control equivalent with OnPathTo (such as 768 /// immediately before it) without introducing UB which didn't previously 769 /// exist. Note that a false result conveys no information. 770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 771 Instruction *OnPathTo, 772 DominatorTree *DT) { 773 // Basic approach is to assume Root is poison, propagate poison forward 774 // through all users we can easily track, and then check whether any of those 775 // users are provable UB and must execute before out exiting block might 776 // exit. 777 778 // The set of all recursive users we've visited (which are assumed to all be 779 // poison because of said visit) 780 SmallSet<const Value *, 16> KnownPoison; 781 SmallVector<const Instruction*, 16> Worklist; 782 Worklist.push_back(Root); 783 while (!Worklist.empty()) { 784 const Instruction *I = Worklist.pop_back_val(); 785 786 // If we know this must trigger UB on a path leading our target. 787 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 788 return true; 789 790 // If we can't analyze propagation through this instruction, just skip it 791 // and transitive users. Safe as false is a conservative result. 792 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 793 continue; 794 795 if (KnownPoison.insert(I).second) 796 for (const User *User : I->users()) 797 Worklist.push_back(cast<Instruction>(User)); 798 } 799 800 // Might be non-UB, or might have a path we couldn't prove must execute on 801 // way to exiting bb. 802 return false; 803 } 804 805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 806 /// down to checking that all operands are constant and listing instructions 807 /// that may hide undef. 808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 809 unsigned Depth) { 810 if (isa<Constant>(V)) 811 return !isa<UndefValue>(V); 812 813 if (Depth >= 6) 814 return false; 815 816 // Conservatively handle non-constant non-instructions. For example, Arguments 817 // may be undef. 818 Instruction *I = dyn_cast<Instruction>(V); 819 if (!I) 820 return false; 821 822 // Load and return values may be undef. 823 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 824 return false; 825 826 // Optimistically handle other instructions. 827 for (Value *Op : I->operands()) { 828 if (!Visited.insert(Op).second) 829 continue; 830 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 831 return false; 832 } 833 return true; 834 } 835 836 /// Return true if the given value is concrete. We must prove that undef can 837 /// never reach it. 838 /// 839 /// TODO: If we decide that this is a good approach to checking for undef, we 840 /// may factor it into a common location. 841 static bool hasConcreteDef(Value *V) { 842 SmallPtrSet<Value*, 8> Visited; 843 Visited.insert(V); 844 return hasConcreteDefImpl(V, Visited, 0); 845 } 846 847 /// Return true if this IV has any uses other than the (soon to be rewritten) 848 /// loop exit test. 849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 850 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 851 Value *IncV = Phi->getIncomingValue(LatchIdx); 852 853 for (User *U : Phi->users()) 854 if (U != Cond && U != IncV) return false; 855 856 for (User *U : IncV->users()) 857 if (U != Cond && U != Phi) return false; 858 return true; 859 } 860 861 /// Return true if the given phi is a "counter" in L. A counter is an 862 /// add recurance (of integer or pointer type) with an arbitrary start, and a 863 /// step of 1. Note that L must have exactly one latch. 864 static bool isLoopCounter(PHINode* Phi, Loop *L, 865 ScalarEvolution *SE) { 866 assert(Phi->getParent() == L->getHeader()); 867 assert(L->getLoopLatch()); 868 869 if (!SE->isSCEVable(Phi->getType())) 870 return false; 871 872 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 873 if (!AR || AR->getLoop() != L || !AR->isAffine()) 874 return false; 875 876 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 877 if (!Step || !Step->isOne()) 878 return false; 879 880 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 881 Value *IncV = Phi->getIncomingValue(LatchIdx); 882 return (getLoopPhiForCounter(IncV, L) == Phi && 883 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 884 } 885 886 /// Search the loop header for a loop counter (anadd rec w/step of one) 887 /// suitable for use by LFTR. If multiple counters are available, select the 888 /// "best" one based profitable heuristics. 889 /// 890 /// BECount may be an i8* pointer type. The pointer difference is already 891 /// valid count without scaling the address stride, so it remains a pointer 892 /// expression as far as SCEV is concerned. 893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 894 const SCEV *BECount, 895 ScalarEvolution *SE, DominatorTree *DT) { 896 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 897 898 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 899 900 // Loop over all of the PHI nodes, looking for a simple counter. 901 PHINode *BestPhi = nullptr; 902 const SCEV *BestInit = nullptr; 903 BasicBlock *LatchBlock = L->getLoopLatch(); 904 assert(LatchBlock && "Must be in simplified form"); 905 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 906 907 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 908 PHINode *Phi = cast<PHINode>(I); 909 if (!isLoopCounter(Phi, L, SE)) 910 continue; 911 912 // Avoid comparing an integer IV against a pointer Limit. 913 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 914 continue; 915 916 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 917 918 // AR may be a pointer type, while BECount is an integer type. 919 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 920 // AR may not be a narrower type, or we may never exit. 921 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 922 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 923 continue; 924 925 // Avoid reusing a potentially undef value to compute other values that may 926 // have originally had a concrete definition. 927 if (!hasConcreteDef(Phi)) { 928 // We explicitly allow unknown phis as long as they are already used by 929 // the loop exit test. This is legal since performing LFTR could not 930 // increase the number of undef users. 931 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 932 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 933 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 934 continue; 935 } 936 937 // Avoid introducing undefined behavior due to poison which didn't exist in 938 // the original program. (Annoyingly, the rules for poison and undef 939 // propagation are distinct, so this does NOT cover the undef case above.) 940 // We have to ensure that we don't introduce UB by introducing a use on an 941 // iteration where said IV produces poison. Our strategy here differs for 942 // pointers and integer IVs. For integers, we strip and reinfer as needed, 943 // see code in linearFunctionTestReplace. For pointers, we restrict 944 // transforms as there is no good way to reinfer inbounds once lost. 945 if (!Phi->getType()->isIntegerTy() && 946 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 947 continue; 948 949 const SCEV *Init = AR->getStart(); 950 951 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 952 // Don't force a live loop counter if another IV can be used. 953 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 954 continue; 955 956 // Prefer to count-from-zero. This is a more "canonical" counter form. It 957 // also prefers integer to pointer IVs. 958 if (BestInit->isZero() != Init->isZero()) { 959 if (BestInit->isZero()) 960 continue; 961 } 962 // If two IVs both count from zero or both count from nonzero then the 963 // narrower is likely a dead phi that has been widened. Use the wider phi 964 // to allow the other to be eliminated. 965 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 966 continue; 967 } 968 BestPhi = Phi; 969 BestInit = Init; 970 } 971 return BestPhi; 972 } 973 974 /// Insert an IR expression which computes the value held by the IV IndVar 975 /// (which must be an loop counter w/unit stride) after the backedge of loop L 976 /// is taken ExitCount times. 977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 978 const SCEV *ExitCount, bool UsePostInc, Loop *L, 979 SCEVExpander &Rewriter, ScalarEvolution *SE) { 980 assert(isLoopCounter(IndVar, L, SE)); 981 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 982 const SCEV *IVInit = AR->getStart(); 983 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 984 985 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 986 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 987 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 988 // the existing GEPs whenever possible. 989 if (IndVar->getType()->isPointerTy() && 990 !ExitCount->getType()->isPointerTy()) { 991 // IVOffset will be the new GEP offset that is interpreted by GEP as a 992 // signed value. ExitCount on the other hand represents the loop trip count, 993 // which is an unsigned value. FindLoopCounter only allows induction 994 // variables that have a positive unit stride of one. This means we don't 995 // have to handle the case of negative offsets (yet) and just need to zero 996 // extend ExitCount. 997 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 998 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 999 if (UsePostInc) 1000 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 1001 1002 // Expand the code for the iteration count. 1003 assert(SE->isLoopInvariant(IVOffset, L) && 1004 "Computed iteration count is not loop invariant!"); 1005 1006 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1007 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1008 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1009 } else { 1010 // In any other case, convert both IVInit and ExitCount to integers before 1011 // comparing. This may result in SCEV expansion of pointers, but in practice 1012 // SCEV will fold the pointer arithmetic away as such: 1013 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1014 // 1015 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1016 // for simple memset-style loops. 1017 // 1018 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1019 // were generated on top of case #2, which is not expected. 1020 1021 // For unit stride, IVCount = Start + ExitCount with 2's complement 1022 // overflow. 1023 1024 // For integer IVs, truncate the IV before computing IVInit + BECount, 1025 // unless we know apriori that the limit must be a constant when evaluated 1026 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1027 // of the IV in the loop over a (potentially) expensive expansion of the 1028 // widened exit count add(zext(add)) expression. 1029 if (SE->getTypeSizeInBits(IVInit->getType()) 1030 > SE->getTypeSizeInBits(ExitCount->getType())) { 1031 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1032 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1033 else 1034 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1035 } 1036 1037 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1038 1039 if (UsePostInc) 1040 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1041 1042 // Expand the code for the iteration count. 1043 assert(SE->isLoopInvariant(IVLimit, L) && 1044 "Computed iteration count is not loop invariant!"); 1045 // Ensure that we generate the same type as IndVar, or a smaller integer 1046 // type. In the presence of null pointer values, we have an integer type 1047 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1048 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1049 IndVar->getType() : ExitCount->getType(); 1050 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1051 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1052 } 1053 } 1054 1055 /// This method rewrites the exit condition of the loop to be a canonical != 1056 /// comparison against the incremented loop induction variable. This pass is 1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1058 /// determine a loop-invariant trip count of the loop, which is actually a much 1059 /// broader range than just linear tests. 1060 bool IndVarSimplify:: 1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1062 const SCEV *ExitCount, 1063 PHINode *IndVar, SCEVExpander &Rewriter) { 1064 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1065 assert(isLoopCounter(IndVar, L, SE)); 1066 Instruction * const IncVar = 1067 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1068 1069 // Initialize CmpIndVar to the preincremented IV. 1070 Value *CmpIndVar = IndVar; 1071 bool UsePostInc = false; 1072 1073 // If the exiting block is the same as the backedge block, we prefer to 1074 // compare against the post-incremented value, otherwise we must compare 1075 // against the preincremented value. 1076 if (ExitingBB == L->getLoopLatch()) { 1077 // For pointer IVs, we chose to not strip inbounds which requires us not 1078 // to add a potentially UB introducing use. We need to either a) show 1079 // the loop test we're modifying is already in post-inc form, or b) show 1080 // that adding a use must not introduce UB. 1081 bool SafeToPostInc = 1082 IndVar->getType()->isIntegerTy() || 1083 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1084 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1085 if (SafeToPostInc) { 1086 UsePostInc = true; 1087 CmpIndVar = IncVar; 1088 } 1089 } 1090 1091 // It may be necessary to drop nowrap flags on the incrementing instruction 1092 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1093 // case the increment might have previously been poison on the last iteration 1094 // only) or if LFTR switches to a different IV that was previously dynamically 1095 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1096 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1097 // check), because the pre-inc addrec flags may be adopted from the original 1098 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1099 // TODO: This handling is inaccurate for one case: If we switch to a 1100 // dynamically dead IV that wraps on the first loop iteration only, which is 1101 // not covered by the post-inc addrec. (If the new IV was not dynamically 1102 // dead, it could not be poison on the first iteration in the first place.) 1103 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1104 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1105 if (BO->hasNoUnsignedWrap()) 1106 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1107 if (BO->hasNoSignedWrap()) 1108 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1109 } 1110 1111 Value *ExitCnt = genLoopLimit( 1112 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1113 assert(ExitCnt->getType()->isPointerTy() == 1114 IndVar->getType()->isPointerTy() && 1115 "genLoopLimit missed a cast"); 1116 1117 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1118 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1119 ICmpInst::Predicate P; 1120 if (L->contains(BI->getSuccessor(0))) 1121 P = ICmpInst::ICMP_NE; 1122 else 1123 P = ICmpInst::ICMP_EQ; 1124 1125 IRBuilder<> Builder(BI); 1126 1127 // The new loop exit condition should reuse the debug location of the 1128 // original loop exit condition. 1129 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1130 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1131 1132 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1133 // avoid the expensive expansion of the limit expression in the wider type, 1134 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1135 // since we know (from the exit count bitwidth), that we can't self-wrap in 1136 // the narrower type. 1137 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1138 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1139 if (CmpIndVarSize > ExitCntSize) { 1140 assert(!CmpIndVar->getType()->isPointerTy() && 1141 !ExitCnt->getType()->isPointerTy()); 1142 1143 // Before resorting to actually inserting the truncate, use the same 1144 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1145 // the other side of the comparison instead. We still evaluate the limit 1146 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1147 // a truncate within in. 1148 bool Extended = false; 1149 const SCEV *IV = SE->getSCEV(CmpIndVar); 1150 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1151 ExitCnt->getType()); 1152 const SCEV *ZExtTrunc = 1153 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1154 1155 if (ZExtTrunc == IV) { 1156 Extended = true; 1157 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1158 "wide.trip.count"); 1159 } else { 1160 const SCEV *SExtTrunc = 1161 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1162 if (SExtTrunc == IV) { 1163 Extended = true; 1164 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1165 "wide.trip.count"); 1166 } 1167 } 1168 1169 if (Extended) { 1170 bool Discard; 1171 L->makeLoopInvariant(ExitCnt, Discard); 1172 } else 1173 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1174 "lftr.wideiv"); 1175 } 1176 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1177 << " LHS:" << *CmpIndVar << '\n' 1178 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1179 << "\n" 1180 << " RHS:\t" << *ExitCnt << "\n" 1181 << "ExitCount:\t" << *ExitCount << "\n" 1182 << " was: " << *BI->getCondition() << "\n"); 1183 1184 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1185 Value *OrigCond = BI->getCondition(); 1186 // It's tempting to use replaceAllUsesWith here to fully replace the old 1187 // comparison, but that's not immediately safe, since users of the old 1188 // comparison may not be dominated by the new comparison. Instead, just 1189 // update the branch to use the new comparison; in the common case this 1190 // will make old comparison dead. 1191 BI->setCondition(Cond); 1192 DeadInsts.emplace_back(OrigCond); 1193 1194 ++NumLFTR; 1195 return true; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1200 //===----------------------------------------------------------------------===// 1201 1202 /// If there's a single exit block, sink any loop-invariant values that 1203 /// were defined in the preheader but not used inside the loop into the 1204 /// exit block to reduce register pressure in the loop. 1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1206 BasicBlock *ExitBlock = L->getExitBlock(); 1207 if (!ExitBlock) return false; 1208 1209 BasicBlock *Preheader = L->getLoopPreheader(); 1210 if (!Preheader) return false; 1211 1212 bool MadeAnyChanges = false; 1213 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1214 BasicBlock::iterator I(Preheader->getTerminator()); 1215 while (I != Preheader->begin()) { 1216 --I; 1217 // New instructions were inserted at the end of the preheader. 1218 if (isa<PHINode>(I)) 1219 break; 1220 1221 // Don't move instructions which might have side effects, since the side 1222 // effects need to complete before instructions inside the loop. Also don't 1223 // move instructions which might read memory, since the loop may modify 1224 // memory. Note that it's okay if the instruction might have undefined 1225 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1226 // block. 1227 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1228 continue; 1229 1230 // Skip debug info intrinsics. 1231 if (isa<DbgInfoIntrinsic>(I)) 1232 continue; 1233 1234 // Skip eh pad instructions. 1235 if (I->isEHPad()) 1236 continue; 1237 1238 // Don't sink alloca: we never want to sink static alloca's out of the 1239 // entry block, and correctly sinking dynamic alloca's requires 1240 // checks for stacksave/stackrestore intrinsics. 1241 // FIXME: Refactor this check somehow? 1242 if (isa<AllocaInst>(I)) 1243 continue; 1244 1245 // Determine if there is a use in or before the loop (direct or 1246 // otherwise). 1247 bool UsedInLoop = false; 1248 for (Use &U : I->uses()) { 1249 Instruction *User = cast<Instruction>(U.getUser()); 1250 BasicBlock *UseBB = User->getParent(); 1251 if (PHINode *P = dyn_cast<PHINode>(User)) { 1252 unsigned i = 1253 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1254 UseBB = P->getIncomingBlock(i); 1255 } 1256 if (UseBB == Preheader || L->contains(UseBB)) { 1257 UsedInLoop = true; 1258 break; 1259 } 1260 } 1261 1262 // If there is, the def must remain in the preheader. 1263 if (UsedInLoop) 1264 continue; 1265 1266 // Otherwise, sink it to the exit block. 1267 Instruction *ToMove = &*I; 1268 bool Done = false; 1269 1270 if (I != Preheader->begin()) { 1271 // Skip debug info intrinsics. 1272 do { 1273 --I; 1274 } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); 1275 1276 if (I->isDebugOrPseudoInst() && I == Preheader->begin()) 1277 Done = true; 1278 } else { 1279 Done = true; 1280 } 1281 1282 MadeAnyChanges = true; 1283 ToMove->moveBefore(*ExitBlock, InsertPt); 1284 if (Done) break; 1285 InsertPt = ToMove->getIterator(); 1286 } 1287 1288 return MadeAnyChanges; 1289 } 1290 1291 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1292 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1293 auto *OldCond = BI->getCondition(); 1294 BI->setCondition(NewCond); 1295 if (OldCond->use_empty()) 1296 DeadInsts.emplace_back(OldCond); 1297 } 1298 1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1300 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1301 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1302 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1303 auto *OldCond = BI->getCondition(); 1304 auto *NewCond = 1305 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); 1306 replaceExitCond(BI, NewCond, DeadInsts); 1307 } 1308 1309 static void replaceLoopPHINodesWithPreheaderValues( 1310 Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1311 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); 1312 auto *LoopPreheader = L->getLoopPreheader(); 1313 auto *LoopHeader = L->getHeader(); 1314 SmallVector<Instruction *> Worklist; 1315 for (auto &PN : LoopHeader->phis()) { 1316 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1317 for (User *U : PN.users()) 1318 Worklist.push_back(cast<Instruction>(U)); 1319 PN.replaceAllUsesWith(PreheaderIncoming); 1320 DeadInsts.emplace_back(&PN); 1321 } 1322 1323 // Replacing with the preheader value will often allow IV users to simplify 1324 // (especially if the preheader value is a constant). 1325 SmallPtrSet<Instruction *, 16> Visited; 1326 while (!Worklist.empty()) { 1327 auto *I = cast<Instruction>(Worklist.pop_back_val()); 1328 if (!Visited.insert(I).second) 1329 continue; 1330 1331 // Don't simplify instructions outside the loop. 1332 if (!L->contains(I)) 1333 continue; 1334 1335 if (Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout())) { 1336 for (User *U : I->users()) 1337 Worklist.push_back(cast<Instruction>(U)); 1338 I->replaceAllUsesWith(Res); 1339 DeadInsts.emplace_back(I); 1340 } 1341 } 1342 } 1343 1344 static void replaceWithInvariantCond( 1345 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1346 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, 1347 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1348 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1349 Rewriter.setInsertPoint(BI); 1350 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1351 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1352 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1353 if (ExitIfTrue) 1354 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1355 IRBuilder<> Builder(BI); 1356 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1357 BI->getCondition()->getName()); 1358 replaceExitCond(BI, NewCond, DeadInsts); 1359 } 1360 1361 static bool optimizeLoopExitWithUnknownExitCount( 1362 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, 1363 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1364 ScalarEvolution *SE, SCEVExpander &Rewriter, 1365 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1366 ICmpInst::Predicate Pred; 1367 Value *LHS, *RHS; 1368 BasicBlock *TrueSucc, *FalseSucc; 1369 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1370 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1371 return false; 1372 1373 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1374 "Not a loop exit!"); 1375 1376 // 'LHS pred RHS' should now mean that we stay in loop. 1377 if (L->contains(FalseSucc)) 1378 Pred = CmpInst::getInversePredicate(Pred); 1379 1380 // If we are proving loop exit, invert the predicate. 1381 if (Inverted) 1382 Pred = CmpInst::getInversePredicate(Pred); 1383 1384 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1385 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1386 // Can we prove it to be trivially true? 1387 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { 1388 foldExit(L, ExitingBB, Inverted, DeadInsts); 1389 return true; 1390 } 1391 // Further logic works for non-inverted condition only. 1392 if (Inverted) 1393 return false; 1394 1395 auto *ARTy = LHSS->getType(); 1396 auto *MaxIterTy = MaxIter->getType(); 1397 // If possible, adjust types. 1398 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1399 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1400 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1401 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1402 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1403 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1404 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1405 } 1406 1407 if (SkipLastIter) { 1408 const SCEV *One = SE->getOne(MaxIter->getType()); 1409 MaxIter = SE->getMinusSCEV(MaxIter, One); 1410 } 1411 1412 // Check if there is a loop-invariant predicate equivalent to our check. 1413 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1414 L, BI, MaxIter); 1415 if (!LIP) 1416 return false; 1417 1418 // Can we prove it to be trivially true? 1419 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1420 foldExit(L, ExitingBB, Inverted, DeadInsts); 1421 else 1422 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, 1423 Rewriter, DeadInsts); 1424 1425 return true; 1426 } 1427 1428 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { 1429 // Note: This is duplicating a particular part on SimplifyIndVars reasoning. 1430 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers 1431 // never reaches the icmp since the zext doesn't fold to an AddRec unless 1432 // it already has flags. The alternative to this would be to extending the 1433 // set of "interesting" IV users to include the icmp, but doing that 1434 // regresses results in practice by querying SCEVs before trip counts which 1435 // rely on them which results in SCEV caching sub-optimal answers. The 1436 // concern about caching sub-optimal results is why we only query SCEVs of 1437 // the loop invariant RHS here. 1438 SmallVector<BasicBlock*, 16> ExitingBlocks; 1439 L->getExitingBlocks(ExitingBlocks); 1440 bool Changed = false; 1441 for (auto *ExitingBB : ExitingBlocks) { 1442 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1443 if (!BI) 1444 continue; 1445 assert(BI->isConditional() && "exit branch must be conditional"); 1446 1447 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1448 if (!ICmp || !ICmp->hasOneUse()) 1449 continue; 1450 1451 auto *LHS = ICmp->getOperand(0); 1452 auto *RHS = ICmp->getOperand(1); 1453 // For the range reasoning, avoid computing SCEVs in the loop to avoid 1454 // poisoning cache with sub-optimal results. For the must-execute case, 1455 // this is a neccessary precondition for correctness. 1456 if (!L->isLoopInvariant(RHS)) { 1457 if (!L->isLoopInvariant(LHS)) 1458 continue; 1459 // Same logic applies for the inverse case 1460 std::swap(LHS, RHS); 1461 } 1462 1463 // Match (icmp signed-cond zext, RHS) 1464 Value *LHSOp = nullptr; 1465 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) 1466 continue; 1467 1468 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1469 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1470 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1471 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1472 FullCR = FullCR.zeroExtend(OuterBitWidth); 1473 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1474 if (FullCR.contains(RHSCR)) { 1475 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus 1476 // replace the signed condition with the unsigned version. 1477 ICmp->setPredicate(ICmp->getUnsignedPredicate()); 1478 Changed = true; 1479 // Note: No SCEV invalidation needed. We've changed the predicate, but 1480 // have not changed exit counts, or the values produced by the compare. 1481 continue; 1482 } 1483 } 1484 1485 // Now that we've canonicalized the condition to match the extend, 1486 // see if we can rotate the extend out of the loop. 1487 for (auto *ExitingBB : ExitingBlocks) { 1488 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1489 if (!BI) 1490 continue; 1491 assert(BI->isConditional() && "exit branch must be conditional"); 1492 1493 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1494 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) 1495 continue; 1496 1497 bool Swapped = false; 1498 auto *LHS = ICmp->getOperand(0); 1499 auto *RHS = ICmp->getOperand(1); 1500 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) 1501 // Nothing to rotate 1502 continue; 1503 if (L->isLoopInvariant(LHS)) { 1504 // Same logic applies for the inverse case until we actually pick 1505 // which operand of the compare to update. 1506 Swapped = true; 1507 std::swap(LHS, RHS); 1508 } 1509 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); 1510 1511 // Match (icmp unsigned-cond zext, RHS) 1512 // TODO: Extend to handle corresponding sext/signed-cmp case 1513 // TODO: Extend to other invertible functions 1514 Value *LHSOp = nullptr; 1515 if (!match(LHS, m_ZExt(m_Value(LHSOp)))) 1516 continue; 1517 1518 // In general, we only rotate if we can do so without increasing the number 1519 // of instructions. The exception is when we have an zext(add-rec). The 1520 // reason for allowing this exception is that we know we need to get rid 1521 // of the zext for SCEV to be able to compute a trip count for said loops; 1522 // we consider the new trip count valuable enough to increase instruction 1523 // count by one. 1524 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) 1525 continue; 1526 1527 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS 1528 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) 1529 // when zext is loop varying and RHS is loop invariant. This converts 1530 // loop varying work to loop-invariant work. 1531 auto doRotateTransform = [&]() { 1532 assert(ICmp->isUnsigned() && "must have proven unsigned already"); 1533 auto *NewRHS = 1534 CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", 1535 L->getLoopPreheader()->getTerminator()); 1536 ICmp->setOperand(Swapped ? 1 : 0, LHSOp); 1537 ICmp->setOperand(Swapped ? 0 : 1, NewRHS); 1538 if (LHS->use_empty()) 1539 DeadInsts.push_back(LHS); 1540 }; 1541 1542 1543 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1544 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1545 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1546 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1547 FullCR = FullCR.zeroExtend(OuterBitWidth); 1548 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1549 if (FullCR.contains(RHSCR)) { 1550 doRotateTransform(); 1551 Changed = true; 1552 // Note, we are leaving SCEV in an unfortunately imprecise case here 1553 // as rotation tends to reveal information about trip counts not 1554 // previously visible. 1555 continue; 1556 } 1557 } 1558 1559 return Changed; 1560 } 1561 1562 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1563 SmallVector<BasicBlock*, 16> ExitingBlocks; 1564 L->getExitingBlocks(ExitingBlocks); 1565 1566 // Remove all exits which aren't both rewriteable and execute on every 1567 // iteration. 1568 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1569 // If our exitting block exits multiple loops, we can only rewrite the 1570 // innermost one. Otherwise, we're changing how many times the innermost 1571 // loop runs before it exits. 1572 if (LI->getLoopFor(ExitingBB) != L) 1573 return true; 1574 1575 // Can't rewrite non-branch yet. 1576 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1577 if (!BI) 1578 return true; 1579 1580 // Likewise, the loop latch must be dominated by the exiting BB. 1581 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1582 return true; 1583 1584 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 1585 // If already constant, nothing to do. However, if this is an 1586 // unconditional exit, we can still replace header phis with their 1587 // preheader value. 1588 if (!L->contains(BI->getSuccessor(CI->isNullValue()))) 1589 replaceLoopPHINodesWithPreheaderValues(L, DeadInsts); 1590 return true; 1591 } 1592 1593 return false; 1594 }); 1595 1596 if (ExitingBlocks.empty()) 1597 return false; 1598 1599 // Get a symbolic upper bound on the loop backedge taken count. 1600 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1601 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1602 return false; 1603 1604 // Visit our exit blocks in order of dominance. We know from the fact that 1605 // all exits must dominate the latch, so there is a total dominance order 1606 // between them. 1607 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1608 // std::sort sorts in ascending order, so we want the inverse of 1609 // the normal dominance relation. 1610 if (A == B) return false; 1611 if (DT->properlyDominates(A, B)) 1612 return true; 1613 else { 1614 assert(DT->properlyDominates(B, A) && 1615 "expected total dominance order!"); 1616 return false; 1617 } 1618 }); 1619 #ifdef ASSERT 1620 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1621 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1622 } 1623 #endif 1624 1625 bool Changed = false; 1626 bool SkipLastIter = false; 1627 SmallSet<const SCEV*, 8> DominatingExitCounts; 1628 for (BasicBlock *ExitingBB : ExitingBlocks) { 1629 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1630 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1631 // Okay, we do not know the exit count here. Can we at least prove that it 1632 // will remain the same within iteration space? 1633 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1634 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { 1635 return optimizeLoopExitWithUnknownExitCount( 1636 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, 1637 Rewriter, DeadInsts); 1638 }; 1639 1640 // TODO: We might have proved that we can skip the last iteration for 1641 // this check. In this case, we only want to check the condition on the 1642 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1643 // corner case: 1644 // 1645 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1646 // 1647 // If we could not prove that len != 0, then we also could not prove that 1648 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1649 // OptimizeCond will likely not prove anything for it, even if it could 1650 // prove the same fact for len. 1651 // 1652 // As a temporary solution, we query both last and pre-last iterations in 1653 // hope that we will be able to prove triviality for at least one of 1654 // them. We can stop querying MaxExitCount for this case once SCEV 1655 // understands that (MaxExitCount - 1) will not overflow here. 1656 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1657 Changed = true; 1658 else if (SkipLastIter) 1659 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1660 Changed = true; 1661 continue; 1662 } 1663 1664 if (MaxExitCount == ExitCount) 1665 // If the loop has more than 1 iteration, all further checks will be 1666 // executed 1 iteration less. 1667 SkipLastIter = true; 1668 1669 // If we know we'd exit on the first iteration, rewrite the exit to 1670 // reflect this. This does not imply the loop must exit through this 1671 // exit; there may be an earlier one taken on the first iteration. 1672 // We know that the backedge can't be taken, so we replace all 1673 // the header PHIs with values coming from the preheader. 1674 if (ExitCount->isZero()) { 1675 foldExit(L, ExitingBB, true, DeadInsts); 1676 replaceLoopPHINodesWithPreheaderValues(L, DeadInsts); 1677 Changed = true; 1678 continue; 1679 } 1680 1681 assert(ExitCount->getType()->isIntegerTy() && 1682 MaxExitCount->getType()->isIntegerTy() && 1683 "Exit counts must be integers"); 1684 1685 Type *WiderType = 1686 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1687 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1688 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1689 assert(MaxExitCount->getType() == ExitCount->getType()); 1690 1691 // Can we prove that some other exit must be taken strictly before this 1692 // one? 1693 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1694 MaxExitCount, ExitCount)) { 1695 foldExit(L, ExitingBB, false, DeadInsts); 1696 Changed = true; 1697 continue; 1698 } 1699 1700 // As we run, keep track of which exit counts we've encountered. If we 1701 // find a duplicate, we've found an exit which would have exited on the 1702 // exiting iteration, but (from the visit order) strictly follows another 1703 // which does the same and is thus dead. 1704 if (!DominatingExitCounts.insert(ExitCount).second) { 1705 foldExit(L, ExitingBB, false, DeadInsts); 1706 Changed = true; 1707 continue; 1708 } 1709 1710 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1711 // here. If we kept track of the min of dominanting exits so far, we could 1712 // discharge exits with EC >= MDEC. This is less powerful than the existing 1713 // transform (since later exits aren't considered), but potentially more 1714 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1715 // or a >u b. Such a case is not currently known. 1716 } 1717 return Changed; 1718 } 1719 1720 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1721 SmallVector<BasicBlock*, 16> ExitingBlocks; 1722 L->getExitingBlocks(ExitingBlocks); 1723 1724 // Finally, see if we can rewrite our exit conditions into a loop invariant 1725 // form. If we have a read-only loop, and we can tell that we must exit down 1726 // a path which does not need any of the values computed within the loop, we 1727 // can rewrite the loop to exit on the first iteration. Note that this 1728 // doesn't either a) tell us the loop exits on the first iteration (unless 1729 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1730 // This transformation looks a lot like a restricted form of dead loop 1731 // elimination, but restricted to read-only loops and without neccesssarily 1732 // needing to kill the loop entirely. 1733 if (!LoopPredication) 1734 return false; 1735 1736 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1737 // through *explicit* control flow. We have to eliminate the possibility of 1738 // implicit exits (see below) before we know it's truly exact. 1739 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1740 if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE)) 1741 return false; 1742 1743 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1744 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1745 1746 auto BadExit = [&](BasicBlock *ExitingBB) { 1747 // If our exiting block exits multiple loops, we can only rewrite the 1748 // innermost one. Otherwise, we're changing how many times the innermost 1749 // loop runs before it exits. 1750 if (LI->getLoopFor(ExitingBB) != L) 1751 return true; 1752 1753 // Can't rewrite non-branch yet. 1754 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1755 if (!BI) 1756 return true; 1757 1758 // If already constant, nothing to do. 1759 if (isa<Constant>(BI->getCondition())) 1760 return true; 1761 1762 // If the exit block has phis, we need to be able to compute the values 1763 // within the loop which contains them. This assumes trivially lcssa phis 1764 // have already been removed; TODO: generalize 1765 BasicBlock *ExitBlock = 1766 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1767 if (!ExitBlock->phis().empty()) 1768 return true; 1769 1770 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1771 if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE)) 1772 return true; 1773 1774 assert(SE->isLoopInvariant(ExitCount, L) && 1775 "Exit count must be loop invariant"); 1776 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1777 return false; 1778 }; 1779 1780 // If we have any exits which can't be predicated themselves, than we can't 1781 // predicate any exit which isn't guaranteed to execute before it. Consider 1782 // two exits (a) and (b) which would both exit on the same iteration. If we 1783 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1784 // we could convert a loop from exiting through (a) to one exiting through 1785 // (b). Note that this problem exists only for exits with the same exit 1786 // count, and we could be more aggressive when exit counts are known inequal. 1787 llvm::sort(ExitingBlocks, 1788 [&](BasicBlock *A, BasicBlock *B) { 1789 // std::sort sorts in ascending order, so we want the inverse of 1790 // the normal dominance relation, plus a tie breaker for blocks 1791 // unordered by dominance. 1792 if (DT->properlyDominates(A, B)) return true; 1793 if (DT->properlyDominates(B, A)) return false; 1794 return A->getName() < B->getName(); 1795 }); 1796 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1797 // exits before the backedge). If they aren't, reasoning about reachability 1798 // is complicated and we choose not to for now. 1799 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1800 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1801 return false; 1802 1803 // Given our sorted total order, we know that exit[j] must be evaluated 1804 // after all exit[i] such j > i. 1805 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1806 if (BadExit(ExitingBlocks[i])) { 1807 ExitingBlocks.resize(i); 1808 break; 1809 } 1810 1811 if (ExitingBlocks.empty()) 1812 return false; 1813 1814 // We rely on not being able to reach an exiting block on a later iteration 1815 // then it's statically compute exit count. The implementaton of 1816 // getExitCount currently has this invariant, but assert it here so that 1817 // breakage is obvious if this ever changes.. 1818 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1819 return DT->dominates(ExitingBB, L->getLoopLatch()); 1820 })); 1821 1822 // At this point, ExitingBlocks consists of only those blocks which are 1823 // predicatable. Given that, we know we have at least one exit we can 1824 // predicate if the loop is doesn't have side effects and doesn't have any 1825 // implicit exits (because then our exact BTC isn't actually exact). 1826 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1827 // suggestions on how to improve this? I can obviously bail out for outer 1828 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1829 // is that enough for *all* side effects? 1830 for (BasicBlock *BB : L->blocks()) 1831 for (auto &I : *BB) 1832 // TODO:isGuaranteedToTransfer 1833 if (I.mayHaveSideEffects()) 1834 return false; 1835 1836 bool Changed = false; 1837 // Finally, do the actual predication for all predicatable blocks. A couple 1838 // of notes here: 1839 // 1) We don't bother to constant fold dominated exits with identical exit 1840 // counts; that's simply a form of CSE/equality propagation and we leave 1841 // it for dedicated passes. 1842 // 2) We insert the comparison at the branch. Hoisting introduces additional 1843 // legality constraints and we leave that to dedicated logic. We want to 1844 // predicate even if we can't insert a loop invariant expression as 1845 // peeling or unrolling will likely reduce the cost of the otherwise loop 1846 // varying check. 1847 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1848 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1849 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1850 for (BasicBlock *ExitingBB : ExitingBlocks) { 1851 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1852 1853 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1854 Value *NewCond; 1855 if (ExitCount == ExactBTC) { 1856 NewCond = L->contains(BI->getSuccessor(0)) ? 1857 B.getFalse() : B.getTrue(); 1858 } else { 1859 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1860 if (!ExactBTCV) 1861 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1862 Value *RHS = ExactBTCV; 1863 if (ECV->getType() != RHS->getType()) { 1864 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1865 ECV = B.CreateZExt(ECV, WiderTy); 1866 RHS = B.CreateZExt(RHS, WiderTy); 1867 } 1868 auto Pred = L->contains(BI->getSuccessor(0)) ? 1869 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1870 NewCond = B.CreateICmp(Pred, ECV, RHS); 1871 } 1872 Value *OldCond = BI->getCondition(); 1873 BI->setCondition(NewCond); 1874 if (OldCond->use_empty()) 1875 DeadInsts.emplace_back(OldCond); 1876 Changed = true; 1877 } 1878 1879 return Changed; 1880 } 1881 1882 //===----------------------------------------------------------------------===// 1883 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1884 //===----------------------------------------------------------------------===// 1885 1886 bool IndVarSimplify::run(Loop *L) { 1887 // We need (and expect!) the incoming loop to be in LCSSA. 1888 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1889 "LCSSA required to run indvars!"); 1890 1891 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1892 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1893 // canonicalization can be a pessimization without LSR to "clean up" 1894 // afterwards. 1895 // - We depend on having a preheader; in particular, 1896 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1897 // and we're in trouble if we can't find the induction variable even when 1898 // we've manually inserted one. 1899 // - LFTR relies on having a single backedge. 1900 if (!L->isLoopSimplifyForm()) 1901 return false; 1902 1903 #ifndef NDEBUG 1904 // Used below for a consistency check only 1905 // Note: Since the result returned by ScalarEvolution may depend on the order 1906 // in which previous results are added to its cache, the call to 1907 // getBackedgeTakenCount() may change following SCEV queries. 1908 const SCEV *BackedgeTakenCount; 1909 if (VerifyIndvars) 1910 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1911 #endif 1912 1913 bool Changed = false; 1914 // If there are any floating-point recurrences, attempt to 1915 // transform them to use integer recurrences. 1916 Changed |= rewriteNonIntegerIVs(L); 1917 1918 // Create a rewriter object which we'll use to transform the code with. 1919 SCEVExpander Rewriter(*SE, DL, "indvars"); 1920 #ifndef NDEBUG 1921 Rewriter.setDebugType(DEBUG_TYPE); 1922 #endif 1923 1924 // Eliminate redundant IV users. 1925 // 1926 // Simplification works best when run before other consumers of SCEV. We 1927 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1928 // other expressions involving loop IVs have been evaluated. This helps SCEV 1929 // set no-wrap flags before normalizing sign/zero extension. 1930 Rewriter.disableCanonicalMode(); 1931 Changed |= simplifyAndExtend(L, Rewriter, LI); 1932 1933 // Check to see if we can compute the final value of any expressions 1934 // that are recurrent in the loop, and substitute the exit values from the 1935 // loop into any instructions outside of the loop that use the final values 1936 // of the current expressions. 1937 if (ReplaceExitValue != NeverRepl) { 1938 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1939 ReplaceExitValue, DeadInsts)) { 1940 NumReplaced += Rewrites; 1941 Changed = true; 1942 } 1943 } 1944 1945 // Eliminate redundant IV cycles. 1946 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); 1947 1948 // Try to convert exit conditions to unsigned and rotate computation 1949 // out of the loop. Note: Handles invalidation internally if needed. 1950 Changed |= canonicalizeExitCondition(L); 1951 1952 // Try to eliminate loop exits based on analyzeable exit counts 1953 if (optimizeLoopExits(L, Rewriter)) { 1954 Changed = true; 1955 // Given we've changed exit counts, notify SCEV 1956 // Some nested loops may share same folded exit basic block, 1957 // thus we need to notify top most loop. 1958 SE->forgetTopmostLoop(L); 1959 } 1960 1961 // Try to form loop invariant tests for loop exits by changing how many 1962 // iterations of the loop run when that is unobservable. 1963 if (predicateLoopExits(L, Rewriter)) { 1964 Changed = true; 1965 // Given we've changed exit counts, notify SCEV 1966 SE->forgetLoop(L); 1967 } 1968 1969 // If we have a trip count expression, rewrite the loop's exit condition 1970 // using it. 1971 if (!DisableLFTR) { 1972 BasicBlock *PreHeader = L->getLoopPreheader(); 1973 1974 SmallVector<BasicBlock*, 16> ExitingBlocks; 1975 L->getExitingBlocks(ExitingBlocks); 1976 for (BasicBlock *ExitingBB : ExitingBlocks) { 1977 // Can't rewrite non-branch yet. 1978 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1979 continue; 1980 1981 // If our exitting block exits multiple loops, we can only rewrite the 1982 // innermost one. Otherwise, we're changing how many times the innermost 1983 // loop runs before it exits. 1984 if (LI->getLoopFor(ExitingBB) != L) 1985 continue; 1986 1987 if (!needsLFTR(L, ExitingBB)) 1988 continue; 1989 1990 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1991 if (isa<SCEVCouldNotCompute>(ExitCount)) 1992 continue; 1993 1994 // This was handled above, but as we form SCEVs, we can sometimes refine 1995 // existing ones; this allows exit counts to be folded to zero which 1996 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 1997 // until stable to handle cases like this better. 1998 if (ExitCount->isZero()) 1999 continue; 2000 2001 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 2002 if (!IndVar) 2003 continue; 2004 2005 // Avoid high cost expansions. Note: This heuristic is questionable in 2006 // that our definition of "high cost" is not exactly principled. 2007 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 2008 TTI, PreHeader->getTerminator())) 2009 continue; 2010 2011 // Check preconditions for proper SCEVExpander operation. SCEV does not 2012 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2013 // any pass that uses the SCEVExpander must do it. This does not work 2014 // well for loop passes because SCEVExpander makes assumptions about 2015 // all loops, while LoopPassManager only forces the current loop to be 2016 // simplified. 2017 // 2018 // FIXME: SCEV expansion has no way to bail out, so the caller must 2019 // explicitly check any assumptions made by SCEV. Brittle. 2020 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 2021 if (!AR || AR->getLoop()->getLoopPreheader()) 2022 Changed |= linearFunctionTestReplace(L, ExitingBB, 2023 ExitCount, IndVar, 2024 Rewriter); 2025 } 2026 } 2027 // Clear the rewriter cache, because values that are in the rewriter's cache 2028 // can be deleted in the loop below, causing the AssertingVH in the cache to 2029 // trigger. 2030 Rewriter.clear(); 2031 2032 // Now that we're done iterating through lists, clean up any instructions 2033 // which are now dead. 2034 while (!DeadInsts.empty()) { 2035 Value *V = DeadInsts.pop_back_val(); 2036 2037 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 2038 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 2039 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 2040 Changed |= 2041 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 2042 } 2043 2044 // The Rewriter may not be used from this point on. 2045 2046 // Loop-invariant instructions in the preheader that aren't used in the 2047 // loop may be sunk below the loop to reduce register pressure. 2048 Changed |= sinkUnusedInvariants(L); 2049 2050 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2051 // trip count and therefore can further simplify exit values in addition to 2052 // rewriteLoopExitValues. 2053 Changed |= rewriteFirstIterationLoopExitValues(L); 2054 2055 // Clean up dead instructions. 2056 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 2057 2058 // Check a post-condition. 2059 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2060 "Indvars did not preserve LCSSA!"); 2061 2062 // Verify that LFTR, and any other change have not interfered with SCEV's 2063 // ability to compute trip count. We may have *changed* the exit count, but 2064 // only by reducing it. 2065 #ifndef NDEBUG 2066 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2067 SE->forgetLoop(L); 2068 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2069 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2070 SE->getTypeSizeInBits(NewBECount->getType())) 2071 NewBECount = SE->getTruncateOrNoop(NewBECount, 2072 BackedgeTakenCount->getType()); 2073 else 2074 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2075 NewBECount->getType()); 2076 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 2077 NewBECount) && "indvars must preserve SCEV"); 2078 } 2079 if (VerifyMemorySSA && MSSAU) 2080 MSSAU->getMemorySSA()->verifyMemorySSA(); 2081 #endif 2082 2083 return Changed; 2084 } 2085 2086 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2087 LoopStandardAnalysisResults &AR, 2088 LPMUpdater &) { 2089 Function *F = L.getHeader()->getParent(); 2090 const DataLayout &DL = F->getParent()->getDataLayout(); 2091 2092 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 2093 WidenIndVars && AllowIVWidening); 2094 if (!IVS.run(&L)) 2095 return PreservedAnalyses::all(); 2096 2097 auto PA = getLoopPassPreservedAnalyses(); 2098 PA.preserveSet<CFGAnalyses>(); 2099 if (AR.MSSA) 2100 PA.preserve<MemorySSAAnalysis>(); 2101 return PA; 2102 } 2103 2104 namespace { 2105 2106 struct IndVarSimplifyLegacyPass : public LoopPass { 2107 static char ID; // Pass identification, replacement for typeid 2108 2109 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2110 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2111 } 2112 2113 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2114 if (skipLoop(L)) 2115 return false; 2116 2117 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2118 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2119 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2120 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2121 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 2122 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2123 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2124 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2125 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2126 MemorySSA *MSSA = nullptr; 2127 if (MSSAAnalysis) 2128 MSSA = &MSSAAnalysis->getMSSA(); 2129 2130 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 2131 return IVS.run(L); 2132 } 2133 2134 void getAnalysisUsage(AnalysisUsage &AU) const override { 2135 AU.setPreservesCFG(); 2136 AU.addPreserved<MemorySSAWrapperPass>(); 2137 getLoopAnalysisUsage(AU); 2138 } 2139 }; 2140 2141 } // end anonymous namespace 2142 2143 char IndVarSimplifyLegacyPass::ID = 0; 2144 2145 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2146 "Induction Variable Simplification", false, false) 2147 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2148 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2149 "Induction Variable Simplification", false, false) 2150 2151 Pass *llvm::createIndVarSimplifyPass() { 2152 return new IndVarSimplifyLegacyPass(); 2153 } 2154