xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision a5ee62a141fe791cc9b759a058f85339af45b362)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/MemorySSAUpdater.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
42 #include "llvm/Analysis/TargetLibraryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/Analysis/ValueTracking.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/ConstantRange.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DataLayout.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/IRBuilder.h"
54 #include "llvm/IR/InstrTypes.h"
55 #include "llvm/IR/Instruction.h"
56 #include "llvm/IR/Instructions.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include "llvm/IR/Intrinsics.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/PassManager.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/Use.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/IR/ValueHandle.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Scalar.h"
77 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Transforms/Utils/LoopUtils.h"
80 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 using namespace PatternMatch;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101     "verify-indvars", cl::Hidden,
102     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
103              "effect in release builds. (Note: this adds additional SCEV "
104              "queries potentially changing the analysis result)"));
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(
110         clEnumValN(NeverRepl, "never", "never replace exit value"),
111         clEnumValN(OnlyCheapRepl, "cheap",
112                    "only replace exit value when the cost is cheap"),
113         clEnumValN(
114             UnusedIndVarInLoop, "unusedindvarinloop",
115             "only replace exit value when it is an unused "
116             "induction variable in the loop and has cheap replacement cost"),
117         clEnumValN(NoHardUse, "noharduse",
118                    "only replace exit values when loop def likely dead"),
119         clEnumValN(AlwaysRepl, "always",
120                    "always replace exit value whenever possible")));
121 
122 static cl::opt<bool> UsePostIncrementRanges(
123   "indvars-post-increment-ranges", cl::Hidden,
124   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
125   cl::init(true));
126 
127 static cl::opt<bool>
128 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
129             cl::desc("Disable Linear Function Test Replace optimization"));
130 
131 static cl::opt<bool>
132 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
133                 cl::desc("Predicate conditions in read only loops"));
134 
135 static cl::opt<bool>
136 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
137                 cl::desc("Allow widening of indvars to eliminate s/zext"));
138 
139 namespace {
140 
141 class IndVarSimplify {
142   LoopInfo *LI;
143   ScalarEvolution *SE;
144   DominatorTree *DT;
145   const DataLayout &DL;
146   TargetLibraryInfo *TLI;
147   const TargetTransformInfo *TTI;
148   std::unique_ptr<MemorySSAUpdater> MSSAU;
149 
150   SmallVector<WeakTrackingVH, 16> DeadInsts;
151   bool WidenIndVars;
152 
153   bool handleFloatingPointIV(Loop *L, PHINode *PH);
154   bool rewriteNonIntegerIVs(Loop *L);
155 
156   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
157   /// Try to improve our exit conditions by converting condition from signed
158   /// to unsigned or rotating computation out of the loop.
159   /// (See inline comment about why this is duplicated from simplifyAndExtend)
160   bool canonicalizeExitCondition(Loop *L);
161   /// Try to eliminate loop exits based on analyzeable exit counts
162   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
163   /// Try to form loop invariant tests for loop exits by changing how many
164   /// iterations of the loop run when that is unobservable.
165   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
166 
167   bool rewriteFirstIterationLoopExitValues(Loop *L);
168 
169   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
170                                  const SCEV *ExitCount,
171                                  PHINode *IndVar, SCEVExpander &Rewriter);
172 
173   bool sinkUnusedInvariants(Loop *L);
174 
175 public:
176   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
177                  const DataLayout &DL, TargetLibraryInfo *TLI,
178                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
179       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
180         WidenIndVars(WidenIndVars) {
181     if (MSSA)
182       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
183   }
184 
185   bool run(Loop *L);
186 };
187 
188 } // end anonymous namespace
189 
190 //===----------------------------------------------------------------------===//
191 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
192 //===----------------------------------------------------------------------===//
193 
194 /// Convert APF to an integer, if possible.
195 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
196   bool isExact = false;
197   // See if we can convert this to an int64_t
198   uint64_t UIntVal;
199   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
200                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
201       !isExact)
202     return false;
203   IntVal = UIntVal;
204   return true;
205 }
206 
207 /// If the loop has floating induction variable then insert corresponding
208 /// integer induction variable if possible.
209 /// For example,
210 /// for(double i = 0; i < 10000; ++i)
211 ///   bar(i)
212 /// is converted into
213 /// for(int i = 0; i < 10000; ++i)
214 ///   bar((double)i);
215 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
216   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
217   unsigned BackEdge     = IncomingEdge^1;
218 
219   // Check incoming value.
220   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
221 
222   int64_t InitValue;
223   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
224     return false;
225 
226   // Check IV increment. Reject this PN if increment operation is not
227   // an add or increment value can not be represented by an integer.
228   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
229   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
230 
231   // If this is not an add of the PHI with a constantfp, or if the constant fp
232   // is not an integer, bail out.
233   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
234   int64_t IncValue;
235   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
236       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
237     return false;
238 
239   // Check Incr uses. One user is PN and the other user is an exit condition
240   // used by the conditional terminator.
241   Value::user_iterator IncrUse = Incr->user_begin();
242   Instruction *U1 = cast<Instruction>(*IncrUse++);
243   if (IncrUse == Incr->user_end()) return false;
244   Instruction *U2 = cast<Instruction>(*IncrUse++);
245   if (IncrUse != Incr->user_end()) return false;
246 
247   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
248   // only used by a branch, we can't transform it.
249   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
250   if (!Compare)
251     Compare = dyn_cast<FCmpInst>(U2);
252   if (!Compare || !Compare->hasOneUse() ||
253       !isa<BranchInst>(Compare->user_back()))
254     return false;
255 
256   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
257 
258   // We need to verify that the branch actually controls the iteration count
259   // of the loop.  If not, the new IV can overflow and no one will notice.
260   // The branch block must be in the loop and one of the successors must be out
261   // of the loop.
262   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
263   if (!L->contains(TheBr->getParent()) ||
264       (L->contains(TheBr->getSuccessor(0)) &&
265        L->contains(TheBr->getSuccessor(1))))
266     return false;
267 
268   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
269   // transform it.
270   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
271   int64_t ExitValue;
272   if (ExitValueVal == nullptr ||
273       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
274     return false;
275 
276   // Find new predicate for integer comparison.
277   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
278   switch (Compare->getPredicate()) {
279   default: return false;  // Unknown comparison.
280   case CmpInst::FCMP_OEQ:
281   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
282   case CmpInst::FCMP_ONE:
283   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
284   case CmpInst::FCMP_OGT:
285   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
286   case CmpInst::FCMP_OGE:
287   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
288   case CmpInst::FCMP_OLT:
289   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
290   case CmpInst::FCMP_OLE:
291   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
292   }
293 
294   // We convert the floating point induction variable to a signed i32 value if
295   // we can.  This is only safe if the comparison will not overflow in a way
296   // that won't be trapped by the integer equivalent operations.  Check for this
297   // now.
298   // TODO: We could use i64 if it is native and the range requires it.
299 
300   // The start/stride/exit values must all fit in signed i32.
301   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
302     return false;
303 
304   // If not actually striding (add x, 0.0), avoid touching the code.
305   if (IncValue == 0)
306     return false;
307 
308   // Positive and negative strides have different safety conditions.
309   if (IncValue > 0) {
310     // If we have a positive stride, we require the init to be less than the
311     // exit value.
312     if (InitValue >= ExitValue)
313       return false;
314 
315     uint32_t Range = uint32_t(ExitValue-InitValue);
316     // Check for infinite loop, either:
317     // while (i <= Exit) or until (i > Exit)
318     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
319       if (++Range == 0) return false;  // Range overflows.
320     }
321 
322     unsigned Leftover = Range % uint32_t(IncValue);
323 
324     // If this is an equality comparison, we require that the strided value
325     // exactly land on the exit value, otherwise the IV condition will wrap
326     // around and do things the fp IV wouldn't.
327     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
328         Leftover != 0)
329       return false;
330 
331     // If the stride would wrap around the i32 before exiting, we can't
332     // transform the IV.
333     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
334       return false;
335   } else {
336     // If we have a negative stride, we require the init to be greater than the
337     // exit value.
338     if (InitValue <= ExitValue)
339       return false;
340 
341     uint32_t Range = uint32_t(InitValue-ExitValue);
342     // Check for infinite loop, either:
343     // while (i >= Exit) or until (i < Exit)
344     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
345       if (++Range == 0) return false;  // Range overflows.
346     }
347 
348     unsigned Leftover = Range % uint32_t(-IncValue);
349 
350     // If this is an equality comparison, we require that the strided value
351     // exactly land on the exit value, otherwise the IV condition will wrap
352     // around and do things the fp IV wouldn't.
353     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
354         Leftover != 0)
355       return false;
356 
357     // If the stride would wrap around the i32 before exiting, we can't
358     // transform the IV.
359     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
360       return false;
361   }
362 
363   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
364 
365   // Insert new integer induction variable.
366   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
367   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
368                       PN->getIncomingBlock(IncomingEdge));
369 
370   Value *NewAdd =
371     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
372                               Incr->getName()+".int", Incr);
373   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
374 
375   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
376                                       ConstantInt::get(Int32Ty, ExitValue),
377                                       Compare->getName());
378 
379   // In the following deletions, PN may become dead and may be deleted.
380   // Use a WeakTrackingVH to observe whether this happens.
381   WeakTrackingVH WeakPH = PN;
382 
383   // Delete the old floating point exit comparison.  The branch starts using the
384   // new comparison.
385   NewCompare->takeName(Compare);
386   Compare->replaceAllUsesWith(NewCompare);
387   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
388 
389   // Delete the old floating point increment.
390   Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
391   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
392 
393   // If the FP induction variable still has uses, this is because something else
394   // in the loop uses its value.  In order to canonicalize the induction
395   // variable, we chose to eliminate the IV and rewrite it in terms of an
396   // int->fp cast.
397   //
398   // We give preference to sitofp over uitofp because it is faster on most
399   // platforms.
400   if (WeakPH) {
401     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
402                                  &*PN->getParent()->getFirstInsertionPt());
403     PN->replaceAllUsesWith(Conv);
404     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
405   }
406   return true;
407 }
408 
409 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
410   // First step.  Check to see if there are any floating-point recurrences.
411   // If there are, change them into integer recurrences, permitting analysis by
412   // the SCEV routines.
413   BasicBlock *Header = L->getHeader();
414 
415   SmallVector<WeakTrackingVH, 8> PHIs;
416   for (PHINode &PN : Header->phis())
417     PHIs.push_back(&PN);
418 
419   bool Changed = false;
420   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
421     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
422       Changed |= handleFloatingPointIV(L, PN);
423 
424   // If the loop previously had floating-point IV, ScalarEvolution
425   // may not have been able to compute a trip count. Now that we've done some
426   // re-writing, the trip count may be computable.
427   if (Changed)
428     SE->forgetLoop(L);
429   return Changed;
430 }
431 
432 //===---------------------------------------------------------------------===//
433 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
434 // they will exit at the first iteration.
435 //===---------------------------------------------------------------------===//
436 
437 /// Check to see if this loop has loop invariant conditions which lead to loop
438 /// exits. If so, we know that if the exit path is taken, it is at the first
439 /// loop iteration. This lets us predict exit values of PHI nodes that live in
440 /// loop header.
441 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
442   // Verify the input to the pass is already in LCSSA form.
443   assert(L->isLCSSAForm(*DT));
444 
445   SmallVector<BasicBlock *, 8> ExitBlocks;
446   L->getUniqueExitBlocks(ExitBlocks);
447 
448   bool MadeAnyChanges = false;
449   for (auto *ExitBB : ExitBlocks) {
450     // If there are no more PHI nodes in this exit block, then no more
451     // values defined inside the loop are used on this path.
452     for (PHINode &PN : ExitBB->phis()) {
453       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
454            IncomingValIdx != E; ++IncomingValIdx) {
455         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
456 
457         // Can we prove that the exit must run on the first iteration if it
458         // runs at all?  (i.e. early exits are fine for our purposes, but
459         // traces which lead to this exit being taken on the 2nd iteration
460         // aren't.)  Note that this is about whether the exit branch is
461         // executed, not about whether it is taken.
462         if (!L->getLoopLatch() ||
463             !DT->dominates(IncomingBB, L->getLoopLatch()))
464           continue;
465 
466         // Get condition that leads to the exit path.
467         auto *TermInst = IncomingBB->getTerminator();
468 
469         Value *Cond = nullptr;
470         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
471           // Must be a conditional branch, otherwise the block
472           // should not be in the loop.
473           Cond = BI->getCondition();
474         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
475           Cond = SI->getCondition();
476         else
477           continue;
478 
479         if (!L->isLoopInvariant(Cond))
480           continue;
481 
482         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
483 
484         // Only deal with PHIs in the loop header.
485         if (!ExitVal || ExitVal->getParent() != L->getHeader())
486           continue;
487 
488         // If ExitVal is a PHI on the loop header, then we know its
489         // value along this exit because the exit can only be taken
490         // on the first iteration.
491         auto *LoopPreheader = L->getLoopPreheader();
492         assert(LoopPreheader && "Invalid loop");
493         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
494         if (PreheaderIdx != -1) {
495           assert(ExitVal->getParent() == L->getHeader() &&
496                  "ExitVal must be in loop header");
497           MadeAnyChanges = true;
498           PN.setIncomingValue(IncomingValIdx,
499                               ExitVal->getIncomingValue(PreheaderIdx));
500           SE->forgetValue(&PN);
501         }
502       }
503     }
504   }
505   return MadeAnyChanges;
506 }
507 
508 //===----------------------------------------------------------------------===//
509 //  IV Widening - Extend the width of an IV to cover its widest uses.
510 //===----------------------------------------------------------------------===//
511 
512 /// Update information about the induction variable that is extended by this
513 /// sign or zero extend operation. This is used to determine the final width of
514 /// the IV before actually widening it.
515 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
516                         ScalarEvolution *SE,
517                         const TargetTransformInfo *TTI) {
518   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
519   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
520     return;
521 
522   Type *Ty = Cast->getType();
523   uint64_t Width = SE->getTypeSizeInBits(Ty);
524   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
525     return;
526 
527   // Check that `Cast` actually extends the induction variable (we rely on this
528   // later).  This takes care of cases where `Cast` is extending a truncation of
529   // the narrow induction variable, and thus can end up being narrower than the
530   // "narrow" induction variable.
531   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
532   if (NarrowIVWidth >= Width)
533     return;
534 
535   // Cast is either an sext or zext up to this point.
536   // We should not widen an indvar if arithmetics on the wider indvar are more
537   // expensive than those on the narrower indvar. We check only the cost of ADD
538   // because at least an ADD is required to increment the induction variable. We
539   // could compute more comprehensively the cost of all instructions on the
540   // induction variable when necessary.
541   if (TTI &&
542       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
543           TTI->getArithmeticInstrCost(Instruction::Add,
544                                       Cast->getOperand(0)->getType())) {
545     return;
546   }
547 
548   if (!WI.WidestNativeType ||
549       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
550     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
551     WI.IsSigned = IsSigned;
552     return;
553   }
554 
555   // We extend the IV to satisfy the sign of its user(s), or 'signed'
556   // if there are multiple users with both sign- and zero extensions,
557   // in order not to introduce nondeterministic behaviour based on the
558   // unspecified order of a PHI nodes' users-iterator.
559   WI.IsSigned |= IsSigned;
560 }
561 
562 //===----------------------------------------------------------------------===//
563 //  Live IV Reduction - Minimize IVs live across the loop.
564 //===----------------------------------------------------------------------===//
565 
566 //===----------------------------------------------------------------------===//
567 //  Simplification of IV users based on SCEV evaluation.
568 //===----------------------------------------------------------------------===//
569 
570 namespace {
571 
572 class IndVarSimplifyVisitor : public IVVisitor {
573   ScalarEvolution *SE;
574   const TargetTransformInfo *TTI;
575   PHINode *IVPhi;
576 
577 public:
578   WideIVInfo WI;
579 
580   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
581                         const TargetTransformInfo *TTI,
582                         const DominatorTree *DTree)
583     : SE(SCEV), TTI(TTI), IVPhi(IV) {
584     DT = DTree;
585     WI.NarrowIV = IVPhi;
586   }
587 
588   // Implement the interface used by simplifyUsersOfIV.
589   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
590 };
591 
592 } // end anonymous namespace
593 
594 /// Iteratively perform simplification on a worklist of IV users. Each
595 /// successive simplification may push more users which may themselves be
596 /// candidates for simplification.
597 ///
598 /// Sign/Zero extend elimination is interleaved with IV simplification.
599 bool IndVarSimplify::simplifyAndExtend(Loop *L,
600                                        SCEVExpander &Rewriter,
601                                        LoopInfo *LI) {
602   SmallVector<WideIVInfo, 8> WideIVs;
603 
604   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
605           Intrinsic::getName(Intrinsic::experimental_guard));
606   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
607 
608   SmallVector<PHINode *, 8> LoopPhis;
609   for (PHINode &PN : L->getHeader()->phis())
610     LoopPhis.push_back(&PN);
611 
612   // Each round of simplification iterates through the SimplifyIVUsers worklist
613   // for all current phis, then determines whether any IVs can be
614   // widened. Widening adds new phis to LoopPhis, inducing another round of
615   // simplification on the wide IVs.
616   bool Changed = false;
617   while (!LoopPhis.empty()) {
618     // Evaluate as many IV expressions as possible before widening any IVs. This
619     // forces SCEV to set no-wrap flags before evaluating sign/zero
620     // extension. The first time SCEV attempts to normalize sign/zero extension,
621     // the result becomes final. So for the most predictable results, we delay
622     // evaluation of sign/zero extend evaluation until needed, and avoid running
623     // other SCEV based analysis prior to simplifyAndExtend.
624     do {
625       PHINode *CurrIV = LoopPhis.pop_back_val();
626 
627       // Information about sign/zero extensions of CurrIV.
628       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
629 
630       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
631                                    &Visitor);
632 
633       if (Visitor.WI.WidestNativeType) {
634         WideIVs.push_back(Visitor.WI);
635       }
636     } while(!LoopPhis.empty());
637 
638     // Continue if we disallowed widening.
639     if (!WidenIndVars)
640       continue;
641 
642     for (; !WideIVs.empty(); WideIVs.pop_back()) {
643       unsigned ElimExt;
644       unsigned Widened;
645       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
646                                           DT, DeadInsts, ElimExt, Widened,
647                                           HasGuards, UsePostIncrementRanges)) {
648         NumElimExt += ElimExt;
649         NumWidened += Widened;
650         Changed = true;
651         LoopPhis.push_back(WidePhi);
652       }
653     }
654   }
655   return Changed;
656 }
657 
658 //===----------------------------------------------------------------------===//
659 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
660 //===----------------------------------------------------------------------===//
661 
662 /// Given an Value which is hoped to be part of an add recurance in the given
663 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
664 /// that this is less general than SCEVs AddRec checking.
665 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
666   Instruction *IncI = dyn_cast<Instruction>(IncV);
667   if (!IncI)
668     return nullptr;
669 
670   switch (IncI->getOpcode()) {
671   case Instruction::Add:
672   case Instruction::Sub:
673     break;
674   case Instruction::GetElementPtr:
675     // An IV counter must preserve its type.
676     if (IncI->getNumOperands() == 2)
677       break;
678     LLVM_FALLTHROUGH;
679   default:
680     return nullptr;
681   }
682 
683   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
684   if (Phi && Phi->getParent() == L->getHeader()) {
685     if (L->isLoopInvariant(IncI->getOperand(1)))
686       return Phi;
687     return nullptr;
688   }
689   if (IncI->getOpcode() == Instruction::GetElementPtr)
690     return nullptr;
691 
692   // Allow add/sub to be commuted.
693   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
694   if (Phi && Phi->getParent() == L->getHeader()) {
695     if (L->isLoopInvariant(IncI->getOperand(0)))
696       return Phi;
697   }
698   return nullptr;
699 }
700 
701 /// Whether the current loop exit test is based on this value.  Currently this
702 /// is limited to a direct use in the loop condition.
703 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
704   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
705   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
706   // TODO: Allow non-icmp loop test.
707   if (!ICmp)
708     return false;
709 
710   // TODO: Allow indirect use.
711   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
712 }
713 
714 /// linearFunctionTestReplace policy. Return true unless we can show that the
715 /// current exit test is already sufficiently canonical.
716 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
717   assert(L->getLoopLatch() && "Must be in simplified form");
718 
719   // Avoid converting a constant or loop invariant test back to a runtime
720   // test.  This is critical for when SCEV's cached ExitCount is less precise
721   // than the current IR (such as after we've proven a particular exit is
722   // actually dead and thus the BE count never reaches our ExitCount.)
723   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
724   if (L->isLoopInvariant(BI->getCondition()))
725     return false;
726 
727   // Do LFTR to simplify the exit condition to an ICMP.
728   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
729   if (!Cond)
730     return true;
731 
732   // Do LFTR to simplify the exit ICMP to EQ/NE
733   ICmpInst::Predicate Pred = Cond->getPredicate();
734   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
735     return true;
736 
737   // Look for a loop invariant RHS
738   Value *LHS = Cond->getOperand(0);
739   Value *RHS = Cond->getOperand(1);
740   if (!L->isLoopInvariant(RHS)) {
741     if (!L->isLoopInvariant(LHS))
742       return true;
743     std::swap(LHS, RHS);
744   }
745   // Look for a simple IV counter LHS
746   PHINode *Phi = dyn_cast<PHINode>(LHS);
747   if (!Phi)
748     Phi = getLoopPhiForCounter(LHS, L);
749 
750   if (!Phi)
751     return true;
752 
753   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
754   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
755   if (Idx < 0)
756     return true;
757 
758   // Do LFTR if the exit condition's IV is *not* a simple counter.
759   Value *IncV = Phi->getIncomingValue(Idx);
760   return Phi != getLoopPhiForCounter(IncV, L);
761 }
762 
763 /// Return true if undefined behavior would provable be executed on the path to
764 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
765 /// anything about whether OnPathTo is actually executed or whether Root is
766 /// actually poison.  This can be used to assess whether a new use of Root can
767 /// be added at a location which is control equivalent with OnPathTo (such as
768 /// immediately before it) without introducing UB which didn't previously
769 /// exist.  Note that a false result conveys no information.
770 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
771                                           Instruction *OnPathTo,
772                                           DominatorTree *DT) {
773   // Basic approach is to assume Root is poison, propagate poison forward
774   // through all users we can easily track, and then check whether any of those
775   // users are provable UB and must execute before out exiting block might
776   // exit.
777 
778   // The set of all recursive users we've visited (which are assumed to all be
779   // poison because of said visit)
780   SmallSet<const Value *, 16> KnownPoison;
781   SmallVector<const Instruction*, 16> Worklist;
782   Worklist.push_back(Root);
783   while (!Worklist.empty()) {
784     const Instruction *I = Worklist.pop_back_val();
785 
786     // If we know this must trigger UB on a path leading our target.
787     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
788       return true;
789 
790     // If we can't analyze propagation through this instruction, just skip it
791     // and transitive users.  Safe as false is a conservative result.
792     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
793       continue;
794 
795     if (KnownPoison.insert(I).second)
796       for (const User *User : I->users())
797         Worklist.push_back(cast<Instruction>(User));
798   }
799 
800   // Might be non-UB, or might have a path we couldn't prove must execute on
801   // way to exiting bb.
802   return false;
803 }
804 
805 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
806 /// down to checking that all operands are constant and listing instructions
807 /// that may hide undef.
808 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
809                                unsigned Depth) {
810   if (isa<Constant>(V))
811     return !isa<UndefValue>(V);
812 
813   if (Depth >= 6)
814     return false;
815 
816   // Conservatively handle non-constant non-instructions. For example, Arguments
817   // may be undef.
818   Instruction *I = dyn_cast<Instruction>(V);
819   if (!I)
820     return false;
821 
822   // Load and return values may be undef.
823   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
824     return false;
825 
826   // Optimistically handle other instructions.
827   for (Value *Op : I->operands()) {
828     if (!Visited.insert(Op).second)
829       continue;
830     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
831       return false;
832   }
833   return true;
834 }
835 
836 /// Return true if the given value is concrete. We must prove that undef can
837 /// never reach it.
838 ///
839 /// TODO: If we decide that this is a good approach to checking for undef, we
840 /// may factor it into a common location.
841 static bool hasConcreteDef(Value *V) {
842   SmallPtrSet<Value*, 8> Visited;
843   Visited.insert(V);
844   return hasConcreteDefImpl(V, Visited, 0);
845 }
846 
847 /// Return true if this IV has any uses other than the (soon to be rewritten)
848 /// loop exit test.
849 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
850   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
851   Value *IncV = Phi->getIncomingValue(LatchIdx);
852 
853   for (User *U : Phi->users())
854     if (U != Cond && U != IncV) return false;
855 
856   for (User *U : IncV->users())
857     if (U != Cond && U != Phi) return false;
858   return true;
859 }
860 
861 /// Return true if the given phi is a "counter" in L.  A counter is an
862 /// add recurance (of integer or pointer type) with an arbitrary start, and a
863 /// step of 1.  Note that L must have exactly one latch.
864 static bool isLoopCounter(PHINode* Phi, Loop *L,
865                           ScalarEvolution *SE) {
866   assert(Phi->getParent() == L->getHeader());
867   assert(L->getLoopLatch());
868 
869   if (!SE->isSCEVable(Phi->getType()))
870     return false;
871 
872   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
873   if (!AR || AR->getLoop() != L || !AR->isAffine())
874     return false;
875 
876   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
877   if (!Step || !Step->isOne())
878     return false;
879 
880   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
881   Value *IncV = Phi->getIncomingValue(LatchIdx);
882   return (getLoopPhiForCounter(IncV, L) == Phi &&
883           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
884 }
885 
886 /// Search the loop header for a loop counter (anadd rec w/step of one)
887 /// suitable for use by LFTR.  If multiple counters are available, select the
888 /// "best" one based profitable heuristics.
889 ///
890 /// BECount may be an i8* pointer type. The pointer difference is already
891 /// valid count without scaling the address stride, so it remains a pointer
892 /// expression as far as SCEV is concerned.
893 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
894                                 const SCEV *BECount,
895                                 ScalarEvolution *SE, DominatorTree *DT) {
896   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
897 
898   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
899 
900   // Loop over all of the PHI nodes, looking for a simple counter.
901   PHINode *BestPhi = nullptr;
902   const SCEV *BestInit = nullptr;
903   BasicBlock *LatchBlock = L->getLoopLatch();
904   assert(LatchBlock && "Must be in simplified form");
905   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
906 
907   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
908     PHINode *Phi = cast<PHINode>(I);
909     if (!isLoopCounter(Phi, L, SE))
910       continue;
911 
912     // Avoid comparing an integer IV against a pointer Limit.
913     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
914       continue;
915 
916     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
917 
918     // AR may be a pointer type, while BECount is an integer type.
919     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
920     // AR may not be a narrower type, or we may never exit.
921     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
922     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
923       continue;
924 
925     // Avoid reusing a potentially undef value to compute other values that may
926     // have originally had a concrete definition.
927     if (!hasConcreteDef(Phi)) {
928       // We explicitly allow unknown phis as long as they are already used by
929       // the loop exit test.  This is legal since performing LFTR could not
930       // increase the number of undef users.
931       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
932       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
933           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
934         continue;
935     }
936 
937     // Avoid introducing undefined behavior due to poison which didn't exist in
938     // the original program.  (Annoyingly, the rules for poison and undef
939     // propagation are distinct, so this does NOT cover the undef case above.)
940     // We have to ensure that we don't introduce UB by introducing a use on an
941     // iteration where said IV produces poison.  Our strategy here differs for
942     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
943     // see code in linearFunctionTestReplace.  For pointers, we restrict
944     // transforms as there is no good way to reinfer inbounds once lost.
945     if (!Phi->getType()->isIntegerTy() &&
946         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
947       continue;
948 
949     const SCEV *Init = AR->getStart();
950 
951     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
952       // Don't force a live loop counter if another IV can be used.
953       if (AlmostDeadIV(Phi, LatchBlock, Cond))
954         continue;
955 
956       // Prefer to count-from-zero. This is a more "canonical" counter form. It
957       // also prefers integer to pointer IVs.
958       if (BestInit->isZero() != Init->isZero()) {
959         if (BestInit->isZero())
960           continue;
961       }
962       // If two IVs both count from zero or both count from nonzero then the
963       // narrower is likely a dead phi that has been widened. Use the wider phi
964       // to allow the other to be eliminated.
965       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
966         continue;
967     }
968     BestPhi = Phi;
969     BestInit = Init;
970   }
971   return BestPhi;
972 }
973 
974 /// Insert an IR expression which computes the value held by the IV IndVar
975 /// (which must be an loop counter w/unit stride) after the backedge of loop L
976 /// is taken ExitCount times.
977 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
978                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
979                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
980   assert(isLoopCounter(IndVar, L, SE));
981   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
982   const SCEV *IVInit = AR->getStart();
983   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
984 
985   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
986   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
987   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
988   // the existing GEPs whenever possible.
989   if (IndVar->getType()->isPointerTy() &&
990       !ExitCount->getType()->isPointerTy()) {
991     // IVOffset will be the new GEP offset that is interpreted by GEP as a
992     // signed value. ExitCount on the other hand represents the loop trip count,
993     // which is an unsigned value. FindLoopCounter only allows induction
994     // variables that have a positive unit stride of one. This means we don't
995     // have to handle the case of negative offsets (yet) and just need to zero
996     // extend ExitCount.
997     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
998     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
999     if (UsePostInc)
1000       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1001 
1002     // Expand the code for the iteration count.
1003     assert(SE->isLoopInvariant(IVOffset, L) &&
1004            "Computed iteration count is not loop invariant!");
1005 
1006     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1007     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1008     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1009   } else {
1010     // In any other case, convert both IVInit and ExitCount to integers before
1011     // comparing. This may result in SCEV expansion of pointers, but in practice
1012     // SCEV will fold the pointer arithmetic away as such:
1013     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1014     //
1015     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1016     // for simple memset-style loops.
1017     //
1018     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1019     // were generated on top of case #2, which is not expected.
1020 
1021     // For unit stride, IVCount = Start + ExitCount with 2's complement
1022     // overflow.
1023 
1024     // For integer IVs, truncate the IV before computing IVInit + BECount,
1025     // unless we know apriori that the limit must be a constant when evaluated
1026     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1027     // of the IV in the loop over a (potentially) expensive expansion of the
1028     // widened exit count add(zext(add)) expression.
1029     if (SE->getTypeSizeInBits(IVInit->getType())
1030         > SE->getTypeSizeInBits(ExitCount->getType())) {
1031       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1032         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1033       else
1034         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1035     }
1036 
1037     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1038 
1039     if (UsePostInc)
1040       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1041 
1042     // Expand the code for the iteration count.
1043     assert(SE->isLoopInvariant(IVLimit, L) &&
1044            "Computed iteration count is not loop invariant!");
1045     // Ensure that we generate the same type as IndVar, or a smaller integer
1046     // type. In the presence of null pointer values, we have an integer type
1047     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1048     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1049       IndVar->getType() : ExitCount->getType();
1050     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1051     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1052   }
1053 }
1054 
1055 /// This method rewrites the exit condition of the loop to be a canonical !=
1056 /// comparison against the incremented loop induction variable.  This pass is
1057 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1058 /// determine a loop-invariant trip count of the loop, which is actually a much
1059 /// broader range than just linear tests.
1060 bool IndVarSimplify::
1061 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1062                           const SCEV *ExitCount,
1063                           PHINode *IndVar, SCEVExpander &Rewriter) {
1064   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1065   assert(isLoopCounter(IndVar, L, SE));
1066   Instruction * const IncVar =
1067     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1068 
1069   // Initialize CmpIndVar to the preincremented IV.
1070   Value *CmpIndVar = IndVar;
1071   bool UsePostInc = false;
1072 
1073   // If the exiting block is the same as the backedge block, we prefer to
1074   // compare against the post-incremented value, otherwise we must compare
1075   // against the preincremented value.
1076   if (ExitingBB == L->getLoopLatch()) {
1077     // For pointer IVs, we chose to not strip inbounds which requires us not
1078     // to add a potentially UB introducing use.  We need to either a) show
1079     // the loop test we're modifying is already in post-inc form, or b) show
1080     // that adding a use must not introduce UB.
1081     bool SafeToPostInc =
1082         IndVar->getType()->isIntegerTy() ||
1083         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1084         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1085     if (SafeToPostInc) {
1086       UsePostInc = true;
1087       CmpIndVar = IncVar;
1088     }
1089   }
1090 
1091   // It may be necessary to drop nowrap flags on the incrementing instruction
1092   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1093   // case the increment might have previously been poison on the last iteration
1094   // only) or if LFTR switches to a different IV that was previously dynamically
1095   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1096   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1097   // check), because the pre-inc addrec flags may be adopted from the original
1098   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1099   // TODO: This handling is inaccurate for one case: If we switch to a
1100   // dynamically dead IV that wraps on the first loop iteration only, which is
1101   // not covered by the post-inc addrec. (If the new IV was not dynamically
1102   // dead, it could not be poison on the first iteration in the first place.)
1103   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1104     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1105     if (BO->hasNoUnsignedWrap())
1106       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1107     if (BO->hasNoSignedWrap())
1108       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1109   }
1110 
1111   Value *ExitCnt = genLoopLimit(
1112       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1113   assert(ExitCnt->getType()->isPointerTy() ==
1114              IndVar->getType()->isPointerTy() &&
1115          "genLoopLimit missed a cast");
1116 
1117   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1118   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1119   ICmpInst::Predicate P;
1120   if (L->contains(BI->getSuccessor(0)))
1121     P = ICmpInst::ICMP_NE;
1122   else
1123     P = ICmpInst::ICMP_EQ;
1124 
1125   IRBuilder<> Builder(BI);
1126 
1127   // The new loop exit condition should reuse the debug location of the
1128   // original loop exit condition.
1129   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1130     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1131 
1132   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1133   // avoid the expensive expansion of the limit expression in the wider type,
1134   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1135   // since we know (from the exit count bitwidth), that we can't self-wrap in
1136   // the narrower type.
1137   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1138   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1139   if (CmpIndVarSize > ExitCntSize) {
1140     assert(!CmpIndVar->getType()->isPointerTy() &&
1141            !ExitCnt->getType()->isPointerTy());
1142 
1143     // Before resorting to actually inserting the truncate, use the same
1144     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1145     // the other side of the comparison instead.  We still evaluate the limit
1146     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1147     // a truncate within in.
1148     bool Extended = false;
1149     const SCEV *IV = SE->getSCEV(CmpIndVar);
1150     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1151                                                   ExitCnt->getType());
1152     const SCEV *ZExtTrunc =
1153       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1154 
1155     if (ZExtTrunc == IV) {
1156       Extended = true;
1157       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1158                                    "wide.trip.count");
1159     } else {
1160       const SCEV *SExtTrunc =
1161         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1162       if (SExtTrunc == IV) {
1163         Extended = true;
1164         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1165                                      "wide.trip.count");
1166       }
1167     }
1168 
1169     if (Extended) {
1170       bool Discard;
1171       L->makeLoopInvariant(ExitCnt, Discard);
1172     } else
1173       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1174                                       "lftr.wideiv");
1175   }
1176   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1177                     << "      LHS:" << *CmpIndVar << '\n'
1178                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1179                     << "\n"
1180                     << "      RHS:\t" << *ExitCnt << "\n"
1181                     << "ExitCount:\t" << *ExitCount << "\n"
1182                     << "  was: " << *BI->getCondition() << "\n");
1183 
1184   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1185   Value *OrigCond = BI->getCondition();
1186   // It's tempting to use replaceAllUsesWith here to fully replace the old
1187   // comparison, but that's not immediately safe, since users of the old
1188   // comparison may not be dominated by the new comparison. Instead, just
1189   // update the branch to use the new comparison; in the common case this
1190   // will make old comparison dead.
1191   BI->setCondition(Cond);
1192   DeadInsts.emplace_back(OrigCond);
1193 
1194   ++NumLFTR;
1195   return true;
1196 }
1197 
1198 //===----------------------------------------------------------------------===//
1199 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1200 //===----------------------------------------------------------------------===//
1201 
1202 /// If there's a single exit block, sink any loop-invariant values that
1203 /// were defined in the preheader but not used inside the loop into the
1204 /// exit block to reduce register pressure in the loop.
1205 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1206   BasicBlock *ExitBlock = L->getExitBlock();
1207   if (!ExitBlock) return false;
1208 
1209   BasicBlock *Preheader = L->getLoopPreheader();
1210   if (!Preheader) return false;
1211 
1212   bool MadeAnyChanges = false;
1213   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1214   BasicBlock::iterator I(Preheader->getTerminator());
1215   while (I != Preheader->begin()) {
1216     --I;
1217     // New instructions were inserted at the end of the preheader.
1218     if (isa<PHINode>(I))
1219       break;
1220 
1221     // Don't move instructions which might have side effects, since the side
1222     // effects need to complete before instructions inside the loop.  Also don't
1223     // move instructions which might read memory, since the loop may modify
1224     // memory. Note that it's okay if the instruction might have undefined
1225     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1226     // block.
1227     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1228       continue;
1229 
1230     // Skip debug info intrinsics.
1231     if (isa<DbgInfoIntrinsic>(I))
1232       continue;
1233 
1234     // Skip eh pad instructions.
1235     if (I->isEHPad())
1236       continue;
1237 
1238     // Don't sink alloca: we never want to sink static alloca's out of the
1239     // entry block, and correctly sinking dynamic alloca's requires
1240     // checks for stacksave/stackrestore intrinsics.
1241     // FIXME: Refactor this check somehow?
1242     if (isa<AllocaInst>(I))
1243       continue;
1244 
1245     // Determine if there is a use in or before the loop (direct or
1246     // otherwise).
1247     bool UsedInLoop = false;
1248     for (Use &U : I->uses()) {
1249       Instruction *User = cast<Instruction>(U.getUser());
1250       BasicBlock *UseBB = User->getParent();
1251       if (PHINode *P = dyn_cast<PHINode>(User)) {
1252         unsigned i =
1253           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1254         UseBB = P->getIncomingBlock(i);
1255       }
1256       if (UseBB == Preheader || L->contains(UseBB)) {
1257         UsedInLoop = true;
1258         break;
1259       }
1260     }
1261 
1262     // If there is, the def must remain in the preheader.
1263     if (UsedInLoop)
1264       continue;
1265 
1266     // Otherwise, sink it to the exit block.
1267     Instruction *ToMove = &*I;
1268     bool Done = false;
1269 
1270     if (I != Preheader->begin()) {
1271       // Skip debug info intrinsics.
1272       do {
1273         --I;
1274       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1275 
1276       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1277         Done = true;
1278     } else {
1279       Done = true;
1280     }
1281 
1282     MadeAnyChanges = true;
1283     ToMove->moveBefore(*ExitBlock, InsertPt);
1284     if (Done) break;
1285     InsertPt = ToMove->getIterator();
1286   }
1287 
1288   return MadeAnyChanges;
1289 }
1290 
1291 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1292                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1293   auto *OldCond = BI->getCondition();
1294   BI->setCondition(NewCond);
1295   if (OldCond->use_empty())
1296     DeadInsts.emplace_back(OldCond);
1297 }
1298 
1299 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1300                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1301   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1302   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1303   auto *OldCond = BI->getCondition();
1304   auto *NewCond =
1305       ConstantInt::get(OldCond->getType(), IsTaken ? ExitIfTrue : !ExitIfTrue);
1306   replaceExitCond(BI, NewCond, DeadInsts);
1307 }
1308 
1309 static void replaceLoopPHINodesWithPreheaderValues(
1310     Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1311   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1312   auto *LoopPreheader = L->getLoopPreheader();
1313   auto *LoopHeader = L->getHeader();
1314   for (auto &PN : LoopHeader->phis()) {
1315     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1316     PN.replaceAllUsesWith(PreheaderIncoming);
1317     DeadInsts.emplace_back(&PN);
1318   }
1319 }
1320 
1321 static void replaceWithInvariantCond(
1322     const Loop *L, BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1323     const SCEV *InvariantLHS, const SCEV *InvariantRHS, SCEVExpander &Rewriter,
1324     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1325   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1326   Rewriter.setInsertPoint(BI);
1327   auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1328   auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1329   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1330   if (ExitIfTrue)
1331     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1332   IRBuilder<> Builder(BI);
1333   auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1334                                      BI->getCondition()->getName());
1335   replaceExitCond(BI, NewCond, DeadInsts);
1336 }
1337 
1338 static bool optimizeLoopExitWithUnknownExitCount(
1339     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB,
1340     const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1341     ScalarEvolution *SE, SCEVExpander &Rewriter,
1342     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1343   ICmpInst::Predicate Pred;
1344   Value *LHS, *RHS;
1345   BasicBlock *TrueSucc, *FalseSucc;
1346   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1347                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1348     return false;
1349 
1350   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1351          "Not a loop exit!");
1352 
1353   // 'LHS pred RHS' should now mean that we stay in loop.
1354   if (L->contains(FalseSucc))
1355     Pred = CmpInst::getInversePredicate(Pred);
1356 
1357   // If we are proving loop exit, invert the predicate.
1358   if (Inverted)
1359     Pred = CmpInst::getInversePredicate(Pred);
1360 
1361   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1362   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1363   // Can we prove it to be trivially true?
1364   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) {
1365     foldExit(L, ExitingBB, Inverted, DeadInsts);
1366     return true;
1367   }
1368   // Further logic works for non-inverted condition only.
1369   if (Inverted)
1370     return false;
1371 
1372   auto *ARTy = LHSS->getType();
1373   auto *MaxIterTy = MaxIter->getType();
1374   // If possible, adjust types.
1375   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1376     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1377   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1378     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1379     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1380     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1381       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1382   }
1383 
1384   if (SkipLastIter) {
1385     const SCEV *One = SE->getOne(MaxIter->getType());
1386     MaxIter = SE->getMinusSCEV(MaxIter, One);
1387   }
1388 
1389   // Check if there is a loop-invariant predicate equivalent to our check.
1390   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1391                                                                L, BI, MaxIter);
1392   if (!LIP)
1393     return false;
1394 
1395   // Can we prove it to be trivially true?
1396   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1397     foldExit(L, ExitingBB, Inverted, DeadInsts);
1398   else
1399     replaceWithInvariantCond(L, ExitingBB, LIP->Pred, LIP->LHS, LIP->RHS,
1400                              Rewriter, DeadInsts);
1401 
1402   return true;
1403 }
1404 
1405 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1406   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1407   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1408   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1409   // it already has flags.  The alternative to this would be to extending the
1410   // set of "interesting" IV users to include the icmp, but doing that
1411   // regresses results in practice by querying SCEVs before trip counts which
1412   // rely on them which results in SCEV caching sub-optimal answers.  The
1413   // concern about caching sub-optimal results is why we only query SCEVs of
1414   // the loop invariant RHS here.
1415   SmallVector<BasicBlock*, 16> ExitingBlocks;
1416   L->getExitingBlocks(ExitingBlocks);
1417   bool Changed = false;
1418   for (auto *ExitingBB : ExitingBlocks) {
1419     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1420     if (!BI)
1421       continue;
1422     assert(BI->isConditional() && "exit branch must be conditional");
1423 
1424     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1425     if (!ICmp || !ICmp->hasOneUse())
1426       continue;
1427 
1428     auto *LHS = ICmp->getOperand(0);
1429     auto *RHS = ICmp->getOperand(1);
1430     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1431     // poisoning cache with sub-optimal results.  For the must-execute case,
1432     // this is a neccessary precondition for correctness.
1433     if (!L->isLoopInvariant(RHS)) {
1434       if (!L->isLoopInvariant(LHS))
1435         continue;
1436       // Same logic applies for the inverse case
1437       std::swap(LHS, RHS);
1438     }
1439 
1440     // Match (icmp signed-cond zext, RHS)
1441     Value *LHSOp = nullptr;
1442     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1443       continue;
1444 
1445     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1446     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1447     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1448     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1449     FullCR = FullCR.zeroExtend(OuterBitWidth);
1450     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1451     if (FullCR.contains(RHSCR)) {
1452       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1453       // replace the signed condition with the unsigned version.
1454       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1455       Changed = true;
1456       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1457       // have not changed exit counts, or the values produced by the compare.
1458       continue;
1459     }
1460   }
1461 
1462   // Now that we've canonicalized the condition to match the extend,
1463   // see if we can rotate the extend out of the loop.
1464   for (auto *ExitingBB : ExitingBlocks) {
1465     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1466     if (!BI)
1467       continue;
1468     assert(BI->isConditional() && "exit branch must be conditional");
1469 
1470     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1471     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1472       continue;
1473 
1474     bool Swapped = false;
1475     auto *LHS = ICmp->getOperand(0);
1476     auto *RHS = ICmp->getOperand(1);
1477     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1478       // Nothing to rotate
1479       continue;
1480     if (L->isLoopInvariant(LHS)) {
1481       // Same logic applies for the inverse case until we actually pick
1482       // which operand of the compare to update.
1483       Swapped = true;
1484       std::swap(LHS, RHS);
1485     }
1486     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1487 
1488     // Match (icmp unsigned-cond zext, RHS)
1489     // TODO: Extend to handle corresponding sext/signed-cmp case
1490     // TODO: Extend to other invertible functions
1491     Value *LHSOp = nullptr;
1492     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1493       continue;
1494 
1495     // In general, we only rotate if we can do so without increasing the number
1496     // of instructions.  The exception is when we have an zext(add-rec).  The
1497     // reason for allowing this exception is that we know we need to get rid
1498     // of the zext for SCEV to be able to compute a trip count for said loops;
1499     // we consider the new trip count valuable enough to increase instruction
1500     // count by one.
1501     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1502       continue;
1503 
1504     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1505     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1506     // when zext is loop varying and RHS is loop invariant.  This converts
1507     // loop varying work to loop-invariant work.
1508     auto doRotateTransform = [&]() {
1509       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1510       auto *NewRHS =
1511         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1512                          L->getLoopPreheader()->getTerminator());
1513       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1514       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1515       if (LHS->use_empty())
1516         DeadInsts.push_back(LHS);
1517     };
1518 
1519 
1520     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1521     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1522     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1523     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1524     FullCR = FullCR.zeroExtend(OuterBitWidth);
1525     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1526     if (FullCR.contains(RHSCR)) {
1527       doRotateTransform();
1528       Changed = true;
1529       // Note, we are leaving SCEV in an unfortunately imprecise case here
1530       // as rotation tends to reveal information about trip counts not
1531       // previously visible.
1532       continue;
1533     }
1534   }
1535 
1536   return Changed;
1537 }
1538 
1539 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1540   SmallVector<BasicBlock*, 16> ExitingBlocks;
1541   L->getExitingBlocks(ExitingBlocks);
1542 
1543   // Remove all exits which aren't both rewriteable and execute on every
1544   // iteration.
1545   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1546     // If our exitting block exits multiple loops, we can only rewrite the
1547     // innermost one.  Otherwise, we're changing how many times the innermost
1548     // loop runs before it exits.
1549     if (LI->getLoopFor(ExitingBB) != L)
1550       return true;
1551 
1552     // Can't rewrite non-branch yet.
1553     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1554     if (!BI)
1555       return true;
1556 
1557     // Likewise, the loop latch must be dominated by the exiting BB.
1558     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1559       return true;
1560 
1561     if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1562       // If already constant, nothing to do. However, if this is an
1563       // unconditional exit, we can still replace header phis with their
1564       // preheader value.
1565       if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1566         replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1567       return true;
1568     }
1569 
1570     return false;
1571   });
1572 
1573   if (ExitingBlocks.empty())
1574     return false;
1575 
1576   // Get a symbolic upper bound on the loop backedge taken count.
1577   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1578   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1579     return false;
1580 
1581   // Visit our exit blocks in order of dominance. We know from the fact that
1582   // all exits must dominate the latch, so there is a total dominance order
1583   // between them.
1584   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1585                // std::sort sorts in ascending order, so we want the inverse of
1586                // the normal dominance relation.
1587                if (A == B) return false;
1588                if (DT->properlyDominates(A, B))
1589                  return true;
1590                else {
1591                  assert(DT->properlyDominates(B, A) &&
1592                         "expected total dominance order!");
1593                  return false;
1594                }
1595   });
1596 #ifdef ASSERT
1597   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1598     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1599   }
1600 #endif
1601 
1602   bool Changed = false;
1603   bool SkipLastIter = false;
1604   SmallSet<const SCEV*, 8> DominatingExitCounts;
1605   for (BasicBlock *ExitingBB : ExitingBlocks) {
1606     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1607     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1608       // Okay, we do not know the exit count here. Can we at least prove that it
1609       // will remain the same within iteration space?
1610       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1611       auto OptimizeCond = [&](bool Inverted, bool SkipLastIter) {
1612         return optimizeLoopExitWithUnknownExitCount(
1613             L, BI, ExitingBB, MaxExitCount, Inverted, SkipLastIter, SE,
1614             Rewriter, DeadInsts);
1615       };
1616 
1617       // TODO: We might have proved that we can skip the last iteration for
1618       // this check. In this case, we only want to check the condition on the
1619       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1620       // corner case:
1621       //
1622       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1623       //
1624       // If we could not prove that len != 0, then we also could not prove that
1625       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1626       // OptimizeCond will likely not prove anything for it, even if it could
1627       // prove the same fact for len.
1628       //
1629       // As a temporary solution, we query both last and pre-last iterations in
1630       // hope that we will be able to prove triviality for at least one of
1631       // them. We can stop querying MaxExitCount for this case once SCEV
1632       // understands that (MaxExitCount - 1) will not overflow here.
1633       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1634         Changed = true;
1635       else if (SkipLastIter)
1636         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1637           Changed = true;
1638       continue;
1639     }
1640 
1641     if (MaxExitCount == ExitCount)
1642       // If the loop has more than 1 iteration, all further checks will be
1643       // executed 1 iteration less.
1644       SkipLastIter = true;
1645 
1646     // If we know we'd exit on the first iteration, rewrite the exit to
1647     // reflect this.  This does not imply the loop must exit through this
1648     // exit; there may be an earlier one taken on the first iteration.
1649     // We know that the backedge can't be taken, so we replace all
1650     // the header PHIs with values coming from the preheader.
1651     if (ExitCount->isZero()) {
1652       foldExit(L, ExitingBB, true, DeadInsts);
1653       replaceLoopPHINodesWithPreheaderValues(L, DeadInsts);
1654       Changed = true;
1655       continue;
1656     }
1657 
1658     assert(ExitCount->getType()->isIntegerTy() &&
1659            MaxExitCount->getType()->isIntegerTy() &&
1660            "Exit counts must be integers");
1661 
1662     Type *WiderType =
1663       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1664     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1665     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1666     assert(MaxExitCount->getType() == ExitCount->getType());
1667 
1668     // Can we prove that some other exit must be taken strictly before this
1669     // one?
1670     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1671                                      MaxExitCount, ExitCount)) {
1672       foldExit(L, ExitingBB, false, DeadInsts);
1673       Changed = true;
1674       continue;
1675     }
1676 
1677     // As we run, keep track of which exit counts we've encountered.  If we
1678     // find a duplicate, we've found an exit which would have exited on the
1679     // exiting iteration, but (from the visit order) strictly follows another
1680     // which does the same and is thus dead.
1681     if (!DominatingExitCounts.insert(ExitCount).second) {
1682       foldExit(L, ExitingBB, false, DeadInsts);
1683       Changed = true;
1684       continue;
1685     }
1686 
1687     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1688     // here.  If we kept track of the min of dominanting exits so far, we could
1689     // discharge exits with EC >= MDEC. This is less powerful than the existing
1690     // transform (since later exits aren't considered), but potentially more
1691     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1692     // or a >u b.  Such a case is not currently known.
1693   }
1694   return Changed;
1695 }
1696 
1697 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1698   SmallVector<BasicBlock*, 16> ExitingBlocks;
1699   L->getExitingBlocks(ExitingBlocks);
1700 
1701   // Finally, see if we can rewrite our exit conditions into a loop invariant
1702   // form. If we have a read-only loop, and we can tell that we must exit down
1703   // a path which does not need any of the values computed within the loop, we
1704   // can rewrite the loop to exit on the first iteration.  Note that this
1705   // doesn't either a) tell us the loop exits on the first iteration (unless
1706   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1707   // This transformation looks a lot like a restricted form of dead loop
1708   // elimination, but restricted to read-only loops and without neccesssarily
1709   // needing to kill the loop entirely.
1710   if (!LoopPredication)
1711     return false;
1712 
1713   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1714   // through *explicit* control flow.  We have to eliminate the possibility of
1715   // implicit exits (see below) before we know it's truly exact.
1716   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1717   if (isa<SCEVCouldNotCompute>(ExactBTC) || !isSafeToExpand(ExactBTC, *SE))
1718     return false;
1719 
1720   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1721   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1722 
1723   auto BadExit = [&](BasicBlock *ExitingBB) {
1724     // If our exiting block exits multiple loops, we can only rewrite the
1725     // innermost one.  Otherwise, we're changing how many times the innermost
1726     // loop runs before it exits.
1727     if (LI->getLoopFor(ExitingBB) != L)
1728       return true;
1729 
1730     // Can't rewrite non-branch yet.
1731     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1732     if (!BI)
1733       return true;
1734 
1735     // If already constant, nothing to do.
1736     if (isa<Constant>(BI->getCondition()))
1737       return true;
1738 
1739     // If the exit block has phis, we need to be able to compute the values
1740     // within the loop which contains them.  This assumes trivially lcssa phis
1741     // have already been removed; TODO: generalize
1742     BasicBlock *ExitBlock =
1743     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1744     if (!ExitBlock->phis().empty())
1745       return true;
1746 
1747     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1748     if (isa<SCEVCouldNotCompute>(ExitCount) || !isSafeToExpand(ExitCount, *SE))
1749       return true;
1750 
1751     assert(SE->isLoopInvariant(ExitCount, L) &&
1752            "Exit count must be loop invariant");
1753     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1754     return false;
1755   };
1756 
1757   // If we have any exits which can't be predicated themselves, than we can't
1758   // predicate any exit which isn't guaranteed to execute before it.  Consider
1759   // two exits (a) and (b) which would both exit on the same iteration.  If we
1760   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1761   // we could convert a loop from exiting through (a) to one exiting through
1762   // (b).  Note that this problem exists only for exits with the same exit
1763   // count, and we could be more aggressive when exit counts are known inequal.
1764   llvm::sort(ExitingBlocks,
1765             [&](BasicBlock *A, BasicBlock *B) {
1766               // std::sort sorts in ascending order, so we want the inverse of
1767               // the normal dominance relation, plus a tie breaker for blocks
1768               // unordered by dominance.
1769               if (DT->properlyDominates(A, B)) return true;
1770               if (DT->properlyDominates(B, A)) return false;
1771               return A->getName() < B->getName();
1772             });
1773   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1774   // exits before the backedge).  If they aren't, reasoning about reachability
1775   // is complicated and we choose not to for now.
1776   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1777     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1778       return false;
1779 
1780   // Given our sorted total order, we know that exit[j] must be evaluated
1781   // after all exit[i] such j > i.
1782   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1783     if (BadExit(ExitingBlocks[i])) {
1784       ExitingBlocks.resize(i);
1785       break;
1786     }
1787 
1788   if (ExitingBlocks.empty())
1789     return false;
1790 
1791   // We rely on not being able to reach an exiting block on a later iteration
1792   // then it's statically compute exit count.  The implementaton of
1793   // getExitCount currently has this invariant, but assert it here so that
1794   // breakage is obvious if this ever changes..
1795   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1796         return DT->dominates(ExitingBB, L->getLoopLatch());
1797       }));
1798 
1799   // At this point, ExitingBlocks consists of only those blocks which are
1800   // predicatable.  Given that, we know we have at least one exit we can
1801   // predicate if the loop is doesn't have side effects and doesn't have any
1802   // implicit exits (because then our exact BTC isn't actually exact).
1803   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1804   // suggestions on how to improve this?  I can obviously bail out for outer
1805   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1806   // is that enough for *all* side effects?
1807   for (BasicBlock *BB : L->blocks())
1808     for (auto &I : *BB)
1809       // TODO:isGuaranteedToTransfer
1810       if (I.mayHaveSideEffects())
1811         return false;
1812 
1813   bool Changed = false;
1814   // Finally, do the actual predication for all predicatable blocks.  A couple
1815   // of notes here:
1816   // 1) We don't bother to constant fold dominated exits with identical exit
1817   //    counts; that's simply a form of CSE/equality propagation and we leave
1818   //    it for dedicated passes.
1819   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1820   //    legality constraints and we leave that to dedicated logic.  We want to
1821   //    predicate even if we can't insert a loop invariant expression as
1822   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1823   //    varying check.
1824   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1825   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1826   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1827   for (BasicBlock *ExitingBB : ExitingBlocks) {
1828     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1829 
1830     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1831     Value *NewCond;
1832     if (ExitCount == ExactBTC) {
1833       NewCond = L->contains(BI->getSuccessor(0)) ?
1834         B.getFalse() : B.getTrue();
1835     } else {
1836       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1837       if (!ExactBTCV)
1838         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1839       Value *RHS = ExactBTCV;
1840       if (ECV->getType() != RHS->getType()) {
1841         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1842         ECV = B.CreateZExt(ECV, WiderTy);
1843         RHS = B.CreateZExt(RHS, WiderTy);
1844       }
1845       auto Pred = L->contains(BI->getSuccessor(0)) ?
1846         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1847       NewCond = B.CreateICmp(Pred, ECV, RHS);
1848     }
1849     Value *OldCond = BI->getCondition();
1850     BI->setCondition(NewCond);
1851     if (OldCond->use_empty())
1852       DeadInsts.emplace_back(OldCond);
1853     Changed = true;
1854   }
1855 
1856   return Changed;
1857 }
1858 
1859 //===----------------------------------------------------------------------===//
1860 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1861 //===----------------------------------------------------------------------===//
1862 
1863 bool IndVarSimplify::run(Loop *L) {
1864   // We need (and expect!) the incoming loop to be in LCSSA.
1865   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1866          "LCSSA required to run indvars!");
1867 
1868   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1869   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1870   //    canonicalization can be a pessimization without LSR to "clean up"
1871   //    afterwards.
1872   //  - We depend on having a preheader; in particular,
1873   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1874   //    and we're in trouble if we can't find the induction variable even when
1875   //    we've manually inserted one.
1876   //  - LFTR relies on having a single backedge.
1877   if (!L->isLoopSimplifyForm())
1878     return false;
1879 
1880 #ifndef NDEBUG
1881   // Used below for a consistency check only
1882   // Note: Since the result returned by ScalarEvolution may depend on the order
1883   // in which previous results are added to its cache, the call to
1884   // getBackedgeTakenCount() may change following SCEV queries.
1885   const SCEV *BackedgeTakenCount;
1886   if (VerifyIndvars)
1887     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1888 #endif
1889 
1890   bool Changed = false;
1891   // If there are any floating-point recurrences, attempt to
1892   // transform them to use integer recurrences.
1893   Changed |= rewriteNonIntegerIVs(L);
1894 
1895   // Create a rewriter object which we'll use to transform the code with.
1896   SCEVExpander Rewriter(*SE, DL, "indvars");
1897 #ifndef NDEBUG
1898   Rewriter.setDebugType(DEBUG_TYPE);
1899 #endif
1900 
1901   // Eliminate redundant IV users.
1902   //
1903   // Simplification works best when run before other consumers of SCEV. We
1904   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1905   // other expressions involving loop IVs have been evaluated. This helps SCEV
1906   // set no-wrap flags before normalizing sign/zero extension.
1907   Rewriter.disableCanonicalMode();
1908   Changed |= simplifyAndExtend(L, Rewriter, LI);
1909 
1910   // Check to see if we can compute the final value of any expressions
1911   // that are recurrent in the loop, and substitute the exit values from the
1912   // loop into any instructions outside of the loop that use the final values
1913   // of the current expressions.
1914   if (ReplaceExitValue != NeverRepl) {
1915     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1916                                              ReplaceExitValue, DeadInsts)) {
1917       NumReplaced += Rewrites;
1918       Changed = true;
1919     }
1920   }
1921 
1922   // Eliminate redundant IV cycles.
1923   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
1924 
1925   // Try to convert exit conditions to unsigned and rotate computation
1926   // out of the loop.  Note: Handles invalidation internally if needed.
1927   Changed |= canonicalizeExitCondition(L);
1928 
1929   // Try to eliminate loop exits based on analyzeable exit counts
1930   if (optimizeLoopExits(L, Rewriter))  {
1931     Changed = true;
1932     // Given we've changed exit counts, notify SCEV
1933     // Some nested loops may share same folded exit basic block,
1934     // thus we need to notify top most loop.
1935     SE->forgetTopmostLoop(L);
1936   }
1937 
1938   // Try to form loop invariant tests for loop exits by changing how many
1939   // iterations of the loop run when that is unobservable.
1940   if (predicateLoopExits(L, Rewriter)) {
1941     Changed = true;
1942     // Given we've changed exit counts, notify SCEV
1943     SE->forgetLoop(L);
1944   }
1945 
1946   // If we have a trip count expression, rewrite the loop's exit condition
1947   // using it.
1948   if (!DisableLFTR) {
1949     BasicBlock *PreHeader = L->getLoopPreheader();
1950 
1951     SmallVector<BasicBlock*, 16> ExitingBlocks;
1952     L->getExitingBlocks(ExitingBlocks);
1953     for (BasicBlock *ExitingBB : ExitingBlocks) {
1954       // Can't rewrite non-branch yet.
1955       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1956         continue;
1957 
1958       // If our exitting block exits multiple loops, we can only rewrite the
1959       // innermost one.  Otherwise, we're changing how many times the innermost
1960       // loop runs before it exits.
1961       if (LI->getLoopFor(ExitingBB) != L)
1962         continue;
1963 
1964       if (!needsLFTR(L, ExitingBB))
1965         continue;
1966 
1967       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1968       if (isa<SCEVCouldNotCompute>(ExitCount))
1969         continue;
1970 
1971       // This was handled above, but as we form SCEVs, we can sometimes refine
1972       // existing ones; this allows exit counts to be folded to zero which
1973       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1974       // until stable to handle cases like this better.
1975       if (ExitCount->isZero())
1976         continue;
1977 
1978       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1979       if (!IndVar)
1980         continue;
1981 
1982       // Avoid high cost expansions.  Note: This heuristic is questionable in
1983       // that our definition of "high cost" is not exactly principled.
1984       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1985                                        TTI, PreHeader->getTerminator()))
1986         continue;
1987 
1988       // Check preconditions for proper SCEVExpander operation. SCEV does not
1989       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1990       // any pass that uses the SCEVExpander must do it. This does not work
1991       // well for loop passes because SCEVExpander makes assumptions about
1992       // all loops, while LoopPassManager only forces the current loop to be
1993       // simplified.
1994       //
1995       // FIXME: SCEV expansion has no way to bail out, so the caller must
1996       // explicitly check any assumptions made by SCEV. Brittle.
1997       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1998       if (!AR || AR->getLoop()->getLoopPreheader())
1999         Changed |= linearFunctionTestReplace(L, ExitingBB,
2000                                              ExitCount, IndVar,
2001                                              Rewriter);
2002     }
2003   }
2004   // Clear the rewriter cache, because values that are in the rewriter's cache
2005   // can be deleted in the loop below, causing the AssertingVH in the cache to
2006   // trigger.
2007   Rewriter.clear();
2008 
2009   // Now that we're done iterating through lists, clean up any instructions
2010   // which are now dead.
2011   while (!DeadInsts.empty()) {
2012     Value *V = DeadInsts.pop_back_val();
2013 
2014     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2015       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2016     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2017       Changed |=
2018           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2019   }
2020 
2021   // The Rewriter may not be used from this point on.
2022 
2023   // Loop-invariant instructions in the preheader that aren't used in the
2024   // loop may be sunk below the loop to reduce register pressure.
2025   Changed |= sinkUnusedInvariants(L);
2026 
2027   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2028   // trip count and therefore can further simplify exit values in addition to
2029   // rewriteLoopExitValues.
2030   Changed |= rewriteFirstIterationLoopExitValues(L);
2031 
2032   // Clean up dead instructions.
2033   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2034 
2035   // Check a post-condition.
2036   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2037          "Indvars did not preserve LCSSA!");
2038 
2039   // Verify that LFTR, and any other change have not interfered with SCEV's
2040   // ability to compute trip count.  We may have *changed* the exit count, but
2041   // only by reducing it.
2042 #ifndef NDEBUG
2043   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2044     SE->forgetLoop(L);
2045     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2046     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2047         SE->getTypeSizeInBits(NewBECount->getType()))
2048       NewBECount = SE->getTruncateOrNoop(NewBECount,
2049                                          BackedgeTakenCount->getType());
2050     else
2051       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2052                                                  NewBECount->getType());
2053     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2054                                  NewBECount) && "indvars must preserve SCEV");
2055   }
2056   if (VerifyMemorySSA && MSSAU)
2057     MSSAU->getMemorySSA()->verifyMemorySSA();
2058 #endif
2059 
2060   return Changed;
2061 }
2062 
2063 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2064                                           LoopStandardAnalysisResults &AR,
2065                                           LPMUpdater &) {
2066   Function *F = L.getHeader()->getParent();
2067   const DataLayout &DL = F->getParent()->getDataLayout();
2068 
2069   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2070                      WidenIndVars && AllowIVWidening);
2071   if (!IVS.run(&L))
2072     return PreservedAnalyses::all();
2073 
2074   auto PA = getLoopPassPreservedAnalyses();
2075   PA.preserveSet<CFGAnalyses>();
2076   if (AR.MSSA)
2077     PA.preserve<MemorySSAAnalysis>();
2078   return PA;
2079 }
2080 
2081 namespace {
2082 
2083 struct IndVarSimplifyLegacyPass : public LoopPass {
2084   static char ID; // Pass identification, replacement for typeid
2085 
2086   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2087     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2088   }
2089 
2090   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2091     if (skipLoop(L))
2092       return false;
2093 
2094     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2095     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2096     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2097     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2098     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2099     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2100     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2101     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2102     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2103     MemorySSA *MSSA = nullptr;
2104     if (MSSAAnalysis)
2105       MSSA = &MSSAAnalysis->getMSSA();
2106 
2107     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2108     return IVS.run(L);
2109   }
2110 
2111   void getAnalysisUsage(AnalysisUsage &AU) const override {
2112     AU.setPreservesCFG();
2113     AU.addPreserved<MemorySSAWrapperPass>();
2114     getLoopAnalysisUsage(AU);
2115   }
2116 };
2117 
2118 } // end anonymous namespace
2119 
2120 char IndVarSimplifyLegacyPass::ID = 0;
2121 
2122 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2123                       "Induction Variable Simplification", false, false)
2124 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2125 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2126                     "Induction Variable Simplification", false, false)
2127 
2128 Pass *llvm::createIndVarSimplifyPass() {
2129   return new IndVarSimplifyLegacyPass();
2130 }
2131