xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision af49bed93376da6950af116371ecdaab0bf4bb7b)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/MemorySSAUpdater.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantRange.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/IR/ValueHandle.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Scalar.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/LoopUtils.h"
80 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace PatternMatch;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101     "verify-indvars", cl::Hidden,
102     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
103              "effect in release builds. (Note: this adds additional SCEV "
104              "queries potentially changing the analysis result)"));
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(
110         clEnumValN(NeverRepl, "never", "never replace exit value"),
111         clEnumValN(OnlyCheapRepl, "cheap",
112                    "only replace exit value when the cost is cheap"),
113         clEnumValN(
114             UnusedIndVarInLoop, "unusedindvarinloop",
115             "only replace exit value when it is an unused "
116             "induction variable in the loop and has cheap replacement cost"),
117         clEnumValN(NoHardUse, "noharduse",
118                    "only replace exit values when loop def likely dead"),
119         clEnumValN(AlwaysRepl, "always",
120                    "always replace exit value whenever possible")));
121 
122 static cl::opt<bool> UsePostIncrementRanges(
123   "indvars-post-increment-ranges", cl::Hidden,
124   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
125   cl::init(true));
126 
127 static cl::opt<bool>
128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
129             cl::desc("Disable Linear Function Test Replace optimization"));
130 
131 static cl::opt<bool>
132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
133                 cl::desc("Predicate conditions in read only loops"));
134 
135 static cl::opt<bool>
136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
137                 cl::desc("Allow widening of indvars to eliminate s/zext"));
138 
139 namespace {
140 
141 class IndVarSimplify {
142   LoopInfo *LI;
143   ScalarEvolution *SE;
144   DominatorTree *DT;
145   const DataLayout &DL;
146   TargetLibraryInfo *TLI;
147   const TargetTransformInfo *TTI;
148   std::unique_ptr<MemorySSAUpdater> MSSAU;
149 
150   SmallVector<WeakTrackingVH, 16> DeadInsts;
151   bool WidenIndVars;
152 
153   bool handleFloatingPointIV(Loop *L, PHINode *PH);
154   bool rewriteNonIntegerIVs(Loop *L);
155 
156   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
157   /// Try to improve our exit conditions by converting condition from signed
158   /// to unsigned or rotating computation out of the loop.
159   /// (See inline comment about why this is duplicated from simplifyAndExtend)
160   bool canonicalizeExitCondition(Loop *L);
161   /// Try to eliminate loop exits based on analyzeable exit counts
162   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
163   /// Try to form loop invariant tests for loop exits by changing how many
164   /// iterations of the loop run when that is unobservable.
165   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
166 
167   bool rewriteFirstIterationLoopExitValues(Loop *L);
168 
169   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
170                                  const SCEV *ExitCount,
171                                  PHINode *IndVar, SCEVExpander &Rewriter);
172 
173   bool sinkUnusedInvariants(Loop *L);
174 
175 public:
176   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
177                  const DataLayout &DL, TargetLibraryInfo *TLI,
178                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
179       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
180         WidenIndVars(WidenIndVars) {
181     if (MSSA)
182       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
183   }
184 
185   bool run(Loop *L);
186 };
187 
188 } // end anonymous namespace
189 
190 //===----------------------------------------------------------------------===//
191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
192 //===----------------------------------------------------------------------===//
193 
194 /// Convert APF to an integer, if possible.
195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
196   bool isExact = false;
197   // See if we can convert this to an int64_t
198   uint64_t UIntVal;
199   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
200                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
201       !isExact)
202     return false;
203   IntVal = UIntVal;
204   return true;
205 }
206 
207 /// If the loop has floating induction variable then insert corresponding
208 /// integer induction variable if possible.
209 /// For example,
210 /// for(double i = 0; i < 10000; ++i)
211 ///   bar(i)
212 /// is converted into
213 /// for(int i = 0; i < 10000; ++i)
214 ///   bar((double)i);
215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
216   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
217   unsigned BackEdge     = IncomingEdge^1;
218 
219   // Check incoming value.
220   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
221 
222   int64_t InitValue;
223   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
224     return false;
225 
226   // Check IV increment. Reject this PN if increment operation is not
227   // an add or increment value can not be represented by an integer.
228   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
229   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
230 
231   // If this is not an add of the PHI with a constantfp, or if the constant fp
232   // is not an integer, bail out.
233   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
234   int64_t IncValue;
235   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
236       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
237     return false;
238 
239   // Check Incr uses. One user is PN and the other user is an exit condition
240   // used by the conditional terminator.
241   Value::user_iterator IncrUse = Incr->user_begin();
242   Instruction *U1 = cast<Instruction>(*IncrUse++);
243   if (IncrUse == Incr->user_end()) return false;
244   Instruction *U2 = cast<Instruction>(*IncrUse++);
245   if (IncrUse != Incr->user_end()) return false;
246 
247   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
248   // only used by a branch, we can't transform it.
249   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
250   if (!Compare)
251     Compare = dyn_cast<FCmpInst>(U2);
252   if (!Compare || !Compare->hasOneUse() ||
253       !isa<BranchInst>(Compare->user_back()))
254     return false;
255 
256   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
257 
258   // We need to verify that the branch actually controls the iteration count
259   // of the loop.  If not, the new IV can overflow and no one will notice.
260   // The branch block must be in the loop and one of the successors must be out
261   // of the loop.
262   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
263   if (!L->contains(TheBr->getParent()) ||
264       (L->contains(TheBr->getSuccessor(0)) &&
265        L->contains(TheBr->getSuccessor(1))))
266     return false;
267 
268   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
269   // transform it.
270   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
271   int64_t ExitValue;
272   if (ExitValueVal == nullptr ||
273       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
274     return false;
275 
276   // Find new predicate for integer comparison.
277   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
278   switch (Compare->getPredicate()) {
279   default: return false;  // Unknown comparison.
280   case CmpInst::FCMP_OEQ:
281   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
282   case CmpInst::FCMP_ONE:
283   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
284   case CmpInst::FCMP_OGT:
285   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
286   case CmpInst::FCMP_OGE:
287   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
288   case CmpInst::FCMP_OLT:
289   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
290   case CmpInst::FCMP_OLE:
291   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
292   }
293 
294   // We convert the floating point induction variable to a signed i32 value if
295   // we can.  This is only safe if the comparison will not overflow in a way
296   // that won't be trapped by the integer equivalent operations.  Check for this
297   // now.
298   // TODO: We could use i64 if it is native and the range requires it.
299 
300   // The start/stride/exit values must all fit in signed i32.
301   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
302     return false;
303 
304   // If not actually striding (add x, 0.0), avoid touching the code.
305   if (IncValue == 0)
306     return false;
307 
308   // Positive and negative strides have different safety conditions.
309   if (IncValue > 0) {
310     // If we have a positive stride, we require the init to be less than the
311     // exit value.
312     if (InitValue >= ExitValue)
313       return false;
314 
315     uint32_t Range = uint32_t(ExitValue-InitValue);
316     // Check for infinite loop, either:
317     // while (i <= Exit) or until (i > Exit)
318     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
319       if (++Range == 0) return false;  // Range overflows.
320     }
321 
322     unsigned Leftover = Range % uint32_t(IncValue);
323 
324     // If this is an equality comparison, we require that the strided value
325     // exactly land on the exit value, otherwise the IV condition will wrap
326     // around and do things the fp IV wouldn't.
327     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
328         Leftover != 0)
329       return false;
330 
331     // If the stride would wrap around the i32 before exiting, we can't
332     // transform the IV.
333     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
334       return false;
335   } else {
336     // If we have a negative stride, we require the init to be greater than the
337     // exit value.
338     if (InitValue <= ExitValue)
339       return false;
340 
341     uint32_t Range = uint32_t(InitValue-ExitValue);
342     // Check for infinite loop, either:
343     // while (i >= Exit) or until (i < Exit)
344     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
345       if (++Range == 0) return false;  // Range overflows.
346     }
347 
348     unsigned Leftover = Range % uint32_t(-IncValue);
349 
350     // If this is an equality comparison, we require that the strided value
351     // exactly land on the exit value, otherwise the IV condition will wrap
352     // around and do things the fp IV wouldn't.
353     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
354         Leftover != 0)
355       return false;
356 
357     // If the stride would wrap around the i32 before exiting, we can't
358     // transform the IV.
359     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
360       return false;
361   }
362 
363   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
364 
365   // Insert new integer induction variable.
366   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
367   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
368                       PN->getIncomingBlock(IncomingEdge));
369 
370   Value *NewAdd =
371     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
372                               Incr->getName()+".int", Incr);
373   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
374 
375   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
376                                       ConstantInt::get(Int32Ty, ExitValue),
377                                       Compare->getName());
378 
379   // In the following deletions, PN may become dead and may be deleted.
380   // Use a WeakTrackingVH to observe whether this happens.
381   WeakTrackingVH WeakPH = PN;
382 
383   // Delete the old floating point exit comparison.  The branch starts using the
384   // new comparison.
385   NewCompare->takeName(Compare);
386   Compare->replaceAllUsesWith(NewCompare);
387   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
388 
389   // Delete the old floating point increment.
390   Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
391   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
392 
393   // If the FP induction variable still has uses, this is because something else
394   // in the loop uses its value.  In order to canonicalize the induction
395   // variable, we chose to eliminate the IV and rewrite it in terms of an
396   // int->fp cast.
397   //
398   // We give preference to sitofp over uitofp because it is faster on most
399   // platforms.
400   if (WeakPH) {
401     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
402                                  &*PN->getParent()->getFirstInsertionPt());
403     PN->replaceAllUsesWith(Conv);
404     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
405   }
406   return true;
407 }
408 
409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
410   // First step.  Check to see if there are any floating-point recurrences.
411   // If there are, change them into integer recurrences, permitting analysis by
412   // the SCEV routines.
413   BasicBlock *Header = L->getHeader();
414 
415   SmallVector<WeakTrackingVH, 8> PHIs;
416   for (PHINode &PN : Header->phis())
417     PHIs.push_back(&PN);
418 
419   bool Changed = false;
420   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
421     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
422       Changed |= handleFloatingPointIV(L, PN);
423 
424   // If the loop previously had floating-point IV, ScalarEvolution
425   // may not have been able to compute a trip count. Now that we've done some
426   // re-writing, the trip count may be computable.
427   if (Changed)
428     SE->forgetLoop(L);
429   return Changed;
430 }
431 
432 //===---------------------------------------------------------------------===//
433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
434 // they will exit at the first iteration.
435 //===---------------------------------------------------------------------===//
436 
437 /// Check to see if this loop has loop invariant conditions which lead to loop
438 /// exits. If so, we know that if the exit path is taken, it is at the first
439 /// loop iteration. This lets us predict exit values of PHI nodes that live in
440 /// loop header.
441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
442   // Verify the input to the pass is already in LCSSA form.
443   assert(L->isLCSSAForm(*DT));
444 
445   SmallVector<BasicBlock *, 8> ExitBlocks;
446   L->getUniqueExitBlocks(ExitBlocks);
447 
448   bool MadeAnyChanges = false;
449   for (auto *ExitBB : ExitBlocks) {
450     // If there are no more PHI nodes in this exit block, then no more
451     // values defined inside the loop are used on this path.
452     for (PHINode &PN : ExitBB->phis()) {
453       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
454            IncomingValIdx != E; ++IncomingValIdx) {
455         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
456 
457         // Can we prove that the exit must run on the first iteration if it
458         // runs at all?  (i.e. early exits are fine for our purposes, but
459         // traces which lead to this exit being taken on the 2nd iteration
460         // aren't.)  Note that this is about whether the exit branch is
461         // executed, not about whether it is taken.
462         if (!L->getLoopLatch() ||
463             !DT->dominates(IncomingBB, L->getLoopLatch()))
464           continue;
465 
466         // Get condition that leads to the exit path.
467         auto *TermInst = IncomingBB->getTerminator();
468 
469         Value *Cond = nullptr;
470         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
471           // Must be a conditional branch, otherwise the block
472           // should not be in the loop.
473           Cond = BI->getCondition();
474         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
475           Cond = SI->getCondition();
476         else
477           continue;
478 
479         if (!L->isLoopInvariant(Cond))
480           continue;
481 
482         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
483 
484         // Only deal with PHIs in the loop header.
485         if (!ExitVal || ExitVal->getParent() != L->getHeader())
486           continue;
487 
488         // If ExitVal is a PHI on the loop header, then we know its
489         // value along this exit because the exit can only be taken
490         // on the first iteration.
491         auto *LoopPreheader = L->getLoopPreheader();
492         assert(LoopPreheader && "Invalid loop");
493         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
494         if (PreheaderIdx != -1) {
495           assert(ExitVal->getParent() == L->getHeader() &&
496                  "ExitVal must be in loop header");
497           MadeAnyChanges = true;
498           PN.setIncomingValue(IncomingValIdx,
499                               ExitVal->getIncomingValue(PreheaderIdx));
500           SE->forgetValue(&PN);
501         }
502       }
503     }
504   }
505   return MadeAnyChanges;
506 }
507 
508 //===----------------------------------------------------------------------===//
509 //  IV Widening - Extend the width of an IV to cover its widest uses.
510 //===----------------------------------------------------------------------===//
511 
512 /// Update information about the induction variable that is extended by this
513 /// sign or zero extend operation. This is used to determine the final width of
514 /// the IV before actually widening it.
515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
516                         ScalarEvolution *SE,
517                         const TargetTransformInfo *TTI) {
518   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
519   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
520     return;
521 
522   Type *Ty = Cast->getType();
523   uint64_t Width = SE->getTypeSizeInBits(Ty);
524   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
525     return;
526 
527   // Check that `Cast` actually extends the induction variable (we rely on this
528   // later).  This takes care of cases where `Cast` is extending a truncation of
529   // the narrow induction variable, and thus can end up being narrower than the
530   // "narrow" induction variable.
531   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
532   if (NarrowIVWidth >= Width)
533     return;
534 
535   // Cast is either an sext or zext up to this point.
536   // We should not widen an indvar if arithmetics on the wider indvar are more
537   // expensive than those on the narrower indvar. We check only the cost of ADD
538   // because at least an ADD is required to increment the induction variable. We
539   // could compute more comprehensively the cost of all instructions on the
540   // induction variable when necessary.
541   if (TTI &&
542       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
543           TTI->getArithmeticInstrCost(Instruction::Add,
544                                       Cast->getOperand(0)->getType())) {
545     return;
546   }
547 
548   if (!WI.WidestNativeType ||
549       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
550     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
551     WI.IsSigned = IsSigned;
552     return;
553   }
554 
555   // We extend the IV to satisfy the sign of its user(s), or 'signed'
556   // if there are multiple users with both sign- and zero extensions,
557   // in order not to introduce nondeterministic behaviour based on the
558   // unspecified order of a PHI nodes' users-iterator.
559   WI.IsSigned |= IsSigned;
560 }
561 
562 //===----------------------------------------------------------------------===//
563 //  Live IV Reduction - Minimize IVs live across the loop.
564 //===----------------------------------------------------------------------===//
565 
566 //===----------------------------------------------------------------------===//
567 //  Simplification of IV users based on SCEV evaluation.
568 //===----------------------------------------------------------------------===//
569 
570 namespace {
571 
572 class IndVarSimplifyVisitor : public IVVisitor {
573   ScalarEvolution *SE;
574   const TargetTransformInfo *TTI;
575   PHINode *IVPhi;
576 
577 public:
578   WideIVInfo WI;
579 
580   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
581                         const TargetTransformInfo *TTI,
582                         const DominatorTree *DTree)
583     : SE(SCEV), TTI(TTI), IVPhi(IV) {
584     DT = DTree;
585     WI.NarrowIV = IVPhi;
586   }
587 
588   // Implement the interface used by simplifyUsersOfIV.
589   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
590 };
591 
592 } // end anonymous namespace
593 
594 /// Iteratively perform simplification on a worklist of IV users. Each
595 /// successive simplification may push more users which may themselves be
596 /// candidates for simplification.
597 ///
598 /// Sign/Zero extend elimination is interleaved with IV simplification.
599 bool IndVarSimplify::simplifyAndExtend(Loop *L,
600                                        SCEVExpander &Rewriter,
601                                        LoopInfo *LI) {
602   SmallVector<WideIVInfo, 8> WideIVs;
603 
604   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
605           Intrinsic::getName(Intrinsic::experimental_guard));
606   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
607 
608   SmallVector<PHINode *, 8> LoopPhis;
609   for (PHINode &PN : L->getHeader()->phis())
610     LoopPhis.push_back(&PN);
611 
612   // Each round of simplification iterates through the SimplifyIVUsers worklist
613   // for all current phis, then determines whether any IVs can be
614   // widened. Widening adds new phis to LoopPhis, inducing another round of
615   // simplification on the wide IVs.
616   bool Changed = false;
617   while (!LoopPhis.empty()) {
618     // Evaluate as many IV expressions as possible before widening any IVs. This
619     // forces SCEV to set no-wrap flags before evaluating sign/zero
620     // extension. The first time SCEV attempts to normalize sign/zero extension,
621     // the result becomes final. So for the most predictable results, we delay
622     // evaluation of sign/zero extend evaluation until needed, and avoid running
623     // other SCEV based analysis prior to simplifyAndExtend.
624     do {
625       PHINode *CurrIV = LoopPhis.pop_back_val();
626 
627       // Information about sign/zero extensions of CurrIV.
628       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
629 
630       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
631                                    &Visitor);
632 
633       if (Visitor.WI.WidestNativeType) {
634         WideIVs.push_back(Visitor.WI);
635       }
636     } while(!LoopPhis.empty());
637 
638     // Continue if we disallowed widening.
639     if (!WidenIndVars)
640       continue;
641 
642     for (; !WideIVs.empty(); WideIVs.pop_back()) {
643       unsigned ElimExt;
644       unsigned Widened;
645       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
646                                           DT, DeadInsts, ElimExt, Widened,
647                                           HasGuards, UsePostIncrementRanges)) {
648         NumElimExt += ElimExt;
649         NumWidened += Widened;
650         Changed = true;
651         LoopPhis.push_back(WidePhi);
652       }
653     }
654   }
655   return Changed;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
660 //===----------------------------------------------------------------------===//
661 
662 /// Given an Value which is hoped to be part of an add recurance in the given
663 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
664 /// that this is less general than SCEVs AddRec checking.
665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
666   Instruction *IncI = dyn_cast<Instruction>(IncV);
667   if (!IncI)
668     return nullptr;
669 
670   switch (IncI->getOpcode()) {
671   case Instruction::Add:
672   case Instruction::Sub:
673     break;
674   case Instruction::GetElementPtr:
675     // An IV counter must preserve its type.
676     if (IncI->getNumOperands() == 2)
677       break;
678     LLVM_FALLTHROUGH;
679   default:
680     return nullptr;
681   }
682 
683   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
684   if (Phi && Phi->getParent() == L->getHeader()) {
685     if (L->isLoopInvariant(IncI->getOperand(1)))
686       return Phi;
687     return nullptr;
688   }
689   if (IncI->getOpcode() == Instruction::GetElementPtr)
690     return nullptr;
691 
692   // Allow add/sub to be commuted.
693   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
694   if (Phi && Phi->getParent() == L->getHeader()) {
695     if (L->isLoopInvariant(IncI->getOperand(0)))
696       return Phi;
697   }
698   return nullptr;
699 }
700 
701 /// Whether the current loop exit test is based on this value.  Currently this
702 /// is limited to a direct use in the loop condition.
703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
704   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
705   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
706   // TODO: Allow non-icmp loop test.
707   if (!ICmp)
708     return false;
709 
710   // TODO: Allow indirect use.
711   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
712 }
713 
714 /// linearFunctionTestReplace policy. Return true unless we can show that the
715 /// current exit test is already sufficiently canonical.
716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
717   assert(L->getLoopLatch() && "Must be in simplified form");
718 
719   // Avoid converting a constant or loop invariant test back to a runtime
720   // test.  This is critical for when SCEV's cached ExitCount is less precise
721   // than the current IR (such as after we've proven a particular exit is
722   // actually dead and thus the BE count never reaches our ExitCount.)
723   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
724   if (L->isLoopInvariant(BI->getCondition()))
725     return false;
726 
727   // Do LFTR to simplify the exit condition to an ICMP.
728   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
729   if (!Cond)
730     return true;
731 
732   // Do LFTR to simplify the exit ICMP to EQ/NE
733   ICmpInst::Predicate Pred = Cond->getPredicate();
734   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
735     return true;
736 
737   // Look for a loop invariant RHS
738   Value *LHS = Cond->getOperand(0);
739   Value *RHS = Cond->getOperand(1);
740   if (!L->isLoopInvariant(RHS)) {
741     if (!L->isLoopInvariant(LHS))
742       return true;
743     std::swap(LHS, RHS);
744   }
745   // Look for a simple IV counter LHS
746   PHINode *Phi = dyn_cast<PHINode>(LHS);
747   if (!Phi)
748     Phi = getLoopPhiForCounter(LHS, L);
749 
750   if (!Phi)
751     return true;
752 
753   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
754   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
755   if (Idx < 0)
756     return true;
757 
758   // Do LFTR if the exit condition's IV is *not* a simple counter.
759   Value *IncV = Phi->getIncomingValue(Idx);
760   return Phi != getLoopPhiForCounter(IncV, L);
761 }
762 
763 /// Return true if undefined behavior would provable be executed on the path to
764 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
765 /// anything about whether OnPathTo is actually executed or whether Root is
766 /// actually poison.  This can be used to assess whether a new use of Root can
767 /// be added at a location which is control equivalent with OnPathTo (such as
768 /// immediately before it) without introducing UB which didn't previously
769 /// exist.  Note that a false result conveys no information.
770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
771                                           Instruction *OnPathTo,
772                                           DominatorTree *DT) {
773   // Basic approach is to assume Root is poison, propagate poison forward
774   // through all users we can easily track, and then check whether any of those
775   // users are provable UB and must execute before out exiting block might
776   // exit.
777 
778   // The set of all recursive users we've visited (which are assumed to all be
779   // poison because of said visit)
780   SmallSet<const Value *, 16> KnownPoison;
781   SmallVector<const Instruction*, 16> Worklist;
782   Worklist.push_back(Root);
783   while (!Worklist.empty()) {
784     const Instruction *I = Worklist.pop_back_val();
785 
786     // If we know this must trigger UB on a path leading our target.
787     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
788       return true;
789 
790     // If we can't analyze propagation through this instruction, just skip it
791     // and transitive users.  Safe as false is a conservative result.
792     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
793       continue;
794 
795     if (KnownPoison.insert(I).second)
796       for (const User *User : I->users())
797         Worklist.push_back(cast<Instruction>(User));
798   }
799 
800   // Might be non-UB, or might have a path we couldn't prove must execute on
801   // way to exiting bb.
802   return false;
803 }
804 
805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
806 /// down to checking that all operands are constant and listing instructions
807 /// that may hide undef.
808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
809                                unsigned Depth) {
810   if (isa<Constant>(V))
811     return !isa<UndefValue>(V);
812 
813   if (Depth >= 6)
814     return false;
815 
816   // Conservatively handle non-constant non-instructions. For example, Arguments
817   // may be undef.
818   Instruction *I = dyn_cast<Instruction>(V);
819   if (!I)
820     return false;
821 
822   // Load and return values may be undef.
823   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
824     return false;
825 
826   // Optimistically handle other instructions.
827   for (Value *Op : I->operands()) {
828     if (!Visited.insert(Op).second)
829       continue;
830     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
831       return false;
832   }
833   return true;
834 }
835 
836 /// Return true if the given value is concrete. We must prove that undef can
837 /// never reach it.
838 ///
839 /// TODO: If we decide that this is a good approach to checking for undef, we
840 /// may factor it into a common location.
841 static bool hasConcreteDef(Value *V) {
842   SmallPtrSet<Value*, 8> Visited;
843   Visited.insert(V);
844   return hasConcreteDefImpl(V, Visited, 0);
845 }
846 
847 /// Return true if this IV has any uses other than the (soon to be rewritten)
848 /// loop exit test.
849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
850   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
851   Value *IncV = Phi->getIncomingValue(LatchIdx);
852 
853   for (User *U : Phi->users())
854     if (U != Cond && U != IncV) return false;
855 
856   for (User *U : IncV->users())
857     if (U != Cond && U != Phi) return false;
858   return true;
859 }
860 
861 /// Return true if the given phi is a "counter" in L.  A counter is an
862 /// add recurance (of integer or pointer type) with an arbitrary start, and a
863 /// step of 1.  Note that L must have exactly one latch.
864 static bool isLoopCounter(PHINode* Phi, Loop *L,
865                           ScalarEvolution *SE) {
866   assert(Phi->getParent() == L->getHeader());
867   assert(L->getLoopLatch());
868 
869   if (!SE->isSCEVable(Phi->getType()))
870     return false;
871 
872   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
873   if (!AR || AR->getLoop() != L || !AR->isAffine())
874     return false;
875 
876   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
877   if (!Step || !Step->isOne())
878     return false;
879 
880   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
881   Value *IncV = Phi->getIncomingValue(LatchIdx);
882   return (getLoopPhiForCounter(IncV, L) == Phi &&
883           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
884 }
885 
886 /// Search the loop header for a loop counter (anadd rec w/step of one)
887 /// suitable for use by LFTR.  If multiple counters are available, select the
888 /// "best" one based profitable heuristics.
889 ///
890 /// BECount may be an i8* pointer type. The pointer difference is already
891 /// valid count without scaling the address stride, so it remains a pointer
892 /// expression as far as SCEV is concerned.
893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
894                                 const SCEV *BECount,
895                                 ScalarEvolution *SE, DominatorTree *DT) {
896   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
897 
898   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
899 
900   // Loop over all of the PHI nodes, looking for a simple counter.
901   PHINode *BestPhi = nullptr;
902   const SCEV *BestInit = nullptr;
903   BasicBlock *LatchBlock = L->getLoopLatch();
904   assert(LatchBlock && "Must be in simplified form");
905   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
906 
907   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
908     PHINode *Phi = cast<PHINode>(I);
909     if (!isLoopCounter(Phi, L, SE))
910       continue;
911 
912     // Avoid comparing an integer IV against a pointer Limit.
913     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
914       continue;
915 
916     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
917 
918     // AR may be a pointer type, while BECount is an integer type.
919     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
920     // AR may not be a narrower type, or we may never exit.
921     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
922     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
923       continue;
924 
925     // Avoid reusing a potentially undef value to compute other values that may
926     // have originally had a concrete definition.
927     if (!hasConcreteDef(Phi)) {
928       // We explicitly allow unknown phis as long as they are already used by
929       // the loop exit test.  This is legal since performing LFTR could not
930       // increase the number of undef users.
931       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
932       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
933           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
934         continue;
935     }
936 
937     // Avoid introducing undefined behavior due to poison which didn't exist in
938     // the original program.  (Annoyingly, the rules for poison and undef
939     // propagation are distinct, so this does NOT cover the undef case above.)
940     // We have to ensure that we don't introduce UB by introducing a use on an
941     // iteration where said IV produces poison.  Our strategy here differs for
942     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
943     // see code in linearFunctionTestReplace.  For pointers, we restrict
944     // transforms as there is no good way to reinfer inbounds once lost.
945     if (!Phi->getType()->isIntegerTy() &&
946         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
947       continue;
948 
949     const SCEV *Init = AR->getStart();
950 
951     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
952       // Don't force a live loop counter if another IV can be used.
953       if (AlmostDeadIV(Phi, LatchBlock, Cond))
954         continue;
955 
956       // Prefer to count-from-zero. This is a more "canonical" counter form. It
957       // also prefers integer to pointer IVs.
958       if (BestInit->isZero() != Init->isZero()) {
959         if (BestInit->isZero())
960           continue;
961       }
962       // If two IVs both count from zero or both count from nonzero then the
963       // narrower is likely a dead phi that has been widened. Use the wider phi
964       // to allow the other to be eliminated.
965       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
966         continue;
967     }
968     BestPhi = Phi;
969     BestInit = Init;
970   }
971   return BestPhi;
972 }
973 
974 /// Insert an IR expression which computes the value held by the IV IndVar
975 /// (which must be an loop counter w/unit stride) after the backedge of loop L
976 /// is taken ExitCount times.
977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
978                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
979                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
980   assert(isLoopCounter(IndVar, L, SE));
981   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
982   const SCEV *IVInit = AR->getStart();
983   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
984 
985   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
986   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
987   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
988   // the existing GEPs whenever possible.
989   if (IndVar->getType()->isPointerTy() &&
990       !ExitCount->getType()->isPointerTy()) {
991     // IVOffset will be the new GEP offset that is interpreted by GEP as a
992     // signed value. ExitCount on the other hand represents the loop trip count,
993     // which is an unsigned value. FindLoopCounter only allows induction
994     // variables that have a positive unit stride of one. This means we don't
995     // have to handle the case of negative offsets (yet) and just need to zero
996     // extend ExitCount.
997     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
998     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
999     if (UsePostInc)
1000       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1001 
1002     // Expand the code for the iteration count.
1003     assert(SE->isLoopInvariant(IVOffset, L) &&
1004            "Computed iteration count is not loop invariant!");
1005 
1006     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1007     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1008     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1009   } else {
1010     // In any other case, convert both IVInit and ExitCount to integers before
1011     // comparing. This may result in SCEV expansion of pointers, but in practice
1012     // SCEV will fold the pointer arithmetic away as such:
1013     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1014     //
1015     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1016     // for simple memset-style loops.
1017     //
1018     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1019     // were generated on top of case #2, which is not expected.
1020 
1021     // For unit stride, IVCount = Start + ExitCount with 2's complement
1022     // overflow.
1023 
1024     // For integer IVs, truncate the IV before computing IVInit + BECount,
1025     // unless we know apriori that the limit must be a constant when evaluated
1026     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1027     // of the IV in the loop over a (potentially) expensive expansion of the
1028     // widened exit count add(zext(add)) expression.
1029     if (SE->getTypeSizeInBits(IVInit->getType())
1030         > SE->getTypeSizeInBits(ExitCount->getType())) {
1031       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1032         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1033       else
1034         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1035     }
1036 
1037     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1038 
1039     if (UsePostInc)
1040       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1041 
1042     // Expand the code for the iteration count.
1043     assert(SE->isLoopInvariant(IVLimit, L) &&
1044            "Computed iteration count is not loop invariant!");
1045     // Ensure that we generate the same type as IndVar, or a smaller integer
1046     // type. In the presence of null pointer values, we have an integer type
1047     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1048     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1049       IndVar->getType() : ExitCount->getType();
1050     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1051     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1052   }
1053 }
1054 
1055 /// This method rewrites the exit condition of the loop to be a canonical !=
1056 /// comparison against the incremented loop induction variable.  This pass is
1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1058 /// determine a loop-invariant trip count of the loop, which is actually a much
1059 /// broader range than just linear tests.
1060 bool IndVarSimplify::
1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1062                           const SCEV *ExitCount,
1063                           PHINode *IndVar, SCEVExpander &Rewriter) {
1064   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1065   assert(isLoopCounter(IndVar, L, SE));
1066   Instruction * const IncVar =
1067     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1068 
1069   // Initialize CmpIndVar to the preincremented IV.
1070   Value *CmpIndVar = IndVar;
1071   bool UsePostInc = false;
1072 
1073   // If the exiting block is the same as the backedge block, we prefer to
1074   // compare against the post-incremented value, otherwise we must compare
1075   // against the preincremented value.
1076   if (ExitingBB == L->getLoopLatch()) {
1077     // For pointer IVs, we chose to not strip inbounds which requires us not
1078     // to add a potentially UB introducing use.  We need to either a) show
1079     // the loop test we're modifying is already in post-inc form, or b) show
1080     // that adding a use must not introduce UB.
1081     bool SafeToPostInc =
1082         IndVar->getType()->isIntegerTy() ||
1083         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1084         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1085     if (SafeToPostInc) {
1086       UsePostInc = true;
1087       CmpIndVar = IncVar;
1088     }
1089   }
1090 
1091   // It may be necessary to drop nowrap flags on the incrementing instruction
1092   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1093   // case the increment might have previously been poison on the last iteration
1094   // only) or if LFTR switches to a different IV that was previously dynamically
1095   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1096   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1097   // check), because the pre-inc addrec flags may be adopted from the original
1098   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1099   // TODO: This handling is inaccurate for one case: If we switch to a
1100   // dynamically dead IV that wraps on the first loop iteration only, which is
1101   // not covered by the post-inc addrec. (If the new IV was not dynamically
1102   // dead, it could not be poison on the first iteration in the first place.)
1103   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1104     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1105     if (BO->hasNoUnsignedWrap())
1106       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1107     if (BO->hasNoSignedWrap())
1108       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1109   }
1110 
1111   Value *ExitCnt = genLoopLimit(
1112       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1113   assert(ExitCnt->getType()->isPointerTy() ==
1114              IndVar->getType()->isPointerTy() &&
1115          "genLoopLimit missed a cast");
1116 
1117   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1118   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1119   ICmpInst::Predicate P;
1120   if (L->contains(BI->getSuccessor(0)))
1121     P = ICmpInst::ICMP_NE;
1122   else
1123     P = ICmpInst::ICMP_EQ;
1124 
1125   IRBuilder<> Builder(BI);
1126 
1127   // The new loop exit condition should reuse the debug location of the
1128   // original loop exit condition.
1129   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1130     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1131 
1132   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1133   // avoid the expensive expansion of the limit expression in the wider type,
1134   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1135   // since we know (from the exit count bitwidth), that we can't self-wrap in
1136   // the narrower type.
1137   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1138   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1139   if (CmpIndVarSize > ExitCntSize) {
1140     assert(!CmpIndVar->getType()->isPointerTy() &&
1141            !ExitCnt->getType()->isPointerTy());
1142 
1143     // Before resorting to actually inserting the truncate, use the same
1144     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1145     // the other side of the comparison instead.  We still evaluate the limit
1146     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1147     // a truncate within in.
1148     bool Extended = false;
1149     const SCEV *IV = SE->getSCEV(CmpIndVar);
1150     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1151                                                   ExitCnt->getType());
1152     const SCEV *ZExtTrunc =
1153       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1154 
1155     if (ZExtTrunc == IV) {
1156       Extended = true;
1157       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1158                                    "wide.trip.count");
1159     } else {
1160       const SCEV *SExtTrunc =
1161         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1162       if (SExtTrunc == IV) {
1163         Extended = true;
1164         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1165                                      "wide.trip.count");
1166       }
1167     }
1168 
1169     if (Extended) {
1170       bool Discard;
1171       L->makeLoopInvariant(ExitCnt, Discard);
1172     } else
1173       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1174                                       "lftr.wideiv");
1175   }
1176   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1177                     << "      LHS:" << *CmpIndVar << '\n'
1178                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1179                     << "\n"
1180                     << "      RHS:\t" << *ExitCnt << "\n"
1181                     << "ExitCount:\t" << *ExitCount << "\n"
1182                     << "  was: " << *BI->getCondition() << "\n");
1183 
1184   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1185   Value *OrigCond = BI->getCondition();
1186   // It's tempting to use replaceAllUsesWith here to fully replace the old
1187   // comparison, but that's not immediately safe, since users of the old
1188   // comparison may not be dominated by the new comparison. Instead, just
1189   // update the branch to use the new comparison; in the common case this
1190   // will make old comparison dead.
1191   BI->setCondition(Cond);
1192   DeadInsts.emplace_back(OrigCond);
1193 
1194   ++NumLFTR;
1195   return true;
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1200 //===----------------------------------------------------------------------===//
1201 
1202 /// If there's a single exit block, sink any loop-invariant values that
1203 /// were defined in the preheader but not used inside the loop into the
1204 /// exit block to reduce register pressure in the loop.
1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1206   BasicBlock *ExitBlock = L->getExitBlock();
1207   if (!ExitBlock) return false;
1208 
1209   BasicBlock *Preheader = L->getLoopPreheader();
1210   if (!Preheader) return false;
1211 
1212   bool MadeAnyChanges = false;
1213   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1214   BasicBlock::iterator I(Preheader->getTerminator());
1215   while (I != Preheader->begin()) {
1216     --I;
1217     // New instructions were inserted at the end of the preheader.
1218     if (isa<PHINode>(I))
1219       break;
1220 
1221     // Don't move instructions which might have side effects, since the side
1222     // effects need to complete before instructions inside the loop.  Also don't
1223     // move instructions which might read memory, since the loop may modify
1224     // memory. Note that it's okay if the instruction might have undefined
1225     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1226     // block.
1227     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1228       continue;
1229 
1230     // Skip debug info intrinsics.
1231     if (isa<DbgInfoIntrinsic>(I))
1232       continue;
1233 
1234     // Skip eh pad instructions.
1235     if (I->isEHPad())
1236       continue;
1237 
1238     // Don't sink alloca: we never want to sink static alloca's out of the
1239     // entry block, and correctly sinking dynamic alloca's requires
1240     // checks for stacksave/stackrestore intrinsics.
1241     // FIXME: Refactor this check somehow?
1242     if (isa<AllocaInst>(I))
1243       continue;
1244 
1245     // Determine if there is a use in or before the loop (direct or
1246     // otherwise).
1247     bool UsedInLoop = false;
1248     for (Use &U : I->uses()) {
1249       Instruction *User = cast<Instruction>(U.getUser());
1250       BasicBlock *UseBB = User->getParent();
1251       if (PHINode *P = dyn_cast<PHINode>(User)) {
1252         unsigned i =
1253           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1254         UseBB = P->getIncomingBlock(i);
1255       }
1256       if (UseBB == Preheader || L->contains(UseBB)) {
1257         UsedInLoop = true;
1258         break;
1259       }
1260     }
1261 
1262     // If there is, the def must remain in the preheader.
1263     if (UsedInLoop)
1264       continue;
1265 
1266     // Otherwise, sink it to the exit block.
1267     Instruction *ToMove = &*I;
1268     bool Done = false;
1269 
1270     if (I != Preheader->begin()) {
1271       // Skip debug info intrinsics.
1272       do {
1273         --I;
1274       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1275 
1276       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1277         Done = true;
1278     } else {
1279       Done = true;
1280     }
1281 
1282     MadeAnyChanges = true;
1283     ToMove->moveBefore(*ExitBlock, InsertPt);
1284     if (Done) break;
1285     InsertPt = ToMove->getIterator();
1286   }
1287 
1288   return MadeAnyChanges;
1289 }
1290 
1291 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1292                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1293   auto *OldCond = BI->getCondition();
1294   BI->setCondition(NewCond);
1295   if (OldCond->use_empty())
1296     DeadInsts.emplace_back(OldCond);
1297 }
1298 
1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1300                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1301   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1302   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1303   auto *OldCond = BI->getCondition();
1304   auto *NewCond =
1305       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1306   replaceExitCond(BI, NewCond, DeadInsts);
1307 }
1308 
1309 static void replaceLoopPHINodesWithPreheaderValues(
1310     Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1311   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1312   auto *LoopPreheader = L->getLoopPreheader();
1313   auto *LoopHeader = L->getHeader();
1314   SmallVector<Instruction *> Worklist;
1315   for (auto &PN : LoopHeader->phis()) {
1316     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1317     for (User *U : PN.users())
1318       Worklist.push_back(cast<Instruction>(U));
1319     PN.replaceAllUsesWith(PreheaderIncoming);
1320     DeadInsts.emplace_back(&PN);
1321   }
1322 
1323   // Replacing with the preheader value will often allow IV users to simplify
1324   // (especially if the preheader value is a constant).
1325   SmallPtrSet<Instruction *, 16> Visited;
1326   while (!Worklist.empty()) {
1327     auto *I = cast<Instruction>(Worklist.pop_back_val());
1328     if (!Visited.insert(I).second)
1329       continue;
1330 
1331     // Don't simplify instructions outside the loop.
1332     if (!L->contains(I))
1333       continue;
1334 
1335     if (Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout())) {
1336       for (User *U : I->users())
1337         Worklist.push_back(cast<Instruction>(U));
1338       I->replaceAllUsesWith(Res);
1339       DeadInsts.emplace_back(I);
1340     }
1341   }
1342 }
1343 
1344 static void replaceWithInvariantCond(
1345     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1346     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1347     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1348   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1349   Rewriter.setInsertPoint(BI);
1350   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1351   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1352   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1353   if (ExitIfTrue)
1354     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1355   IRBuilder<> Builder(BI);
1356   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1357                                      BI->getCondition()->getName());
1358   replaceExitCond(BI, NewCond, DeadInsts);
1359 }
1360 
1361 static bool optimizeLoopExitWithUnknownExitCount(
1362     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1363     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1364     ScalarEvolution *SE, SCEVExpander &Rewriter,
1365     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1366   ICmpInst::Predicate Pred;
1367   Value *LHS, *RHS;
1368   BasicBlock *TrueSucc, *FalseSucc;
1369   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1370                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1371     return false;
1372 
1373   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1374          "Not a loop exit!");
1375 
1376   // 'LHS pred RHS' should now mean that we stay in loop.
1377   if (L->contains(FalseSucc))
1378     Pred = CmpInst::getInversePredicate(Pred);
1379 
1380   // If we are proving loop exit, invert the predicate.
1381   if (Inverted)
1382     Pred = CmpInst::getInversePredicate(Pred);
1383 
1384   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1385   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1386   // Can we prove it to be trivially true?
1387   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1388     foldExit(L, ExitingBB, Inverted, DeadInsts);
1389     return true;
1390   }
1391   // Further logic works for non-inverted condition only.
1392   if (Inverted)
1393     return false;
1394 
1395   auto *ARTy = LHSS->getType();
1396   auto *MaxIterTy = MaxIter->getType();
1397   // If possible, adjust types.
1398   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1399     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1400   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1401     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1402     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1403     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1404       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1405   }
1406 
1407   if (SkipLastIter) {
1408     const SCEV *One = SE->getOne(MaxIter->getType());
1409     MaxIter = SE->getMinusSCEV(MaxIter, One);
1410   }
1411 
1412   // Check if there is a loop-invariant predicate equivalent to our check.
1413   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1414                                                                L, BI, MaxIter);
1415   if (!LIP)
1416     return false;
1417 
1418   // Can we prove it to be trivially true?
1419   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1420     foldExit(L, ExitingBB, Inverted, DeadInsts);
1421   else
1422     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1423                              Rewriter, DeadInsts);
1424 
1425   return true;
1426 }
1427 
1428 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1429   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1430   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1431   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1432   // it already has flags.  The alternative to this would be to extending the
1433   // set of "interesting" IV users to include the icmp, but doing that
1434   // regresses results in practice by querying SCEVs before trip counts which
1435   // rely on them which results in SCEV caching sub-optimal answers.  The
1436   // concern about caching sub-optimal results is why we only query SCEVs of
1437   // the loop invariant RHS here.
1438   SmallVector<BasicBlock*, 16> ExitingBlocks;
1439   L->getExitingBlocks(ExitingBlocks);
1440   bool Changed = false;
1441   for (auto *ExitingBB : ExitingBlocks) {
1442     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1443     if (!BI)
1444       continue;
1445     assert(BI->isConditional() && "exit branch must be conditional");
1446 
1447     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1448     if (!ICmp || !ICmp->hasOneUse())
1449       continue;
1450 
1451     auto *LHS = ICmp->getOperand(0);
1452     auto *RHS = ICmp->getOperand(1);
1453     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1454     // poisoning cache with sub-optimal results.  For the must-execute case,
1455     // this is a neccessary precondition for correctness.
1456     if (!L->isLoopInvariant(RHS)) {
1457       if (!L->isLoopInvariant(LHS))
1458         continue;
1459       // Same logic applies for the inverse case
1460       std::swap(LHS, RHS);
1461     }
1462 
1463     // Match (icmp signed-cond zext, RHS)
1464     Value *LHSOp = nullptr;
1465     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1466       continue;
1467 
1468     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1469     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1470     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1471     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1472     FullCR = FullCR.zeroExtend(OuterBitWidth);
1473     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1474     if (FullCR.contains(RHSCR)) {
1475       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1476       // replace the signed condition with the unsigned version.
1477       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1478       Changed = true;
1479       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1480       // have not changed exit counts, or the values produced by the compare.
1481       continue;
1482     }
1483   }
1484 
1485   // Now that we've canonicalized the condition to match the extend,
1486   // see if we can rotate the extend out of the loop.
1487   for (auto *ExitingBB : ExitingBlocks) {
1488     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1489     if (!BI)
1490       continue;
1491     assert(BI->isConditional() && "exit branch must be conditional");
1492 
1493     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1494     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1495       continue;
1496 
1497     bool Swapped = false;
1498     auto *LHS = ICmp->getOperand(0);
1499     auto *RHS = ICmp->getOperand(1);
1500     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1501       // Nothing to rotate
1502       continue;
1503     if (L->isLoopInvariant(LHS)) {
1504       // Same logic applies for the inverse case until we actually pick
1505       // which operand of the compare to update.
1506       Swapped = true;
1507       std::swap(LHS, RHS);
1508     }
1509     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1510 
1511     // Match (icmp unsigned-cond zext, RHS)
1512     // TODO: Extend to handle corresponding sext/signed-cmp case
1513     // TODO: Extend to other invertible functions
1514     Value *LHSOp = nullptr;
1515     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1516       continue;
1517 
1518     // In general, we only rotate if we can do so without increasing the number
1519     // of instructions.  The exception is when we have an zext(add-rec).  The
1520     // reason for allowing this exception is that we know we need to get rid
1521     // of the zext for SCEV to be able to compute a trip count for said loops;
1522     // we consider the new trip count valuable enough to increase instruction
1523     // count by one.
1524     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1525       continue;
1526 
1527     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1528     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1529     // when zext is loop varying and RHS is loop invariant.  This converts
1530     // loop varying work to loop-invariant work.
1531     auto doRotateTransform = [&]() {
1532       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1533       auto *NewRHS =
1534         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1535                          L->getLoopPreheader()->getTerminator());
1536       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1537       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1538       if (LHS->use_empty())
1539         DeadInsts.push_back(LHS);
1540     };
1541 
1542 
1543     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1544     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1545     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1546     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1547     FullCR = FullCR.zeroExtend(OuterBitWidth);
1548     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1549     if (FullCR.contains(RHSCR)) {
1550       doRotateTransform();
1551       Changed = true;
1552       // Note, we are leaving SCEV in an unfortunately imprecise case here
1553       // as rotation tends to reveal information about trip counts not
1554       // previously visible.
1555       continue;
1556     }
1557   }
1558 
1559   return Changed;
1560 }
1561 
1562 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1563   SmallVector<BasicBlock*, 16> ExitingBlocks;
1564   L->getExitingBlocks(ExitingBlocks);
1565 
1566   // Remove all exits which aren't both rewriteable and execute on every
1567   // iteration.
1568   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1569     // If our exitting block exits multiple loops, we can only rewrite the
1570     // innermost one.  Otherwise, we're changing how many times the innermost
1571     // loop runs before it exits.
1572     if (LI->getLoopFor(ExitingBB) != L)
1573       return true;
1574 
1575     // Can't rewrite non-branch yet.
1576     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1577     if (!BI)
1578       return true;
1579 
1580     // Likewise, the loop latch must be dominated by the exiting BB.
1581     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1582       return true;
1583 
1584     if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1585       // If already constant, nothing to do. However, if this is an
1586       // unconditional exit, we can still replace header phis with their
1587       // preheader value.
1588       if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1589         replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1590       return true;
1591     }
1592 
1593     return false;
1594   });
1595 
1596   if (ExitingBlocks.empty())
1597     return false;
1598 
1599   // Get a symbolic upper bound on the loop backedge taken count.
1600   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1601   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1602     return false;
1603 
1604   // Visit our exit blocks in order of dominance. We know from the fact that
1605   // all exits must dominate the latch, so there is a total dominance order
1606   // between them.
1607   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1608                // std::sort sorts in ascending order, so we want the inverse of
1609                // the normal dominance relation.
1610                if (A == B) return false;
1611                if (DT->properlyDominates(A, B))
1612                  return true;
1613                else {
1614                  assert(DT->properlyDominates(B, A) &&
1615                         "expected total dominance order!");
1616                  return false;
1617                }
1618   });
1619 #ifdef ASSERT
1620   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1621     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1622   }
1623 #endif
1624 
1625   bool Changed = false;
1626   bool SkipLastIter = false;
1627   SmallSet<const SCEV*, 8> DominatingExitCounts;
1628   for (BasicBlock *ExitingBB : ExitingBlocks) {
1629     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1630     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1631       // Okay, we do not know the exit count here. Can we at least prove that it
1632       // will remain the same within iteration space?
1633       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1634       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1635         return optimizeLoopExitWithUnknownExitCount(
1636             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1637             Rewriter, DeadInsts);
1638       };
1639 
1640       // TODO: We might have proved that we can skip the last iteration for
1641       // this check. In this case, we only want to check the condition on the
1642       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1643       // corner case:
1644       //
1645       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1646       //
1647       // If we could not prove that len != 0, then we also could not prove that
1648       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1649       // OptimizeCond will likely not prove anything for it, even if it could
1650       // prove the same fact for len.
1651       //
1652       // As a temporary solution, we query both last and pre-last iterations in
1653       // hope that we will be able to prove triviality for at least one of
1654       // them. We can stop querying MaxExitCount for this case once SCEV
1655       // understands that (MaxExitCount - 1) will not overflow here.
1656       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1657         Changed = true;
1658       else if (SkipLastIter)
1659         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1660           Changed = true;
1661       continue;
1662     }
1663 
1664     if (MaxExitCount == ExitCount)
1665       // If the loop has more than 1 iteration, all further checks will be
1666       // executed 1 iteration less.
1667       SkipLastIter = true;
1668 
1669     // If we know we'd exit on the first iteration, rewrite the exit to
1670     // reflect this.  This does not imply the loop must exit through this
1671     // exit; there may be an earlier one taken on the first iteration.
1672     // We know that the backedge can't be taken, so we replace all
1673     // the header PHIs with values coming from the preheader.
1674     if (ExitCount->isZero()) {
1675       foldExit(L, ExitingBB, true, DeadInsts);
1676       replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1677       Changed = true;
1678       continue;
1679     }
1680 
1681     assert(ExitCount->getType()->isIntegerTy() &&
1682            MaxExitCount->getType()->isIntegerTy() &&
1683            "Exit counts must be integers");
1684 
1685     Type *WiderType =
1686       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1687     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1688     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1689     assert(MaxExitCount->getType() == ExitCount->getType());
1690 
1691     // Can we prove that some other exit must be taken strictly before this
1692     // one?
1693     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1694                                      MaxExitCount, ExitCount)) {
1695       foldExit(L, ExitingBB, false, DeadInsts);
1696       Changed = true;
1697       continue;
1698     }
1699 
1700     // As we run, keep track of which exit counts we've encountered.  If we
1701     // find a duplicate, we've found an exit which would have exited on the
1702     // exiting iteration, but (from the visit order) strictly follows another
1703     // which does the same and is thus dead.
1704     if (!DominatingExitCounts.insert(ExitCount).second) {
1705       foldExit(L, ExitingBB, false, DeadInsts);
1706       Changed = true;
1707       continue;
1708     }
1709 
1710     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1711     // here.  If we kept track of the min of dominanting exits so far, we could
1712     // discharge exits with EC >= MDEC. This is less powerful than the existing
1713     // transform (since later exits aren't considered), but potentially more
1714     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1715     // or a >u b.  Such a case is not currently known.
1716   }
1717   return Changed;
1718 }
1719 
1720 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1721   SmallVector<BasicBlock*, 16> ExitingBlocks;
1722   L->getExitingBlocks(ExitingBlocks);
1723 
1724   // Finally, see if we can rewrite our exit conditions into a loop invariant
1725   // form. If we have a read-only loop, and we can tell that we must exit down
1726   // a path which does not need any of the values computed within the loop, we
1727   // can rewrite the loop to exit on the first iteration.  Note that this
1728   // doesn't either a) tell us the loop exits on the first iteration (unless
1729   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1730   // This transformation looks a lot like a restricted form of dead loop
1731   // elimination, but restricted to read-only loops and without neccesssarily
1732   // needing to kill the loop entirely.
1733   if (!LoopPredication)
1734     return false;
1735 
1736   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1737   // through *explicit* control flow.  We have to eliminate the possibility of
1738   // implicit exits (see below) before we know it's truly exact.
1739   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1740   if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE))
1741     return false;
1742 
1743   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1744   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1745 
1746   auto BadExit = [&](BasicBlock *ExitingBB) {
1747     // If our exiting block exits multiple loops, we can only rewrite the
1748     // innermost one.  Otherwise, we're changing how many times the innermost
1749     // loop runs before it exits.
1750     if (LI->getLoopFor(ExitingBB) != L)
1751       return true;
1752 
1753     // Can't rewrite non-branch yet.
1754     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1755     if (!BI)
1756       return true;
1757 
1758     // If already constant, nothing to do.
1759     if (isa<Constant>(BI->getCondition()))
1760       return true;
1761 
1762     // If the exit block has phis, we need to be able to compute the values
1763     // within the loop which contains them.  This assumes trivially lcssa phis
1764     // have already been removed; TODO: generalize
1765     BasicBlock *ExitBlock =
1766     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1767     if (!ExitBlock->phis().empty())
1768       return true;
1769 
1770     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1771     if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE))
1772       return true;
1773 
1774     assert(SE->isLoopInvariant(ExitCount, L) &&
1775            "Exit count must be loop invariant");
1776     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1777     return false;
1778   };
1779 
1780   // If we have any exits which can't be predicated themselves, than we can't
1781   // predicate any exit which isn't guaranteed to execute before it.  Consider
1782   // two exits (a) and (b) which would both exit on the same iteration.  If we
1783   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1784   // we could convert a loop from exiting through (a) to one exiting through
1785   // (b).  Note that this problem exists only for exits with the same exit
1786   // count, and we could be more aggressive when exit counts are known inequal.
1787   llvm::sort(ExitingBlocks,
1788             [&](BasicBlock *A, BasicBlock *B) {
1789               // std::sort sorts in ascending order, so we want the inverse of
1790               // the normal dominance relation, plus a tie breaker for blocks
1791               // unordered by dominance.
1792               if (DT->properlyDominates(A, B)) return true;
1793               if (DT->properlyDominates(B, A)) return false;
1794               return A->getName() < B->getName();
1795             });
1796   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1797   // exits before the backedge).  If they aren't, reasoning about reachability
1798   // is complicated and we choose not to for now.
1799   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1800     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1801       return false;
1802 
1803   // Given our sorted total order, we know that exit[j] must be evaluated
1804   // after all exit[i] such j > i.
1805   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1806     if (BadExit(ExitingBlocks[i])) {
1807       ExitingBlocks.resize(i);
1808       break;
1809     }
1810 
1811   if (ExitingBlocks.empty())
1812     return false;
1813 
1814   // We rely on not being able to reach an exiting block on a later iteration
1815   // then it's statically compute exit count.  The implementaton of
1816   // getExitCount currently has this invariant, but assert it here so that
1817   // breakage is obvious if this ever changes..
1818   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1819         return DT->dominates(ExitingBB, L->getLoopLatch());
1820       }));
1821 
1822   // At this point, ExitingBlocks consists of only those blocks which are
1823   // predicatable.  Given that, we know we have at least one exit we can
1824   // predicate if the loop is doesn't have side effects and doesn't have any
1825   // implicit exits (because then our exact BTC isn't actually exact).
1826   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1827   // suggestions on how to improve this?  I can obviously bail out for outer
1828   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1829   // is that enough for *all* side effects?
1830   for (BasicBlock *BB : L->blocks())
1831     for (auto &I : *BB)
1832       // TODO:isGuaranteedToTransfer
1833       if (I.mayHaveSideEffects())
1834         return false;
1835 
1836   bool Changed = false;
1837   // Finally, do the actual predication for all predicatable blocks.  A couple
1838   // of notes here:
1839   // 1) We don't bother to constant fold dominated exits with identical exit
1840   //    counts; that's simply a form of CSE/equality propagation and we leave
1841   //    it for dedicated passes.
1842   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1843   //    legality constraints and we leave that to dedicated logic.  We want to
1844   //    predicate even if we can't insert a loop invariant expression as
1845   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1846   //    varying check.
1847   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1848   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1849   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1850   for (BasicBlock *ExitingBB : ExitingBlocks) {
1851     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1852 
1853     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1854     Value *NewCond;
1855     if (ExitCount == ExactBTC) {
1856       NewCond = L->contains(BI->getSuccessor(0)) ?
1857         B.getFalse() : B.getTrue();
1858     } else {
1859       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1860       if (!ExactBTCV)
1861         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1862       Value *RHS = ExactBTCV;
1863       if (ECV->getType() != RHS->getType()) {
1864         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1865         ECV = B.CreateZExt(ECV, WiderTy);
1866         RHS = B.CreateZExt(RHS, WiderTy);
1867       }
1868       auto Pred = L->contains(BI->getSuccessor(0)) ?
1869         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1870       NewCond = B.CreateICmp(Pred, ECV, RHS);
1871     }
1872     Value *OldCond = BI->getCondition();
1873     BI->setCondition(NewCond);
1874     if (OldCond->use_empty())
1875       DeadInsts.emplace_back(OldCond);
1876     Changed = true;
1877   }
1878 
1879   return Changed;
1880 }
1881 
1882 //===----------------------------------------------------------------------===//
1883 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1884 //===----------------------------------------------------------------------===//
1885 
1886 bool IndVarSimplify::run(Loop *L) {
1887   // We need (and expect!) the incoming loop to be in LCSSA.
1888   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1889          "LCSSA required to run indvars!");
1890 
1891   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1892   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1893   //    canonicalization can be a pessimization without LSR to "clean up"
1894   //    afterwards.
1895   //  - We depend on having a preheader; in particular,
1896   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1897   //    and we're in trouble if we can't find the induction variable even when
1898   //    we've manually inserted one.
1899   //  - LFTR relies on having a single backedge.
1900   if (!L->isLoopSimplifyForm())
1901     return false;
1902 
1903 #ifndef NDEBUG
1904   // Used below for a consistency check only
1905   // Note: Since the result returned by ScalarEvolution may depend on the order
1906   // in which previous results are added to its cache, the call to
1907   // getBackedgeTakenCount() may change following SCEV queries.
1908   const SCEV *BackedgeTakenCount;
1909   if (VerifyIndvars)
1910     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1911 #endif
1912 
1913   bool Changed = false;
1914   // If there are any floating-point recurrences, attempt to
1915   // transform them to use integer recurrences.
1916   Changed |= rewriteNonIntegerIVs(L);
1917 
1918   // Create a rewriter object which we'll use to transform the code with.
1919   SCEVExpander Rewriter(*SE, DL, "indvars");
1920 #ifndef NDEBUG
1921   Rewriter.setDebugType(DEBUG_TYPE);
1922 #endif
1923 
1924   // Eliminate redundant IV users.
1925   //
1926   // Simplification works best when run before other consumers of SCEV. We
1927   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1928   // other expressions involving loop IVs have been evaluated. This helps SCEV
1929   // set no-wrap flags before normalizing sign/zero extension.
1930   Rewriter.disableCanonicalMode();
1931   Changed |= simplifyAndExtend(L, Rewriter, LI);
1932 
1933   // Check to see if we can compute the final value of any expressions
1934   // that are recurrent in the loop, and substitute the exit values from the
1935   // loop into any instructions outside of the loop that use the final values
1936   // of the current expressions.
1937   if (ReplaceExitValue != NeverRepl) {
1938     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1939                                              ReplaceExitValue, DeadInsts)) {
1940       NumReplaced += Rewrites;
1941       Changed = true;
1942     }
1943   }
1944 
1945   // Eliminate redundant IV cycles.
1946   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1947 
1948   // Try to convert exit conditions to unsigned and rotate computation
1949   // out of the loop.  Note: Handles invalidation internally if needed.
1950   Changed |= canonicalizeExitCondition(L);
1951 
1952   // Try to eliminate loop exits based on analyzeable exit counts
1953   if (optimizeLoopExits(L, Rewriter))  {
1954     Changed = true;
1955     // Given we've changed exit counts, notify SCEV
1956     // Some nested loops may share same folded exit basic block,
1957     // thus we need to notify top most loop.
1958     SE->forgetTopmostLoop(L);
1959   }
1960 
1961   // Try to form loop invariant tests for loop exits by changing how many
1962   // iterations of the loop run when that is unobservable.
1963   if (predicateLoopExits(L, Rewriter)) {
1964     Changed = true;
1965     // Given we've changed exit counts, notify SCEV
1966     SE->forgetLoop(L);
1967   }
1968 
1969   // If we have a trip count expression, rewrite the loop's exit condition
1970   // using it.
1971   if (!DisableLFTR) {
1972     BasicBlock *PreHeader = L->getLoopPreheader();
1973 
1974     SmallVector<BasicBlock*, 16> ExitingBlocks;
1975     L->getExitingBlocks(ExitingBlocks);
1976     for (BasicBlock *ExitingBB : ExitingBlocks) {
1977       // Can't rewrite non-branch yet.
1978       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1979         continue;
1980 
1981       // If our exitting block exits multiple loops, we can only rewrite the
1982       // innermost one.  Otherwise, we're changing how many times the innermost
1983       // loop runs before it exits.
1984       if (LI->getLoopFor(ExitingBB) != L)
1985         continue;
1986 
1987       if (!needsLFTR(L, ExitingBB))
1988         continue;
1989 
1990       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1991       if (isa<SCEVCouldNotCompute>(ExitCount))
1992         continue;
1993 
1994       // This was handled above, but as we form SCEVs, we can sometimes refine
1995       // existing ones; this allows exit counts to be folded to zero which
1996       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1997       // until stable to handle cases like this better.
1998       if (ExitCount->isZero())
1999         continue;
2000 
2001       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2002       if (!IndVar)
2003         continue;
2004 
2005       // Avoid high cost expansions.  Note: This heuristic is questionable in
2006       // that our definition of "high cost" is not exactly principled.
2007       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
2008                                        TTI, PreHeader->getTerminator()))
2009         continue;
2010 
2011       // Check preconditions for proper SCEVExpander operation. SCEV does not
2012       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2013       // any pass that uses the SCEVExpander must do it. This does not work
2014       // well for loop passes because SCEVExpander makes assumptions about
2015       // all loops, while LoopPassManager only forces the current loop to be
2016       // simplified.
2017       //
2018       // FIXME: SCEV expansion has no way to bail out, so the caller must
2019       // explicitly check any assumptions made by SCEV. Brittle.
2020       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2021       if (!AR || AR->getLoop()->getLoopPreheader())
2022         Changed |= linearFunctionTestReplace(L, ExitingBB,
2023                                              ExitCount, IndVar,
2024                                              Rewriter);
2025     }
2026   }
2027   // Clear the rewriter cache, because values that are in the rewriter's cache
2028   // can be deleted in the loop below, causing the AssertingVH in the cache to
2029   // trigger.
2030   Rewriter.clear();
2031 
2032   // Now that we're done iterating through lists, clean up any instructions
2033   // which are now dead.
2034   while (!DeadInsts.empty()) {
2035     Value *V = DeadInsts.pop_back_val();
2036 
2037     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2038       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2039     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2040       Changed |=
2041           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2042   }
2043 
2044   // The Rewriter may not be used from this point on.
2045 
2046   // Loop-invariant instructions in the preheader that aren't used in the
2047   // loop may be sunk below the loop to reduce register pressure.
2048   Changed |= sinkUnusedInvariants(L);
2049 
2050   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2051   // trip count and therefore can further simplify exit values in addition to
2052   // rewriteLoopExitValues.
2053   Changed |= rewriteFirstIterationLoopExitValues(L);
2054 
2055   // Clean up dead instructions.
2056   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2057 
2058   // Check a post-condition.
2059   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2060          "Indvars did not preserve LCSSA!");
2061 
2062   // Verify that LFTR, and any other change have not interfered with SCEV's
2063   // ability to compute trip count.  We may have *changed* the exit count, but
2064   // only by reducing it.
2065 #ifndef NDEBUG
2066   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2067     SE->forgetLoop(L);
2068     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2069     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2070         SE->getTypeSizeInBits(NewBECount->getType()))
2071       NewBECount = SE->getTruncateOrNoop(NewBECount,
2072                                          BackedgeTakenCount->getType());
2073     else
2074       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2075                                                  NewBECount->getType());
2076     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2077                                  NewBECount) && "indvars must preserve SCEV");
2078   }
2079   if (VerifyMemorySSA && MSSAU)
2080     MSSAU->getMemorySSA()->verifyMemorySSA();
2081 #endif
2082 
2083   return Changed;
2084 }
2085 
2086 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2087                                           LoopStandardAnalysisResults &AR,
2088                                           LPMUpdater &) {
2089   Function *F = L.getHeader()->getParent();
2090   const DataLayout &DL = F->getParent()->getDataLayout();
2091 
2092   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2093                      WidenIndVars && AllowIVWidening);
2094   if (!IVS.run(&L))
2095     return PreservedAnalyses::all();
2096 
2097   auto PA = getLoopPassPreservedAnalyses();
2098   PA.preserveSet<CFGAnalyses>();
2099   if (AR.MSSA)
2100     PA.preserve<MemorySSAAnalysis>();
2101   return PA;
2102 }
2103 
2104 namespace {
2105 
2106 struct IndVarSimplifyLegacyPass : public LoopPass {
2107   static char ID; // Pass identification, replacement for typeid
2108 
2109   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2110     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2111   }
2112 
2113   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2114     if (skipLoop(L))
2115       return false;
2116 
2117     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2118     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2119     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2120     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2121     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2122     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2123     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2124     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2125     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2126     MemorySSA *MSSA = nullptr;
2127     if (MSSAAnalysis)
2128       MSSA = &MSSAAnalysis->getMSSA();
2129 
2130     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2131     return IVS.run(L);
2132   }
2133 
2134   void getAnalysisUsage(AnalysisUsage &AU) const override {
2135     AU.setPreservesCFG();
2136     AU.addPreserved<MemorySSAWrapperPass>();
2137     getLoopAnalysisUsage(AU);
2138   }
2139 };
2140 
2141 } // end anonymous namespace
2142 
2143 char IndVarSimplifyLegacyPass::ID = 0;
2144 
2145 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2146                       "Induction Variable Simplification", false, false)
2147 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2148 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2149                     "Induction Variable Simplification", false, false)
2150 
2151 Pass *llvm::createIndVarSimplifyPass() {
2152   return new IndVarSimplifyLegacyPass();
2153 }
2154