1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/ADT/iterator_range.h" 36 #include "llvm/Analysis/LoopInfo.h" 37 #include "llvm/Analysis/LoopPass.h" 38 #include "llvm/Analysis/MemorySSA.h" 39 #include "llvm/Analysis/MemorySSAUpdater.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 42 #include "llvm/Analysis/TargetLibraryInfo.h" 43 #include "llvm/Analysis/TargetTransformInfo.h" 44 #include "llvm/Analysis/ValueTracking.h" 45 #include "llvm/IR/BasicBlock.h" 46 #include "llvm/IR/Constant.h" 47 #include "llvm/IR/ConstantRange.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DataLayout.h" 50 #include "llvm/IR/DerivedTypes.h" 51 #include "llvm/IR/Dominators.h" 52 #include "llvm/IR/Function.h" 53 #include "llvm/IR/IRBuilder.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/IntrinsicInst.h" 58 #include "llvm/IR/Intrinsics.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PassManager.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/Use.h" 65 #include "llvm/IR/User.h" 66 #include "llvm/IR/Value.h" 67 #include "llvm/IR/ValueHandle.h" 68 #include "llvm/InitializePasses.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/MathExtras.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Scalar.h" 77 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 78 #include "llvm/Transforms/Utils/Local.h" 79 #include "llvm/Transforms/Utils/LoopUtils.h" 80 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 using namespace PatternMatch; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 103 "effect in release builds. (Note: this adds additional SCEV " 104 "queries potentially changing the analysis result)")); 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values( 110 clEnumValN(NeverRepl, "never", "never replace exit value"), 111 clEnumValN(OnlyCheapRepl, "cheap", 112 "only replace exit value when the cost is cheap"), 113 clEnumValN( 114 UnusedIndVarInLoop, "unusedindvarinloop", 115 "only replace exit value when it is an unused " 116 "induction variable in the loop and has cheap replacement cost"), 117 clEnumValN(NoHardUse, "noharduse", 118 "only replace exit values when loop def likely dead"), 119 clEnumValN(AlwaysRepl, "always", 120 "always replace exit value whenever possible"))); 121 122 static cl::opt<bool> UsePostIncrementRanges( 123 "indvars-post-increment-ranges", cl::Hidden, 124 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 125 cl::init(true)); 126 127 static cl::opt<bool> 128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 129 cl::desc("Disable Linear Function Test Replace optimization")); 130 131 static cl::opt<bool> 132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 133 cl::desc("Predicate conditions in read only loops")); 134 135 static cl::opt<bool> 136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 137 cl::desc("Allow widening of indvars to eliminate s/zext")); 138 139 namespace { 140 141 class IndVarSimplify { 142 LoopInfo *LI; 143 ScalarEvolution *SE; 144 DominatorTree *DT; 145 const DataLayout &DL; 146 TargetLibraryInfo *TLI; 147 const TargetTransformInfo *TTI; 148 std::unique_ptr<MemorySSAUpdater> MSSAU; 149 150 SmallVector<WeakTrackingVH, 16> DeadInsts; 151 bool WidenIndVars; 152 153 bool handleFloatingPointIV(Loop *L, PHINode *PH); 154 bool rewriteNonIntegerIVs(Loop *L); 155 156 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 157 /// Try to improve our exit conditions by converting condition from signed 158 /// to unsigned or rotating computation out of the loop. 159 /// (See inline comment about why this is duplicated from simplifyAndExtend) 160 bool canonicalizeExitCondition(Loop *L); 161 /// Try to eliminate loop exits based on analyzeable exit counts 162 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 163 /// Try to form loop invariant tests for loop exits by changing how many 164 /// iterations of the loop run when that is unobservable. 165 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 166 167 bool rewriteFirstIterationLoopExitValues(Loop *L); 168 169 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 170 const SCEV *ExitCount, 171 PHINode *IndVar, SCEVExpander &Rewriter); 172 173 bool sinkUnusedInvariants(Loop *L); 174 175 public: 176 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 177 const DataLayout &DL, TargetLibraryInfo *TLI, 178 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 179 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 180 WidenIndVars(WidenIndVars) { 181 if (MSSA) 182 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 183 } 184 185 bool run(Loop *L); 186 }; 187 188 } // end anonymous namespace 189 190 //===----------------------------------------------------------------------===// 191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 192 //===----------------------------------------------------------------------===// 193 194 /// Convert APF to an integer, if possible. 195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 196 bool isExact = false; 197 // See if we can convert this to an int64_t 198 uint64_t UIntVal; 199 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 200 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 201 !isExact) 202 return false; 203 IntVal = UIntVal; 204 return true; 205 } 206 207 /// If the loop has floating induction variable then insert corresponding 208 /// integer induction variable if possible. 209 /// For example, 210 /// for(double i = 0; i < 10000; ++i) 211 /// bar(i) 212 /// is converted into 213 /// for(int i = 0; i < 10000; ++i) 214 /// bar((double)i); 215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 216 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 217 unsigned BackEdge = IncomingEdge^1; 218 219 // Check incoming value. 220 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 221 222 int64_t InitValue; 223 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 224 return false; 225 226 // Check IV increment. Reject this PN if increment operation is not 227 // an add or increment value can not be represented by an integer. 228 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 229 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 230 231 // If this is not an add of the PHI with a constantfp, or if the constant fp 232 // is not an integer, bail out. 233 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 234 int64_t IncValue; 235 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 236 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 237 return false; 238 239 // Check Incr uses. One user is PN and the other user is an exit condition 240 // used by the conditional terminator. 241 Value::user_iterator IncrUse = Incr->user_begin(); 242 Instruction *U1 = cast<Instruction>(*IncrUse++); 243 if (IncrUse == Incr->user_end()) return false; 244 Instruction *U2 = cast<Instruction>(*IncrUse++); 245 if (IncrUse != Incr->user_end()) return false; 246 247 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 248 // only used by a branch, we can't transform it. 249 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 250 if (!Compare) 251 Compare = dyn_cast<FCmpInst>(U2); 252 if (!Compare || !Compare->hasOneUse() || 253 !isa<BranchInst>(Compare->user_back())) 254 return false; 255 256 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 257 258 // We need to verify that the branch actually controls the iteration count 259 // of the loop. If not, the new IV can overflow and no one will notice. 260 // The branch block must be in the loop and one of the successors must be out 261 // of the loop. 262 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 263 if (!L->contains(TheBr->getParent()) || 264 (L->contains(TheBr->getSuccessor(0)) && 265 L->contains(TheBr->getSuccessor(1)))) 266 return false; 267 268 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 269 // transform it. 270 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 271 int64_t ExitValue; 272 if (ExitValueVal == nullptr || 273 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 274 return false; 275 276 // Find new predicate for integer comparison. 277 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 278 switch (Compare->getPredicate()) { 279 default: return false; // Unknown comparison. 280 case CmpInst::FCMP_OEQ: 281 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 282 case CmpInst::FCMP_ONE: 283 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 284 case CmpInst::FCMP_OGT: 285 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 286 case CmpInst::FCMP_OGE: 287 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 288 case CmpInst::FCMP_OLT: 289 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 290 case CmpInst::FCMP_OLE: 291 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 292 } 293 294 // We convert the floating point induction variable to a signed i32 value if 295 // we can. This is only safe if the comparison will not overflow in a way 296 // that won't be trapped by the integer equivalent operations. Check for this 297 // now. 298 // TODO: We could use i64 if it is native and the range requires it. 299 300 // The start/stride/exit values must all fit in signed i32. 301 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 302 return false; 303 304 // If not actually striding (add x, 0.0), avoid touching the code. 305 if (IncValue == 0) 306 return false; 307 308 // Positive and negative strides have different safety conditions. 309 if (IncValue > 0) { 310 // If we have a positive stride, we require the init to be less than the 311 // exit value. 312 if (InitValue >= ExitValue) 313 return false; 314 315 uint32_t Range = uint32_t(ExitValue-InitValue); 316 // Check for infinite loop, either: 317 // while (i <= Exit) or until (i > Exit) 318 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 319 if (++Range == 0) return false; // Range overflows. 320 } 321 322 unsigned Leftover = Range % uint32_t(IncValue); 323 324 // If this is an equality comparison, we require that the strided value 325 // exactly land on the exit value, otherwise the IV condition will wrap 326 // around and do things the fp IV wouldn't. 327 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 328 Leftover != 0) 329 return false; 330 331 // If the stride would wrap around the i32 before exiting, we can't 332 // transform the IV. 333 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 334 return false; 335 } else { 336 // If we have a negative stride, we require the init to be greater than the 337 // exit value. 338 if (InitValue <= ExitValue) 339 return false; 340 341 uint32_t Range = uint32_t(InitValue-ExitValue); 342 // Check for infinite loop, either: 343 // while (i >= Exit) or until (i < Exit) 344 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 345 if (++Range == 0) return false; // Range overflows. 346 } 347 348 unsigned Leftover = Range % uint32_t(-IncValue); 349 350 // If this is an equality comparison, we require that the strided value 351 // exactly land on the exit value, otherwise the IV condition will wrap 352 // around and do things the fp IV wouldn't. 353 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 354 Leftover != 0) 355 return false; 356 357 // If the stride would wrap around the i32 before exiting, we can't 358 // transform the IV. 359 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 360 return false; 361 } 362 363 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 364 365 // Insert new integer induction variable. 366 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 367 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 368 PN->getIncomingBlock(IncomingEdge)); 369 370 Value *NewAdd = 371 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 372 Incr->getName()+".int", Incr); 373 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 374 375 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 376 ConstantInt::get(Int32Ty, ExitValue), 377 Compare->getName()); 378 379 // In the following deletions, PN may become dead and may be deleted. 380 // Use a WeakTrackingVH to observe whether this happens. 381 WeakTrackingVH WeakPH = PN; 382 383 // Delete the old floating point exit comparison. The branch starts using the 384 // new comparison. 385 NewCompare->takeName(Compare); 386 Compare->replaceAllUsesWith(NewCompare); 387 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 388 389 // Delete the old floating point increment. 390 Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); 391 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 392 393 // If the FP induction variable still has uses, this is because something else 394 // in the loop uses its value. In order to canonicalize the induction 395 // variable, we chose to eliminate the IV and rewrite it in terms of an 396 // int->fp cast. 397 // 398 // We give preference to sitofp over uitofp because it is faster on most 399 // platforms. 400 if (WeakPH) { 401 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 402 &*PN->getParent()->getFirstInsertionPt()); 403 PN->replaceAllUsesWith(Conv); 404 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 405 } 406 return true; 407 } 408 409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 410 // First step. Check to see if there are any floating-point recurrences. 411 // If there are, change them into integer recurrences, permitting analysis by 412 // the SCEV routines. 413 BasicBlock *Header = L->getHeader(); 414 415 SmallVector<WeakTrackingVH, 8> PHIs; 416 for (PHINode &PN : Header->phis()) 417 PHIs.push_back(&PN); 418 419 bool Changed = false; 420 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 421 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 422 Changed |= handleFloatingPointIV(L, PN); 423 424 // If the loop previously had floating-point IV, ScalarEvolution 425 // may not have been able to compute a trip count. Now that we've done some 426 // re-writing, the trip count may be computable. 427 if (Changed) 428 SE->forgetLoop(L); 429 return Changed; 430 } 431 432 //===---------------------------------------------------------------------===// 433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 434 // they will exit at the first iteration. 435 //===---------------------------------------------------------------------===// 436 437 /// Check to see if this loop has loop invariant conditions which lead to loop 438 /// exits. If so, we know that if the exit path is taken, it is at the first 439 /// loop iteration. This lets us predict exit values of PHI nodes that live in 440 /// loop header. 441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 442 // Verify the input to the pass is already in LCSSA form. 443 assert(L->isLCSSAForm(*DT)); 444 445 SmallVector<BasicBlock *, 8> ExitBlocks; 446 L->getUniqueExitBlocks(ExitBlocks); 447 448 bool MadeAnyChanges = false; 449 for (auto *ExitBB : ExitBlocks) { 450 // If there are no more PHI nodes in this exit block, then no more 451 // values defined inside the loop are used on this path. 452 for (PHINode &PN : ExitBB->phis()) { 453 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 454 IncomingValIdx != E; ++IncomingValIdx) { 455 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 456 457 // Can we prove that the exit must run on the first iteration if it 458 // runs at all? (i.e. early exits are fine for our purposes, but 459 // traces which lead to this exit being taken on the 2nd iteration 460 // aren't.) Note that this is about whether the exit branch is 461 // executed, not about whether it is taken. 462 if (!L->getLoopLatch() || 463 !DT->dominates(IncomingBB, L->getLoopLatch())) 464 continue; 465 466 // Get condition that leads to the exit path. 467 auto *TermInst = IncomingBB->getTerminator(); 468 469 Value *Cond = nullptr; 470 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 471 // Must be a conditional branch, otherwise the block 472 // should not be in the loop. 473 Cond = BI->getCondition(); 474 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 475 Cond = SI->getCondition(); 476 else 477 continue; 478 479 if (!L->isLoopInvariant(Cond)) 480 continue; 481 482 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 483 484 // Only deal with PHIs in the loop header. 485 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 486 continue; 487 488 // If ExitVal is a PHI on the loop header, then we know its 489 // value along this exit because the exit can only be taken 490 // on the first iteration. 491 auto *LoopPreheader = L->getLoopPreheader(); 492 assert(LoopPreheader && "Invalid loop"); 493 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 494 if (PreheaderIdx != -1) { 495 assert(ExitVal->getParent() == L->getHeader() && 496 "ExitVal must be in loop header"); 497 MadeAnyChanges = true; 498 PN.setIncomingValue(IncomingValIdx, 499 ExitVal->getIncomingValue(PreheaderIdx)); 500 SE->forgetValue(&PN); 501 } 502 } 503 } 504 } 505 return MadeAnyChanges; 506 } 507 508 //===----------------------------------------------------------------------===// 509 // IV Widening - Extend the width of an IV to cover its widest uses. 510 //===----------------------------------------------------------------------===// 511 512 /// Update information about the induction variable that is extended by this 513 /// sign or zero extend operation. This is used to determine the final width of 514 /// the IV before actually widening it. 515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 516 ScalarEvolution *SE, 517 const TargetTransformInfo *TTI) { 518 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 519 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 520 return; 521 522 Type *Ty = Cast->getType(); 523 uint64_t Width = SE->getTypeSizeInBits(Ty); 524 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 525 return; 526 527 // Check that `Cast` actually extends the induction variable (we rely on this 528 // later). This takes care of cases where `Cast` is extending a truncation of 529 // the narrow induction variable, and thus can end up being narrower than the 530 // "narrow" induction variable. 531 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 532 if (NarrowIVWidth >= Width) 533 return; 534 535 // Cast is either an sext or zext up to this point. 536 // We should not widen an indvar if arithmetics on the wider indvar are more 537 // expensive than those on the narrower indvar. We check only the cost of ADD 538 // because at least an ADD is required to increment the induction variable. We 539 // could compute more comprehensively the cost of all instructions on the 540 // induction variable when necessary. 541 if (TTI && 542 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 543 TTI->getArithmeticInstrCost(Instruction::Add, 544 Cast->getOperand(0)->getType())) { 545 return; 546 } 547 548 if (!WI.WidestNativeType || 549 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { 550 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 551 WI.IsSigned = IsSigned; 552 return; 553 } 554 555 // We extend the IV to satisfy the sign of its user(s), or 'signed' 556 // if there are multiple users with both sign- and zero extensions, 557 // in order not to introduce nondeterministic behaviour based on the 558 // unspecified order of a PHI nodes' users-iterator. 559 WI.IsSigned |= IsSigned; 560 } 561 562 //===----------------------------------------------------------------------===// 563 // Live IV Reduction - Minimize IVs live across the loop. 564 //===----------------------------------------------------------------------===// 565 566 //===----------------------------------------------------------------------===// 567 // Simplification of IV users based on SCEV evaluation. 568 //===----------------------------------------------------------------------===// 569 570 namespace { 571 572 class IndVarSimplifyVisitor : public IVVisitor { 573 ScalarEvolution *SE; 574 const TargetTransformInfo *TTI; 575 PHINode *IVPhi; 576 577 public: 578 WideIVInfo WI; 579 580 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 581 const TargetTransformInfo *TTI, 582 const DominatorTree *DTree) 583 : SE(SCEV), TTI(TTI), IVPhi(IV) { 584 DT = DTree; 585 WI.NarrowIV = IVPhi; 586 } 587 588 // Implement the interface used by simplifyUsersOfIV. 589 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 590 }; 591 592 } // end anonymous namespace 593 594 /// Iteratively perform simplification on a worklist of IV users. Each 595 /// successive simplification may push more users which may themselves be 596 /// candidates for simplification. 597 /// 598 /// Sign/Zero extend elimination is interleaved with IV simplification. 599 bool IndVarSimplify::simplifyAndExtend(Loop *L, 600 SCEVExpander &Rewriter, 601 LoopInfo *LI) { 602 SmallVector<WideIVInfo, 8> WideIVs; 603 604 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 605 Intrinsic::getName(Intrinsic::experimental_guard)); 606 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 607 608 SmallVector<PHINode *, 8> LoopPhis; 609 for (PHINode &PN : L->getHeader()->phis()) 610 LoopPhis.push_back(&PN); 611 612 // Each round of simplification iterates through the SimplifyIVUsers worklist 613 // for all current phis, then determines whether any IVs can be 614 // widened. Widening adds new phis to LoopPhis, inducing another round of 615 // simplification on the wide IVs. 616 bool Changed = false; 617 while (!LoopPhis.empty()) { 618 // Evaluate as many IV expressions as possible before widening any IVs. This 619 // forces SCEV to set no-wrap flags before evaluating sign/zero 620 // extension. The first time SCEV attempts to normalize sign/zero extension, 621 // the result becomes final. So for the most predictable results, we delay 622 // evaluation of sign/zero extend evaluation until needed, and avoid running 623 // other SCEV based analysis prior to simplifyAndExtend. 624 do { 625 PHINode *CurrIV = LoopPhis.pop_back_val(); 626 627 // Information about sign/zero extensions of CurrIV. 628 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 629 630 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 631 &Visitor); 632 633 if (Visitor.WI.WidestNativeType) { 634 WideIVs.push_back(Visitor.WI); 635 } 636 } while(!LoopPhis.empty()); 637 638 // Continue if we disallowed widening. 639 if (!WidenIndVars) 640 continue; 641 642 for (; !WideIVs.empty(); WideIVs.pop_back()) { 643 unsigned ElimExt; 644 unsigned Widened; 645 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 646 DT, DeadInsts, ElimExt, Widened, 647 HasGuards, UsePostIncrementRanges)) { 648 NumElimExt += ElimExt; 649 NumWidened += Widened; 650 Changed = true; 651 LoopPhis.push_back(WidePhi); 652 } 653 } 654 } 655 return Changed; 656 } 657 658 //===----------------------------------------------------------------------===// 659 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 660 //===----------------------------------------------------------------------===// 661 662 /// Given an Value which is hoped to be part of an add recurance in the given 663 /// loop, return the associated Phi node if so. Otherwise, return null. Note 664 /// that this is less general than SCEVs AddRec checking. 665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 666 Instruction *IncI = dyn_cast<Instruction>(IncV); 667 if (!IncI) 668 return nullptr; 669 670 switch (IncI->getOpcode()) { 671 case Instruction::Add: 672 case Instruction::Sub: 673 break; 674 case Instruction::GetElementPtr: 675 // An IV counter must preserve its type. 676 if (IncI->getNumOperands() == 2) 677 break; 678 [[fallthrough]]; 679 default: 680 return nullptr; 681 } 682 683 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 684 if (Phi && Phi->getParent() == L->getHeader()) { 685 if (L->isLoopInvariant(IncI->getOperand(1))) 686 return Phi; 687 return nullptr; 688 } 689 if (IncI->getOpcode() == Instruction::GetElementPtr) 690 return nullptr; 691 692 // Allow add/sub to be commuted. 693 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 694 if (Phi && Phi->getParent() == L->getHeader()) { 695 if (L->isLoopInvariant(IncI->getOperand(0))) 696 return Phi; 697 } 698 return nullptr; 699 } 700 701 /// Whether the current loop exit test is based on this value. Currently this 702 /// is limited to a direct use in the loop condition. 703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 704 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 705 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 706 // TODO: Allow non-icmp loop test. 707 if (!ICmp) 708 return false; 709 710 // TODO: Allow indirect use. 711 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 712 } 713 714 /// linearFunctionTestReplace policy. Return true unless we can show that the 715 /// current exit test is already sufficiently canonical. 716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 717 assert(L->getLoopLatch() && "Must be in simplified form"); 718 719 // Avoid converting a constant or loop invariant test back to a runtime 720 // test. This is critical for when SCEV's cached ExitCount is less precise 721 // than the current IR (such as after we've proven a particular exit is 722 // actually dead and thus the BE count never reaches our ExitCount.) 723 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 724 if (L->isLoopInvariant(BI->getCondition())) 725 return false; 726 727 // Do LFTR to simplify the exit condition to an ICMP. 728 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 729 if (!Cond) 730 return true; 731 732 // Do LFTR to simplify the exit ICMP to EQ/NE 733 ICmpInst::Predicate Pred = Cond->getPredicate(); 734 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 735 return true; 736 737 // Look for a loop invariant RHS 738 Value *LHS = Cond->getOperand(0); 739 Value *RHS = Cond->getOperand(1); 740 if (!L->isLoopInvariant(RHS)) { 741 if (!L->isLoopInvariant(LHS)) 742 return true; 743 std::swap(LHS, RHS); 744 } 745 // Look for a simple IV counter LHS 746 PHINode *Phi = dyn_cast<PHINode>(LHS); 747 if (!Phi) 748 Phi = getLoopPhiForCounter(LHS, L); 749 750 if (!Phi) 751 return true; 752 753 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 754 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 755 if (Idx < 0) 756 return true; 757 758 // Do LFTR if the exit condition's IV is *not* a simple counter. 759 Value *IncV = Phi->getIncomingValue(Idx); 760 return Phi != getLoopPhiForCounter(IncV, L); 761 } 762 763 /// Return true if undefined behavior would provable be executed on the path to 764 /// OnPathTo if Root produced a posion result. Note that this doesn't say 765 /// anything about whether OnPathTo is actually executed or whether Root is 766 /// actually poison. This can be used to assess whether a new use of Root can 767 /// be added at a location which is control equivalent with OnPathTo (such as 768 /// immediately before it) without introducing UB which didn't previously 769 /// exist. Note that a false result conveys no information. 770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 771 Instruction *OnPathTo, 772 DominatorTree *DT) { 773 // Basic approach is to assume Root is poison, propagate poison forward 774 // through all users we can easily track, and then check whether any of those 775 // users are provable UB and must execute before out exiting block might 776 // exit. 777 778 // The set of all recursive users we've visited (which are assumed to all be 779 // poison because of said visit) 780 SmallSet<const Value *, 16> KnownPoison; 781 SmallVector<const Instruction*, 16> Worklist; 782 Worklist.push_back(Root); 783 while (!Worklist.empty()) { 784 const Instruction *I = Worklist.pop_back_val(); 785 786 // If we know this must trigger UB on a path leading our target. 787 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 788 return true; 789 790 // If we can't analyze propagation through this instruction, just skip it 791 // and transitive users. Safe as false is a conservative result. 792 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 793 continue; 794 795 if (KnownPoison.insert(I).second) 796 for (const User *User : I->users()) 797 Worklist.push_back(cast<Instruction>(User)); 798 } 799 800 // Might be non-UB, or might have a path we couldn't prove must execute on 801 // way to exiting bb. 802 return false; 803 } 804 805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 806 /// down to checking that all operands are constant and listing instructions 807 /// that may hide undef. 808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 809 unsigned Depth) { 810 if (isa<Constant>(V)) 811 return !isa<UndefValue>(V); 812 813 if (Depth >= 6) 814 return false; 815 816 // Conservatively handle non-constant non-instructions. For example, Arguments 817 // may be undef. 818 Instruction *I = dyn_cast<Instruction>(V); 819 if (!I) 820 return false; 821 822 // Load and return values may be undef. 823 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 824 return false; 825 826 // Optimistically handle other instructions. 827 for (Value *Op : I->operands()) { 828 if (!Visited.insert(Op).second) 829 continue; 830 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 831 return false; 832 } 833 return true; 834 } 835 836 /// Return true if the given value is concrete. We must prove that undef can 837 /// never reach it. 838 /// 839 /// TODO: If we decide that this is a good approach to checking for undef, we 840 /// may factor it into a common location. 841 static bool hasConcreteDef(Value *V) { 842 SmallPtrSet<Value*, 8> Visited; 843 Visited.insert(V); 844 return hasConcreteDefImpl(V, Visited, 0); 845 } 846 847 /// Return true if this IV has any uses other than the (soon to be rewritten) 848 /// loop exit test. 849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 850 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 851 Value *IncV = Phi->getIncomingValue(LatchIdx); 852 853 for (User *U : Phi->users()) 854 if (U != Cond && U != IncV) return false; 855 856 for (User *U : IncV->users()) 857 if (U != Cond && U != Phi) return false; 858 return true; 859 } 860 861 /// Return true if the given phi is a "counter" in L. A counter is an 862 /// add recurance (of integer or pointer type) with an arbitrary start, and a 863 /// step of 1. Note that L must have exactly one latch. 864 static bool isLoopCounter(PHINode* Phi, Loop *L, 865 ScalarEvolution *SE) { 866 assert(Phi->getParent() == L->getHeader()); 867 assert(L->getLoopLatch()); 868 869 if (!SE->isSCEVable(Phi->getType())) 870 return false; 871 872 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 873 if (!AR || AR->getLoop() != L || !AR->isAffine()) 874 return false; 875 876 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 877 if (!Step || !Step->isOne()) 878 return false; 879 880 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 881 Value *IncV = Phi->getIncomingValue(LatchIdx); 882 return (getLoopPhiForCounter(IncV, L) == Phi && 883 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 884 } 885 886 /// Search the loop header for a loop counter (anadd rec w/step of one) 887 /// suitable for use by LFTR. If multiple counters are available, select the 888 /// "best" one based profitable heuristics. 889 /// 890 /// BECount may be an i8* pointer type. The pointer difference is already 891 /// valid count without scaling the address stride, so it remains a pointer 892 /// expression as far as SCEV is concerned. 893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 894 const SCEV *BECount, 895 ScalarEvolution *SE, DominatorTree *DT) { 896 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 897 898 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 899 900 // Loop over all of the PHI nodes, looking for a simple counter. 901 PHINode *BestPhi = nullptr; 902 const SCEV *BestInit = nullptr; 903 BasicBlock *LatchBlock = L->getLoopLatch(); 904 assert(LatchBlock && "Must be in simplified form"); 905 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 906 907 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 908 PHINode *Phi = cast<PHINode>(I); 909 if (!isLoopCounter(Phi, L, SE)) 910 continue; 911 912 // Avoid comparing an integer IV against a pointer Limit. 913 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 914 continue; 915 916 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 917 918 // AR may be a pointer type, while BECount is an integer type. 919 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 920 // AR may not be a narrower type, or we may never exit. 921 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 922 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 923 continue; 924 925 // Avoid reusing a potentially undef value to compute other values that may 926 // have originally had a concrete definition. 927 if (!hasConcreteDef(Phi)) { 928 // We explicitly allow unknown phis as long as they are already used by 929 // the loop exit test. This is legal since performing LFTR could not 930 // increase the number of undef users. 931 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 932 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 933 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 934 continue; 935 } 936 937 // Avoid introducing undefined behavior due to poison which didn't exist in 938 // the original program. (Annoyingly, the rules for poison and undef 939 // propagation are distinct, so this does NOT cover the undef case above.) 940 // We have to ensure that we don't introduce UB by introducing a use on an 941 // iteration where said IV produces poison. Our strategy here differs for 942 // pointers and integer IVs. For integers, we strip and reinfer as needed, 943 // see code in linearFunctionTestReplace. For pointers, we restrict 944 // transforms as there is no good way to reinfer inbounds once lost. 945 if (!Phi->getType()->isIntegerTy() && 946 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 947 continue; 948 949 const SCEV *Init = AR->getStart(); 950 951 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 952 // Don't force a live loop counter if another IV can be used. 953 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 954 continue; 955 956 // Prefer to count-from-zero. This is a more "canonical" counter form. It 957 // also prefers integer to pointer IVs. 958 if (BestInit->isZero() != Init->isZero()) { 959 if (BestInit->isZero()) 960 continue; 961 } 962 // If two IVs both count from zero or both count from nonzero then the 963 // narrower is likely a dead phi that has been widened. Use the wider phi 964 // to allow the other to be eliminated. 965 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 966 continue; 967 } 968 BestPhi = Phi; 969 BestInit = Init; 970 } 971 return BestPhi; 972 } 973 974 /// Insert an IR expression which computes the value held by the IV IndVar 975 /// (which must be an loop counter w/unit stride) after the backedge of loop L 976 /// is taken ExitCount times. 977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 978 const SCEV *ExitCount, bool UsePostInc, Loop *L, 979 SCEVExpander &Rewriter, ScalarEvolution *SE) { 980 assert(isLoopCounter(IndVar, L, SE)); 981 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 982 const SCEV *IVInit = AR->getStart(); 983 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 984 985 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 986 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 987 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 988 // the existing GEPs whenever possible. 989 if (IndVar->getType()->isPointerTy() && 990 !ExitCount->getType()->isPointerTy()) { 991 // IVOffset will be the new GEP offset that is interpreted by GEP as a 992 // signed value. ExitCount on the other hand represents the loop trip count, 993 // which is an unsigned value. FindLoopCounter only allows induction 994 // variables that have a positive unit stride of one. This means we don't 995 // have to handle the case of negative offsets (yet) and just need to zero 996 // extend ExitCount. 997 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 998 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 999 if (UsePostInc) 1000 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 1001 1002 // Expand the code for the iteration count. 1003 assert(SE->isLoopInvariant(IVOffset, L) && 1004 "Computed iteration count is not loop invariant!"); 1005 1006 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1007 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1008 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1009 } else { 1010 // In any other case, convert both IVInit and ExitCount to integers before 1011 // comparing. This may result in SCEV expansion of pointers, but in practice 1012 // SCEV will fold the pointer arithmetic away as such: 1013 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1014 // 1015 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1016 // for simple memset-style loops. 1017 // 1018 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1019 // were generated on top of case #2, which is not expected. 1020 1021 // For unit stride, IVCount = Start + ExitCount with 2's complement 1022 // overflow. 1023 1024 // For integer IVs, truncate the IV before computing IVInit + BECount, 1025 // unless we know apriori that the limit must be a constant when evaluated 1026 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1027 // of the IV in the loop over a (potentially) expensive expansion of the 1028 // widened exit count add(zext(add)) expression. 1029 if (SE->getTypeSizeInBits(IVInit->getType()) 1030 > SE->getTypeSizeInBits(ExitCount->getType())) { 1031 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1032 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1033 else 1034 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1035 } 1036 1037 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1038 1039 if (UsePostInc) 1040 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1041 1042 // Expand the code for the iteration count. 1043 assert(SE->isLoopInvariant(IVLimit, L) && 1044 "Computed iteration count is not loop invariant!"); 1045 // Ensure that we generate the same type as IndVar, or a smaller integer 1046 // type. In the presence of null pointer values, we have an integer type 1047 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1048 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1049 IndVar->getType() : ExitCount->getType(); 1050 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1051 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1052 } 1053 } 1054 1055 /// This method rewrites the exit condition of the loop to be a canonical != 1056 /// comparison against the incremented loop induction variable. This pass is 1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1058 /// determine a loop-invariant trip count of the loop, which is actually a much 1059 /// broader range than just linear tests. 1060 bool IndVarSimplify:: 1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1062 const SCEV *ExitCount, 1063 PHINode *IndVar, SCEVExpander &Rewriter) { 1064 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1065 assert(isLoopCounter(IndVar, L, SE)); 1066 Instruction * const IncVar = 1067 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1068 1069 // Initialize CmpIndVar to the preincremented IV. 1070 Value *CmpIndVar = IndVar; 1071 bool UsePostInc = false; 1072 1073 // If the exiting block is the same as the backedge block, we prefer to 1074 // compare against the post-incremented value, otherwise we must compare 1075 // against the preincremented value. 1076 if (ExitingBB == L->getLoopLatch()) { 1077 // For pointer IVs, we chose to not strip inbounds which requires us not 1078 // to add a potentially UB introducing use. We need to either a) show 1079 // the loop test we're modifying is already in post-inc form, or b) show 1080 // that adding a use must not introduce UB. 1081 bool SafeToPostInc = 1082 IndVar->getType()->isIntegerTy() || 1083 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1084 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1085 if (SafeToPostInc) { 1086 UsePostInc = true; 1087 CmpIndVar = IncVar; 1088 } 1089 } 1090 1091 // It may be necessary to drop nowrap flags on the incrementing instruction 1092 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1093 // case the increment might have previously been poison on the last iteration 1094 // only) or if LFTR switches to a different IV that was previously dynamically 1095 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1096 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1097 // check), because the pre-inc addrec flags may be adopted from the original 1098 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1099 // TODO: This handling is inaccurate for one case: If we switch to a 1100 // dynamically dead IV that wraps on the first loop iteration only, which is 1101 // not covered by the post-inc addrec. (If the new IV was not dynamically 1102 // dead, it could not be poison on the first iteration in the first place.) 1103 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1104 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1105 if (BO->hasNoUnsignedWrap()) 1106 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1107 if (BO->hasNoSignedWrap()) 1108 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1109 } 1110 1111 Value *ExitCnt = genLoopLimit( 1112 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1113 assert(ExitCnt->getType()->isPointerTy() == 1114 IndVar->getType()->isPointerTy() && 1115 "genLoopLimit missed a cast"); 1116 1117 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1118 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1119 ICmpInst::Predicate P; 1120 if (L->contains(BI->getSuccessor(0))) 1121 P = ICmpInst::ICMP_NE; 1122 else 1123 P = ICmpInst::ICMP_EQ; 1124 1125 IRBuilder<> Builder(BI); 1126 1127 // The new loop exit condition should reuse the debug location of the 1128 // original loop exit condition. 1129 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1130 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1131 1132 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1133 // avoid the expensive expansion of the limit expression in the wider type, 1134 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1135 // since we know (from the exit count bitwidth), that we can't self-wrap in 1136 // the narrower type. 1137 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1138 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1139 if (CmpIndVarSize > ExitCntSize) { 1140 assert(!CmpIndVar->getType()->isPointerTy() && 1141 !ExitCnt->getType()->isPointerTy()); 1142 1143 // Before resorting to actually inserting the truncate, use the same 1144 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1145 // the other side of the comparison instead. We still evaluate the limit 1146 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1147 // a truncate within in. 1148 bool Extended = false; 1149 const SCEV *IV = SE->getSCEV(CmpIndVar); 1150 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1151 ExitCnt->getType()); 1152 const SCEV *ZExtTrunc = 1153 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1154 1155 if (ZExtTrunc == IV) { 1156 Extended = true; 1157 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1158 "wide.trip.count"); 1159 } else { 1160 const SCEV *SExtTrunc = 1161 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1162 if (SExtTrunc == IV) { 1163 Extended = true; 1164 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1165 "wide.trip.count"); 1166 } 1167 } 1168 1169 if (Extended) { 1170 bool Discard; 1171 L->makeLoopInvariant(ExitCnt, Discard); 1172 } else 1173 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1174 "lftr.wideiv"); 1175 } 1176 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1177 << " LHS:" << *CmpIndVar << '\n' 1178 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1179 << "\n" 1180 << " RHS:\t" << *ExitCnt << "\n" 1181 << "ExitCount:\t" << *ExitCount << "\n" 1182 << " was: " << *BI->getCondition() << "\n"); 1183 1184 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1185 Value *OrigCond = BI->getCondition(); 1186 // It's tempting to use replaceAllUsesWith here to fully replace the old 1187 // comparison, but that's not immediately safe, since users of the old 1188 // comparison may not be dominated by the new comparison. Instead, just 1189 // update the branch to use the new comparison; in the common case this 1190 // will make old comparison dead. 1191 BI->setCondition(Cond); 1192 DeadInsts.emplace_back(OrigCond); 1193 1194 ++NumLFTR; 1195 return true; 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1200 //===----------------------------------------------------------------------===// 1201 1202 /// If there's a single exit block, sink any loop-invariant values that 1203 /// were defined in the preheader but not used inside the loop into the 1204 /// exit block to reduce register pressure in the loop. 1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1206 BasicBlock *ExitBlock = L->getExitBlock(); 1207 if (!ExitBlock) return false; 1208 1209 BasicBlock *Preheader = L->getLoopPreheader(); 1210 if (!Preheader) return false; 1211 1212 bool MadeAnyChanges = false; 1213 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1214 BasicBlock::iterator I(Preheader->getTerminator()); 1215 while (I != Preheader->begin()) { 1216 --I; 1217 // New instructions were inserted at the end of the preheader. 1218 if (isa<PHINode>(I)) 1219 break; 1220 1221 // Don't move instructions which might have side effects, since the side 1222 // effects need to complete before instructions inside the loop. Also don't 1223 // move instructions which might read memory, since the loop may modify 1224 // memory. Note that it's okay if the instruction might have undefined 1225 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1226 // block. 1227 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1228 continue; 1229 1230 // Skip debug info intrinsics. 1231 if (isa<DbgInfoIntrinsic>(I)) 1232 continue; 1233 1234 // Skip eh pad instructions. 1235 if (I->isEHPad()) 1236 continue; 1237 1238 // Don't sink alloca: we never want to sink static alloca's out of the 1239 // entry block, and correctly sinking dynamic alloca's requires 1240 // checks for stacksave/stackrestore intrinsics. 1241 // FIXME: Refactor this check somehow? 1242 if (isa<AllocaInst>(I)) 1243 continue; 1244 1245 // Determine if there is a use in or before the loop (direct or 1246 // otherwise). 1247 bool UsedInLoop = false; 1248 for (Use &U : I->uses()) { 1249 Instruction *User = cast<Instruction>(U.getUser()); 1250 BasicBlock *UseBB = User->getParent(); 1251 if (PHINode *P = dyn_cast<PHINode>(User)) { 1252 unsigned i = 1253 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1254 UseBB = P->getIncomingBlock(i); 1255 } 1256 if (UseBB == Preheader || L->contains(UseBB)) { 1257 UsedInLoop = true; 1258 break; 1259 } 1260 } 1261 1262 // If there is, the def must remain in the preheader. 1263 if (UsedInLoop) 1264 continue; 1265 1266 // Otherwise, sink it to the exit block. 1267 Instruction *ToMove = &*I; 1268 bool Done = false; 1269 1270 if (I != Preheader->begin()) { 1271 // Skip debug info intrinsics. 1272 do { 1273 --I; 1274 } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); 1275 1276 if (I->isDebugOrPseudoInst() && I == Preheader->begin()) 1277 Done = true; 1278 } else { 1279 Done = true; 1280 } 1281 1282 MadeAnyChanges = true; 1283 ToMove->moveBefore(*ExitBlock, InsertPt); 1284 SE->forgetBlockAndLoopDispositions(ToMove); 1285 if (Done) break; 1286 InsertPt = ToMove->getIterator(); 1287 } 1288 1289 return MadeAnyChanges; 1290 } 1291 1292 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1293 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1294 auto *OldCond = BI->getCondition(); 1295 BI->setCondition(NewCond); 1296 if (OldCond->use_empty()) 1297 DeadInsts.emplace_back(OldCond); 1298 } 1299 1300 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1301 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1302 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1303 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1304 auto *OldCond = BI->getCondition(); 1305 auto *NewCond = 1306 ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue); 1307 replaceExitCond(BI, NewCond, DeadInsts); 1308 } 1309 1310 static void replaceLoopPHINodesWithPreheaderValues( 1311 LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1312 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); 1313 auto *LoopPreheader = L->getLoopPreheader(); 1314 auto *LoopHeader = L->getHeader(); 1315 SmallVector<Instruction *> Worklist; 1316 for (auto &PN : LoopHeader->phis()) { 1317 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1318 for (User *U : PN.users()) 1319 Worklist.push_back(cast<Instruction>(U)); 1320 PN.replaceAllUsesWith(PreheaderIncoming); 1321 DeadInsts.emplace_back(&PN); 1322 } 1323 1324 // Replacing with the preheader value will often allow IV users to simplify 1325 // (especially if the preheader value is a constant). 1326 SmallPtrSet<Instruction *, 16> Visited; 1327 while (!Worklist.empty()) { 1328 auto *I = cast<Instruction>(Worklist.pop_back_val()); 1329 if (!Visited.insert(I).second) 1330 continue; 1331 1332 // Don't simplify instructions outside the loop. 1333 if (!L->contains(I)) 1334 continue; 1335 1336 Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout()); 1337 if (Res && LI->replacementPreservesLCSSAForm(I, Res)) { 1338 for (User *U : I->users()) 1339 Worklist.push_back(cast<Instruction>(U)); 1340 I->replaceAllUsesWith(Res); 1341 DeadInsts.emplace_back(I); 1342 } 1343 } 1344 } 1345 1346 static void replaceWithInvariantCond( 1347 const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1348 const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter, 1349 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1350 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1351 Rewriter.setInsertPoint(BI); 1352 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1353 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1354 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1355 if (ExitIfTrue) 1356 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1357 IRBuilder<> Builder(BI); 1358 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1359 BI->getCondition()->getName()); 1360 replaceExitCond(BI, NewCond, DeadInsts); 1361 } 1362 1363 static bool optimizeLoopExitWithUnknownExitCount( 1364 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, 1365 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1366 ScalarEvolution *SE, SCEVExpander &Rewriter, 1367 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1368 ICmpInst::Predicate Pred; 1369 Value *LHS, *RHS; 1370 BasicBlock *TrueSucc, *FalseSucc; 1371 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1372 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1373 return false; 1374 1375 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1376 "Not a loop exit!"); 1377 1378 // 'LHS pred RHS' should now mean that we stay in loop. 1379 if (L->contains(FalseSucc)) 1380 Pred = CmpInst::getInversePredicate(Pred); 1381 1382 // If we are proving loop exit, invert the predicate. 1383 if (Inverted) 1384 Pred = CmpInst::getInversePredicate(Pred); 1385 1386 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1387 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1388 // Can we prove it to be trivially true? 1389 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) { 1390 foldExit(L, ExitingBB, Inverted, DeadInsts); 1391 return true; 1392 } 1393 // Further logic works for non-inverted condition only. 1394 if (Inverted) 1395 return false; 1396 1397 auto *ARTy = LHSS->getType(); 1398 auto *MaxIterTy = MaxIter->getType(); 1399 // If possible, adjust types. 1400 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1401 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1402 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1403 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1404 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1405 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1406 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1407 } 1408 1409 if (SkipLastIter) { 1410 const SCEV *One = SE->getOne(MaxIter->getType()); 1411 MaxIter = SE->getMinusSCEV(MaxIter, One); 1412 } 1413 1414 // Check if there is a loop-invariant predicate equivalent to our check. 1415 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1416 L, BI, MaxIter); 1417 if (!LIP) 1418 return false; 1419 1420 // Can we prove it to be trivially true? 1421 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1422 foldExit(L, ExitingBB, Inverted, DeadInsts); 1423 else 1424 replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS, 1425 Rewriter, DeadInsts); 1426 1427 return true; 1428 } 1429 1430 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { 1431 // Note: This is duplicating a particular part on SimplifyIndVars reasoning. 1432 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers 1433 // never reaches the icmp since the zext doesn't fold to an AddRec unless 1434 // it already has flags. The alternative to this would be to extending the 1435 // set of "interesting" IV users to include the icmp, but doing that 1436 // regresses results in practice by querying SCEVs before trip counts which 1437 // rely on them which results in SCEV caching sub-optimal answers. The 1438 // concern about caching sub-optimal results is why we only query SCEVs of 1439 // the loop invariant RHS here. 1440 SmallVector<BasicBlock*, 16> ExitingBlocks; 1441 L->getExitingBlocks(ExitingBlocks); 1442 bool Changed = false; 1443 for (auto *ExitingBB : ExitingBlocks) { 1444 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1445 if (!BI) 1446 continue; 1447 assert(BI->isConditional() && "exit branch must be conditional"); 1448 1449 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1450 if (!ICmp || !ICmp->hasOneUse()) 1451 continue; 1452 1453 auto *LHS = ICmp->getOperand(0); 1454 auto *RHS = ICmp->getOperand(1); 1455 // For the range reasoning, avoid computing SCEVs in the loop to avoid 1456 // poisoning cache with sub-optimal results. For the must-execute case, 1457 // this is a neccessary precondition for correctness. 1458 if (!L->isLoopInvariant(RHS)) { 1459 if (!L->isLoopInvariant(LHS)) 1460 continue; 1461 // Same logic applies for the inverse case 1462 std::swap(LHS, RHS); 1463 } 1464 1465 // Match (icmp signed-cond zext, RHS) 1466 Value *LHSOp = nullptr; 1467 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) 1468 continue; 1469 1470 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1471 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1472 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1473 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1474 FullCR = FullCR.zeroExtend(OuterBitWidth); 1475 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1476 if (FullCR.contains(RHSCR)) { 1477 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus 1478 // replace the signed condition with the unsigned version. 1479 ICmp->setPredicate(ICmp->getUnsignedPredicate()); 1480 Changed = true; 1481 // Note: No SCEV invalidation needed. We've changed the predicate, but 1482 // have not changed exit counts, or the values produced by the compare. 1483 continue; 1484 } 1485 } 1486 1487 // Now that we've canonicalized the condition to match the extend, 1488 // see if we can rotate the extend out of the loop. 1489 for (auto *ExitingBB : ExitingBlocks) { 1490 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1491 if (!BI) 1492 continue; 1493 assert(BI->isConditional() && "exit branch must be conditional"); 1494 1495 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1496 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) 1497 continue; 1498 1499 bool Swapped = false; 1500 auto *LHS = ICmp->getOperand(0); 1501 auto *RHS = ICmp->getOperand(1); 1502 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) 1503 // Nothing to rotate 1504 continue; 1505 if (L->isLoopInvariant(LHS)) { 1506 // Same logic applies for the inverse case until we actually pick 1507 // which operand of the compare to update. 1508 Swapped = true; 1509 std::swap(LHS, RHS); 1510 } 1511 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); 1512 1513 // Match (icmp unsigned-cond zext, RHS) 1514 // TODO: Extend to handle corresponding sext/signed-cmp case 1515 // TODO: Extend to other invertible functions 1516 Value *LHSOp = nullptr; 1517 if (!match(LHS, m_ZExt(m_Value(LHSOp)))) 1518 continue; 1519 1520 // In general, we only rotate if we can do so without increasing the number 1521 // of instructions. The exception is when we have an zext(add-rec). The 1522 // reason for allowing this exception is that we know we need to get rid 1523 // of the zext for SCEV to be able to compute a trip count for said loops; 1524 // we consider the new trip count valuable enough to increase instruction 1525 // count by one. 1526 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) 1527 continue; 1528 1529 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS 1530 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) 1531 // when zext is loop varying and RHS is loop invariant. This converts 1532 // loop varying work to loop-invariant work. 1533 auto doRotateTransform = [&]() { 1534 assert(ICmp->isUnsigned() && "must have proven unsigned already"); 1535 auto *NewRHS = 1536 CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", 1537 L->getLoopPreheader()->getTerminator()); 1538 ICmp->setOperand(Swapped ? 1 : 0, LHSOp); 1539 ICmp->setOperand(Swapped ? 0 : 1, NewRHS); 1540 if (LHS->use_empty()) 1541 DeadInsts.push_back(LHS); 1542 }; 1543 1544 1545 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1546 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1547 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1548 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1549 FullCR = FullCR.zeroExtend(OuterBitWidth); 1550 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1551 if (FullCR.contains(RHSCR)) { 1552 doRotateTransform(); 1553 Changed = true; 1554 // Note, we are leaving SCEV in an unfortunately imprecise case here 1555 // as rotation tends to reveal information about trip counts not 1556 // previously visible. 1557 continue; 1558 } 1559 } 1560 1561 return Changed; 1562 } 1563 1564 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1565 SmallVector<BasicBlock*, 16> ExitingBlocks; 1566 L->getExitingBlocks(ExitingBlocks); 1567 1568 // Remove all exits which aren't both rewriteable and execute on every 1569 // iteration. 1570 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1571 // If our exitting block exits multiple loops, we can only rewrite the 1572 // innermost one. Otherwise, we're changing how many times the innermost 1573 // loop runs before it exits. 1574 if (LI->getLoopFor(ExitingBB) != L) 1575 return true; 1576 1577 // Can't rewrite non-branch yet. 1578 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1579 if (!BI) 1580 return true; 1581 1582 // Likewise, the loop latch must be dominated by the exiting BB. 1583 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1584 return true; 1585 1586 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 1587 // If already constant, nothing to do. However, if this is an 1588 // unconditional exit, we can still replace header phis with their 1589 // preheader value. 1590 if (!L->contains(BI->getSuccessor(CI->isNullValue()))) 1591 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts); 1592 return true; 1593 } 1594 1595 return false; 1596 }); 1597 1598 if (ExitingBlocks.empty()) 1599 return false; 1600 1601 // Get a symbolic upper bound on the loop backedge taken count. 1602 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1603 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1604 return false; 1605 1606 // Visit our exit blocks in order of dominance. We know from the fact that 1607 // all exits must dominate the latch, so there is a total dominance order 1608 // between them. 1609 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1610 // std::sort sorts in ascending order, so we want the inverse of 1611 // the normal dominance relation. 1612 if (A == B) return false; 1613 if (DT->properlyDominates(A, B)) 1614 return true; 1615 else { 1616 assert(DT->properlyDominates(B, A) && 1617 "expected total dominance order!"); 1618 return false; 1619 } 1620 }); 1621 #ifdef ASSERT 1622 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1623 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1624 } 1625 #endif 1626 1627 bool Changed = false; 1628 bool SkipLastIter = false; 1629 SmallSet<const SCEV*, 8> DominatingExitCounts; 1630 for (BasicBlock *ExitingBB : ExitingBlocks) { 1631 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1632 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1633 // Okay, we do not know the exit count here. Can we at least prove that it 1634 // will remain the same within iteration space? 1635 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1636 auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) { 1637 return optimizeLoopExitWithUnknownExitCount( 1638 L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE, 1639 Rewriter, DeadInsts); 1640 }; 1641 1642 // TODO: We might have proved that we can skip the last iteration for 1643 // this check. In this case, we only want to check the condition on the 1644 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1645 // corner case: 1646 // 1647 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1648 // 1649 // If we could not prove that len != 0, then we also could not prove that 1650 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1651 // OptimizeCond will likely not prove anything for it, even if it could 1652 // prove the same fact for len. 1653 // 1654 // As a temporary solution, we query both last and pre-last iterations in 1655 // hope that we will be able to prove triviality for at least one of 1656 // them. We can stop querying MaxExitCount for this case once SCEV 1657 // understands that (MaxExitCount - 1) will not overflow here. 1658 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1659 Changed = true; 1660 else if (SkipLastIter) 1661 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1662 Changed = true; 1663 continue; 1664 } 1665 1666 if (MaxExitCount == ExitCount) 1667 // If the loop has more than 1 iteration, all further checks will be 1668 // executed 1 iteration less. 1669 SkipLastIter = true; 1670 1671 // If we know we'd exit on the first iteration, rewrite the exit to 1672 // reflect this. This does not imply the loop must exit through this 1673 // exit; there may be an earlier one taken on the first iteration. 1674 // We know that the backedge can't be taken, so we replace all 1675 // the header PHIs with values coming from the preheader. 1676 if (ExitCount->isZero()) { 1677 foldExit(L, ExitingBB, true, DeadInsts); 1678 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts); 1679 Changed = true; 1680 continue; 1681 } 1682 1683 assert(ExitCount->getType()->isIntegerTy() && 1684 MaxExitCount->getType()->isIntegerTy() && 1685 "Exit counts must be integers"); 1686 1687 Type *WiderType = 1688 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1689 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1690 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1691 assert(MaxExitCount->getType() == ExitCount->getType()); 1692 1693 // Can we prove that some other exit must be taken strictly before this 1694 // one? 1695 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1696 MaxExitCount, ExitCount)) { 1697 foldExit(L, ExitingBB, false, DeadInsts); 1698 Changed = true; 1699 continue; 1700 } 1701 1702 // As we run, keep track of which exit counts we've encountered. If we 1703 // find a duplicate, we've found an exit which would have exited on the 1704 // exiting iteration, but (from the visit order) strictly follows another 1705 // which does the same and is thus dead. 1706 if (!DominatingExitCounts.insert(ExitCount).second) { 1707 foldExit(L, ExitingBB, false, DeadInsts); 1708 Changed = true; 1709 continue; 1710 } 1711 1712 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1713 // here. If we kept track of the min of dominanting exits so far, we could 1714 // discharge exits with EC >= MDEC. This is less powerful than the existing 1715 // transform (since later exits aren't considered), but potentially more 1716 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1717 // or a >u b. Such a case is not currently known. 1718 } 1719 return Changed; 1720 } 1721 1722 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1723 SmallVector<BasicBlock*, 16> ExitingBlocks; 1724 L->getExitingBlocks(ExitingBlocks); 1725 1726 // Finally, see if we can rewrite our exit conditions into a loop invariant 1727 // form. If we have a read-only loop, and we can tell that we must exit down 1728 // a path which does not need any of the values computed within the loop, we 1729 // can rewrite the loop to exit on the first iteration. Note that this 1730 // doesn't either a) tell us the loop exits on the first iteration (unless 1731 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1732 // This transformation looks a lot like a restricted form of dead loop 1733 // elimination, but restricted to read-only loops and without neccesssarily 1734 // needing to kill the loop entirely. 1735 if (!LoopPredication) 1736 return false; 1737 1738 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1739 // through *explicit* control flow. We have to eliminate the possibility of 1740 // implicit exits (see below) before we know it's truly exact. 1741 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1742 if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC)) 1743 return false; 1744 1745 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1746 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1747 1748 auto BadExit = [&](BasicBlock *ExitingBB) { 1749 // If our exiting block exits multiple loops, we can only rewrite the 1750 // innermost one. Otherwise, we're changing how many times the innermost 1751 // loop runs before it exits. 1752 if (LI->getLoopFor(ExitingBB) != L) 1753 return true; 1754 1755 // Can't rewrite non-branch yet. 1756 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1757 if (!BI) 1758 return true; 1759 1760 // If already constant, nothing to do. 1761 if (isa<Constant>(BI->getCondition())) 1762 return true; 1763 1764 // If the exit block has phis, we need to be able to compute the values 1765 // within the loop which contains them. This assumes trivially lcssa phis 1766 // have already been removed; TODO: generalize 1767 BasicBlock *ExitBlock = 1768 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1769 if (!ExitBlock->phis().empty()) 1770 return true; 1771 1772 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1773 if (isa<SCEVCouldNotCompute>(ExitCount) || 1774 !Rewriter.isSafeToExpand(ExitCount)) 1775 return true; 1776 1777 assert(SE->isLoopInvariant(ExitCount, L) && 1778 "Exit count must be loop invariant"); 1779 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1780 return false; 1781 }; 1782 1783 // If we have any exits which can't be predicated themselves, than we can't 1784 // predicate any exit which isn't guaranteed to execute before it. Consider 1785 // two exits (a) and (b) which would both exit on the same iteration. If we 1786 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1787 // we could convert a loop from exiting through (a) to one exiting through 1788 // (b). Note that this problem exists only for exits with the same exit 1789 // count, and we could be more aggressive when exit counts are known inequal. 1790 llvm::sort(ExitingBlocks, 1791 [&](BasicBlock *A, BasicBlock *B) { 1792 // std::sort sorts in ascending order, so we want the inverse of 1793 // the normal dominance relation, plus a tie breaker for blocks 1794 // unordered by dominance. 1795 if (DT->properlyDominates(A, B)) return true; 1796 if (DT->properlyDominates(B, A)) return false; 1797 return A->getName() < B->getName(); 1798 }); 1799 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1800 // exits before the backedge). If they aren't, reasoning about reachability 1801 // is complicated and we choose not to for now. 1802 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1803 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1804 return false; 1805 1806 // Given our sorted total order, we know that exit[j] must be evaluated 1807 // after all exit[i] such j > i. 1808 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1809 if (BadExit(ExitingBlocks[i])) { 1810 ExitingBlocks.resize(i); 1811 break; 1812 } 1813 1814 if (ExitingBlocks.empty()) 1815 return false; 1816 1817 // We rely on not being able to reach an exiting block on a later iteration 1818 // then it's statically compute exit count. The implementaton of 1819 // getExitCount currently has this invariant, but assert it here so that 1820 // breakage is obvious if this ever changes.. 1821 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1822 return DT->dominates(ExitingBB, L->getLoopLatch()); 1823 })); 1824 1825 // At this point, ExitingBlocks consists of only those blocks which are 1826 // predicatable. Given that, we know we have at least one exit we can 1827 // predicate if the loop is doesn't have side effects and doesn't have any 1828 // implicit exits (because then our exact BTC isn't actually exact). 1829 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1830 // suggestions on how to improve this? I can obviously bail out for outer 1831 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1832 // is that enough for *all* side effects? 1833 for (BasicBlock *BB : L->blocks()) 1834 for (auto &I : *BB) 1835 // TODO:isGuaranteedToTransfer 1836 if (I.mayHaveSideEffects()) 1837 return false; 1838 1839 bool Changed = false; 1840 // Finally, do the actual predication for all predicatable blocks. A couple 1841 // of notes here: 1842 // 1) We don't bother to constant fold dominated exits with identical exit 1843 // counts; that's simply a form of CSE/equality propagation and we leave 1844 // it for dedicated passes. 1845 // 2) We insert the comparison at the branch. Hoisting introduces additional 1846 // legality constraints and we leave that to dedicated logic. We want to 1847 // predicate even if we can't insert a loop invariant expression as 1848 // peeling or unrolling will likely reduce the cost of the otherwise loop 1849 // varying check. 1850 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1851 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1852 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1853 for (BasicBlock *ExitingBB : ExitingBlocks) { 1854 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1855 1856 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1857 Value *NewCond; 1858 if (ExitCount == ExactBTC) { 1859 NewCond = L->contains(BI->getSuccessor(0)) ? 1860 B.getFalse() : B.getTrue(); 1861 } else { 1862 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1863 if (!ExactBTCV) 1864 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1865 Value *RHS = ExactBTCV; 1866 if (ECV->getType() != RHS->getType()) { 1867 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1868 ECV = B.CreateZExt(ECV, WiderTy); 1869 RHS = B.CreateZExt(RHS, WiderTy); 1870 } 1871 auto Pred = L->contains(BI->getSuccessor(0)) ? 1872 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1873 NewCond = B.CreateICmp(Pred, ECV, RHS); 1874 } 1875 Value *OldCond = BI->getCondition(); 1876 BI->setCondition(NewCond); 1877 if (OldCond->use_empty()) 1878 DeadInsts.emplace_back(OldCond); 1879 Changed = true; 1880 } 1881 1882 return Changed; 1883 } 1884 1885 //===----------------------------------------------------------------------===// 1886 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1887 //===----------------------------------------------------------------------===// 1888 1889 bool IndVarSimplify::run(Loop *L) { 1890 // We need (and expect!) the incoming loop to be in LCSSA. 1891 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1892 "LCSSA required to run indvars!"); 1893 1894 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1895 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1896 // canonicalization can be a pessimization without LSR to "clean up" 1897 // afterwards. 1898 // - We depend on having a preheader; in particular, 1899 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1900 // and we're in trouble if we can't find the induction variable even when 1901 // we've manually inserted one. 1902 // - LFTR relies on having a single backedge. 1903 if (!L->isLoopSimplifyForm()) 1904 return false; 1905 1906 #ifndef NDEBUG 1907 // Used below for a consistency check only 1908 // Note: Since the result returned by ScalarEvolution may depend on the order 1909 // in which previous results are added to its cache, the call to 1910 // getBackedgeTakenCount() may change following SCEV queries. 1911 const SCEV *BackedgeTakenCount; 1912 if (VerifyIndvars) 1913 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1914 #endif 1915 1916 bool Changed = false; 1917 // If there are any floating-point recurrences, attempt to 1918 // transform them to use integer recurrences. 1919 Changed |= rewriteNonIntegerIVs(L); 1920 1921 // Create a rewriter object which we'll use to transform the code with. 1922 SCEVExpander Rewriter(*SE, DL, "indvars"); 1923 #ifndef NDEBUG 1924 Rewriter.setDebugType(DEBUG_TYPE); 1925 #endif 1926 1927 // Eliminate redundant IV users. 1928 // 1929 // Simplification works best when run before other consumers of SCEV. We 1930 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1931 // other expressions involving loop IVs have been evaluated. This helps SCEV 1932 // set no-wrap flags before normalizing sign/zero extension. 1933 Rewriter.disableCanonicalMode(); 1934 Changed |= simplifyAndExtend(L, Rewriter, LI); 1935 1936 // Check to see if we can compute the final value of any expressions 1937 // that are recurrent in the loop, and substitute the exit values from the 1938 // loop into any instructions outside of the loop that use the final values 1939 // of the current expressions. 1940 if (ReplaceExitValue != NeverRepl) { 1941 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1942 ReplaceExitValue, DeadInsts)) { 1943 NumReplaced += Rewrites; 1944 Changed = true; 1945 } 1946 } 1947 1948 // Eliminate redundant IV cycles. 1949 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); 1950 1951 // Try to convert exit conditions to unsigned and rotate computation 1952 // out of the loop. Note: Handles invalidation internally if needed. 1953 Changed |= canonicalizeExitCondition(L); 1954 1955 // Try to eliminate loop exits based on analyzeable exit counts 1956 if (optimizeLoopExits(L, Rewriter)) { 1957 Changed = true; 1958 // Given we've changed exit counts, notify SCEV 1959 // Some nested loops may share same folded exit basic block, 1960 // thus we need to notify top most loop. 1961 SE->forgetTopmostLoop(L); 1962 } 1963 1964 // Try to form loop invariant tests for loop exits by changing how many 1965 // iterations of the loop run when that is unobservable. 1966 if (predicateLoopExits(L, Rewriter)) { 1967 Changed = true; 1968 // Given we've changed exit counts, notify SCEV 1969 SE->forgetLoop(L); 1970 } 1971 1972 // If we have a trip count expression, rewrite the loop's exit condition 1973 // using it. 1974 if (!DisableLFTR) { 1975 BasicBlock *PreHeader = L->getLoopPreheader(); 1976 1977 SmallVector<BasicBlock*, 16> ExitingBlocks; 1978 L->getExitingBlocks(ExitingBlocks); 1979 for (BasicBlock *ExitingBB : ExitingBlocks) { 1980 // Can't rewrite non-branch yet. 1981 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1982 continue; 1983 1984 // If our exitting block exits multiple loops, we can only rewrite the 1985 // innermost one. Otherwise, we're changing how many times the innermost 1986 // loop runs before it exits. 1987 if (LI->getLoopFor(ExitingBB) != L) 1988 continue; 1989 1990 if (!needsLFTR(L, ExitingBB)) 1991 continue; 1992 1993 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1994 if (isa<SCEVCouldNotCompute>(ExitCount)) 1995 continue; 1996 1997 // This was handled above, but as we form SCEVs, we can sometimes refine 1998 // existing ones; this allows exit counts to be folded to zero which 1999 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 2000 // until stable to handle cases like this better. 2001 if (ExitCount->isZero()) 2002 continue; 2003 2004 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 2005 if (!IndVar) 2006 continue; 2007 2008 // Avoid high cost expansions. Note: This heuristic is questionable in 2009 // that our definition of "high cost" is not exactly principled. 2010 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 2011 TTI, PreHeader->getTerminator())) 2012 continue; 2013 2014 // Check preconditions for proper SCEVExpander operation. SCEV does not 2015 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2016 // any pass that uses the SCEVExpander must do it. This does not work 2017 // well for loop passes because SCEVExpander makes assumptions about 2018 // all loops, while LoopPassManager only forces the current loop to be 2019 // simplified. 2020 // 2021 // FIXME: SCEV expansion has no way to bail out, so the caller must 2022 // explicitly check any assumptions made by SCEV. Brittle. 2023 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 2024 if (!AR || AR->getLoop()->getLoopPreheader()) 2025 Changed |= linearFunctionTestReplace(L, ExitingBB, 2026 ExitCount, IndVar, 2027 Rewriter); 2028 } 2029 } 2030 // Clear the rewriter cache, because values that are in the rewriter's cache 2031 // can be deleted in the loop below, causing the AssertingVH in the cache to 2032 // trigger. 2033 Rewriter.clear(); 2034 2035 // Now that we're done iterating through lists, clean up any instructions 2036 // which are now dead. 2037 while (!DeadInsts.empty()) { 2038 Value *V = DeadInsts.pop_back_val(); 2039 2040 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 2041 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 2042 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 2043 Changed |= 2044 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 2045 } 2046 2047 // The Rewriter may not be used from this point on. 2048 2049 // Loop-invariant instructions in the preheader that aren't used in the 2050 // loop may be sunk below the loop to reduce register pressure. 2051 Changed |= sinkUnusedInvariants(L); 2052 2053 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2054 // trip count and therefore can further simplify exit values in addition to 2055 // rewriteLoopExitValues. 2056 Changed |= rewriteFirstIterationLoopExitValues(L); 2057 2058 // Clean up dead instructions. 2059 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 2060 2061 // Check a post-condition. 2062 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2063 "Indvars did not preserve LCSSA!"); 2064 2065 // Verify that LFTR, and any other change have not interfered with SCEV's 2066 // ability to compute trip count. We may have *changed* the exit count, but 2067 // only by reducing it. 2068 #ifndef NDEBUG 2069 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2070 SE->forgetLoop(L); 2071 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2072 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2073 SE->getTypeSizeInBits(NewBECount->getType())) 2074 NewBECount = SE->getTruncateOrNoop(NewBECount, 2075 BackedgeTakenCount->getType()); 2076 else 2077 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2078 NewBECount->getType()); 2079 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 2080 NewBECount) && "indvars must preserve SCEV"); 2081 } 2082 if (VerifyMemorySSA && MSSAU) 2083 MSSAU->getMemorySSA()->verifyMemorySSA(); 2084 #endif 2085 2086 return Changed; 2087 } 2088 2089 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2090 LoopStandardAnalysisResults &AR, 2091 LPMUpdater &) { 2092 Function *F = L.getHeader()->getParent(); 2093 const DataLayout &DL = F->getParent()->getDataLayout(); 2094 2095 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 2096 WidenIndVars && AllowIVWidening); 2097 if (!IVS.run(&L)) 2098 return PreservedAnalyses::all(); 2099 2100 auto PA = getLoopPassPreservedAnalyses(); 2101 PA.preserveSet<CFGAnalyses>(); 2102 if (AR.MSSA) 2103 PA.preserve<MemorySSAAnalysis>(); 2104 return PA; 2105 } 2106 2107 namespace { 2108 2109 struct IndVarSimplifyLegacyPass : public LoopPass { 2110 static char ID; // Pass identification, replacement for typeid 2111 2112 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2113 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2114 } 2115 2116 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2117 if (skipLoop(L)) 2118 return false; 2119 2120 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2121 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2122 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2123 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2124 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 2125 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2126 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2127 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2128 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2129 MemorySSA *MSSA = nullptr; 2130 if (MSSAAnalysis) 2131 MSSA = &MSSAAnalysis->getMSSA(); 2132 2133 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 2134 return IVS.run(L); 2135 } 2136 2137 void getAnalysisUsage(AnalysisUsage &AU) const override { 2138 AU.setPreservesCFG(); 2139 AU.addPreserved<MemorySSAWrapperPass>(); 2140 getLoopAnalysisUsage(AU); 2141 } 2142 }; 2143 2144 } // end anonymous namespace 2145 2146 char IndVarSimplifyLegacyPass::ID = 0; 2147 2148 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2149 "Induction Variable Simplification", false, false) 2150 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2151 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2152 "Induction Variable Simplification", false, false) 2153 2154 Pass *llvm::createIndVarSimplifyPass() { 2155 return new IndVarSimplifyLegacyPass(); 2156 } 2157