xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision a996cc217cefb9071888de38c6f05e5742d0106f)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/MemorySSAUpdater.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
41 #include "llvm/Analysis/TargetLibraryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/Analysis/ValueTracking.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/ConstantRange.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PassManager.h"
61 #include "llvm/IR/PatternMatch.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Scalar.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Transforms/Utils/LoopUtils.h"
79 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
80 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
81 #include <cassert>
82 #include <cstdint>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100     "verify-indvars", cl::Hidden,
101     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
102              "effect in release builds. (Note: this adds additional SCEV "
103              "queries potentially changing the analysis result)"));
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(
109         clEnumValN(NeverRepl, "never", "never replace exit value"),
110         clEnumValN(OnlyCheapRepl, "cheap",
111                    "only replace exit value when the cost is cheap"),
112         clEnumValN(
113             UnusedIndVarInLoop, "unusedindvarinloop",
114             "only replace exit value when it is an unused "
115             "induction variable in the loop and has cheap replacement cost"),
116         clEnumValN(NoHardUse, "noharduse",
117                    "only replace exit values when loop def likely dead"),
118         clEnumValN(AlwaysRepl, "always",
119                    "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 class IndVarSimplify {
141   LoopInfo *LI;
142   ScalarEvolution *SE;
143   DominatorTree *DT;
144   const DataLayout &DL;
145   TargetLibraryInfo *TLI;
146   const TargetTransformInfo *TTI;
147   std::unique_ptr<MemorySSAUpdater> MSSAU;
148 
149   SmallVector<WeakTrackingVH, 16> DeadInsts;
150   bool WidenIndVars;
151 
152   bool handleFloatingPointIV(Loop *L, PHINode *PH);
153   bool rewriteNonIntegerIVs(Loop *L);
154 
155   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
156   /// Try to improve our exit conditions by converting condition from signed
157   /// to unsigned or rotating computation out of the loop.
158   /// (See inline comment about why this is duplicated from simplifyAndExtend)
159   bool canonicalizeExitCondition(Loop *L);
160   /// Try to eliminate loop exits based on analyzeable exit counts
161   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
162   /// Try to form loop invariant tests for loop exits by changing how many
163   /// iterations of the loop run when that is unobservable.
164   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
165 
166   bool rewriteFirstIterationLoopExitValues(Loop *L);
167 
168   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
169                                  const SCEV *ExitCount,
170                                  PHINode *IndVar, SCEVExpander &Rewriter);
171 
172   bool sinkUnusedInvariants(Loop *L);
173 
174 public:
175   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
176                  const DataLayout &DL, TargetLibraryInfo *TLI,
177                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
178       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
179         WidenIndVars(WidenIndVars) {
180     if (MSSA)
181       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
182   }
183 
184   bool run(Loop *L);
185 };
186 
187 } // end anonymous namespace
188 
189 //===----------------------------------------------------------------------===//
190 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
191 //===----------------------------------------------------------------------===//
192 
193 /// Convert APF to an integer, if possible.
194 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
195   bool isExact = false;
196   // See if we can convert this to an int64_t
197   uint64_t UIntVal;
198   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
199                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
200       !isExact)
201     return false;
202   IntVal = UIntVal;
203   return true;
204 }
205 
206 /// If the loop has floating induction variable then insert corresponding
207 /// integer induction variable if possible.
208 /// For example,
209 /// for(double i = 0; i < 10000; ++i)
210 ///   bar(i)
211 /// is converted into
212 /// for(int i = 0; i < 10000; ++i)
213 ///   bar((double)i);
214 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
215   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
216   unsigned BackEdge     = IncomingEdge^1;
217 
218   // Check incoming value.
219   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
220 
221   int64_t InitValue;
222   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
223     return false;
224 
225   // Check IV increment. Reject this PN if increment operation is not
226   // an add or increment value can not be represented by an integer.
227   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
228   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
229 
230   // If this is not an add of the PHI with a constantfp, or if the constant fp
231   // is not an integer, bail out.
232   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
233   int64_t IncValue;
234   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
235       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
236     return false;
237 
238   // Check Incr uses. One user is PN and the other user is an exit condition
239   // used by the conditional terminator.
240   Value::user_iterator IncrUse = Incr->user_begin();
241   Instruction *U1 = cast<Instruction>(*IncrUse++);
242   if (IncrUse == Incr->user_end()) return false;
243   Instruction *U2 = cast<Instruction>(*IncrUse++);
244   if (IncrUse != Incr->user_end()) return false;
245 
246   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
247   // only used by a branch, we can't transform it.
248   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
249   if (!Compare)
250     Compare = dyn_cast<FCmpInst>(U2);
251   if (!Compare || !Compare->hasOneUse() ||
252       !isa<BranchInst>(Compare->user_back()))
253     return false;
254 
255   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
256 
257   // We need to verify that the branch actually controls the iteration count
258   // of the loop.  If not, the new IV can overflow and no one will notice.
259   // The branch block must be in the loop and one of the successors must be out
260   // of the loop.
261   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
262   if (!L->contains(TheBr->getParent()) ||
263       (L->contains(TheBr->getSuccessor(0)) &&
264        L->contains(TheBr->getSuccessor(1))))
265     return false;
266 
267   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
268   // transform it.
269   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
270   int64_t ExitValue;
271   if (ExitValueVal == nullptr ||
272       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
273     return false;
274 
275   // Find new predicate for integer comparison.
276   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
277   switch (Compare->getPredicate()) {
278   default: return false;  // Unknown comparison.
279   case CmpInst::FCMP_OEQ:
280   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
281   case CmpInst::FCMP_ONE:
282   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
283   case CmpInst::FCMP_OGT:
284   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
285   case CmpInst::FCMP_OGE:
286   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
287   case CmpInst::FCMP_OLT:
288   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
289   case CmpInst::FCMP_OLE:
290   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
291   }
292 
293   // We convert the floating point induction variable to a signed i32 value if
294   // we can.  This is only safe if the comparison will not overflow in a way
295   // that won't be trapped by the integer equivalent operations.  Check for this
296   // now.
297   // TODO: We could use i64 if it is native and the range requires it.
298 
299   // The start/stride/exit values must all fit in signed i32.
300   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
301     return false;
302 
303   // If not actually striding (add x, 0.0), avoid touching the code.
304   if (IncValue == 0)
305     return false;
306 
307   // Positive and negative strides have different safety conditions.
308   if (IncValue > 0) {
309     // If we have a positive stride, we require the init to be less than the
310     // exit value.
311     if (InitValue >= ExitValue)
312       return false;
313 
314     uint32_t Range = uint32_t(ExitValue-InitValue);
315     // Check for infinite loop, either:
316     // while (i <= Exit) or until (i > Exit)
317     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
318       if (++Range == 0) return false;  // Range overflows.
319     }
320 
321     unsigned Leftover = Range % uint32_t(IncValue);
322 
323     // If this is an equality comparison, we require that the strided value
324     // exactly land on the exit value, otherwise the IV condition will wrap
325     // around and do things the fp IV wouldn't.
326     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
327         Leftover != 0)
328       return false;
329 
330     // If the stride would wrap around the i32 before exiting, we can't
331     // transform the IV.
332     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
333       return false;
334   } else {
335     // If we have a negative stride, we require the init to be greater than the
336     // exit value.
337     if (InitValue <= ExitValue)
338       return false;
339 
340     uint32_t Range = uint32_t(InitValue-ExitValue);
341     // Check for infinite loop, either:
342     // while (i >= Exit) or until (i < Exit)
343     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
344       if (++Range == 0) return false;  // Range overflows.
345     }
346 
347     unsigned Leftover = Range % uint32_t(-IncValue);
348 
349     // If this is an equality comparison, we require that the strided value
350     // exactly land on the exit value, otherwise the IV condition will wrap
351     // around and do things the fp IV wouldn't.
352     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
353         Leftover != 0)
354       return false;
355 
356     // If the stride would wrap around the i32 before exiting, we can't
357     // transform the IV.
358     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
359       return false;
360   }
361 
362   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
363 
364   // Insert new integer induction variable.
365   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
366   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
367                       PN->getIncomingBlock(IncomingEdge));
368 
369   Value *NewAdd =
370     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
371                               Incr->getName()+".int", Incr);
372   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
373 
374   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
375                                       ConstantInt::get(Int32Ty, ExitValue),
376                                       Compare->getName());
377 
378   // In the following deletions, PN may become dead and may be deleted.
379   // Use a WeakTrackingVH to observe whether this happens.
380   WeakTrackingVH WeakPH = PN;
381 
382   // Delete the old floating point exit comparison.  The branch starts using the
383   // new comparison.
384   NewCompare->takeName(Compare);
385   Compare->replaceAllUsesWith(NewCompare);
386   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
387 
388   // Delete the old floating point increment.
389   Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
390   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
391 
392   // If the FP induction variable still has uses, this is because something else
393   // in the loop uses its value.  In order to canonicalize the induction
394   // variable, we chose to eliminate the IV and rewrite it in terms of an
395   // int->fp cast.
396   //
397   // We give preference to sitofp over uitofp because it is faster on most
398   // platforms.
399   if (WeakPH) {
400     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
401                                  &*PN->getParent()->getFirstInsertionPt());
402     PN->replaceAllUsesWith(Conv);
403     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
404   }
405   return true;
406 }
407 
408 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
409   // First step.  Check to see if there are any floating-point recurrences.
410   // If there are, change them into integer recurrences, permitting analysis by
411   // the SCEV routines.
412   BasicBlock *Header = L->getHeader();
413 
414   SmallVector<WeakTrackingVH, 8> PHIs;
415   for (PHINode &PN : Header->phis())
416     PHIs.push_back(&PN);
417 
418   bool Changed = false;
419   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
420     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
421       Changed |= handleFloatingPointIV(L, PN);
422 
423   // If the loop previously had floating-point IV, ScalarEvolution
424   // may not have been able to compute a trip count. Now that we've done some
425   // re-writing, the trip count may be computable.
426   if (Changed)
427     SE->forgetLoop(L);
428   return Changed;
429 }
430 
431 //===---------------------------------------------------------------------===//
432 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
433 // they will exit at the first iteration.
434 //===---------------------------------------------------------------------===//
435 
436 /// Check to see if this loop has loop invariant conditions which lead to loop
437 /// exits. If so, we know that if the exit path is taken, it is at the first
438 /// loop iteration. This lets us predict exit values of PHI nodes that live in
439 /// loop header.
440 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
441   // Verify the input to the pass is already in LCSSA form.
442   assert(L->isLCSSAForm(*DT));
443 
444   SmallVector<BasicBlock *, 8> ExitBlocks;
445   L->getUniqueExitBlocks(ExitBlocks);
446 
447   bool MadeAnyChanges = false;
448   for (auto *ExitBB : ExitBlocks) {
449     // If there are no more PHI nodes in this exit block, then no more
450     // values defined inside the loop are used on this path.
451     for (PHINode &PN : ExitBB->phis()) {
452       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
453            IncomingValIdx != E; ++IncomingValIdx) {
454         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
455 
456         // Can we prove that the exit must run on the first iteration if it
457         // runs at all?  (i.e. early exits are fine for our purposes, but
458         // traces which lead to this exit being taken on the 2nd iteration
459         // aren't.)  Note that this is about whether the exit branch is
460         // executed, not about whether it is taken.
461         if (!L->getLoopLatch() ||
462             !DT->dominates(IncomingBB, L->getLoopLatch()))
463           continue;
464 
465         // Get condition that leads to the exit path.
466         auto *TermInst = IncomingBB->getTerminator();
467 
468         Value *Cond = nullptr;
469         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
470           // Must be a conditional branch, otherwise the block
471           // should not be in the loop.
472           Cond = BI->getCondition();
473         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
474           Cond = SI->getCondition();
475         else
476           continue;
477 
478         if (!L->isLoopInvariant(Cond))
479           continue;
480 
481         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
482 
483         // Only deal with PHIs in the loop header.
484         if (!ExitVal || ExitVal->getParent() != L->getHeader())
485           continue;
486 
487         // If ExitVal is a PHI on the loop header, then we know its
488         // value along this exit because the exit can only be taken
489         // on the first iteration.
490         auto *LoopPreheader = L->getLoopPreheader();
491         assert(LoopPreheader && "Invalid loop");
492         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
493         if (PreheaderIdx != -1) {
494           assert(ExitVal->getParent() == L->getHeader() &&
495                  "ExitVal must be in loop header");
496           MadeAnyChanges = true;
497           PN.setIncomingValue(IncomingValIdx,
498                               ExitVal->getIncomingValue(PreheaderIdx));
499           SE->forgetValue(&PN);
500         }
501       }
502     }
503   }
504   return MadeAnyChanges;
505 }
506 
507 //===----------------------------------------------------------------------===//
508 //  IV Widening - Extend the width of an IV to cover its widest uses.
509 //===----------------------------------------------------------------------===//
510 
511 /// Update information about the induction variable that is extended by this
512 /// sign or zero extend operation. This is used to determine the final width of
513 /// the IV before actually widening it.
514 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
515                         ScalarEvolution *SE,
516                         const TargetTransformInfo *TTI) {
517   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
518   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
519     return;
520 
521   Type *Ty = Cast->getType();
522   uint64_t Width = SE->getTypeSizeInBits(Ty);
523   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
524     return;
525 
526   // Check that `Cast` actually extends the induction variable (we rely on this
527   // later).  This takes care of cases where `Cast` is extending a truncation of
528   // the narrow induction variable, and thus can end up being narrower than the
529   // "narrow" induction variable.
530   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
531   if (NarrowIVWidth >= Width)
532     return;
533 
534   // Cast is either an sext or zext up to this point.
535   // We should not widen an indvar if arithmetics on the wider indvar are more
536   // expensive than those on the narrower indvar. We check only the cost of ADD
537   // because at least an ADD is required to increment the induction variable. We
538   // could compute more comprehensively the cost of all instructions on the
539   // induction variable when necessary.
540   if (TTI &&
541       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
542           TTI->getArithmeticInstrCost(Instruction::Add,
543                                       Cast->getOperand(0)->getType())) {
544     return;
545   }
546 
547   if (!WI.WidestNativeType ||
548       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
549     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
550     WI.IsSigned = IsSigned;
551     return;
552   }
553 
554   // We extend the IV to satisfy the sign of its user(s), or 'signed'
555   // if there are multiple users with both sign- and zero extensions,
556   // in order not to introduce nondeterministic behaviour based on the
557   // unspecified order of a PHI nodes' users-iterator.
558   WI.IsSigned |= IsSigned;
559 }
560 
561 //===----------------------------------------------------------------------===//
562 //  Live IV Reduction - Minimize IVs live across the loop.
563 //===----------------------------------------------------------------------===//
564 
565 //===----------------------------------------------------------------------===//
566 //  Simplification of IV users based on SCEV evaluation.
567 //===----------------------------------------------------------------------===//
568 
569 namespace {
570 
571 class IndVarSimplifyVisitor : public IVVisitor {
572   ScalarEvolution *SE;
573   const TargetTransformInfo *TTI;
574   PHINode *IVPhi;
575 
576 public:
577   WideIVInfo WI;
578 
579   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
580                         const TargetTransformInfo *TTI,
581                         const DominatorTree *DTree)
582     : SE(SCEV), TTI(TTI), IVPhi(IV) {
583     DT = DTree;
584     WI.NarrowIV = IVPhi;
585   }
586 
587   // Implement the interface used by simplifyUsersOfIV.
588   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
589 };
590 
591 } // end anonymous namespace
592 
593 /// Iteratively perform simplification on a worklist of IV users. Each
594 /// successive simplification may push more users which may themselves be
595 /// candidates for simplification.
596 ///
597 /// Sign/Zero extend elimination is interleaved with IV simplification.
598 bool IndVarSimplify::simplifyAndExtend(Loop *L,
599                                        SCEVExpander &Rewriter,
600                                        LoopInfo *LI) {
601   SmallVector<WideIVInfo, 8> WideIVs;
602 
603   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
604           Intrinsic::getName(Intrinsic::experimental_guard));
605   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
606 
607   SmallVector<PHINode *, 8> LoopPhis;
608   for (PHINode &PN : L->getHeader()->phis())
609     LoopPhis.push_back(&PN);
610 
611   // Each round of simplification iterates through the SimplifyIVUsers worklist
612   // for all current phis, then determines whether any IVs can be
613   // widened. Widening adds new phis to LoopPhis, inducing another round of
614   // simplification on the wide IVs.
615   bool Changed = false;
616   while (!LoopPhis.empty()) {
617     // Evaluate as many IV expressions as possible before widening any IVs. This
618     // forces SCEV to set no-wrap flags before evaluating sign/zero
619     // extension. The first time SCEV attempts to normalize sign/zero extension,
620     // the result becomes final. So for the most predictable results, we delay
621     // evaluation of sign/zero extend evaluation until needed, and avoid running
622     // other SCEV based analysis prior to simplifyAndExtend.
623     do {
624       PHINode *CurrIV = LoopPhis.pop_back_val();
625 
626       // Information about sign/zero extensions of CurrIV.
627       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
628 
629       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
630                                    &Visitor);
631 
632       if (Visitor.WI.WidestNativeType) {
633         WideIVs.push_back(Visitor.WI);
634       }
635     } while(!LoopPhis.empty());
636 
637     // Continue if we disallowed widening.
638     if (!WidenIndVars)
639       continue;
640 
641     for (; !WideIVs.empty(); WideIVs.pop_back()) {
642       unsigned ElimExt;
643       unsigned Widened;
644       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
645                                           DT, DeadInsts, ElimExt, Widened,
646                                           HasGuards, UsePostIncrementRanges)) {
647         NumElimExt += ElimExt;
648         NumWidened += Widened;
649         Changed = true;
650         LoopPhis.push_back(WidePhi);
651       }
652     }
653   }
654   return Changed;
655 }
656 
657 //===----------------------------------------------------------------------===//
658 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
659 //===----------------------------------------------------------------------===//
660 
661 /// Given an Value which is hoped to be part of an add recurance in the given
662 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
663 /// that this is less general than SCEVs AddRec checking.
664 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
665   Instruction *IncI = dyn_cast<Instruction>(IncV);
666   if (!IncI)
667     return nullptr;
668 
669   switch (IncI->getOpcode()) {
670   case Instruction::Add:
671   case Instruction::Sub:
672     break;
673   case Instruction::GetElementPtr:
674     // An IV counter must preserve its type.
675     if (IncI->getNumOperands() == 2)
676       break;
677     [[fallthrough]];
678   default:
679     return nullptr;
680   }
681 
682   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
683   if (Phi && Phi->getParent() == L->getHeader()) {
684     if (L->isLoopInvariant(IncI->getOperand(1)))
685       return Phi;
686     return nullptr;
687   }
688   if (IncI->getOpcode() == Instruction::GetElementPtr)
689     return nullptr;
690 
691   // Allow add/sub to be commuted.
692   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
693   if (Phi && Phi->getParent() == L->getHeader()) {
694     if (L->isLoopInvariant(IncI->getOperand(0)))
695       return Phi;
696   }
697   return nullptr;
698 }
699 
700 /// Whether the current loop exit test is based on this value.  Currently this
701 /// is limited to a direct use in the loop condition.
702 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
703   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
704   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
705   // TODO: Allow non-icmp loop test.
706   if (!ICmp)
707     return false;
708 
709   // TODO: Allow indirect use.
710   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
711 }
712 
713 /// linearFunctionTestReplace policy. Return true unless we can show that the
714 /// current exit test is already sufficiently canonical.
715 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
716   assert(L->getLoopLatch() && "Must be in simplified form");
717 
718   // Avoid converting a constant or loop invariant test back to a runtime
719   // test.  This is critical for when SCEV's cached ExitCount is less precise
720   // than the current IR (such as after we've proven a particular exit is
721   // actually dead and thus the BE count never reaches our ExitCount.)
722   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
723   if (L->isLoopInvariant(BI->getCondition()))
724     return false;
725 
726   // Do LFTR to simplify the exit condition to an ICMP.
727   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
728   if (!Cond)
729     return true;
730 
731   // Do LFTR to simplify the exit ICMP to EQ/NE
732   ICmpInst::Predicate Pred = Cond->getPredicate();
733   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
734     return true;
735 
736   // Look for a loop invariant RHS
737   Value *LHS = Cond->getOperand(0);
738   Value *RHS = Cond->getOperand(1);
739   if (!L->isLoopInvariant(RHS)) {
740     if (!L->isLoopInvariant(LHS))
741       return true;
742     std::swap(LHS, RHS);
743   }
744   // Look for a simple IV counter LHS
745   PHINode *Phi = dyn_cast<PHINode>(LHS);
746   if (!Phi)
747     Phi = getLoopPhiForCounter(LHS, L);
748 
749   if (!Phi)
750     return true;
751 
752   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
753   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
754   if (Idx < 0)
755     return true;
756 
757   // Do LFTR if the exit condition's IV is *not* a simple counter.
758   Value *IncV = Phi->getIncomingValue(Idx);
759   return Phi != getLoopPhiForCounter(IncV, L);
760 }
761 
762 /// Return true if undefined behavior would provable be executed on the path to
763 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
764 /// anything about whether OnPathTo is actually executed or whether Root is
765 /// actually poison.  This can be used to assess whether a new use of Root can
766 /// be added at a location which is control equivalent with OnPathTo (such as
767 /// immediately before it) without introducing UB which didn't previously
768 /// exist.  Note that a false result conveys no information.
769 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
770                                           Instruction *OnPathTo,
771                                           DominatorTree *DT) {
772   // Basic approach is to assume Root is poison, propagate poison forward
773   // through all users we can easily track, and then check whether any of those
774   // users are provable UB and must execute before out exiting block might
775   // exit.
776 
777   // The set of all recursive users we've visited (which are assumed to all be
778   // poison because of said visit)
779   SmallSet<const Value *, 16> KnownPoison;
780   SmallVector<const Instruction*, 16> Worklist;
781   Worklist.push_back(Root);
782   while (!Worklist.empty()) {
783     const Instruction *I = Worklist.pop_back_val();
784 
785     // If we know this must trigger UB on a path leading our target.
786     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
787       return true;
788 
789     // If we can't analyze propagation through this instruction, just skip it
790     // and transitive users.  Safe as false is a conservative result.
791     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
792       continue;
793 
794     if (KnownPoison.insert(I).second)
795       for (const User *User : I->users())
796         Worklist.push_back(cast<Instruction>(User));
797   }
798 
799   // Might be non-UB, or might have a path we couldn't prove must execute on
800   // way to exiting bb.
801   return false;
802 }
803 
804 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
805 /// down to checking that all operands are constant and listing instructions
806 /// that may hide undef.
807 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
808                                unsigned Depth) {
809   if (isa<Constant>(V))
810     return !isa<UndefValue>(V);
811 
812   if (Depth >= 6)
813     return false;
814 
815   // Conservatively handle non-constant non-instructions. For example, Arguments
816   // may be undef.
817   Instruction *I = dyn_cast<Instruction>(V);
818   if (!I)
819     return false;
820 
821   // Load and return values may be undef.
822   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
823     return false;
824 
825   // Optimistically handle other instructions.
826   for (Value *Op : I->operands()) {
827     if (!Visited.insert(Op).second)
828       continue;
829     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
830       return false;
831   }
832   return true;
833 }
834 
835 /// Return true if the given value is concrete. We must prove that undef can
836 /// never reach it.
837 ///
838 /// TODO: If we decide that this is a good approach to checking for undef, we
839 /// may factor it into a common location.
840 static bool hasConcreteDef(Value *V) {
841   SmallPtrSet<Value*, 8> Visited;
842   Visited.insert(V);
843   return hasConcreteDefImpl(V, Visited, 0);
844 }
845 
846 /// Return true if this IV has any uses other than the (soon to be rewritten)
847 /// loop exit test.
848 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
849   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
850   Value *IncV = Phi->getIncomingValue(LatchIdx);
851 
852   for (User *U : Phi->users())
853     if (U != Cond && U != IncV) return false;
854 
855   for (User *U : IncV->users())
856     if (U != Cond && U != Phi) return false;
857   return true;
858 }
859 
860 /// Return true if the given phi is a "counter" in L.  A counter is an
861 /// add recurance (of integer or pointer type) with an arbitrary start, and a
862 /// step of 1.  Note that L must have exactly one latch.
863 static bool isLoopCounter(PHINode* Phi, Loop *L,
864                           ScalarEvolution *SE) {
865   assert(Phi->getParent() == L->getHeader());
866   assert(L->getLoopLatch());
867 
868   if (!SE->isSCEVable(Phi->getType()))
869     return false;
870 
871   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
872   if (!AR || AR->getLoop() != L || !AR->isAffine())
873     return false;
874 
875   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
876   if (!Step || !Step->isOne())
877     return false;
878 
879   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
880   Value *IncV = Phi->getIncomingValue(LatchIdx);
881   return (getLoopPhiForCounter(IncV, L) == Phi &&
882           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
883 }
884 
885 /// Search the loop header for a loop counter (anadd rec w/step of one)
886 /// suitable for use by LFTR.  If multiple counters are available, select the
887 /// "best" one based profitable heuristics.
888 ///
889 /// BECount may be an i8* pointer type. The pointer difference is already
890 /// valid count without scaling the address stride, so it remains a pointer
891 /// expression as far as SCEV is concerned.
892 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
893                                 const SCEV *BECount,
894                                 ScalarEvolution *SE, DominatorTree *DT) {
895   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
896 
897   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
898 
899   // Loop over all of the PHI nodes, looking for a simple counter.
900   PHINode *BestPhi = nullptr;
901   const SCEV *BestInit = nullptr;
902   BasicBlock *LatchBlock = L->getLoopLatch();
903   assert(LatchBlock && "Must be in simplified form");
904   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
905 
906   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
907     PHINode *Phi = cast<PHINode>(I);
908     if (!isLoopCounter(Phi, L, SE))
909       continue;
910 
911     // Avoid comparing an integer IV against a pointer Limit.
912     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
913       continue;
914 
915     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
916 
917     // AR may be a pointer type, while BECount is an integer type.
918     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
919     // AR may not be a narrower type, or we may never exit.
920     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
921     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
922       continue;
923 
924     // Avoid reusing a potentially undef value to compute other values that may
925     // have originally had a concrete definition.
926     if (!hasConcreteDef(Phi)) {
927       // We explicitly allow unknown phis as long as they are already used by
928       // the loop exit test.  This is legal since performing LFTR could not
929       // increase the number of undef users.
930       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
931       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
932           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
933         continue;
934     }
935 
936     // Avoid introducing undefined behavior due to poison which didn't exist in
937     // the original program.  (Annoyingly, the rules for poison and undef
938     // propagation are distinct, so this does NOT cover the undef case above.)
939     // We have to ensure that we don't introduce UB by introducing a use on an
940     // iteration where said IV produces poison.  Our strategy here differs for
941     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
942     // see code in linearFunctionTestReplace.  For pointers, we restrict
943     // transforms as there is no good way to reinfer inbounds once lost.
944     if (!Phi->getType()->isIntegerTy() &&
945         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
946       continue;
947 
948     const SCEV *Init = AR->getStart();
949 
950     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
951       // Don't force a live loop counter if another IV can be used.
952       if (AlmostDeadIV(Phi, LatchBlock, Cond))
953         continue;
954 
955       // Prefer to count-from-zero. This is a more "canonical" counter form. It
956       // also prefers integer to pointer IVs.
957       if (BestInit->isZero() != Init->isZero()) {
958         if (BestInit->isZero())
959           continue;
960       }
961       // If two IVs both count from zero or both count from nonzero then the
962       // narrower is likely a dead phi that has been widened. Use the wider phi
963       // to allow the other to be eliminated.
964       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
965         continue;
966     }
967     BestPhi = Phi;
968     BestInit = Init;
969   }
970   return BestPhi;
971 }
972 
973 /// Insert an IR expression which computes the value held by the IV IndVar
974 /// (which must be an loop counter w/unit stride) after the backedge of loop L
975 /// is taken ExitCount times.
976 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
977                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
978                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
979   assert(isLoopCounter(IndVar, L, SE));
980   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
981   const SCEV *IVInit = AR->getStart();
982   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
983 
984   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
985   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
986   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
987   // the existing GEPs whenever possible.
988   if (IndVar->getType()->isPointerTy() &&
989       !ExitCount->getType()->isPointerTy()) {
990     // IVOffset will be the new GEP offset that is interpreted by GEP as a
991     // signed value. ExitCount on the other hand represents the loop trip count,
992     // which is an unsigned value. FindLoopCounter only allows induction
993     // variables that have a positive unit stride of one. This means we don't
994     // have to handle the case of negative offsets (yet) and just need to zero
995     // extend ExitCount.
996     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
997     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
998     if (UsePostInc)
999       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1000 
1001     // Expand the code for the iteration count.
1002     assert(SE->isLoopInvariant(IVOffset, L) &&
1003            "Computed iteration count is not loop invariant!");
1004 
1005     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1006     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1007     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1008   } else {
1009     // In any other case, convert both IVInit and ExitCount to integers before
1010     // comparing. This may result in SCEV expansion of pointers, but in practice
1011     // SCEV will fold the pointer arithmetic away as such:
1012     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1013     //
1014     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1015     // for simple memset-style loops.
1016     //
1017     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1018     // were generated on top of case #2, which is not expected.
1019 
1020     // For unit stride, IVCount = Start + ExitCount with 2's complement
1021     // overflow.
1022 
1023     // For integer IVs, truncate the IV before computing IVInit + BECount,
1024     // unless we know apriori that the limit must be a constant when evaluated
1025     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1026     // of the IV in the loop over a (potentially) expensive expansion of the
1027     // widened exit count add(zext(add)) expression.
1028     if (SE->getTypeSizeInBits(IVInit->getType())
1029         > SE->getTypeSizeInBits(ExitCount->getType())) {
1030       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1031         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1032       else
1033         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1034     }
1035 
1036     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1037 
1038     if (UsePostInc)
1039       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1040 
1041     // Expand the code for the iteration count.
1042     assert(SE->isLoopInvariant(IVLimit, L) &&
1043            "Computed iteration count is not loop invariant!");
1044     // Ensure that we generate the same type as IndVar, or a smaller integer
1045     // type. In the presence of null pointer values, we have an integer type
1046     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1047     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1048       IndVar->getType() : ExitCount->getType();
1049     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1050     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1051   }
1052 }
1053 
1054 /// This method rewrites the exit condition of the loop to be a canonical !=
1055 /// comparison against the incremented loop induction variable.  This pass is
1056 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1057 /// determine a loop-invariant trip count of the loop, which is actually a much
1058 /// broader range than just linear tests.
1059 bool IndVarSimplify::
1060 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1061                           const SCEV *ExitCount,
1062                           PHINode *IndVar, SCEVExpander &Rewriter) {
1063   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1064   assert(isLoopCounter(IndVar, L, SE));
1065   Instruction * const IncVar =
1066     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1067 
1068   // Initialize CmpIndVar to the preincremented IV.
1069   Value *CmpIndVar = IndVar;
1070   bool UsePostInc = false;
1071 
1072   // If the exiting block is the same as the backedge block, we prefer to
1073   // compare against the post-incremented value, otherwise we must compare
1074   // against the preincremented value.
1075   if (ExitingBB == L->getLoopLatch()) {
1076     // For pointer IVs, we chose to not strip inbounds which requires us not
1077     // to add a potentially UB introducing use.  We need to either a) show
1078     // the loop test we're modifying is already in post-inc form, or b) show
1079     // that adding a use must not introduce UB.
1080     bool SafeToPostInc =
1081         IndVar->getType()->isIntegerTy() ||
1082         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1083         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1084     if (SafeToPostInc) {
1085       UsePostInc = true;
1086       CmpIndVar = IncVar;
1087     }
1088   }
1089 
1090   // It may be necessary to drop nowrap flags on the incrementing instruction
1091   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1092   // case the increment might have previously been poison on the last iteration
1093   // only) or if LFTR switches to a different IV that was previously dynamically
1094   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1095   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1096   // check), because the pre-inc addrec flags may be adopted from the original
1097   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1098   // TODO: This handling is inaccurate for one case: If we switch to a
1099   // dynamically dead IV that wraps on the first loop iteration only, which is
1100   // not covered by the post-inc addrec. (If the new IV was not dynamically
1101   // dead, it could not be poison on the first iteration in the first place.)
1102   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1103     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1104     if (BO->hasNoUnsignedWrap())
1105       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1106     if (BO->hasNoSignedWrap())
1107       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1108   }
1109 
1110   Value *ExitCnt = genLoopLimit(
1111       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1112   assert(ExitCnt->getType()->isPointerTy() ==
1113              IndVar->getType()->isPointerTy() &&
1114          "genLoopLimit missed a cast");
1115 
1116   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1117   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1118   ICmpInst::Predicate P;
1119   if (L->contains(BI->getSuccessor(0)))
1120     P = ICmpInst::ICMP_NE;
1121   else
1122     P = ICmpInst::ICMP_EQ;
1123 
1124   IRBuilder<> Builder(BI);
1125 
1126   // The new loop exit condition should reuse the debug location of the
1127   // original loop exit condition.
1128   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1129     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1130 
1131   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1132   // avoid the expensive expansion of the limit expression in the wider type,
1133   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1134   // since we know (from the exit count bitwidth), that we can't self-wrap in
1135   // the narrower type.
1136   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1137   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1138   if (CmpIndVarSize > ExitCntSize) {
1139     assert(!CmpIndVar->getType()->isPointerTy() &&
1140            !ExitCnt->getType()->isPointerTy());
1141 
1142     // Before resorting to actually inserting the truncate, use the same
1143     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1144     // the other side of the comparison instead.  We still evaluate the limit
1145     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1146     // a truncate within in.
1147     bool Extended = false;
1148     const SCEV *IV = SE->getSCEV(CmpIndVar);
1149     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1150                                                   ExitCnt->getType());
1151     const SCEV *ZExtTrunc =
1152       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1153 
1154     if (ZExtTrunc == IV) {
1155       Extended = true;
1156       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1157                                    "wide.trip.count");
1158     } else {
1159       const SCEV *SExtTrunc =
1160         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1161       if (SExtTrunc == IV) {
1162         Extended = true;
1163         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1164                                      "wide.trip.count");
1165       }
1166     }
1167 
1168     if (Extended) {
1169       bool Discard;
1170       L->makeLoopInvariant(ExitCnt, Discard);
1171     } else
1172       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1173                                       "lftr.wideiv");
1174   }
1175   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1176                     << "      LHS:" << *CmpIndVar << '\n'
1177                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1178                     << "\n"
1179                     << "      RHS:\t" << *ExitCnt << "\n"
1180                     << "ExitCount:\t" << *ExitCount << "\n"
1181                     << "  was: " << *BI->getCondition() << "\n");
1182 
1183   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1184   Value *OrigCond = BI->getCondition();
1185   // It's tempting to use replaceAllUsesWith here to fully replace the old
1186   // comparison, but that's not immediately safe, since users of the old
1187   // comparison may not be dominated by the new comparison. Instead, just
1188   // update the branch to use the new comparison; in the common case this
1189   // will make old comparison dead.
1190   BI->setCondition(Cond);
1191   DeadInsts.emplace_back(OrigCond);
1192 
1193   ++NumLFTR;
1194   return true;
1195 }
1196 
1197 //===----------------------------------------------------------------------===//
1198 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1199 //===----------------------------------------------------------------------===//
1200 
1201 /// If there's a single exit block, sink any loop-invariant values that
1202 /// were defined in the preheader but not used inside the loop into the
1203 /// exit block to reduce register pressure in the loop.
1204 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1205   BasicBlock *ExitBlock = L->getExitBlock();
1206   if (!ExitBlock) return false;
1207 
1208   BasicBlock *Preheader = L->getLoopPreheader();
1209   if (!Preheader) return false;
1210 
1211   bool MadeAnyChanges = false;
1212   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1213   BasicBlock::iterator I(Preheader->getTerminator());
1214   while (I != Preheader->begin()) {
1215     --I;
1216     // New instructions were inserted at the end of the preheader.
1217     if (isa<PHINode>(I))
1218       break;
1219 
1220     // Don't move instructions which might have side effects, since the side
1221     // effects need to complete before instructions inside the loop.  Also don't
1222     // move instructions which might read memory, since the loop may modify
1223     // memory. Note that it's okay if the instruction might have undefined
1224     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1225     // block.
1226     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1227       continue;
1228 
1229     // Skip debug info intrinsics.
1230     if (isa<DbgInfoIntrinsic>(I))
1231       continue;
1232 
1233     // Skip eh pad instructions.
1234     if (I->isEHPad())
1235       continue;
1236 
1237     // Don't sink alloca: we never want to sink static alloca's out of the
1238     // entry block, and correctly sinking dynamic alloca's requires
1239     // checks for stacksave/stackrestore intrinsics.
1240     // FIXME: Refactor this check somehow?
1241     if (isa<AllocaInst>(I))
1242       continue;
1243 
1244     // Determine if there is a use in or before the loop (direct or
1245     // otherwise).
1246     bool UsedInLoop = false;
1247     for (Use &U : I->uses()) {
1248       Instruction *User = cast<Instruction>(U.getUser());
1249       BasicBlock *UseBB = User->getParent();
1250       if (PHINode *P = dyn_cast<PHINode>(User)) {
1251         unsigned i =
1252           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1253         UseBB = P->getIncomingBlock(i);
1254       }
1255       if (UseBB == Preheader || L->contains(UseBB)) {
1256         UsedInLoop = true;
1257         break;
1258       }
1259     }
1260 
1261     // If there is, the def must remain in the preheader.
1262     if (UsedInLoop)
1263       continue;
1264 
1265     // Otherwise, sink it to the exit block.
1266     Instruction *ToMove = &*I;
1267     bool Done = false;
1268 
1269     if (I != Preheader->begin()) {
1270       // Skip debug info intrinsics.
1271       do {
1272         --I;
1273       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1274 
1275       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1276         Done = true;
1277     } else {
1278       Done = true;
1279     }
1280 
1281     MadeAnyChanges = true;
1282     ToMove->moveBefore(*ExitBlock, InsertPt);
1283     SE->forgetValue(ToMove);
1284     if (Done) break;
1285     InsertPt = ToMove->getIterator();
1286   }
1287 
1288   return MadeAnyChanges;
1289 }
1290 
1291 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1292                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1293   auto *OldCond = BI->getCondition();
1294   LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI
1295                     << " with " << *NewCond << "\n");
1296   BI->setCondition(NewCond);
1297   if (OldCond->use_empty())
1298     DeadInsts.emplace_back(OldCond);
1299 }
1300 
1301 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1302                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1303   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1304   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1305   auto *OldCond = BI->getCondition();
1306   auto *NewCond =
1307       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1308   replaceExitCond(BI, NewCond, DeadInsts);
1309 }
1310 
1311 static void replaceLoopPHINodesWithPreheaderValues(
1312     LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1313     ScalarEvolution &SE) {
1314   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1315   auto *LoopPreheader = L->getLoopPreheader();
1316   auto *LoopHeader = L->getHeader();
1317   SmallVector<Instruction *> Worklist;
1318   for (auto &PN : LoopHeader->phis()) {
1319     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1320     for (User *U : PN.users())
1321       Worklist.push_back(cast<Instruction>(U));
1322     SE.forgetValue(&PN);
1323     PN.replaceAllUsesWith(PreheaderIncoming);
1324     DeadInsts.emplace_back(&PN);
1325   }
1326 
1327   // Replacing with the preheader value will often allow IV users to simplify
1328   // (especially if the preheader value is a constant).
1329   SmallPtrSet<Instruction *, 16> Visited;
1330   while (!Worklist.empty()) {
1331     auto *I = cast<Instruction>(Worklist.pop_back_val());
1332     if (!Visited.insert(I).second)
1333       continue;
1334 
1335     // Don't simplify instructions outside the loop.
1336     if (!L->contains(I))
1337       continue;
1338 
1339     Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout());
1340     if (Res && LI->replacementPreservesLCSSAForm(I, Res)) {
1341       for (User *U : I->users())
1342         Worklist.push_back(cast<Instruction>(U));
1343       I->replaceAllUsesWith(Res);
1344       DeadInsts.emplace_back(I);
1345     }
1346   }
1347 }
1348 
1349 static void replaceWithInvariantCond(
1350     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1351     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1352     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1353   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1354   Rewriter.setInsertPoint(BI);
1355   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1356   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1357   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1358   if (ExitIfTrue)
1359     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1360   IRBuilder<> Builder(BI);
1361   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1362                                      BI->getCondition()->getName());
1363   replaceExitCond(BI, NewCond, DeadInsts);
1364 }
1365 
1366 static bool optimizeLoopExitWithUnknownExitCount(
1367     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1368     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1369     ScalarEvolution *SE, SCEVExpander &Rewriter,
1370     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1371   ICmpInst::Predicate Pred;
1372   Value *LHS, *RHS;
1373   BasicBlock *TrueSucc, *FalseSucc;
1374   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1375                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1376     return false;
1377 
1378   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1379          "Not a loop exit!");
1380 
1381   // 'LHS pred RHS' should now mean that we stay in loop.
1382   if (L->contains(FalseSucc))
1383     Pred = CmpInst::getInversePredicate(Pred);
1384 
1385   // If we are proving loop exit, invert the predicate.
1386   if (Inverted)
1387     Pred = CmpInst::getInversePredicate(Pred);
1388 
1389   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1390   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1391   // Can we prove it to be trivially true?
1392   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1393     foldExit(L, ExitingBB, Inverted, DeadInsts);
1394     return true;
1395   }
1396   // Further logic works for non-inverted condition only.
1397   if (Inverted)
1398     return false;
1399 
1400   auto *ARTy = LHSS->getType();
1401   auto *MaxIterTy = MaxIter->getType();
1402   // If possible, adjust types.
1403   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1404     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1405   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1406     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1407     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1408     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1409       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1410   }
1411 
1412   if (SkipLastIter) {
1413     const SCEV *One = SE->getOne(MaxIter->getType());
1414     MaxIter = SE->getMinusSCEV(MaxIter, One);
1415   }
1416 
1417   // Check if there is a loop-invariant predicate equivalent to our check.
1418   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1419                                                                L, BI, MaxIter);
1420   if (!LIP)
1421     return false;
1422 
1423   // Can we prove it to be trivially true?
1424   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1425     foldExit(L, ExitingBB, Inverted, DeadInsts);
1426   else
1427     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1428                              Rewriter, DeadInsts);
1429 
1430   return true;
1431 }
1432 
1433 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1434   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1435   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1436   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1437   // it already has flags.  The alternative to this would be to extending the
1438   // set of "interesting" IV users to include the icmp, but doing that
1439   // regresses results in practice by querying SCEVs before trip counts which
1440   // rely on them which results in SCEV caching sub-optimal answers.  The
1441   // concern about caching sub-optimal results is why we only query SCEVs of
1442   // the loop invariant RHS here.
1443   SmallVector<BasicBlock*, 16> ExitingBlocks;
1444   L->getExitingBlocks(ExitingBlocks);
1445   bool Changed = false;
1446   for (auto *ExitingBB : ExitingBlocks) {
1447     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1448     if (!BI)
1449       continue;
1450     assert(BI->isConditional() && "exit branch must be conditional");
1451 
1452     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1453     if (!ICmp || !ICmp->hasOneUse())
1454       continue;
1455 
1456     auto *LHS = ICmp->getOperand(0);
1457     auto *RHS = ICmp->getOperand(1);
1458     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1459     // poisoning cache with sub-optimal results.  For the must-execute case,
1460     // this is a neccessary precondition for correctness.
1461     if (!L->isLoopInvariant(RHS)) {
1462       if (!L->isLoopInvariant(LHS))
1463         continue;
1464       // Same logic applies for the inverse case
1465       std::swap(LHS, RHS);
1466     }
1467 
1468     // Match (icmp signed-cond zext, RHS)
1469     Value *LHSOp = nullptr;
1470     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1471       continue;
1472 
1473     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1474     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1475     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1476     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1477     FullCR = FullCR.zeroExtend(OuterBitWidth);
1478     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1479     if (FullCR.contains(RHSCR)) {
1480       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1481       // replace the signed condition with the unsigned version.
1482       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1483       Changed = true;
1484       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1485       // have not changed exit counts, or the values produced by the compare.
1486       continue;
1487     }
1488   }
1489 
1490   // Now that we've canonicalized the condition to match the extend,
1491   // see if we can rotate the extend out of the loop.
1492   for (auto *ExitingBB : ExitingBlocks) {
1493     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1494     if (!BI)
1495       continue;
1496     assert(BI->isConditional() && "exit branch must be conditional");
1497 
1498     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1499     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1500       continue;
1501 
1502     bool Swapped = false;
1503     auto *LHS = ICmp->getOperand(0);
1504     auto *RHS = ICmp->getOperand(1);
1505     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1506       // Nothing to rotate
1507       continue;
1508     if (L->isLoopInvariant(LHS)) {
1509       // Same logic applies for the inverse case until we actually pick
1510       // which operand of the compare to update.
1511       Swapped = true;
1512       std::swap(LHS, RHS);
1513     }
1514     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1515 
1516     // Match (icmp unsigned-cond zext, RHS)
1517     // TODO: Extend to handle corresponding sext/signed-cmp case
1518     // TODO: Extend to other invertible functions
1519     Value *LHSOp = nullptr;
1520     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1521       continue;
1522 
1523     // In general, we only rotate if we can do so without increasing the number
1524     // of instructions.  The exception is when we have an zext(add-rec).  The
1525     // reason for allowing this exception is that we know we need to get rid
1526     // of the zext for SCEV to be able to compute a trip count for said loops;
1527     // we consider the new trip count valuable enough to increase instruction
1528     // count by one.
1529     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1530       continue;
1531 
1532     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1533     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1534     // when zext is loop varying and RHS is loop invariant.  This converts
1535     // loop varying work to loop-invariant work.
1536     auto doRotateTransform = [&]() {
1537       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1538       auto *NewRHS =
1539         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1540                          L->getLoopPreheader()->getTerminator());
1541       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1542       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1543       if (LHS->use_empty())
1544         DeadInsts.push_back(LHS);
1545     };
1546 
1547 
1548     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1549     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1550     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1551     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1552     FullCR = FullCR.zeroExtend(OuterBitWidth);
1553     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1554     if (FullCR.contains(RHSCR)) {
1555       doRotateTransform();
1556       Changed = true;
1557       // Note, we are leaving SCEV in an unfortunately imprecise case here
1558       // as rotation tends to reveal information about trip counts not
1559       // previously visible.
1560       continue;
1561     }
1562   }
1563 
1564   return Changed;
1565 }
1566 
1567 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1568   SmallVector<BasicBlock*, 16> ExitingBlocks;
1569   L->getExitingBlocks(ExitingBlocks);
1570 
1571   // Remove all exits which aren't both rewriteable and execute on every
1572   // iteration.
1573   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1574     // If our exitting block exits multiple loops, we can only rewrite the
1575     // innermost one.  Otherwise, we're changing how many times the innermost
1576     // loop runs before it exits.
1577     if (LI->getLoopFor(ExitingBB) != L)
1578       return true;
1579 
1580     // Can't rewrite non-branch yet.
1581     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1582     if (!BI)
1583       return true;
1584 
1585     // Likewise, the loop latch must be dominated by the exiting BB.
1586     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1587       return true;
1588 
1589     if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1590       // If already constant, nothing to do. However, if this is an
1591       // unconditional exit, we can still replace header phis with their
1592       // preheader value.
1593       if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1594         replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1595       return true;
1596     }
1597 
1598     return false;
1599   });
1600 
1601   if (ExitingBlocks.empty())
1602     return false;
1603 
1604   // Get a symbolic upper bound on the loop backedge taken count.
1605   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1606   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1607     return false;
1608 
1609   // Visit our exit blocks in order of dominance. We know from the fact that
1610   // all exits must dominate the latch, so there is a total dominance order
1611   // between them.
1612   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1613                // std::sort sorts in ascending order, so we want the inverse of
1614                // the normal dominance relation.
1615                if (A == B) return false;
1616                if (DT->properlyDominates(A, B))
1617                  return true;
1618                else {
1619                  assert(DT->properlyDominates(B, A) &&
1620                         "expected total dominance order!");
1621                  return false;
1622                }
1623   });
1624 #ifdef ASSERT
1625   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1626     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1627   }
1628 #endif
1629 
1630   bool Changed = false;
1631   bool SkipLastIter = false;
1632   SmallSet<const SCEV*, 8> DominatingExitCounts;
1633   for (BasicBlock *ExitingBB : ExitingBlocks) {
1634     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1635     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1636       // Okay, we do not know the exit count here. Can we at least prove that it
1637       // will remain the same within iteration space?
1638       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1639       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1640         return optimizeLoopExitWithUnknownExitCount(
1641             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1642             Rewriter, DeadInsts);
1643       };
1644 
1645       // TODO: We might have proved that we can skip the last iteration for
1646       // this check. In this case, we only want to check the condition on the
1647       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1648       // corner case:
1649       //
1650       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1651       //
1652       // If we could not prove that len != 0, then we also could not prove that
1653       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1654       // OptimizeCond will likely not prove anything for it, even if it could
1655       // prove the same fact for len.
1656       //
1657       // As a temporary solution, we query both last and pre-last iterations in
1658       // hope that we will be able to prove triviality for at least one of
1659       // them. We can stop querying MaxExitCount for this case once SCEV
1660       // understands that (MaxExitCount - 1) will not overflow here.
1661       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1662         Changed = true;
1663       else if (SkipLastIter)
1664         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1665           Changed = true;
1666       continue;
1667     }
1668 
1669     if (MaxExitCount == ExitCount)
1670       // If the loop has more than 1 iteration, all further checks will be
1671       // executed 1 iteration less.
1672       SkipLastIter = true;
1673 
1674     // If we know we'd exit on the first iteration, rewrite the exit to
1675     // reflect this.  This does not imply the loop must exit through this
1676     // exit; there may be an earlier one taken on the first iteration.
1677     // We know that the backedge can't be taken, so we replace all
1678     // the header PHIs with values coming from the preheader.
1679     if (ExitCount->isZero()) {
1680       foldExit(L, ExitingBB, true, DeadInsts);
1681       replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1682       Changed = true;
1683       continue;
1684     }
1685 
1686     assert(ExitCount->getType()->isIntegerTy() &&
1687            MaxExitCount->getType()->isIntegerTy() &&
1688            "Exit counts must be integers");
1689 
1690     Type *WiderType =
1691       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1692     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1693     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1694     assert(MaxExitCount->getType() == ExitCount->getType());
1695 
1696     // Can we prove that some other exit must be taken strictly before this
1697     // one?
1698     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1699                                      MaxExitCount, ExitCount)) {
1700       foldExit(L, ExitingBB, false, DeadInsts);
1701       Changed = true;
1702       continue;
1703     }
1704 
1705     // As we run, keep track of which exit counts we've encountered.  If we
1706     // find a duplicate, we've found an exit which would have exited on the
1707     // exiting iteration, but (from the visit order) strictly follows another
1708     // which does the same and is thus dead.
1709     if (!DominatingExitCounts.insert(ExitCount).second) {
1710       foldExit(L, ExitingBB, false, DeadInsts);
1711       Changed = true;
1712       continue;
1713     }
1714 
1715     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1716     // here.  If we kept track of the min of dominanting exits so far, we could
1717     // discharge exits with EC >= MDEC. This is less powerful than the existing
1718     // transform (since later exits aren't considered), but potentially more
1719     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1720     // or a >u b.  Such a case is not currently known.
1721   }
1722   return Changed;
1723 }
1724 
1725 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1726   SmallVector<BasicBlock*, 16> ExitingBlocks;
1727   L->getExitingBlocks(ExitingBlocks);
1728 
1729   // Finally, see if we can rewrite our exit conditions into a loop invariant
1730   // form. If we have a read-only loop, and we can tell that we must exit down
1731   // a path which does not need any of the values computed within the loop, we
1732   // can rewrite the loop to exit on the first iteration.  Note that this
1733   // doesn't either a) tell us the loop exits on the first iteration (unless
1734   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1735   // This transformation looks a lot like a restricted form of dead loop
1736   // elimination, but restricted to read-only loops and without neccesssarily
1737   // needing to kill the loop entirely.
1738   if (!LoopPredication)
1739     return false;
1740 
1741   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1742   // through *explicit* control flow.  We have to eliminate the possibility of
1743   // implicit exits (see below) before we know it's truly exact.
1744   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1745   if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC))
1746     return false;
1747 
1748   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1749   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1750 
1751   auto BadExit = [&](BasicBlock *ExitingBB) {
1752     // If our exiting block exits multiple loops, we can only rewrite the
1753     // innermost one.  Otherwise, we're changing how many times the innermost
1754     // loop runs before it exits.
1755     if (LI->getLoopFor(ExitingBB) != L)
1756       return true;
1757 
1758     // Can't rewrite non-branch yet.
1759     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1760     if (!BI)
1761       return true;
1762 
1763     // If already constant, nothing to do.
1764     if (isa<Constant>(BI->getCondition()))
1765       return true;
1766 
1767     // If the exit block has phis, we need to be able to compute the values
1768     // within the loop which contains them.  This assumes trivially lcssa phis
1769     // have already been removed; TODO: generalize
1770     BasicBlock *ExitBlock =
1771     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1772     if (!ExitBlock->phis().empty())
1773       return true;
1774 
1775     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1776     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1777         !Rewriter.isSafeToExpand(ExitCount))
1778       return true;
1779 
1780     assert(SE->isLoopInvariant(ExitCount, L) &&
1781            "Exit count must be loop invariant");
1782     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1783     return false;
1784   };
1785 
1786   // If we have any exits which can't be predicated themselves, than we can't
1787   // predicate any exit which isn't guaranteed to execute before it.  Consider
1788   // two exits (a) and (b) which would both exit on the same iteration.  If we
1789   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1790   // we could convert a loop from exiting through (a) to one exiting through
1791   // (b).  Note that this problem exists only for exits with the same exit
1792   // count, and we could be more aggressive when exit counts are known inequal.
1793   llvm::sort(ExitingBlocks,
1794             [&](BasicBlock *A, BasicBlock *B) {
1795               // std::sort sorts in ascending order, so we want the inverse of
1796               // the normal dominance relation, plus a tie breaker for blocks
1797               // unordered by dominance.
1798               if (DT->properlyDominates(A, B)) return true;
1799               if (DT->properlyDominates(B, A)) return false;
1800               return A->getName() < B->getName();
1801             });
1802   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1803   // exits before the backedge).  If they aren't, reasoning about reachability
1804   // is complicated and we choose not to for now.
1805   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1806     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1807       return false;
1808 
1809   // Given our sorted total order, we know that exit[j] must be evaluated
1810   // after all exit[i] such j > i.
1811   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1812     if (BadExit(ExitingBlocks[i])) {
1813       ExitingBlocks.resize(i);
1814       break;
1815     }
1816 
1817   if (ExitingBlocks.empty())
1818     return false;
1819 
1820   // We rely on not being able to reach an exiting block on a later iteration
1821   // then it's statically compute exit count.  The implementaton of
1822   // getExitCount currently has this invariant, but assert it here so that
1823   // breakage is obvious if this ever changes..
1824   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1825         return DT->dominates(ExitingBB, L->getLoopLatch());
1826       }));
1827 
1828   // At this point, ExitingBlocks consists of only those blocks which are
1829   // predicatable.  Given that, we know we have at least one exit we can
1830   // predicate if the loop is doesn't have side effects and doesn't have any
1831   // implicit exits (because then our exact BTC isn't actually exact).
1832   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1833   // suggestions on how to improve this?  I can obviously bail out for outer
1834   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1835   // is that enough for *all* side effects?
1836   for (BasicBlock *BB : L->blocks())
1837     for (auto &I : *BB)
1838       // TODO:isGuaranteedToTransfer
1839       if (I.mayHaveSideEffects())
1840         return false;
1841 
1842   bool Changed = false;
1843   // Finally, do the actual predication for all predicatable blocks.  A couple
1844   // of notes here:
1845   // 1) We don't bother to constant fold dominated exits with identical exit
1846   //    counts; that's simply a form of CSE/equality propagation and we leave
1847   //    it for dedicated passes.
1848   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1849   //    legality constraints and we leave that to dedicated logic.  We want to
1850   //    predicate even if we can't insert a loop invariant expression as
1851   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1852   //    varying check.
1853   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1854   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1855   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1856   for (BasicBlock *ExitingBB : ExitingBlocks) {
1857     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1858 
1859     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1860     Value *NewCond;
1861     if (ExitCount == ExactBTC) {
1862       NewCond = L->contains(BI->getSuccessor(0)) ?
1863         B.getFalse() : B.getTrue();
1864     } else {
1865       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1866       if (!ExactBTCV)
1867         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1868       Value *RHS = ExactBTCV;
1869       if (ECV->getType() != RHS->getType()) {
1870         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1871         ECV = B.CreateZExt(ECV, WiderTy);
1872         RHS = B.CreateZExt(RHS, WiderTy);
1873       }
1874       auto Pred = L->contains(BI->getSuccessor(0)) ?
1875         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1876       NewCond = B.CreateICmp(Pred, ECV, RHS);
1877     }
1878     Value *OldCond = BI->getCondition();
1879     BI->setCondition(NewCond);
1880     if (OldCond->use_empty())
1881       DeadInsts.emplace_back(OldCond);
1882     Changed = true;
1883   }
1884 
1885   return Changed;
1886 }
1887 
1888 //===----------------------------------------------------------------------===//
1889 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1890 //===----------------------------------------------------------------------===//
1891 
1892 bool IndVarSimplify::run(Loop *L) {
1893   // We need (and expect!) the incoming loop to be in LCSSA.
1894   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1895          "LCSSA required to run indvars!");
1896 
1897   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1898   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1899   //    canonicalization can be a pessimization without LSR to "clean up"
1900   //    afterwards.
1901   //  - We depend on having a preheader; in particular,
1902   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1903   //    and we're in trouble if we can't find the induction variable even when
1904   //    we've manually inserted one.
1905   //  - LFTR relies on having a single backedge.
1906   if (!L->isLoopSimplifyForm())
1907     return false;
1908 
1909 #ifndef NDEBUG
1910   // Used below for a consistency check only
1911   // Note: Since the result returned by ScalarEvolution may depend on the order
1912   // in which previous results are added to its cache, the call to
1913   // getBackedgeTakenCount() may change following SCEV queries.
1914   const SCEV *BackedgeTakenCount;
1915   if (VerifyIndvars)
1916     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1917 #endif
1918 
1919   bool Changed = false;
1920   // If there are any floating-point recurrences, attempt to
1921   // transform them to use integer recurrences.
1922   Changed |= rewriteNonIntegerIVs(L);
1923 
1924   // Create a rewriter object which we'll use to transform the code with.
1925   SCEVExpander Rewriter(*SE, DL, "indvars");
1926 #ifndef NDEBUG
1927   Rewriter.setDebugType(DEBUG_TYPE);
1928 #endif
1929 
1930   // Eliminate redundant IV users.
1931   //
1932   // Simplification works best when run before other consumers of SCEV. We
1933   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1934   // other expressions involving loop IVs have been evaluated. This helps SCEV
1935   // set no-wrap flags before normalizing sign/zero extension.
1936   Rewriter.disableCanonicalMode();
1937   Changed |= simplifyAndExtend(L, Rewriter, LI);
1938 
1939   // Check to see if we can compute the final value of any expressions
1940   // that are recurrent in the loop, and substitute the exit values from the
1941   // loop into any instructions outside of the loop that use the final values
1942   // of the current expressions.
1943   if (ReplaceExitValue != NeverRepl) {
1944     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1945                                              ReplaceExitValue, DeadInsts)) {
1946       NumReplaced += Rewrites;
1947       Changed = true;
1948     }
1949   }
1950 
1951   // Eliminate redundant IV cycles.
1952   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1953 
1954   // Try to convert exit conditions to unsigned and rotate computation
1955   // out of the loop.  Note: Handles invalidation internally if needed.
1956   Changed |= canonicalizeExitCondition(L);
1957 
1958   // Try to eliminate loop exits based on analyzeable exit counts
1959   if (optimizeLoopExits(L, Rewriter))  {
1960     Changed = true;
1961     // Given we've changed exit counts, notify SCEV
1962     // Some nested loops may share same folded exit basic block,
1963     // thus we need to notify top most loop.
1964     SE->forgetTopmostLoop(L);
1965   }
1966 
1967   // Try to form loop invariant tests for loop exits by changing how many
1968   // iterations of the loop run when that is unobservable.
1969   if (predicateLoopExits(L, Rewriter)) {
1970     Changed = true;
1971     // Given we've changed exit counts, notify SCEV
1972     SE->forgetLoop(L);
1973   }
1974 
1975   // If we have a trip count expression, rewrite the loop's exit condition
1976   // using it.
1977   if (!DisableLFTR) {
1978     BasicBlock *PreHeader = L->getLoopPreheader();
1979 
1980     SmallVector<BasicBlock*, 16> ExitingBlocks;
1981     L->getExitingBlocks(ExitingBlocks);
1982     for (BasicBlock *ExitingBB : ExitingBlocks) {
1983       // Can't rewrite non-branch yet.
1984       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1985         continue;
1986 
1987       // If our exitting block exits multiple loops, we can only rewrite the
1988       // innermost one.  Otherwise, we're changing how many times the innermost
1989       // loop runs before it exits.
1990       if (LI->getLoopFor(ExitingBB) != L)
1991         continue;
1992 
1993       if (!needsLFTR(L, ExitingBB))
1994         continue;
1995 
1996       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1997       if (isa<SCEVCouldNotCompute>(ExitCount))
1998         continue;
1999 
2000       // This was handled above, but as we form SCEVs, we can sometimes refine
2001       // existing ones; this allows exit counts to be folded to zero which
2002       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
2003       // until stable to handle cases like this better.
2004       if (ExitCount->isZero())
2005         continue;
2006 
2007       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2008       if (!IndVar)
2009         continue;
2010 
2011       // Avoid high cost expansions.  Note: This heuristic is questionable in
2012       // that our definition of "high cost" is not exactly principled.
2013       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
2014                                        TTI, PreHeader->getTerminator()))
2015         continue;
2016 
2017       // Check preconditions for proper SCEVExpander operation. SCEV does not
2018       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2019       // any pass that uses the SCEVExpander must do it. This does not work
2020       // well for loop passes because SCEVExpander makes assumptions about
2021       // all loops, while LoopPassManager only forces the current loop to be
2022       // simplified.
2023       //
2024       // FIXME: SCEV expansion has no way to bail out, so the caller must
2025       // explicitly check any assumptions made by SCEV. Brittle.
2026       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2027       if (!AR || AR->getLoop()->getLoopPreheader())
2028         Changed |= linearFunctionTestReplace(L, ExitingBB,
2029                                              ExitCount, IndVar,
2030                                              Rewriter);
2031     }
2032   }
2033   // Clear the rewriter cache, because values that are in the rewriter's cache
2034   // can be deleted in the loop below, causing the AssertingVH in the cache to
2035   // trigger.
2036   Rewriter.clear();
2037 
2038   // Now that we're done iterating through lists, clean up any instructions
2039   // which are now dead.
2040   while (!DeadInsts.empty()) {
2041     Value *V = DeadInsts.pop_back_val();
2042 
2043     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2044       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2045     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2046       Changed |=
2047           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2048   }
2049 
2050   // The Rewriter may not be used from this point on.
2051 
2052   // Loop-invariant instructions in the preheader that aren't used in the
2053   // loop may be sunk below the loop to reduce register pressure.
2054   Changed |= sinkUnusedInvariants(L);
2055 
2056   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2057   // trip count and therefore can further simplify exit values in addition to
2058   // rewriteLoopExitValues.
2059   Changed |= rewriteFirstIterationLoopExitValues(L);
2060 
2061   // Clean up dead instructions.
2062   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2063 
2064   // Check a post-condition.
2065   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2066          "Indvars did not preserve LCSSA!");
2067 
2068   // Verify that LFTR, and any other change have not interfered with SCEV's
2069   // ability to compute trip count.  We may have *changed* the exit count, but
2070   // only by reducing it.
2071 #ifndef NDEBUG
2072   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2073     SE->forgetLoop(L);
2074     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2075     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2076         SE->getTypeSizeInBits(NewBECount->getType()))
2077       NewBECount = SE->getTruncateOrNoop(NewBECount,
2078                                          BackedgeTakenCount->getType());
2079     else
2080       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2081                                                  NewBECount->getType());
2082     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2083                                  NewBECount) && "indvars must preserve SCEV");
2084   }
2085   if (VerifyMemorySSA && MSSAU)
2086     MSSAU->getMemorySSA()->verifyMemorySSA();
2087 #endif
2088 
2089   return Changed;
2090 }
2091 
2092 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2093                                           LoopStandardAnalysisResults &AR,
2094                                           LPMUpdater &) {
2095   Function *F = L.getHeader()->getParent();
2096   const DataLayout &DL = F->getParent()->getDataLayout();
2097 
2098   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2099                      WidenIndVars && AllowIVWidening);
2100   if (!IVS.run(&L))
2101     return PreservedAnalyses::all();
2102 
2103   auto PA = getLoopPassPreservedAnalyses();
2104   PA.preserveSet<CFGAnalyses>();
2105   if (AR.MSSA)
2106     PA.preserve<MemorySSAAnalysis>();
2107   return PA;
2108 }
2109 
2110 namespace {
2111 
2112 struct IndVarSimplifyLegacyPass : public LoopPass {
2113   static char ID; // Pass identification, replacement for typeid
2114 
2115   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2116     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2117   }
2118 
2119   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2120     if (skipLoop(L))
2121       return false;
2122 
2123     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2124     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2125     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2126     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2127     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2128     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2129     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2130     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2131     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2132     MemorySSA *MSSA = nullptr;
2133     if (MSSAAnalysis)
2134       MSSA = &MSSAAnalysis->getMSSA();
2135 
2136     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2137     return IVS.run(L);
2138   }
2139 
2140   void getAnalysisUsage(AnalysisUsage &AU) const override {
2141     AU.setPreservesCFG();
2142     AU.addPreserved<MemorySSAWrapperPass>();
2143     getLoopAnalysisUsage(AU);
2144   }
2145 };
2146 
2147 } // end anonymous namespace
2148 
2149 char IndVarSimplifyLegacyPass::ID = 0;
2150 
2151 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2152                       "Induction Variable Simplification", false, false)
2153 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2154 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2155                     "Induction Variable Simplification", false, false)
2156 
2157 Pass *llvm::createIndVarSimplifyPass() {
2158   return new IndVarSimplifyLegacyPass();
2159 }
2160